A Simple Proof of the Robinson Theorem

by

ANDRZEJ TRAUTMAN

Institute of Theoretical Physics, Warsaw University

1. — Notation

Standard terminology and notation of algebra and differential geometry is used in this paper. The exterior algebra of an \(n \)-dimensional real vector space \(V \) is denoted by

\[
\Lambda^* V = \bigoplus_{k=0}^{n} \Lambda^k V^*,
\]

where \(\Lambda^0 V^* = \mathbb{R} \) and \(\Lambda^1 V^* = V^* \) is the dual of \(V \). If \(u \in V \), then

\[
i(u) : \Lambda^* V \to \Lambda^* V
\]

is the (anti) derivation of degree \(-1\) defined by

\[
i(u)\alpha = \langle u, \alpha \rangle \quad \text{for any } \alpha \in V^*
\]

and

\[
i(u)(\beta \land \gamma) = (i(u)\beta) \land \gamma + (-1)^k \beta \land i(u)\gamma
\]

for any \(\beta \in \Lambda^k V^* \). Sometimes one writes \(u _\alpha \) instead of \(i(u)\alpha \). If

\[
A : V \to V
\]

is a linear map, then

\[
\overline{A} : \Lambda^* V \to \Lambda^* V
\]

denotes the derivation of degree 0 defined by

\[
\langle u, \overline{A}\alpha \rangle = \langle Au, \alpha \rangle \quad \text{for any } u \in V \quad \text{and } \alpha \in V^*
\]

and

\[
\overline{A}(\beta \land \gamma) = (\overline{A}\beta) \land \gamma + \beta \land \overline{A}\gamma, \quad \beta, \gamma \in \Lambda^* V.
\]
It is easy to check that

\[(1) \quad [i(u), A] = i(Au)\]

for any \(u \in V\) and \(A \in \mathcal{L}(V)\). If \(u \in V\) and \(\alpha \in V^*\) then the map \(A\) defined by \(Av = \alpha(v)u\) is written as \(A = u \otimes \alpha\).

A scalar product in \(V\) is defined as a bilinear symmetric map \(g : V \times V \to \mathbb{R}\) which is non-degenerate, but the quadratic form \(u \to g(u, u)\) needs not be positive-definite. The same letter \(g\) will be used to denote the isomorphism of \(V\) onto \(V^*\) defined by

\[\langle v, g(u) \rangle = g(u, v), \quad u, v \in V.\]

A linear map \(A : V \to V\) is symmetric with respect to \(g\) if, for any \(u, v \in V\),

\[g(Au, v) = g(u, Av).\]

If \(A\) is symmetric, then \(g(Au) = \overline{A}g(u)\).

Let \((e_\mu)\), \(\mu = 1, \ldots, n\), be a linear frame (basis) in \(V\) and let \((e^\nu)\) denote its dual:

\[\langle e_\mu, e^\nu \rangle = \delta_\mu^\nu.\]

The \(n\)-form

\[(2) \quad e = e^1 \wedge e^2 \wedge \ldots \wedge e^n\]

spans \(\Lambda^n V^*\) and

\[(3) \quad \overline{A}e = eTrA.\]

Assume now that \(V\) has a preferred orientation and consider a frame which agrees with the orientation and is unimodular, i.e.:

\[|\det(g_{\mu\nu})| = 1,\]

where

\[g_{\mu\nu} = g(e_\mu, e_\nu).\]

The \(n\)-form (2) is now called an (oriented) volume element. The Hodge dual is an isomorphism of the vector space \(\Lambda V^*\) on itself,

\[\ast : \Lambda V^* \to \Lambda V^*,\]

defined as follows. Let \(\alpha \in \Lambda^k V^*\) and \(u_{k+1}, \ldots, u_n \in V\), then \(\ast \alpha \in \Lambda^{n-k} V^*\) is given by

\[(4) \quad \ast \alpha(u_{k+1}, \ldots, u_n) e = \alpha \wedge g(u_{k+1}) \wedge \ldots \wedge g(u_n).\]
One has

\[i(u) \ast \alpha = \ast (\alpha \wedge g(u)) \]

and, if \(A \in \mathcal{L}(V) \) is symmetric,

\[\overline{A} \ast \ast \overline{A} = (TrA)^\ast. \]

Let \(M \) be an \(n \)-dimensional smooth oriented manifold with a metric tensor \(g \). The algebraic notions and constructions described above are extended, in a natural manner, to smooth fields on \(M \). For example, if \(\Gamma(M) = \bigoplus \Gamma^k(M) \) is the Cartan algebra of differential forms on \(M \) and \(u \) is a vector field, then \(i(u) : \Gamma(M) \to \Gamma(M) \) is a derivation of degree \(-1\). The exterior derivative

\[d : \Gamma(M) \to \Gamma(M) \]

is a derivation of degree \(+1\). If \(u \) and \(v \) are vector fields, then

\[\mathcal{L}(u) = d \circ i(u) + i(u) \circ d \]

is a derivation of degree \(0\) (the Lie derivative with respect to \(u \)); we have:

\[[\mathcal{L}(u), d] = 0 \]

and

\[[\mathcal{L}(u), i(v)] = i([u, v]), \]

where \([u, v]\) is the usual bracket of vector fields,

\[\mathcal{L}([u, v]) = [\mathcal{L}(u), \mathcal{L}(v)]. \]

If \(A : TM \to TM \) is an endomorphism of the tangent bundle \(TM \), then \(\overline{A} \) denotes the corresponding derivation of the Cartan algebra; there are obvious extensions of formulae (1) - (6) to fields on \(M \). If \(u \) and \(v \) are vector fields and \(g(u) \) denotes the 1-form corresponding to \(u \) under the isomorphism \(g : TM \to T^*M \), then the map

\[v \mapsto \mathcal{L}(u)(g(v)) - g([u, v]) \]

defines a tensor field (the Lie derivative of \(g \) with respect to \(u \)),

\[\mathcal{L}_u g : TM \to T^*M, \]

given by:

\[(\mathcal{L}_u g)(v) = \mathcal{L}(u)(g(v)) - g([u, v]). \]

This tensor field is symmetric, \(\langle w, (\mathcal{L}_u g)(v) \rangle = \langle v, (\mathcal{L}_u g)(w) \rangle \), and it vanishes if and only if \(u \) generates a group of isometries of \(g \). The composed map
(12) \[A_u = g^{-1} \circ \mathcal{L}_u g : TM \to TM \]
occurs in the following lemma.

Lemma 1. Let \[\ast : \Gamma(M) \to \Gamma(M) \]
be the Hodge dual acting on differential forms. If \(u \) is a vector field on \(M \), then

\[[\mathcal{L}(u), \ast] = (\mathcal{A}_u - (1/2) \text{Tr} A_u \text{id}) \ast. \]

Moreover, according to (1), there holds

\[[i(u), \mathcal{A}_u] = i(A_u u), \]

where

\[g(A_u u) = (\mathcal{L}_u g)(u) \]

and

\[\text{Tr} A_u = 2 \text{div} u. \]

It is also clear that \([\mathcal{L}(u), \ast]\) anticommutes with \(\ast \) and

\[\text{id} \mid \Gamma^k(M) = k \text{id} \mid \Gamma^k(M). \]

2. — Spacetime and the Maxwell Equations

A spacetime is a (space and time) orientable four-dimensional manifold \(M \) with a metric tensor \(g \) of signature \(-2\). The Hodge dual acting on 2-forms is invariant under conformal changes of \(g \). It depends only on the conformal geometry of \(M \). As a result of this, Maxwell's equations in empty space,

\[(15) \quad dF = 0, \quad d\ast F = 0 \]

where \(F \in \Gamma^2(M) \), are conformally invariant.

Let \(k \) be a complete, nowhere vanishing vector field on \(M \). There then exists a smooth map

\[\varphi : \mathbb{R} \times M \to M, \quad \varphi(t, p) = \varphi_t(p), \]

such that

\[\varphi_t \circ \varphi_s = \varphi_{t+s}, \quad \varphi_0 = \text{id}_M \]

and
\[
\frac{d}{dt} (f \circ \varphi_t) = \mathcal{L}(k) (f \circ \varphi_t)
\]
for any smooth function \(f \). One says that \((\varphi_t)\) is the flow generated by \(k \). Assume that there exists a hypersurface \(S \subset M \) transversal to \(k \) and that the restriction \(\psi \) of \(\varphi \) to \(\mathbb{R} \times S \) is a diffeomorphism of \(\mathbb{R} \times S \) onto \(M \). A system of (local) coordinates \((x', y', z')\) on \(S \) can be used to define coordinates \((t, x, y, z)\) in (a suitable region of) \(M \) by putting (cf. fig. 1)

\[
t = pr_1 \circ \psi^{-1}
\]

and

\[
x = x' \circ pr_2 \circ \psi^{-1}, \text{ etc.}
\]

![Fig. 1](image)

It follows from the definition that \(k = \partial / \partial t \) and

\[
\langle k, dt \rangle = 1, \quad \langle k, dx \rangle = 0, \quad \text{etc.}
\]

\[
p = \varphi_t(p_0), \quad x(p) = x'(p_0), \quad \text{etc.}
\]

The following lemmas are straightforward.

LEMMA 2. Let \(\alpha \in \Gamma(M) \) and \(B \) be an endomorphism of the tangent bundle of \(M \). If

\[
\alpha | S = 0 \quad \text{and} \quad \mathcal{L}(k)\alpha = B\alpha
\]

then

\[
\alpha = 0.
\]
LEMMA 3. If $i(k)\alpha = 0$ and $dt \wedge \alpha = 0$, then $\alpha = 0$.

LEMMA 4. If

$L(k)\alpha = 0$, \hspace{1em} i(k)\alpha \big| S = 0 \hspace{1em} and \hspace{1em} (dt \wedge d\alpha) \big| S = 0$

then

$i(k)\alpha = 0 \hspace{1em} and \hspace{1em} d\alpha = 0$.

Indeed,

$L(k)(i(k)\alpha) = i(k) \hspace{1em} L(k)\alpha = 0$

implies $i(k)\alpha = 0$ (Lemma 2). Moreover,

$i(k)d\alpha = L(k)\alpha - d(i(k)\alpha) = 0,$

$L(k)(dt \wedge d\alpha) = dL(k)t \wedge d\alpha + dt \wedge dL(k)\alpha = 0$;

therefore, again by Lemma 2, $dt \wedge d\alpha = 0$. Also, $i(k)d\alpha = L(k)\alpha - d(i(k)\alpha) = 0$

so that $d\alpha = 0$ holds by Lemma 3. \hspace{1em} (Q.E.D.)

3. Null Elements and the Robinson Theorem

A vector field k on M is null if $g(k, k) = 0$. It is, moreover, geodesic if

(16) \hspace{1em} (L_k g)(k) \wedge g(k) = 0.

In this case the lines of the flow generated by k are null geodesics.

The form $\alpha \in \Gamma(M)$ is null if there exists a nowhere vanishing vector field k such that

$i(k)\alpha = 0 \hspace{1em} and \hspace{1em} i(k) \star \alpha = 0$.

If $\alpha \neq 0$ then the vector field k is necessarily null (use (5) to prove this).

THEOREM 1. Let k be null and geodesic. If

$L(k)\alpha = 0 \hspace{1em} and \hspace{1em} i(k) \star \alpha \big| S = 0$

then $i(k) \star \alpha = 0$.

Proof. Since

$i(k) \star \alpha = \star (\alpha \wedge g(k))$,

the theorem is equivalent to the following: if k is null geodesic, $L(k)\alpha = 0$ and
$\alpha \land g(k) \mid S = 0$ then $\alpha \land g(k) = 0$. Now,

$$\mathcal{L}(k)(\alpha \land g(k)) = (\mathcal{L}(k)\alpha) \land g(k) + \alpha \land (\mathcal{L}_k g)(k) = \alpha \land (\mathcal{L}_k g)(k).$$

Since $(\mathcal{L}_k g)(k)$ is parallel to $g(k)$, the right-hand side of the last equation is proportional to $\alpha \land g(k)$ and Theorem 1 follows from Lemma 2. (Q.E.D.)

LEMA 5. Let $F \in \Gamma^2(M)$ be non-zero and null, $i(k)F = 0 = i(k) \ast F$, $k \neq 0$ and let B be a traceless, symmetric endomorphism of TM. Condition $BF = 0$ is equivalent to the existence of a vector field u such that

$$B = u \otimes g(k) + k \otimes g(u) - \frac{1}{2} g(u, k) \text{id}. \quad (17)$$

A proof of the lemma is obtained by constructing a frame (e_μ) such that $g = g_{\mu\nu} e^\mu \otimes e^\nu = e^3 \otimes e^4 + e^4 \otimes e^3 - e^1 \otimes e^1 - e^2 \otimes e^2$ and $F = f e^1 \land e^3$, $\ast F = f e^2 \land e^3$. One writes $B = B^\mu_\nu e^\mu \otimes e^\nu$ where $B_{\mu\nu} = B_{\nu\mu} = g_{\mu\rho} B^\rho_\nu$ and $TrB = B^{\rho}_{\rho} = 0$. It follows from (6) that B anticommutes with \ast so that $B \ast F = 0$. The rest is a computation. (Q.E.D.)

THEOREM 2. If $F \in \Gamma^2(M)$ is non-zero and null, $i(k)F = 0$,

$$0 = i(k) \ast F, \quad k \neq 0,$$

and

$$\mathcal{L}(k)F = 0, \quad \mathcal{L}(k) \ast F = 0,$$

then there exists a vector field u such that

$$A_k = \frac{1}{4} (TrA_k) \text{id} = u \otimes g(k) + k \otimes g(u) - \frac{1}{2} g(u, k) \text{id}. \quad (18)$$

Proof. It follows from the assumptions of the theorem that $[\mathcal{L}(k), \ast]F = 0$. Lemmas 1 and 5 complete the proof. (Q.E.D.)

REMARK. Condition (18) is equivalent to the following: there exist a function a and a vector field u such that

$$\mathcal{L}_k g = 2ag + g(u) \otimes g(k) + g(k) \otimes g(u). \quad (19)$$

Clearly, if (19) is satisfied, then $(\mathcal{L}_k g)(k) \land g(k) = 0$ so that k is geodesic. It has been shown elsewhere [5] that the flow generated by k subject to (19) preserves the distribution of subspaces orthogonal to k, together with their (degenerate)
conformal structure induced by g. For this reason, the flow, and k itself, is said to be null, geodesic and shearfree ([2]; cf. also [1], [3], [6]).

THEOREM 3. Consider a null geodesic and shearfree, non-zero vector field k and a hypersurface S transversal to k and such that the flow generated by k determines a diffeomorphism of $\mathbb{R} \times S$ onto M. If $F \in \Gamma^2(M)$ satisfies the following initial conditions

\begin{align}
(20) & \quad i(k)F|_S = 0, \quad i(k) \star F|_S = 0, \\
(21) & \quad dt \wedge dF|_S = 0, \quad dt \wedge d \star F|_S = 0,
\end{align}

and is invariant by the flow,

$$\mathcal{L}(k)F = 0,$$

then F is a null solution of Maxwell's equations,

$$dF = 0 \quad \text{and} \quad d \star F = 0.$$

Proof. It follows from Lemma 4 that $i(k)F = 0$ and $dF = 0$. Theorem 1 yields $i(k) \star F = 0$ so that F is null. Since $\mathcal{L}(k) \star F = [\mathcal{L}(k), \star]F = 0$ by Lemmas 1 and 5, Lemma 4 can be applied to $\alpha = \star F$ to get $d \star F = 0$. (Q.E.D.)

REMARK. The initial data (21) contain derivatives of F only in directions tangential to S. There always are non-zero initial data satisfying (20 - 21). This can be seen from the following argument [4]: let v be a unit vector field on S, tangent to S and orthogonal to k. Then $\star (g(k) \wedge g(v)) = g(k) \wedge g(w)$ where w has unit length and is orthogonal to both k and v; it may be chosen to be tangent to S. Put $F|_S = g(k) \wedge (ag(v) + bg(w))$ where a and b are functions on S. Conditions (20 - 21) reduce to two first order linear differential equations for a and b which may be solved.

COROLLARY (The Robinson Theorem). With any null, geodesic and shearfree vector field k there is associated a non-trivial null solution of Maxwell's equations.

References

Abstract. It is shown that if a 2-form F in a 4-dimensional conformal spacetime is invariant by the action of the flow generated by a null, geodesic and shearfree vector field k and satisfies the initial conditions: $k \perp F = 0 = k \perp * F$ and $dt \wedge dF = 0 = dt \wedge d * F$ on a hypersurface $t = \text{const.}$ transversal to k, then F is a null Maxwell field. The proof depends on a useful formula for the commutator of the Lie derivative with the Hodge $*$ operator.

Received: May 8, 1983.

A. Trautman
Institute of Theoretical Physics
Warsaw University
ul. Hoża 69, 00-681 Warszawa, Poland