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Introduction

The purpose of theoretical physics is to construct mathematical models of phy-
sical phenomena and, on the basis of such models, to explain what is observed,
suggest new experiments and predict their outcome. This ideal activity is supplement-
ed and supported by research, done by mathematicians and physicists, on the properties
of the theoretical constructions themselves. One considers questions such as: Are the
equations of a theory consistent? Are their solutions stable? Can the Cauchy problem
be correctly formulated? In what space of functions? Answers to such questions have
no direct bearing on the predictive power of a theory, but they may throw light on
the range of its applicability or need for modifications. Successful physical theories
are often studied in order to construct, by analogy, models of phenomena outside their
scope. For example, in the 19th century, there was a trend to reduce all of physics
to classical mechanics, whereas now quantum electrodynamics is the theory relative to
which all others are evaluated.

The quantum-mechanical description of charged particles led to an important
change in the original interpretation, due to Weyl [1], of gauge transformations as
maps inducing conformal changes of the metric tensor in space-time. The idea that the
electromagnetic field is a 'compensating' or 'gauge' field [7] associated with the
circle group U(1) was generalized, by Yang and Mills [10], by the introduction of a
gauge field corresponding to the 'isotopic' group SU(2). Soon after, it became clear
that essentially any Lie group can be so 'gauged' and that Einstein's theory of gravi-
tation fits - though not quite - into the scheme (cf. the Annotated Bibliography for
references and further remarks on the history of the development of the notion of a
gauge field). )

Present—-day physics is dominated by the striking successes of quantum electro-
dynamics and the current trends in the description of fundamental interactions

¥ The actual lectures given by the author at the 1981 Scheveningen Conference con-

tained, besides the material reproduced here, an introduction to the geometrical
aspects of gauge theories, based on articles published elsewhere [52,61].
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(chromodynamics and the Weinberg-Salam theory). As a result of this, the theory of
gravitation is sometimes required to conform to the principles and fashions prevalent
in elementary particle physics. In my opinion, one should rather regard Einstein's
theory of general relativity in its own right, as a very successful, classical,
relativistic theory of gravitation. Its structure is worth studying and comparing to
that of theories of the Yang-Mills type, but not necessarily with an intention of
formulating all gauge theories according to one pattern. If a unified picture is de-
sired, it may be achieved not so much by replacing Einstein's equations by those
arising from a Lagrangian quadratic in the field strengths, as by combining gravitation
with Yang-Mills fields in a suitably generalized theory of the Kaluza—Klein type
[12,18,22-25,27,44,57].

Superficial Observations

Consider the following three classical, relativistic field theories:

(1) Maxwell's electrodynamics,

(ii) Yang-Mills theory based on SU(2),

(iii) Einstein's theory of gravitation.
They share some fundamental properties: on the mathematical side, each of the theories
is based on an infinitesimal connection defined on a suitable principal bundle over
space-time; they all exhibit 'large' groups of gauge transformations. From the point
of view of physics, the similarities between (i) and (iii) are obvious: the Coulomb
law is analogous to Newton's. In fact, electromagnetism and gravitation seem to be
the only two long range forces existing in nature. Free Yang-Mills equations also
have Coulomb-like solutions, but their physical relevance is probably restricted by
the phenomenon of confinement and/or the Higgs-Kibble mechanism of mass generation
through a spontaneoﬁs breakdown of symmetry.

A superficial analysis indicates analogies between (i) and (ii), as well as
between (ii) and (iii), but not so much between (i) and (iii). Since the Maxwell and
Yang—Mills Lagrangians are both quadratic in the field strengths, they yield equa-
tions of a similar form. On the other hand, Yang-Mills and Einstein equations exhibit
non-linearities which, in both cases, may be traced back to the non-Abelian character
of the corresponding structure groups. These non-linearities induce a self-interaction
of the corresponding particles.

In the rest of the paper, the analogies and differences among the three theo-
ries (i) - (iii) will be considered and some unexpected formal similarities between

gravitation and electromagnetism stressed.
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A Dictionary

Much of the language of theoretical physics is sufficiently imprecise to allow
vivid disputes between authors who attribute different meanings to the words they use.
This is the way it has to be: the exact significance of the notions used in physics
becomes clear only in the final stages of formation of the theories in which they
occur. It is now being felt that classical gauge theories have reached the point when
their fundamental notions can be given a precise meaning, i.e. translated into clear-
ly defined mathematical terms. Such a dictionary has been initiated by Wu and Yang
[26] and I supplement it here with a few entries.

A classical gauge theory is any physical theory which includes among its dyna-
mical variables a connection on a principal G-bundle P over space-time M. The struc-
ture group G is a Lie group; physicists often call it the 'gauge group', but this is
misleading as the same name is used (more appropriately) for a group of automorphisms
of the bundle. In the physicist's language 'to gauge a group G' means 'to consider
(sometimes: to construct) a connection on a bundle over space-time with structure

group G'. A connection form w on m: P -+ M describes a 'gauge configuration' and a

local section s: U >P, UCM, m o s = id, defines a 'gauge'. The pull-back A stw

is the 'potential of the gauge configuration in the gauge s'. Similarly, if Q = dw +
+ %[m,w] is the curvature two-form on P, then F = s¥0 is the "field strength in the

gauge s'.

Let M be an oriented Riemannian space (conformal geometry suffices if M is
four-dimensional) and let % denote the Hodge (duality) isomorphism of the vector
structure of the Grassmann algebra over M. This isomorphism lifts to horizontal forms
on P. Let k: g x g - R be a scalar product on the Lie algebra g of G, invariant under
the a?joint action of G in g. If (ei) is a linear basis in g, kij = k(ei,ej) and

Q= Qlei, then

kij #t A oI n

is a G-invariant, horizontal form of degree n = dim M. The pull-back of (1) with a
section s: M -+ P does not depend on s; upon integration over M it gives the classical
action from which field equations are derived by variation. A gauge theory is said to
be of the 'Yang-Mills type' if its action contains a term derived from (1). If G is
semi-simple and compact, then k may be taken as a multiple of its Killing-Cartan form:
this is the case of the 'Yang-Mills theory'. For example, Maxwell'’s electrodynamics

is a theory of the Yang-Mills type, but not a Yang-Mills theory in the strict sense.
Einstein's general relativity is not a theory of the Yang-Mills type (see, however,

[28,38,45-47] for different views on this problem).
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Some Analogies and Differences

It is convenient to summarize the analogies and differences between gauge
theories of the Yang-Mills type and gravitation, some of which have already been
mentioned, in a table where the following notation is used:

(] ='(6u) is the canonical (soldering)ﬁmp—valued 1-form on the bundle LM -+ M of

linear frames of an n—dimensional manifold M, u and other Greek indices run from 1 to

n;

w = (muv) is the l1-form of a linear connection;

r = (Fuv) are its coefficients, obtained by pull-back of w by a (local) section
s: M ~» LM;

eu = s*e“ is the p-th element of the coframe field on M, dual to the frame

: ; v v
field s = (su), i.e. <su,e > = Gu;

D denotes the covariant exterior derivative; if ¢ is a V-valued field of k-
forms of type p, defined by a homomorphism p: g -+ L(V) of Lie algebras, then D¢ =
=d¢ + p(A) Ap [49];

R = (Ruv) is the curvature two-form, referred to the frame s, R = s*Q, where
Q" = do” + " AW s

v p v *

Q = (Qu) is the torsion two-form, referred to the frame s, Q = s 0, where

o¥ = de" + " A8V
v
g is the metric tensor and guv = g(su,sv); d

n is the Hodge dual of e A e , where e =g e

uv u v u uv
n is the Hodge dual of e Ae Ae ;

uvp v o H v p
Tu = Tuve is the R -valued 1-form of energy.momentum of the sources of the

gravitational field; similarly, 2 corresponds to the 'pseudotensor' of energy-
momentum of the gravitational field itself;

j is the g-valued I-form of the current corresponding to the sources of the
gauge field; A

¢ is a (generalized) Higgs field, i.e. a V-valued field of k-forms of type p.

The most important difference between theories of the Yang-Mills type and
gravitation is that the underlying bundle of the latter — the bundle of linear
frames - is 'concrete', has more structure than 'abstract' bundles occurring in
other gauge theories. The additional structure is completely characterized by the
soldering form which, upon differentiation, leads to torsion. In Einstein's theory
torsion is assumed to vanish. This condition has no counterpart in theories of the
Yang-Mills type.

The role played by the metric tensor in Einstein's theory is somewhat analogous
to that of a Higgs field in a Yang-Mills theory. In both cases the additional struc-
ture 'breaks down the symmetry' by restricting the principal bundle to a subgroup H
of its structure group G. If ¢: P > V is a V-valued map, equivariant under the action

of G in P and in V defined by a representation p: G - GL(V), and such that the values
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Table
Yang-Mills Gravitation
A r
F R
DF =0 Bianchi identity DR =0
—_ torsion Q
Higgs field ¢ metric tensor g
D$ =0 compatibility Dg = 0
kij *Fi A Fj field Lagrangian n\)u A Ruv
D¥F = 4m¥%] field equations % o AR = - Sn*Tu
. field equations dU = 4m*(T. + t ),
d%F = 4m*j - [A,*F] { ' } i g s “vp
in Gauss's form where Uu =% nu\)p AT
d(*j - f;[A,*F]) =0 conservation law d*(Tu + tu) =0
d*A = 0 gauge fixing condition d¥e = 0
Boundary conditions at spatial infinity for static configurations
¢ = 0(1) g = Minkowski tensor + 0(1/r)
A = 0(1/1) r =0(1/r?)
F = 0(1/x2) R = 0(1/r?)
Z%-é *F total conserved quantity Z% J Uu

of ¢ lie in an orbit W C V of G, then H is the isotropy group of some point of W =

= G/H. In general, there are many orbits in V corresponding to the same H: they are
all said to belong to the same stratum. For example, in a standard SO(3) Yang-Mills-
Higgs theory, under the assumption of spherical symmetry and ¢ # O, the normalized
field ¢/||¢|l breaks the symmetry down to H = SO(2). The radial Higgs equation selects,
for each radius r, an orbit containing ¢(r) € R3. All these orbits are diffeomorphic
to S2 = 80(3)/S0(2): they belong to the same stratum, without being isometric [48].
The situation is rather different in the theory of gravitation, where G = GL(n,R) and
H is an orthogonal group. According to the 'theorem on inertia' of quadratic forms,
each stratum in LéGRn,R) consists of a single orbit, viz. the set of all quadratic
forms with a given signature. As a result of this, there is no 'radial equation' and
potential for the metric tensor; the symmetry breaking in the theory of gravitation

is more of kinematic than dynamic nature.
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An essential difference between the two types of theories occurs in connection
with the asymptotic behaviour (at large distances) of their static fields; this is

indicated in the Table. A gauge transformation of the potential, A - A',

A" AEeh - ay,

where

S: M>G ,
is compatible with the asymptotic behaviour of a time-independent A, if

S = 3(9,4’)(1 + B(ey¢)/r t awndivs

where 6, ¢ are coordinates on 52’ and a: 82 -+ G. Under such a transformation, the

field strenghts change as follows,

oy Tai o(1/r3) .

Therefore, the total non-Abelian charge

1
=t

is ill-defined [34]. By contrast, in the theory of gravitation, one has T = 0(1/r2)
for static configurations. To preserve this asymptotic behaviour, in the generic case,
one has to restrict a = (auv) to be a constant matrix. This allows one to define un-
ambiguously the total mass for such configurations. Indeed, the Von Freud 'super-
potential' U transforms as follows,

iR a"ll +0(1/c3) , where a € S0(1,3) .

The structure of the group of gauge transformations also reflects the similar-
ities and differences among gauge theories [55]. A gauge transformation is an auto-
morphism of the principal bundle m: P > M preserving the absolute elements of the
gauge theory. A gauge transformation is said to be pure if it is vertical (based),
i.e. if it induces the identity map on M. For any gauge theory one can construct the

(horizontally) exact sequences of group homomorphisms,

T G - G > G/G > 1
0 o
¥ ¥ ¥

a SE Auto P > Aut P -»> Diff M

where G (resp. GO) is the group of all gauge (resp. all pure gauge) transformations
and Aut P (resp. Aut0 P) is the group of all (resp. all vertical) automorphisms of P.
In general relativistic theories of gravitation, the soldering form on P = LM is an
absolute element and it reduces G to Diff M and G0 to the identity. By contrast, in a
theory of the Yang-Mills type over Minkowski space, both G, and G are 'large' groups,
but G/GO is 'small', i.e. a Lie group [61].
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Plane Gravitational Waves Are Abelian

Another aspect of Einstein's theory of gravitation, which makes it resemble
electrodynamics rather than non-Abelian Yang-Mills theories, is associated with the
nature of its plane waves.

In any theory of the Yang-Mills type, the potential

A = (a(w)x + b(u)y + c(u))du , (2)

where u = t - z and a,b,c: R > g, represents in Minkowski space a solution of the

source-free equation D¥F = 0. The corresponding field strength

F = (adx + bdy) A du

is invariant under translations in the (x,y)-plane, but the potential - and therefore
the entire gauge configuration - is not, in general. For example, for G = SO(3) and
[a,b] # O the potential (2) is not invariant under any translation in that plane. On
the other hand, if the functions a, b, and c span an Abelian Lie subalgebra of g,
then (2) is invariant under translations in the (x,y)-plane and c can be eliminated
by a gauge transformation.

The connection form T of plane gravitational waves, referred to a suitable
orthonormal frame, can also be written in the form (2). In this case, however, the
functions a,b,c: R + so(1,3) span a two-dimensional, Abelian subalgebra n of so(l,3),
corresponding to the nilipotent part of its Iwasawa decomposition. Therefore, c can
be eliminated and the solution has a 5-dimensional group of isometrics isomorphic to
the group of symmetries of a plane electromagnetic wave propagating in one direction.
Incidentally, the restriction to n of the polarizational degrees of freedom is a
result of the vanishing of torsion. There does not seem to exist an analogous, natural

restriction on a and b in the non-Abelian Yang-Mills theory.
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