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Words of the Masters

The relativity theory is based on nothing but the idea of invariance and develops from
it the conception of tensors as a matter of necessity; and it is rather disconcerting to
find that apparently something has slipped through the net, so that physical quantities
exist, which it would be, to say the least, very artificial and inconvenient to express
as tensors.

Charles Galton Darwin, Proc. Roy. Soc. London A118 (1928) 654.
NB Charles Darwin was his grandfather

The orthogonal transformations are the automorphisms of Euclidean vector space.
Only with the spinors do we strike that level in the theory of its representations on
which Euclid himself, flourishing ruler and compass, so deftly moves in the realm of
geometric figures.

H. Weyl, The Classical Groups, Princeton U.P., 1946

A little of history

The development of ideas connected with spinors shows, once more, how impor-
tant and beneficial is the interaction between mathematics and physics: spinors were
discovered by mathematicians, but their importance comes from the role they were
shown to play in physics.

The initial misunderstandings and errors committed when trying to introduce
spinors on manifolds, have shown how important it is to have clear notions and ma-
thematical structures appropriate to the problems under consideration. In particular,
the definition of spinors on manifolds – unlike that of tensors – requires the use of
fiber bundles.

Euclid (around 300 BC) in Book X of The Elements gave the following solution

x = q2 − p2, y = p2 + q2, z = 2pq.
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of the Pythagorean equation,

x2 − y2 + z2 = 0 ⇔ det
(
y − x z
z y + x

)
= 0.

The solution can be written as

(1)
(
y − x z
z y + x

)
= 2

(
p
q

)(
p q

)
.

In R3, with a quadratic form of signature (2, 1), eq. (1) means:
null vector = (spinor)2.

Further lessons from Euclid
1. Generalize to higher dim: totally null multivector of max. dim. = (pure spinor)2.
(Veblen, Givens [2, 3], Cartan [4], Chevalley [5]; see also [6] and [7]; pure essential in
dim > 7).
2. Spin groups. Multiply (1) on the left by a real unimodular matrix, on the right
by its transpose, take det to get

1→ Z2 → SL(2,R) = Spin0(2, 1)→ SO0(2, 1)→ 1

3. Euclid’s solution contains the germ of the idea of Clifford algebras: multiplying the
left side of (1) by ( 0 1

−1 0 ) on the left and taking the square of the result, one obtains
the representation of a quadratic form as the square of a linear form,(

z x+ y
x− y −z

)2

= (x2 − y2 + z2)
(

1 0
0 1

)

4. Replace z by
√

-1 z to get complex spinors, Pauli matrices, Spin(3) = SU(2), etc.
5. Non-trivial topology involved. Since x +

√
-1 z = (q +

√
-1 p)2, rotation by α in

(p, q) plane
p′ = p cosα + q sinα, q′ = −p sinα + q cosα

induces rotation by 2α in (x, z) plane.

x′ = x cos 2α− z sin 2α, z′ = x sin 2α + z cos 2α
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Take curve 0 6 α 6 π to conclude, with the physicists:
Spinors change sign when rotated by 2π.

XIX century

Hermann Grassmann and William R. Hamilton around 1840.
If q ∈ H is a pure quaternion, q̄ = −q, and a ∈ Sp(1) ⊂ H is a unit quaternion,

then aqā is also pure of the same norm as q so that q 7→ aqā gives

1→ Z2 → Sp(1) = SU(2)→ SO(3)→ 1.

Arthur Cayley (1855) noted also that q 7→ aqb̄, for q ∈ H and a, b ∈ Sp(1) gives
rotations in 4 dimensions, thus

1→ Z2 → Sp(1)× Sp(1)→ SO(4)→ 1.

William Clifford was a most remarkable man. In his book The common sense
of the exact sciences, published in New York in 1885, he gave an intuitive description
of the future GRT and of relativistic cosmology:

(i) Our space is perhaps really possessed of a curvature varying from point to
point, which we fail to appreciate because we are acquainted with only a small
portion of space...

(ii) Our space may be really same (of equal curvature), but its degree of curvature
may change as a whole with the time...

(iii) We may conceive our space to have everywhere a nearly uniform curvature,
but that slight variations of the curvature may occur from point to point, and them-
selves vary with the time... We might even go so far as to assign to this variation
of curvature of space ‘what really happens in that phenomenon which we term the
motion of matter’.

He defined ‘geometric algebras’ (1878), but did not consider groups constructed
out of elements of these algebras; that was done, for the first time, by

Rudolf Lipschitz [8]. For this reason the name ‘Clifford group’, introduced by
Chevalley, is a misnomer. Lipschitz’s work, who died in 1903, was recalled by André
Weil in a Correspondence published in 1959 [9].
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CORRESPONDENCE 

We have received the following letter, purporting to come from an 
ultramundane correspondent: 

SIR, 

It is sometimes a matter of wonder, to us in Hades, that what we had 
believed to be our best work remains buried under thick layers of dust 
in your libraries, while the very talented young men in the mathemat- 
ical world of the present day strive manfully against problems which are 
by no means as novel as they think. 

For instance, it is not so long ago that the very remarkable algebraic 
systems discovered by my friend Professor Clifford shortly before leaving 
your world have again attracted the attention of your algebraists after 
many years of oblivion. When, during my lifetime, I first became inter- 
ested in them, I, too, fancied that they were new; I soon found out my 
mistake, and hastened to acknowledge Professor Clifford's prior dis- 
covery. It is now a matter of great satisfaction to me to hear that his 
name has been given to them, as a fitting tribute to his memory among 
the living. 

On the other hand, as Professor Clifford has told me himself, it had 
not occurred to him to apply these algebraic systems to the study of the 
substitutions which transform a sum of squares into a sum of squares 
(or, as my young friend and colleague Hermann Weyl would say, of the 
orthogonal group); he kindly insists that this idea was wholly mine. As 
you may well believe, we have often discussed this topic since I had the 
honour of joining the distinguished company of the mathematicians in 
the Elysian Fields; incidentally, without the many delightful conversa- 
tions which I have had with him, I should hardly be able now to write 
to you in English (a feat which I could have accomplished only with 
great difficulty during my lifetime). 

It is not, however, in order to assert my claims to fame in this matter 
that I am now asking for the hospitality of your journal. In what you 
are pleased to call the nether world, we are happily free from vainglori- 
ous feelings. But it may be useful to a few of your contemporaries to 
have their attention drawn upon some formulas contained in my memoir 
Untersuchungen fiber die Summen von Quadraten (a brief account of 
which may be found in the Bulletin des Sciences MatheImatiques for 1886), 
since they would be sought in vain, unless I am much mistaken, in various 

247 
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learned volumes recently published on this very subject. 
Unfortunately, it appears that there is now in your world a race of 

vampires, called referees, who clamp down mercilessly upon mathe- 
maticians unless they know the right passwords. I shall do my best to 
modernize my language and notations, but I am well aware of my short- 
comings in that respect; I can assure you, at any rate, that my intentions 
are honourable and my results invariant, probably canonical, perhaps 
even functorial. But please allow me to assume that the characteristic is 
not 2. 

Call el,- . *,en the generators of Professor Clifford's algebraic system; 
this means that e2 = -1 for all i, and eJew =- ejej for i < j. For each set 
I = {Ji, , im} of indices, written in their natural order 

1 < ii < i,< ... < im< n, 

put 
e(I) = eei2 *- e. 

with e(I) = 1 if m = 0; the set I and the unit e(I) will be called even if m 
is even, odd if m is odd. Linear combinations of even (resp. odd) units 
will be called even (resp. odd) quantities. 

Now take an alternating matrix X=(xij), and assume at first that 
the determinant of E + X (where E is the unit matrix) is not 0. My 
learned and illustrious colleague Professor Cayley was, I believe, the 
first one to observe that, if X is such a matrix, the formula 
(1) = (E-X)-(E+ X)-1 
defines an orthogonal matrix U, and that conversely X can be expres- 
sed in terms of U by the formula 
(2) X=(E-U)-(E+U)-1. 

For each even set J= {il ... *, j2P of indices (written, as always, in 
their natural order), put 

x(J) - 1 s(J, H) H) * ... 

2Pp! H X''X3A4 2P-1' 2P 

where the summation is extended to all permutations Hof J, and s(J, H) 
is + 1 or -1 according as the permutation is even or odd; put x(J) = 1 
for p = 0. Consider the even quantity 
(3 ) i2 = Z3x(J)e(J) 
where the summation is extended to all even sets of indices J. On the 
other hand, take two vectors$ = ($,, *-*-,- ) n)r , = (7)l, ..,n) such that 
a= Up; by the definition of U, this can be written as 
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quantity S2, it remains valid if t2 is multiplied by a scalar factor. Therefore 
it holds whenever U is an orthogonal matrix of determinant + 1, provided 
&2 is an even quantity, given by (3), such that (5) is equivalent to 
= U$. I can still vividly recall my pleasure when I first came across 

this result in bygone days. But I fear that I am becoming garrulous, 
and that your patience with me may be exhausted by now. 

I have the honour to be, etc. 

R. LIPSCHITZ 

This content downloaded from 193.0.118.39 on Thu, 1 Jan 2015 05:05:54 AM
All use subject to JSTOR Terms and Conditions

6



XX century
Élie Cartan discovers [10] among fundamental representations of the Lie algebra

so(m,C), some that do not lift to representation(s) of SO(m,C); he probably does
not consider them to be sufficiently important to deserve a special name.

1927: enter the physicists: W. Pauli [11] and P. A. M. Dirac [12] put forward
differential equations for the electron; they rediscover and use Clifford algebras in 3
and 4 dimensions.

Only a few months after Dirac’s paper of 1928 had appeared, D. Ivanenko and
L. Landau proposed [13] to use the differential operator d+δ, δ = ? d? (not in this
notation), to describe the magnetischen Elektron. The square of that operator is also
the Laplacian (or �) , but instead of a 4-dim space of Dirac spinors, it requires,
at a point, the 16-dim space of differential forms. In view of the successes of the
Dirac equation, there was not much interest in that equation; the operator d+δ was
rediscovered around 1960 by Erich Kähler [14]. It is sometimes referred to as the
Dirac–Kähler operator.

The word spinor appears in print, for the first time, in the title of the paper
Spinoranalyse (1929) by B. L. van der Waerden; the author attributes it to Paul
Ehrenfest; dotted indices introduced.

In 1929 H. Weyl [15] considers an equation for a particle of zero mass and spin
1/2, based on the use of two-component (‘Weyl’) spinors.

E. Wigner and V. Fock (1929) propose to introduce spinors in General Relati-
vity under the assumption of ‘teleparallelism’.

In 1933 L. Infeld and B. L. van der Waerden [16] show how to describe
(two-component) spinor fields in GRT without teleparallelism; they write a formula
for the covariant derivative.

In 1935 R. Brauer and H. Weyl [17] construct algebras of matrices that ge-
neralize to n dimensions those used by Pauli and Dirac; oddly enough, there is no
reference to Clifford.

In 1936 É. Cartan gave a series of lectures, later published as Leçons sur la théo-
rie des spineurs [4]; he introduced simple spinors, renamed by Chevalley as pure. At
last, there is a reference to Clifford whose work Cartan knew from the time of writing
his article Nombres Complexes for Encycl. Sci. math. (1908). Cartan criticized Infeld
and van der Waerden for their attempt to describe spinors fields in a manner similar
to the one used for tensor fields on Riemannian manifolds:
Certain physicists regard spinors as entities which are, in a sense, unaffected by the ro-
tations which classical geometric quantities (vectors, etc.) can undergo, and of which the
components in a given reference system are susceptible of undergoing linear transformations
which are in a sense autonomous. See for example L. Infeld and B. L. van der Waerden...
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COMPLEMENTS OF ALGEBRA
It is understood that much material on Clifford algebras was given at the prece-

ding seminars of this series.
In algebra, mathematicians are interested mainly in the intrinsic properties of

objects such as groups and algebras; physicists, in view of applications, need the-
ir representations. Simple associative algebras, unlike groups, have only one, up to
equivalence, faithful and irreducible representation. The properties of these repre-
sentations, that are the same for equivalent representations, are therefore intrinsic
to simple algebras. Clifford algebras are either simple or semi-simple (sums of two
simple); spinors, as carriers of these representations are unique.

Remarks on notation
I write z̄ for complex (sometimes: quaternionic) conjugation (physicists often z∗).
Transposition (duality) contravariant functor ∗ from vector spaces to vector spaces:
if a ∈ Hom(V,W ), then a∗ ∈ Hom(W ∗, V ∗) is such that if v ∈ V and w′ ∈ W ∗, then

〈a(v), w′〉 = 〈v, a∗(w′)〉.

Note the evaluation map (not a scalar product):

W ×W ∗ → C, (w,w′) 7→ 〈w,w′〉 = w′(w).

If h is a bilinear form on V and v ∈ V , then h(v) ∈ V ∗ is such that 〈v1, h(v2)〉 =
h(v1, v2) for all v1, v2 ∈ V. If k = R,C or H, then k(n) is the real algebra of all n×n
matrices with entries in k. The algebra of octonions is denoted by O.

Short review of representations of Clifford algebras
Recall that every Clifford algebra has a a canonical automorphism α such that
α(v) = −v for every vector v and a canonical antiautomorphism β such that
β(v) = v, β(ab) = β(b)β(a). The grading is given by

C̀ ±(V, h) = {a ∈ C̀ (V, h) | α(a) = ±a},

and one often represents the grading of the Clifford algebra by writing

C̀ +(V, h)→ C̀ (V, h).

Consider now complex representations of C̀ (V, h), where (V, h) is a real quadratic
space of dimension m = 2n. There is the faithful and irreducible (Dirac)
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representation
γ : C̀ (V, h)→ EndS, dimC S = 2n.

Indeed, put C⊗ V = K ⊕ L, where K and L are maximal totally null
(mathematicians say: isotropic, a misnomer: there is nothing isotropic here)
subspaces of dim n. If k ∈ K and l ∈ L, then

h(k + l, k + l) = 2h(k, l).

Define the 2n-dim space S = ∧K and γ : K ⊕ L→ EndS, by

γ(k + l)s =
√
2(k ∧ s+ h(l)y s), s ∈ S,

so that γ(k + l)2 = h(k + l, k + l) idS. The linear map γ has the Clifford property
and extends to an isomorphism of algebras, γ : C⊗ C̀ (V, h)→ EndS. By restriction
to C̀ (V, h), it gives a complex representation of the real algebra.
If (e1, . . . , e2n) is an orthonormal basis (frame), then γµ = γ(eµ) for µ = 1, . . . , 2n
and η = e1 . . . e2n is the volume element. Physicists define γ2n+1 = γ(η) or

√
−1γ(η)

depending on whether η2 = 1 or −1 so that γ2
2n+1 = idS. The restriction of γ to the

even subalgebra decomposes,

γ| C̀ +(V, h) = γ+ ⊕ γ−, γ± : C̀ +(V, h)→ EndS±,

and
S± = {s ∈ S | γ2n+1s = ±s} chirality

are two spaces of Weyl (chiral, reduced, or half-) spinors.
Relative to the split S = S+ ⊕ S− gamma matrices have the form

γµ =
(

0 γµ−
γµ+ 0

)
, µ = 1, . . . , 2n, γ2n+1 =

(
I 0
0 −I

)
.

For a particle of spin 1/2 and mass 0 the Dirac equation γµ∂/∂xµψ = 0 splits into
Weyl equations γµ±∂/∂xµψ± = 0. Criticized by Pauli: it violates invariance under
reflections which change chirality. For some time, neutrinos were considered to be
massless.
The dual (contragredient) repr. with respect to γ is

γ̌ : C̀ (V, h)→ EndS∗, γ̌(a) = γ(β(a))∗.

For dim V even, the algebra is simple, therefore γ̌ ∼ γ so that there is an
intertwiner B : S → S∗ such that

γ̌(a) = Bγ(a)B−1 for every a ∈ C̀ (V, h).
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Since β is involutive, β ◦ β = id, transposing the last equation, one obtains that
B−1B∗ is in the commutant of γ and from Schur’s Lemma B−1B∗ = λ id and
B∗∗ = B gives

either B∗ = B or B∗ = −B.
The map B defines the bilinear form

(s1, s2) 7→ 〈s1, B(s2)〉, s1, s2 ∈ S

which is invariant with respect to the action of the group
G(V, h) = {a ∈ C̀ +(V, h) | β(a)a = 1}

and makes S into a quadratic or symplectic space.
Def of spin groups: algebra vs topology

algebra The group Pin(V, h) ⊂ C̀ (V, h) is generated by all unit vectors; the map

ρ : Pin(V, h)→ O(V, h), ρ(a)v = α(a)va−1,

defines the exact sequence

1→ Z2 → Pin(V, h) ρ−→ O(V, h)→ 1.

(Explain: if u is an invertible vector, then −uvu−1 is the reflection of v in the
hyperplane orthogonal to u). If V = Rm the one writes Pin(m), etc.
Alternatively, the Pin group can be defined as

{a ∈ C̀ (V, h) | β(a)a ∈ {1,−1} and aV a−1 ⊂ V }

There is also the group (named Clifford group by Chevalley)

{a ∈ C̀ (V, h) | β(a)a ∈ C× = Cr {0} and aV a−1 ⊂ V }

The spin group is defined as

Spin(V, h) = Pin(V, h) ∩ C̀ +(v, h)

so that ρ : Spin(V, h)→ SO(V, h), ρ(a)v = ava−1, v ∈ V , defines the sequence

1→ Z2 → Spin(V, h)→ SO(V, h)→ 1.

Notation: if V = Rp+q and h has signature (p, q), then Pin(p, q) instead of Pin(V, h);
Spin(p, 0) = Spin(p), etc.
topology (For a topological group G, the connected subgroup containing 1 is
denoted by G0.) If p > 3, then the groups Spin(p) and Spin0(1, p) are
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simply-connected so that they can be defined as the universal, connected and
simply-connected covering groups of SO(p) and SO0(1, p), but this does not extend
to other dimensions and signatures: e.g. Spin(2) = U(1). As a less trivial example,
consider Spin0(3, 3). Let V = ∧2R4 ⊂ R(4). If (E,B) = F ∈ V , then Pf F = E ·B
defines a quadratic form of signature (3, 3) in V . If a ∈ SL(4,R), then aFa∗ ∈ V
and Pf(aFa∗) = Pf F so that Spin0(3, 3) = SL(4,R) is not simply connected, SO(4)
is its maximal compact subgroup. However, on p. 56 of Spin Geometry by Lawson
and Michelsohn one finds

Spin0(3, 3) = ˜SL(4,R) = simply-connected cover of SL(4,R)

But it is known that the latter cover is a group that has no finite dim faithful repr.
(this can be shown as in §86 of [4]).

If a ∈ Spin(V, h), and (eµ) is a basis in V , then aeµa−1 is a vector and there is a
matrix (ρνµ(a)) such that aeµa−1 = eνρ

ν
µ(a), therefore

γ(a)γµγ(a−1) = γνρ
ν
µ(a).

This leads to if s1, s2 are spinors, then 〈s1, Bγµs2〉 are components of a vector,

〈γ(a−1)s1, Bγµγ(a−1)s2〉 = 〈s1, Bγνs2〉ρνµ(a)

and one constructs similarly multivectors as bilinear forms of spinors.
Periodicity in dim V from symmetry of B

If β(a) = a, then from the def of B one obtains

(Bγ(a))∗ = (B∗B−1)Bγ(a)

so that the symmetry of B can be obtained by a ‘dimension count’, by taking into
account Bγ(a) ∈ End(S, S∗) = S ⊗ S,

S ⊗ S = ∧2S ⊕ ∨2S, dim∨2S > dim∧2S

Defining
C̀ ±(V, h) = {a ∈ C̀ (V, h) | β(a) = ±a}

and
d(m) = dim C̀ +(V, h)− dim C̀ −(V, h),

one has
B∗ = B ⇔ d(m) > 0
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and from the exercise below one obtains

(2) B∗ = (−1)
1
2n(n−1)B.

Exercise: prove
d(m) = 2m/2(cos 1

4mπ + sin 1
4mπ),

so that sgn d(m+ 8) =sgn d(m).
This is an early appearance, in algebra, of periodicity of period 8 in dimension of
V . It holds for quadratic spaces over any field of numbers of characteristic 6= 2.

B restricted to Weyl spinors
From β(η) = (−1)nη one obtains

(3) γ∗2n+1 = (−1)nBγ2n+1B
−1

Putting
S∗± = {s′ ∈ S∗ | γ∗2n+1s

′ = ±s′} and B± = B|S±
and using (2) and (3) one obtains (note periodicity m mod 8)
n mod 4 B symmetry examples

1
(

0 B−
B+ 0

)
B∗± = B∓

2
(
B+ 0
0 B−

)
B∗± = −B± relativity in dim 4

3
(

0 B−
B+ 0

)
B∗± = −B∓ twistors in dim 6

4
(
B+ 0
0 B−

)
B∗± = B± triality in dim 8

Inductive construction of representations
For every n = 0, 1, 2, . . . one constructs a set of matrices

(n) γ
(n)
1 , . . . , γ

(n)
2n+1 ∈ R(2n) so that

(i) γ(0)
1 = 1.

(ii) given the set (n), one defines

γ(n+1)
µ =

(
0 γ(n)

µ

γ(n)
µ 0

)
, 1 6 µ 6 2n+ 1,

γ
(n+1)
2n+2 =

(
0 −I
I 0

)
, γ

(n+1)
2n+3 =

(
I 0
0 −I

)
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where I ∈ R(2n) is the unit matrix.
For every n, one has

γ(n)
µ γ(n)

ν + γ(n)
ν γ(n)

µ = 2g(n)
µν I

where µ 6= ν ⇒ g(n)
µν = 0, g(n)

µµ = (−1)µ+1. Notation: if (V, h) is a real quadratic space
and h is of signature (p, q) then the algebra C̀ +(V, h)→ C̀ (V, h) is written as
C̀ +(p, q)→ C̀ (p, q).
Proposition: Let (eµ) be an orthonormal basis in R2n such that eµeν + eνeµ = 2g(n)

µν .
The linear map

R2n → R(2n) such that eµ 7→ γ(n)
µ , µ = 1, . . . , 2n

has the Clifford property and extends to an isomorphism of algebras,
C̀ (n, n)→ R(2n).
The linear map R2n−1 → R(2n) such that eµ 7→ γ(n)

µ γ(n)
2n, µ = 1, . . . , 2n− 1, has

the Clifford property and extends to a representation of the algebra C̀ (n, n− 1) in
R(2n). This representation is faithful, but decomposable: the matrices 1

2(I + γ
(n)
2n+1)

and 1
2(I − γ(n)

2n+1) are projectors on two invariant subspaces of R(2n).
Multiplying some of the matrices by

√
−1 one obtains complex representations of

all the algebras C̀ (p, q).
Complex (charge) conjugation

Consider a real 2n-dim (V, h). The repr γ can be now complex-conjugated,

γ̄ : C̀ (V, h)→ End S̄, γ̄(a) = γ(a).

From simplicity γ̄ ∼ γ so that there is an intertwiner C : S → S̄ so that

(4) γ̄(a)C = Cγ(a), ∀a ∈ C̀ (V, h).

The composition A = B̄C : S → S̄∗ is used to form a sesquilinear map

(s1, s2) 7→ 〈s̄1, As2〉

Invoking irreducibility of γ and Schur’s lemma, one shows that by rescaling one can
achieve A† = A. Physicists use A to construct real multivectors out of spinors; e.g.
〈s̄, As〉 is real (but physicists write this as s̄s, the map A being absorbed in the
definition of s̄.)

Dirac predicts existence of anti-particles
if ψ : V → S is a solution of

(γµ( ∂

∂xµ
− i eAµ)−m)ψ = 0
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then the charge conjugate function ψc = C−1ψ̄ is a solution of

(γµ( ∂

∂xµ
+ i eAµ)−m)ψ = 0

Real and quaternionic structures in S

Iterating (4) and using Schur’s Lemma one obtains that, after rescaling,
(i) either C̄C = I (i.e. idS) and then the space

ReS = {s ∈ S | s̄ = Cs}

is real and the repr γ restricts to ReS (Majorana spinors),

γ(a) ReS ⊂ ReS

and there is an isomorphism of algebras

C̀ (V, h)→ R(2n).

(ii) or C̄C = −I, and then there is a right quaternionic structure in S obtained by
putting

s i =
√
−1s, s j = C−1s̄, s k = (s i) j .

Eq. (4) then implies that the representation is quaternionic,

γ(a)(sq) = (γ(a)s)q, q ∈ H

so that there is an isomorphism of algebras over R,

C̀ (V, h)→ H(2n−1).

One shows

C̄C =

I if q − p ≡ 0 or 6 mod 8
−I if q − p ≡ 2 or 4 mod 8

The graded structure of C̀ (V, h) depends on the volume element: if η2 = 1, then
C̀ +(V, h) is the sum of two simple algebras. If η2 = −1, then this algebra is C(2n−1).

Chevalley theorem

Graded (‘super’)tensor product of Z2-graded algebras A = A0 ⊕A1 and
B = B0 ⊕ B1: A⊗̂B as a vector space is A⊗ B,
deg(a⊗ b) = deg a+ deg b mod 2
If b ∈ Bε and a′ ∈ Aε′ , then
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(a⊗ b)(a′ ⊗ b′) = (−1)εε′aa′ ⊗ bb′
C̀ (V, h)⊗̂ C̀ (W, g) is isomorphic to C̀ (V ⊕W,h⊕ g)
Proof: the map
V ⊕W → C̀ (V, h)⊗̂ C̀ (W, g), (v, w) 7→ v ⊗ 1 + 1⊗ w has the Clifford property,
(v ⊗ 1 + 1⊗ w)2 = v2 + w2, etc.

Brauer–Wall groups
The dependence of C on q − p mod 8 provides a better known periodicity of
properties of algebras C̀ (p

+
, q
−

) with respect to the index q − p. Together with
periodicity with respect to the dimension, this gives rise to the spinorial (Clifford)
chessboard [18]: periodicity of the structure of C̀ (p, q) with respect to both p and q.
Define the algebras C̀ (p1, q1) and C̀ (p2, q2) to be of the same type if their indices
are equal mod 8, q1 − p1 ≡ q2 − p2 mod 8. This defines an equivalence relation in
the set of all Clifford algebras over real quadratic spaces. The class of C̀ (p, q) is the
set [C̀ (p, q)] of all Clifford algebras of the same type as C̀ (p, q). The graded tensor
product induces in the set of classes a multiplication

[C̀ (p1, q1)].[C̀ (p2, q2)] = [C̀ (p1, q1)⊗̂ C̀ (p2, q2)]
=[C̀ (p1 + p2, q1 + q2)] by Chevalley thm

This multiplication is associative and [C̀ (0, 8)] = [C̀ (1, 1)] is its neutral element.
Every element is invertible:

[C̀ (p, q)]−1 = [C̀ (p′, q′)]

where (p′, q′) is such that p+ p′ ≡ 0 mod 8 and q + q′ ≡ 0 mod 8.Therefore, the set
of all such classes is a group, the Brauer–Wall group of the field R underlying the
vector spaces V .
NB the original def of this group uses (all) Z2-graded associative algebras over a
field. It turns out that every class defined by a similar equivalence relation among
Z2-graded associative algebras contains Clifford algebras so that these algebras
suffice to determine the Brauer–Wall group of a field.
There is a general definition of the Brauer–Wall groups for associative, graded
central simple algebras over any field of characteristic 6= 2 [19, 20].
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The real spinorial clock Z8
provides an explicit description of the Brauer–Wall group of R.

R 7−−−→ R⊕ R 0−−−→ R

6

x y1

C C

5

x y2

H ←−−−
4

H⊕H ←−−−
3

H

Classes of algebras are represented on the clock as follows:

R⊕ R→ R means [R⊕ R→ R(2)],

H→ C means [H →
Pauli

C(2)], etc.

Recipe for determining C̀ +(p, q)→ C̀ (p, q): write q − p = 8µ+ ν, 0 6 ν 6 7, from
the clock read off A0

ν−→ A, multiply A0 and A by R(N0) and R(N) with N0 and N
chosen as to get the dimensions right.
Exercise: Show that R→ C generates the Brauer–Wall group Z8. Hint:
(R→ C)⊗̂(R→ C) = C→ H, etc.
Note that the complex clock is simpler: it has a two-hour dial.

Radon-Hurwitz numbers
From the clock, one has: the algebra A(m) = C̀ +(0,m) for m ≡ 3 mod 4, and
C̀ (0,m) otherwise, is simple and has an irreducible representation in a real vector
space of dimension 2χ(m), where χ(m) is the mth Radon–Hurwitz number, given by
(recall representations C→ R(2) and H→ R(4)):

m = 1 2 3 4 5 6 7 8
χ(m) = 1 2 2 3 3 3 3 4
A(m) = C H H H(2) C(4) R(8) R(8) R(16)

Since A(m+ 8) = A(m)⊗R(4), one has χ(m+ 8) = χ(m) + 4. The map χ : N→ N
is surjective.
♦The representations γ : A(m)→ R(χ(m)) are generated by matrices
γµ ∈ R(2χ(m)) which are antisymmetric, γ∗µ = −γµ, µ = 1, . . . ,m.
They can be constructed inductively from the unit matrix and the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −1
1 0

)
, σ3 =

(
1 0
0 −1

)

16



by putting
for m = 1: γ1 = σ2,
for m = 2: γ1 = I ⊗ σ2, γ2 = σ2 ⊗ σ1,
for m = 3: γ1 and γ2 as above, and γ3 = σ2 ⊗ σ3
etc. See the review [21].

Vector fields on spheres
There is are no non-vanishing tangent vector fields on even-dim spheres, but every
odd-dim sphere has at least one such field. Clifford algebras provide a construction
of the maximal number of such fields, linearly independent at all points of the
sphere.
For even N , let m be the largest number such that N = 2χ(m)p where p is odd. Let
I ∈ R(p), v = (v1, . . . , vm) ∈ Rm and

γ(v) = γµv
µ ⊗ I ∈ R(N)

where γµ are as in ♦ so that γ(v) is antisymmetric. For every v 6= 0 and x ∈ SN−1,
the vector γ(v)x 6= 0 is orthogonal to x, therefore tangent to the sphere: there are
m vector fields tangent to the sphere and linearly independent at all points. Using
topological methods, J. F. Adams [22] has shown that this is the maximum number
of such vector fields.
From the table of Radon-Hurwitz numbers one obtains that the spheres S1 ⊂ C,
S3 ⊂ H and S7 ⊂ O are the only ones that are parallelizable and that spheres of
dimension 1 mod 4 have only one nonvanishing tangent vector field.

Examples of Clifford algebras
There are two ‘natural’ quadratic forms: det on C(2) and the pfaffian on ∧2C4 =;
they give rise to interesting Clifford algebras in dimensions 4 (physicists’ spinors)
and 6 (twistors).
Twistor theory is based on the following construction:
Let (T, ε), ε ∈ ∧4T , be a 4-dim unimodular (twistor) space. The 6-dim space
W = ∧2T has a scalar product h (the Pfaffian) such that for all w1, w2 ∈ W ,

1
2w1 ∧ w2 = h(w1, w2)ε.

The form ε defines the Hodge dual map ? : ∧2T → ∧2T ∗. If w ∈ W , then there are
maps

w : T ∗ → T, ?w : T → T ∗, and w ◦ ?w = −h(w,w) idT
so that the map

W → End(T ⊕ T ∗), w 7→
(

0 w
− ? w 0

)

17



has the Clifford property for the quadratic space (W,h) and extends to an
isomorphism of algebras

γ : C̀ (∧2T, h)→ End(T ⊕ T ∗).

4-dim space(-time) is identified with the quadric

{dirw ∈ CP 5 | h(w,w) = 0}.

SPINORS ON MANIFOLDS
The early papers on spinors on manifolds, by both mathematicians and physicists,
lacked rigour. Fibre bundles in topology appear in 1935-40 (Whitney, Hopf, Stiefel,
Steenrod) and in differential geometry somewhat later (Ehresmann 1943). Cartan
criticised “certain physicists”, but the chapter on spinors in Riemannian geometry
of his book of 1938 lacks precision and clarity.
Physicists encountered – and solved – some topological problems connected with
spinors on manifolds already in the 1930s (Schrödinger [23], Pauli): spinor fields on
spheres appeared to be double-valued. They used coordinates (φ, θ) on S2 with
meridian φ = 0 removed. If an orthonormal frame ↑→ is moved along the equator
from φ = 0+ to φ = 2π−, then the frame is rotated by 2π and, as a result, a spinor
changes sign...
Much of differential geometry can be presented with rigour without the use of fibre
bundles (vector fields as derivations of the algebra of smooth fns, etc).
But spinors on manifolds do require fibre bundles.

Two approaches to spinor fields on manifolds
Physicists tried to do “spinor analysis on manifolds” in two ways:
1p. either referring everything to orthonormal frames and using constant gamma
matrices (Wigner, Fock 1929), or
2p. introducing point-dependent gamma matrices,

γµ(x)γν(x) + γν(x)γµ(x) = 2gµν(x)

(Tetrode 1928 [24], Schrödinger 1932 [25], Bergmann 1957)
These approaches have led to precise, bundle-theoretic formulations:
1m. (S)pin structure on (M, g) is ‘reduction’ (poor name, here group is ‘enlarged’)
of the O(m) bundle P of orthonormal frames to a Pin(m)-bundle π : Q→M (Borel
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and Hirzebruch 1959)
Pin(m) −−−→ Q

Ψ−−−→ Sy yχ
O(m) −−−→ Py

M

Spinor field is given as a map Ψ such that Ψ(qa) = γ(a−1)Ψ(q).
When M is orientable, one defines a Spin structure and extends it, if necessary, to
a Pin str. For the purpose of describing charged fermions, on uses
Spinc = (Spin×U(1))/Z2)-structures. (Weaker obstructions: CP2n have no Spin str.,
but have a Spinc-str.)
The spinor bundle is the associated bundle
Σ = (Q× S)/ Spin(m).
2m. Guido Karrer (1973) gave another definition of Σ based on the use of the
Clifford functor. Given (M, g), for every x ∈M there is the quadratic space
(TxM, gx) and one constructs the Clifford bundle over M

C̀ (M, g) = ∪x∈M C̀ (TxM, gx)

This is a natural (functorial with respect to isometries) construction, no obstacles.
A spinor bundle is now a ‘representation bundle’ Σ →M with a bundle map

γ : C̀ (M, g)→ EndΣ

such that the restriction of γ to the fibre over x is a representation of the Clifford
algebra C̀ (TxM, gx) in Σx. There are obstructions; such a Σ may not exist and, if it
does, may be not unique. Spinor bundles are not natural.
A vector field defines a section X of the Clifford bundle and the composition γ ◦X
provides the physicists’ point-dependent gammas.
It is easy to go from 1m to 2m by constructing Σ as an associated bundle. Going
from 2m to 1m is more subtle, especially when M is odd-dim and non-orientable
[26]. Improve.
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Example: Spin structures and spinor fields on spheres.

Spin(m) −−−→ Spin(m+ 1) = Qy y
SO(m) −−−→ SO(m+ 1) = Py

Sm
Here SO(m+ 1)→ P is given by
a 7→ frame (ae2, ae3, . . . , aem+1) at ae1 ∈ Sm.

SO(m)→ SO(m+ 1) is b 7→
(

1 0
0 b

)
, etc.

On the circle, there are two spin structures
(recall Spin(1) = Z2, Spin(2) = U(1) square−−−→ U(1) = SO(2), P = U(1) id−→ U(1) = S1)

Z2 −−−→ U(1)y square
y

1 −−−→ U(1)y
S1

Z2 −−−→ Z2 × U(1)y y
1 −−−→ U(1)y

S1

The triviality of spinor bundles on spheres
Proposition: The bundle of complex spinors Σ, associated with the principal bundle

Spin(2n)→ Q = Spin(2n+ 1) π−→ S2n

is a trivial vector bundle.
To show this, recall isomorphism of algebras

C̀ (2n,C)→ C̀ +(2n+ 1,C)

obtained by extending the Clifford map

C2n → C̀ +(2n+ 1,C), v 7→ ve1 . . . e2n+1

The simple algebras C̀ (2n,C) = C̀ +(2n+ 1,C) have a repr. in S, dimS = 2n; by
restriction, one obtains representations of groups,

γ′ : Spin(2n+ 1)→ GL(S), γ = γ′| Spin(2n), dimC S = 2n.
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γ is the complex ‘Dirac representation’.
The definition of Σ is (recall Q = Spin(2n+ 1))

Σ = (Q× S)/ Spin(2n),
(q, s) ≡ (q′, s′)⇔ ∃a∈Spin(2n) q

′ = qa & s′ = γ(a−1)s.

An isomorphism of bundles over M is

Σ →M × S, [(q, s)] 7→ (π(q), γ′(q)s).

This is well defined because, by virtue of γ′(qa) = γ′(q)γ(a) for q ∈ Spin(2n+ 1)
and a ∈ Spin(2n), one has

(π(qa), γ′(qa)γ(a−1)s) = (π(q), γ′(q)s)

The idea of this construction can be traced back to Schrödinger (1937). The result
is slightly surprising: the tangent bundle T S2n is not trivial and there is not even a
single non-vanishing tangent vector field on S2n.
There is a more general result: if M is a hypersurface (not necessarily orientable) in
a spin manifold, then M (with induced metric) has a pin structure such that the
associated bundle of spinors is trivial.
Unlike tensor bundles, spinor bundles are not natural, even in the category of
Riemannian manifolds and isometries. Failure to recognize this was the basis of
controversies concerning the definition and properties of spinors on manifolds.
In particular, the Lie derivative is a notion intimately connected with natural
bundles. Recall that a natural bundle is a functor F from the category of
manifolds and diffeomorphisms to that of bundles such that πM : F (M)→M is a
bundle and if ϕ : M → N is a diffeomorphism, then F (ϕ) : F (M)→ F (N) is an
isomorphism of bundles covering ϕ. If A is a section of πN : F (N)→ N , i.e. a field
on N of geometric objects of type F , then ϕ∗A = F (ϕ−1) ◦ A ◦ ϕ is its pull-back by
ϕ to M . The vertical bundle V F (M) is the subbundle of the tangent bundle
TF (M) consisting of all vertical vectors, i.e. vectors that are annihilated by TπM .
Let (ϕt, t ∈ R) be the flow generated by a vector field X on M and let A be a
section of πM . The curve t 7→ (ϕ∗tA)(x) is vertical for every x ∈M and the Lie
derivative L(X)A is now defined as the section of the vector bundle V F (M)→M
such that (L(X)A)(x) is the vector tangent to t 7→ (ϕ∗tA)(x) at t = 0. If F is a
natural vector bundle, then

d
dt(ϕ

∗
tA) = ϕ∗tL(X)A
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so that L(X)A = 0 is the n. a. s. cond. for invariance of A with respect to the flow
Some authors proposed an expression L(X)ϕ for the “Lie derivative” of a spinor
field constructed with the help of covariant derivatives of ϕ, but it satisfied the
condition L([X, Y ]) = L(X)L(Y )− L(Y )L(X) only for vector fields X and Y that
generate isometries and ϕ∗tA failed to be defined for a general X.

Covariant differentiation of spinor fields
1m Spinor structure Spin(m)→ Q

χ−→ P
π−→M . Since χ is a local diffeomorphism,

the distribution of horizontal subspaces of TP lifts to a similar distribution on Q.
In other words, a metric linear connection form ω : TP → so(m) ⊂ EndRm on P
lifts to a connection form σ : TQ→ spin(m) ⊂ EndS on Q and defines the
covariant exterior derivative
DΨ = dΨ + σΨ of a spinor field Ψ : Q→ S.
The soldering form on P lifts to θµ on Q: if X ∈ TqQ, χ(q) = (e1, . . . , em), and

T (π ◦ χ)(X) = Xµeµ

then θµ is such thatX y θµ = Xµ and

DΨ = θµ∇µΨ

The Dirac operator is
/∇ = γµ∇µ.

A pragmatic derivation of σ is as follows. For any spinor fields ϕ and ψ, the
functions 〈ϕ,Bγµψ〉 are components of a vector field. Its covariant derivative can
be evaluated either as

D〈ϕ,Bγµψ〉 = d〈ϕ,Bγµψ〉+ ωµν〈ϕ,Bγνψ〉

or as
D〈ϕ,Bγµψ〉 = 〈Dϕ,Bγµψ〉+ 〈ϕ,BγµDψ〉

This gives

ωµν〈ϕ,Bγνψ〉 =〈σϕ,Bγµψ〉+ 〈ϕ,Bγµσψ〉
=〈ϕ, (σ∗Bγµ +Bγµσ)ψ〉

where σ∗ is the transpose of σ in EndS. From the arbitrariness of ϕ and ψ one
obtains

ωµνγ
ν = σ∗Bγµ +Bγµσ.
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A solution of the last equation is σ = 1
2ωµνγ

µγν .
Spectrum of the Laplace and Dirac operators on spheres

Consider unit sphere Sm ⊂ Rm+1, m > 2,

dl2Rm+1 = gµν dxµ dxν = dr2 + r2 dl2Sm

leads to (g = det(gµν))

∆Rm+1ϕ = 1
√
g

(√ggµνϕ,µ),ν = 1
rm

1
∂r

(rm∂ϕ
∂r

) + 1
r2 ∆Smϕ.

Let ϕ be a harmonic polynomial homogeneous of degree l in (x1, . . . , xm+1). From
the last eq., ϕ restricted to Sm is an eigenfunction of ∆Sm with eigenvalue
−l(l − 1 +m) (the case m = 2 is familiar).
Consider now the eigenvalue problem for the Dirac operator /∇ on the sphere. The
Dirac operator in Rm+1 is

γµ∂µ = γµ
xµ

r
( 1
rm/2

1
∂r
rm/2 + 1

r
/∇)

Assume now ϕ to be harmonic polynomial homogeneous of degree l + 1,
l = 1, 2, . . .. Then ψ = γµ∂µϕ is of degree l and γµ∂µψ = 0 gives

/∇ψ = −(l + m

2 )ψ.

But the spectrum is symmetric (e.g. for m = 2n one has γ2n+1 /∇+ /∇γ2n+1 = 0);
therefore, the spectrum of the Dirac operator on Sm contains (in fact, it is)
±(l +m/2), l = 0, 1, . . .. Zero is not an eigenvalue.
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