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Introduction

Roger Penrose played a most important role in the
development of GRT during the 2nd half of XX century;
twistors are his discovery that influenced both mathematics
and physics

This talk: elementary introduction prepared for those
participants who had little contact with the subject. My
arrogance and conceit...

Rudiments: many important results, generalizations and
directions of research will not even be mentioned.
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Basic idea: to associate, in a natural way, a complex analytic
manifold H with a real manifold M so that the geometry
and physics on M are expressed by holomorphic data on H .

Penrose 1967 M=Minkowski space H = CP3

Atiyah, Hitchin, Singer 1978
M=self-dual 4-dim Riemannian manifold

H =bundle of directions of 2-spinors
in particular, if M = S4 then H = CP3

Hitchin 1982 minitwistors M = R3 H = TCP1

(set of all oriented lines in M )
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Penrose’s motivation:

(i) Description of Reality proceeds from phenomenology
(continues functions suffice) through differentiable functions
of classical physics to real analytic functions of fundamental
physics where elliptic eqs appear

complex numbers and holomorphic functions in quantum
theories and also in special solutions of wave and Einstein
eqs; Kerr theorem; algebraic geometry as an even more rigid
structure?

(ii) Space(-time) points are not physical, (thin) rays of light
relatively easy to realize
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(iii) Importance of massless particles and fields — conformal
geometry; action of conformal group requires
compactification of flat space (recall x 7→ 1/x is conformal)

(iv) Need to find a new geometry to connect gravitation with
quantum theory

(v) The special role of dim 4 : curvatures are 2-forms; only in
dim 4 curvatures can be self-dual and there is the related
decomposition so(4) = so(3)⊕ so(3); the special place of
dim 4 confirmed by Donaldson’s discovery of exotic smooth
structures on R4



The celestial sphere
can be identified with the complex projective line

Consider light ray (null line) `(t, x, y, z) ∈ RP3,
t2 − x2 − y2 − z2 = 0.

Here `(v) denotes the line spanned by the vector
v ∈ V × = V r {0}. (Most authors write [v] instead of
`(v))



The celestial sphere
can be identified with the complex projective line

Consider light ray (null line) `(t, x, y, z) ∈ RP3,
t2 − x2 − y2 − z2 = 0.

Here `(v) denotes the line spanned by the vector
v ∈ V × = V r {0}. (Most authors write [v] instead of
`(v))

Every such ray contains one point with t = 1 so that the set
of all rays through one point – the celestial sphere – is
identified with

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}



For every (x, y, z) ∈ S2 the equation(
1 + z x− iy

x+ iy 1− z

)(
ξ

η

)
= 0, (ξ, η) ∈ S = C2

has solutions that form a complex line in C2.



For every (x, y, z) ∈ S2 the equation(
1 + z x− iy

x+ iy 1− z

)(
ξ

η

)
= 0, (ξ, η) ∈ S = C2

has solutions that form a complex line in C2.

This gives a bijection (diffeomorphism)

S2→ CP1 : (x, y, z) 7→ `(ξ, η)

and induces a complex structure on S2 that agrees with its
metric so that the 2-sphere is a Hermitian (even Kähler)
manifold.
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space S of spinors induces conformal (Möbius)
transformations of the 2-sphere.
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The action of the group SL(2,C) = Spin(1, 3) on the
space S of spinors induces conformal (Möbius)
transformations of the 2-sphere. Draw lessons:

(i) to describe conformal transformation in 2 dimensions one
has to use the spin (Lorentz) group in 4 space-time
dimensions; this generalizes: use Spin(p+ 1, q + 1) to
obtain conformal transformations of a compactified flat
space with metric of signature (p, q);

(ii) Minkowski space is exceptional in the sense that only in
dimension 4 the celestial sphere is a Hermitian manifold



The set of all rays in Minkowski space is a 5-dim manifold
R3 × S2; as such it cannot be complex; twistors provide an
ingenious extension of that manifold (after compactification)
to CP3 and explain the role of the additional dimension.
Connection with origin of the name twistor.



The set of all rays in Minkowski space is a 5-dim manifold
R3 × S2; as such it cannot be complex; twistors provide an
ingenious extension of that manifold (after compactification)
to CP3 and explain the role of the additional dimension.
Connection with origin of the name twistor.

Solutions of wave equations depend on functions of 3
variables (Cauchy data). One can expect that analytic
solutions of wave equations can be obtained from data on
the 3-dim twistor space CP3.



Twistors: definitions

To represent conformal transformations of the compactified
Minkowski space M one has to consider the group
Spin(2, 4); the corresponding spaces of Weyl (chiral,
reduced, half-) spinors are the complex 4-dim. vector spaces
T and T∗ of twistors.



Twistors: definitions

To represent conformal transformations of the compactified
Minkowski space M one has to consider the group
Spin(2, 4); the corresponding spaces of Weyl (chiral,
reduced, half-) spinors are the complex 4-dim. vector spaces
T and T∗ of twistors.

There is a volume element, vol ∈ ∧4 T (or vol∗ ∈ ∧4 T∗) so
that Aut (T, vol) = SL(T) ∼= Spin(6,C).

The volume element defines a Hodge isomorphism
? : ∧2 T→ ∧2 T∗.
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W = ∧2 T has a quadratic form – the Pfaffian – defined by
Pf(w) vol = 1

2w ∧ w.



There is no scalar product in T, but the 6-dim vector space
W = ∧2 T has a quadratic form – the Pfaffian – defined by
Pf(w) vol = 1

2w ∧ w.

If vol = e1 ∧ · · · ∧ e4, then the basis (eα)α=1,...,4 is said to
be unimodular; with respect to such a basis
Pf(w) = w23w14 + w31w24 + w12w34. (When shown this,
physicists think of E ·B and recognize the formula
Pf(w)2 = detw).



By virtue of
w ◦ ?w = Pf(w) idT

a representation of the Clifford algebra of (W,Pf) in the
space T⊕ T∗ of Dirac spinors is obtained from

W→ End(T⊕ T∗) : w 7→
(

0 w

?w 0

)
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There is the null cone
NW = {w ∈W× | Pf(w) = 0}

The (Klein) quadric
QW = {`(w) ∈ PW | w ∈ NW}

is a 4-dimensional complex compact manifold with a
conformal geometry induced from (NW,Pf |NW) by local
sections of the line bundle NW→ QW.

The group SL(T) acts by conformal transformations on the
quadric. Since w ∧ w = 0 is equivalent to w = τ1 ∧ τ2 for
some τ1, τ2 ∈ T, the quadric can be identified with the
Grassmannian Gr(2,T) of 2-planes in T.



Breaking the symmetry

Consider two spaces of spinors (S, ε) and (S′, ε′), where S is
2-dim complex and

ε : S→ S∗, ε∗ = −ε, ε(eA) = εABe
B

where (eA)A=1,2 is a basis in S; similarly for S′.



Breaking the symmetry

Consider two spaces of spinors (S, ε) and (S′, ε′), where S is
2-dim complex and

ε : S→ S∗, ε∗ = −ε, ε(eA) = εABe
B

where (eA)A=1,2 is a basis in S; similarly for S′.

The decomposition
T = S⊕ S′

breaks the symmetry in the description of the geometry, like
the stereographic projection.

It allows one to distinguish a 4-dim affine space, an open and
dense subspace of the quadric.
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There is a decomposition
∧2(S⊕ S′) = ∧2 S⊕∧2 S′ ⊕ (S⊗ S′)

The 1-dim subspaces ∧2 S and ∧2 S′ of W are both null with
respect to Pf, but their sum is not, and the 4-dim vector
space S⊗ S′ is the orthogonal complement of that sum.

Every element of the form s⊗ s′ ∈ S⊗ S′ is null.

Let w0 ∈ ∧2 S and w∞ ∈ ∧2 S′ be such that
w0 ∧ w∞ = vol, then the injection

S⊗ S′→ QW, w 7→ `(w0 + w − Pf(w)w∞)

is conformal and generalizes the stereographic map
C→ CP1.



The complement of the image of S⊗ S′ in the quadric is the
compactified null cone with vertex at w∞.



The complement of the image of S⊗ S′ in the quadric is the
compactified null cone with vertex at w∞.

The group SL(T) mixes S and S′; for example, the
interchange w0� w∞ induces the inversion

`(w0 + w − Pf(w)w∞) 7→ `(w∞ + w − Pf(w)w0) =

= `(w0 − w/Pf(w)− Pf(w/Pf(w))w∞)



Real structure

To continue on the Road to Reality one introduces the real
Minkowski space (and its conformal compactification M ) by
identifying S′ with S̄ or S̄∗ (use ε̄ to go from one to the
other).



Real structure

To continue on the Road to Reality one introduces the real
Minkowski space (and its conformal compactification M ) by
identifying S′ with S̄ or S̄∗ (use ε̄ to go from one to the
other).

Put eĀ = eA so that (eĀ)A=1,2 is a basis in S̄. The
restriction of the Pfaffian to the real vector space

Re(S⊗ S̄) = {xAB̄eA ⊗ eB̄ | xAB̄ = xBĀ}

has signature (1, 3). Every real null vector is of the form
s⊗ s̄.



If (V, g) is another Minkowski vector space with a basis
(eµ)µ=0,...,3, then there is an isometry

σ : V→ Re(S⊗ S̄), σ(eµ) = σµ
AB̄eA ⊗ eB̄



If (V, g) is another Minkowski vector space with a basis
(eµ)µ=0,...,3, then there is an isometry

σ : V→ Re(S⊗ S̄), σ(eµ) = σµ
AB̄eA ⊗ eB̄

The isometry property is expressed by

gµν = σµ
AB̄σν

CD̄εACεB̄D̄

(Penrose usually omits the sigmas; abstract index notation)



Back to twistors: if

T = S⊕ S̄∗, then T̄∗ = S̄∗ ⊕ S

If s ∈ S and s′ ∈ S∗, then there is the twistor τ = (s, s̄′) (in
Penrose’s notation: Zα = (ωA, πB′))



Back to twistors: if

T = S⊕ S̄∗, then T̄∗ = S̄∗ ⊕ S

If s ∈ S and s′ ∈ S∗, then there is the twistor τ = (s, s̄′) (in
Penrose’s notation: Zα = (ωA, πB′))

and the natural swap map

c : T→ T̄∗, c(s, s̄′) = (s̄′, s)

which is is Hermitian, c̄∗ = c.



This map extends to W = ∧2 T: if w ∈ ∧2 T is considered
as a map from T∗ to T, then the composition c∗w̄c is an
antisymmetric map from T to T∗, i.e. an element of
W∗ = ∧2 T∗ and

ReW = {w ∈W | ?w = c∗w̄c}

is a real 6-dim vector space with a quadratic form Pf |ReW

of signature (2, 4).



The form (〈,〉 means evaluation)

C : T× T→ C, C(τ1, τ2) = 〈τ̄1, c(τ2)〉

is (pseudo) Hermitian: if τ = (s, s̄′), then

C(τ, τ) = 〈s, s′〉+ 〈s̄, s̄′〉 is real

The form C has signature (2, 2), therefore
Aut (T, vol, C) ∼= SU(2, 2) = Spin(2, 4).



The form (〈,〉 means evaluation)

C : T× T→ C, C(τ1, τ2) = 〈τ̄1, c(τ2)〉

is (pseudo) Hermitian: if τ = (s, s̄′), then

C(τ, τ) = 〈s, s′〉+ 〈s̄, s̄′〉 is real

The form C has signature (2, 2), therefore
Aut (T, vol, C) ∼= SU(2, 2) = Spin(2, 4).

A twistor
τ = (s, s̄′) is null if C(τ, τ) = 0 ⇔ 〈s, s′〉 is pure imaginary
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the map σ(x) : S̄∗→ S which is Hermitian, σ(x)∗ = σ(x)

(Pauli matrices are Hermitian)



Note: if instead of S′ = S̄∗ one assumes S = S̄ and S′ = S̄′

(real spaces), then one gets a reduction of SL(4,C) to
SL(4,R) = Spin(3, 3).

The twistor equation

Identifying S⊗ S̄ with Hom(S̄∗,S) one has, for every x ∈ V,
the map σ(x) : S̄∗→ S which is Hermitian, σ(x)∗ = σ(x)

(Pauli matrices are Hermitian)

Consider the field of spinors φ : V→ S associated with
τ = (s, s̄′) and given by

φ(x) = s− iσ(x)s̄′



This is a general solution of the twistor equation
(indices win!):

∇(A
C̄φ

B)
= 0, φ = eAφ

A, ∇AB̄ = σµAB̄∇µ

Here ∇µ = ∂/∂xµ, but the equation generalizes to
Riemannian manifolds. The equation is conformally invariant
and its integrability imposes severe restrictions on the tensor
W of conformal curvature.



The twistor equation is part of the decomposition into
irreducible parts

∇ on spinor = Weyl–Dirac operator+Penrose twistor operator

analogous to

∇ on vector = div + curl + eq. for conformal Killing vectors

Close relation between solutions of those equations. Killing
spinors.



If the equation φ(x) = 0 has a real solution x ∈ V, then the
twistor τ = (s, s̄′) is null.
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(♦) σ(l + tk) = i
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If the equation φ(x) = 0 has a real solution x ∈ V, then the
twistor τ = (s, s̄′) is null. If τ is null and generic, in the
sense that 〈s, s′〉 6= 0, then there is the ray

R→ V, t 7→ l + tk

such that

(♦) σ(l + tk) = i
s⊗ s̄
〈s, s′〉

+ tε−1(s′)⊗ ε̄−1(s̄′)

and φ(l + tk) = 0. If τ = (0, s̄′), then there is the ray
tε−1(s′)⊗ ε̄−1(s̄′). The null twistor (s, 0) defines a ray on
the null cone at infinity.



Replacing (s, s̄′) by λ(s, s̄′), λ ∈ C×, does not change the
ray ♦ which is defined by an element of

PT0 = {`(τ) ∈ PT | C(τ, τ) = 0},
a 5-dim real submanifold of the projective twistor space PT
with an induced Cauchy–Riemann structure.
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a 5-dim real submanifold of the projective twistor space PT
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not null, then 〈s, s′〉 is complex and ♦ describes a ray in
C⊗ V parallel to the real vector k and passing through the
tip of a complex null vector l. The collection of all null
twistors orthogonal to such a τ defines, in the real space V,
an (Ivor) Robinson “congruence” (1-dim foliation) of rays
which is twisting in the sense that the distribution of
3-planes orthogonal to the vectors of the congruence is not
integrable (Shadows rotate...)
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The Penrose correspondences

The real quadric
M = {`(w) ∈ QW | w ∈ ReW}

provides a conformal compactification of Minkowski space. It
is diffeomorphic to S1 × S3. Its null geodesics are rays. An
element `(τ1 ∧ τ2) of QW is in M iff

?(τ1 ∧ τ2) = c∗(τ̄1 ∧ τ̄2)c ∈ ∧2T ∗

Evaluating both sides of the last equation on τ1 and τ2 one
obtains, the necessary and sufficient conditions for `(τ1 ∧ τ2)

to be in M :

C(τ1, τ1) = 0, C(τ2, τ2) = 0 and C(τ1, τ2) = 0



For every λ1, λ2 ∈ C× the twistor λ1τ1 + λ2τ2 is null and
orthogonal to τ1 and τ2. The set of all directions of these
twistors is the null cone (celestial sphere) of the point
`(τ1 ∧ τ2) ∈ M .



For every λ1, λ2 ∈ C× the twistor λ1τ1 + λ2τ2 is null and
orthogonal to τ1 and τ2. The set of all directions of these
twistors is the null cone (celestial sphere) of the point
`(τ1 ∧ τ2) ∈ M .

There are natural, bijective Penrose correspondences

M PT0

ray point
intersecting rays orthogonal points
point complex projective line

(celestial sphere)
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Let V be a real vector space of dim 2n with a scalar product
h that is either positive-definite (Euclidean) or of signature
(1, 2n− 1) (Lorentzian).
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Complexification “unifies”
null rays in Lorentz spaces

and complex structures in Euclidean spaces

Let V be a real vector space of dim 2n with a scalar product
h that is either positive-definite (Euclidean) or of signature
(1, 2n− 1) (Lorentzian).

The complexification C⊗ V contains subspaces which are
totally null and of maximal dimension, i.e. n.

If N is such an mtn space, then the complex conjugate
space N̄ is also mtn; their intersection N ∩ N̄ is a totally



null space that is (the complexification of a) real.
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0 if (V, h) is Euclidean
1 if (V, h) is Lorentzian
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Dually, one describes an mtn N by the (direction of an)
n-form F such that v ∈ N ⇔ v yF = 0. Since ∗F
corresponds in this way to N⊥, N⊥ = N for mtns, one has
∗F‖F and, since ∗∗ = ± id, there are two kinds of mtns
(the α and β planes of classical projective geometry).



null space that is (the complexification of a) real.Therefore,

dim(N ∩ N̄) =

{
0 if (V, h) is Euclidean
1 if (V, h) is Lorentzian

Dually, one describes an mtn N by the (direction of an)
n-form F such that v ∈ N ⇔ v yF = 0. Since ∗F
corresponds in this way to N⊥, N⊥ = N for mtns, one has
∗F‖F and, since ∗∗ = ± id, there are two kinds of mtns
(the α and β planes of classical projective geometry).

In the Euclidean case, N defines a complex structure J in V,

C⊗ V = N ⊕ N̄ J |N =
√
−1 idN



which is orthogonal, h(Jx, Jx) = h(x, x) for every x ∈ V.
Conversely, every such J defines an mtn. Mathematicians
write C⊗ V = V1,0 ⊕ V0,1.



which is orthogonal, h(Jx, Jx) = h(x, x) for every x ∈ V.
Conversely, every such J defines an mtn. Mathematicians
write C⊗ V = V1,0 ⊕ V0,1.

In the Lorentzian case, N defines a ray K = Re(N ∩ N̄);
moreover, it defines also an orthogonal complex structure in
the (2n− 2)-dim screen space K⊥/K. In four dimensions,
the screen space is 2-dim and orientation is enough to define
a complex structure in this Euclidean space; for this reason,
physicists restrict their attention to K.



Cartan used mtns to define simple (pure) spinors. If
γ : V→ EndS defines a representation of the Clifford
algebra of (V, h) in the space S = S+ ⊕ S− of Dirac spinors
and 0 6= s ∈ S, then the vector space

(♥) {v ∈ C⊗ V | γ(v)s = 0}

is totally null; if (♥) is mtn, then the line `(s) is said to
consist of simple spinors.



Cartan used mtns to define simple (pure) spinors. If
γ : V→ EndS defines a representation of the Clifford
algebra of (V, h) in the space S = S+ ⊕ S− of Dirac spinors
and 0 6= s ∈ S, then the vector space

(♥) {v ∈ C⊗ V | γ(v)s = 0}

is totally null; if (♥) is mtn, then the line `(s) is said to
consist of simple spinors. In dimensions 4 and 6 every Weyl
spinor is simple. Since in dimension 4 the spaces of Weyl
spinors S± are complex 2-dim, the corresponding manifold of
mtns of one chirality is diffeomorphic to CP1.



Integrability

These observations become interesting when applied to the
tangent spaces of a 2n-dim Riemannian or Lorentzian
manifold (M, g).



Integrability

These observations become interesting when applied to the
tangent spaces of a 2n-dim Riemannian or Lorentzian
manifold (M, g).

Let now N be a field (distribution) onM of mtn subspaces
of C⊗ TM and let F be a field of n-forms providing the
dual description of the distribution. The distribution is said
to be integrable if

(int) [SecN ,SecN ] ⊂ SecN



This is equivalent to the existence of a field µ of 1-forms
such that

dF = µ ∧ F
Can one get rid of µ, by rescaling of F , to obtain a Maxwell
field in dim 4 ? (Robinson, Tafel)



This is equivalent to the existence of a field µ of 1-forms
such that
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Can one get rid of µ, by rescaling of F , to obtain a Maxwell
field in dim 4 ? (Robinson, Tafel)

In the Riemannian case N defines an almost complex
structure J and (int) is equivalent to the integrability of J .
If (int) holds, then (M, g,J ) is a Hermitian manifold.



In the Lorentzian case, if (int) holds,

(i) the distribution K = Re(N ∩ N̄ ) defines a foliation of
M by a family of rays (null geodesics) and the distribution
K⊥/K with its conformal structure induced by g is invariant
with respect to the flows generated by sections of K →M;



In the Lorentzian case, if (int) holds,

(i) the distribution K = Re(N ∩ N̄ ) defines a foliation of
M by a family of rays (null geodesics) and the distribution
K⊥/K with its conformal structure induced by g is invariant
with respect to the flows generated by sections of K →M;
if the foliation is regular, i.e. quotientM/K is a manifold L
etc., then

(ii) the distribution N induces a Cauchy–Riemann structure
on L.
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Shear-free congruences of rays and the Kerr thm

In particular, in the 4-dim case, the invariance of the
conformal structure of the bundle K⊥/K of screen spaces is
the shear-free property of congruence of rays; the
corresponding CR 3-dim manifold L is characterized by a
bundle H ⊂ TL with complex structures in its fibres. In the
case of Minkowski space, every foliation of M by rays is
given, locally, by a 3-dim submanifold L of PT0.

The manifold L has an analytic CR structure – and so
corresponds to a shear-free congruence of rays – iff it is the
intersection of PT0 with a complex hypersurface in PT

(Penrose form of the Kerr thm).



For example, a Robinson congruence is given as the
intersection of PT0 with the hypersurface

{`(τ) ∈ PT | C(τ ′, τ) = 0} ⊂ PT

where τ ′ ∈ T× is not null.



For example, a Robinson congruence is given as the
intersection of PT0 with the hypersurface

{`(τ) ∈ PT | C(τ ′, τ) = 0} ⊂ PT

where τ ′ ∈ T× is not null.

In 4-dim Einstein spaces
The theorems of

Goldberg and Sachs in GRT
Plebański and Przanowski in Euclid. sign.

connect degeneracy of W to integrability of N



An aside: the Robinson congruence

To describe the Robinson congruence in Minkowski space,
consider first coordinates (U, r,X, Y ) in (V, g) such that
the metric is

g = 2 dU dr − (dX2 + dY 2)

Introduce new real coordinates (u, r, x, y)

X + iY = (r+ ia)(x+ iy), U = u+ 1
2r(x

2 + y2), a ∈ R

so that

g = 2κdr−(r2+a2)(dx2+dy2), κ = du+a(x dy−y dx)



The 2-form F = Z(u, x, y)κ ∧ d(x+ iy) is self-dual,
(∗F = iF ), and κ ∧ dκ = 2adu ∧ dx ∧ dy.
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For a 6= 0, the null vector field ∂/∂r generates a twisting
Robinson congruence. Maxwell’s equations dF = 0 reduce
to La(Z) = 0, where

La = a(x+ iy)
∂

∂u
+ i

∂

∂x
− ∂
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The 2-form F = Z(u, x, y)κ ∧ d(x+ iy) is self-dual,
(∗F = iF ), and κ ∧ dκ = 2adu ∧ dx ∧ dy.

For a 6= 0, the null vector field ∂/∂r generates a twisting
Robinson congruence. Maxwell’s equations dF = 0 reduce
to La(Z) = 0, where

La = a(x+ iy)
∂

∂u
+ i

∂

∂x
− ∂

∂y

For a = 0 (no twist) L0(Z) = 0 is the C-R equation so that
a general solution of dF = 0 is given by
F = Z du ∧ d(x+ iy), where Z is a holomorphic function
of x+ iy, depending smoothly on u.



For a 6= 0 the situation is drastically different. The equation
L1(Z) = 0 has two independent solutions Z1 = x+ iy and
Z2 = u+ 1

2i(x
2 + y2). The embedding

R3→ C2 : (u, x, y) 7→ (Z1(x, y), Z2(u, x, y))

gives a realization of the CR structure (R3, κ,d(x+ iy)) on
a hypersurface in C2.



For a 6= 0 the situation is drastically different. The equation
L1(Z) = 0 has two independent solutions Z1 = x+ iy and
Z2 = u+ 1

2i(x
2 + y2). The embedding

R3→ C2 : (u, x, y) 7→ (Z1(x, y), Z2(u, x, y))

gives a realization of the CR structure (R3, κ,d(x+ iy)) on
a hypersurface in C2.

Hans Lewy (1956) constructed a function A(u, x, y) of class
C∞ such that the equation L1(Z) = A has not even local
solutions. But there are such solutions if A is of class Cω.



The Penrose transform

is a sophisticated and precise isomorphism between the space
of analytic solutions of field equations for particles of
arbitrary spin and the sheaf cohomology classes of
appropriate holomorphic bundles on PT.



The Penrose transform

is a sophisticated and precise isomorphism between the space
of analytic solutions of field equations for particles of
arbitrary spin and the sheaf cohomology classes of
appropriate holomorphic bundles on PT.

Initiated by Penrose (1968) and completed by him and Ward,
Wells, Eastwood, Baston,. . . in the 1980s.

Here rudiments only.
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so that if the vectors k and l are null and ⊥ to each other,
then �f = 0.
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ρ, lσx
σ) = f11kµkν + 2f12kµlν + f22lµlν
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then �f = 0.

Consider the null twistor s, s̄′, where

s = σ(x)s̄′, σ(x) =

(
u z̄

z v

)
, s̄′ =

(
1

λ

)
so that

detσ(dx) = dudv − dz̄ dz



s = (u+ λz̄, z + λv) = (kρx
ρ, lσx

σ)

and the vectors k and l are null and orthogonal. Therefore

∮
f(u+ λz̄, z + λv, λ) dλ

is a solution of the wave equation. f is a holomorphic
function of 3 variables; there is a natural way of interpreting
it as such a function on PT.
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is a solution of the wave equation. f is a holomorphic
function of 3 variables; there is a natural way of interpreting
it as such a function on PT.



Let µ1 = −λ and µ2 = 1, the field

φA1...As =

∮
C

f(u+ λz̄, z + λv, λ)µA1 . . . µAs dλ

satisfies the (Fierz–Pauli) equation

∇A1B̄
φA1...As = 0

The resulting field is a sum (integral) of fields of type N in
the sense of the Cartan–Petrov–Penrose classification.
Penrose shows that algebraically special fields can also be so
obtained by a suitable choice of f : for example, a field of
type N results from choosing f that contains only a simple



pole inside the contour C.

Adding to f a function holomorphic inside C does not
change φ: need for cohomology considerations.



Twistors in proper Riemannian geometry

Pure mathematicians have extended the ideas of Penrose to
the geometry of Riemannian manifolds with a
positive-definite metric tensor.

Assume (M, g) is 4-dim oriented proper Riemannian
manifold.



Twistors in proper Riemannian geometry

Pure mathematicians have extended the ideas of Penrose to
the geometry of Riemannian manifolds with a
positive-definite metric tensor.

Assume (M, g) is 4-dim oriented proper Riemannian
manifold. The Riemann tensor is decomposed into
irreducible parts

Riem = R+Ric0 +W+ +W−

where Ric0 is the traceless part of the Ricci tensor, W+ and
W− are the self-dual and anti-self-dual parts of the Weyl
tensor of conformal curvature.



Let J be a complex structure in TxM; it defines an
orientation in TxM; call J positive if this orientation agrees
with that of the manifold; negative otherwise.
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of P+ (P−) at x ∈ M is the set of all positive (negative)
complex structures in TxM. All these fibres are diffeomorphic
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Let J be a complex structure in TxM; it defines an
orientation in TxM; call J positive if this orientation agrees
with that of the manifold; negative otherwise.

There are two bundles P+ and P− over M such that the fibre
of P+ (P−) at x ∈ M is the set of all positive (negative)
complex structures in TxM. All these fibres are diffeomorphic
to CP1.

One introduces on both P+ and P− an almost complex
structure as follows. Take, e.g., P− and use the Levi–Civita
connection on (M, g) to decompose TJP− = HJ ⊕ VJ ,
where VJ is the space tangent to the fibre of π : P−→ M at
J ∈ P− and there is the isomorphism TJπ : HJ → Tπ(J)M.



Define J on P− so that J |VJ is given by the complex
structure of the fibre and J |HJ = T−1

π(J) ◦ J ◦ Tπ(J).
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Theorem (M. F. Atiyah, N. J. Hitchin and I. M. Singer
1978) If (M, g) is self-dual, i.e. W− = 0, then J is
integrable, i.e. P− is a complex manifold.

Proof is based on the twistor equation.

Example The sphere S4 is conformally flat and there are
two (isomorphic) complex manifolds P± = CP3, part of the
fibration CP1→ CP3→ S4.



Define J on P− so that J |VJ is given by the complex
structure of the fibre and J |HJ = T−1

π(J) ◦ J ◦ Tπ(J).

Theorem (M. F. Atiyah, N. J. Hitchin and I. M. Singer
1978) If (M, g) is self-dual, i.e. W− = 0, then J is
integrable, i.e. P− is a complex manifold.

Proof is based on the twistor equation.

Example The sphere S4 is conformally flat and there are
two (isomorphic) complex manifolds P± = CP3, part of the
fibration CP1→ CP3→ S4.



Roger Penrose’s twistors
provide an important vehicle

for science to move on
The Road to Reality


