
7 Scattering theory and relativistic theory of particle

interactions

In this chapter we lay foundations for the first approach to formulating relativistic quan-
tum field theories. This approach is close in spirit to the view expressed by Steven
Weinberg - one of the founders of the Standard Theory of elementary particle interactions
- that quantum field theory is merely a convenient machinery allowing to systematically
construct amplitudes of particle reactions (comprising together the S-matrix) satisfying
a certain set of physically motivated requirements such as Poincaré covariance, unitarity,
cluster decomposition and analyticity (which were formulated in the historical develop-
ment of high energy particle physics quite independently of the field theory principles).
This view, while convenient as a starting point for our considerations, seems, however, too
restricted. A more balanced one is probably that quantum field theory is just a quantum
theory of some physical system. But what this system really is? In other words, what is
the “ontology” underlying the quantum field theory? We will see that to some extent the
ultimate formalism we will come to know dispenses us of such questions.1 Nevertheless, in
formulating quantum field theory one has to stick to some “ontology”. The two obvious
possible choices which lead to the quantum field theory as we know it are particles and
fields (but one cannot exclude that the true underlying physical system may ultimately
prove to be something else). Therefore, in this chapter and in the two following ones
(Chapters 8 and 9) our underlying ontology will be particles. Quantum field theory as
a quantum theory of a system of fields2 will be developed in Chapter 11. We decided
to present both formulations because this allows to better understand the foundations of
quantum field theory and makes also clear similarities and differences between its versions
used in particle physics and in condensed matter and solid state physics.

Adopting particles as the basic ontology is natural in condensed matter and solid state
physics. Physical systems considered in these areas can certainly be treated as composed
of well known particles3 (although to be able to capture essential properties of some sys-
tems one nowadays frequently considers systems consisting of spins at fixed positions or
allows particles to only hop from one site to another of a prescribed lattice - these are ef-
fective, purely theoretical constructions done at a higher - so to say - emergent in systems

1In this sense quantum field theory seems to favour the view, nowadays widespread, if not prevailing
among theoreticians, that only the mathematical formalism matters and the ontology is largely irrelevant;
this was most probably the attitude to physical theories of Dirac, but certainly not the one of Bohr!

2It is of course possible to formulate quantum field theory as a quantum theory of a mixed system
consisting of fields and particles. (This was the approach adopted in Section 3.8 in which quantum theory
of radiation was presented as a prototype quantum field theory). In fact, it seems that this may be the
most natural point of view on the physical system underlying the quantum field theory: fermionic fields
are Grassman algebra valued mappings which hardly, if at all, can be ascribed any physical reality -
because of this fermions most probably should be considered true particles. Bosons, in contrast, are most
naturally interpreted as quantum excitations of continuous fields.

3That is, the question what these particles are made of and why they have properties they have -
masses, spins - is entirely irerlevant for problems which are of interest in these areas of physics.
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of ordinary particle, level) properties of which - masses, spins, charges, (long distance)
interactions, etc. - are well known. The Hilbert space H of a theory constructed adopting
this ontology is naturally a multiparticle space of the same kind as the spaces built in
Chapter 5, possessing the vector |void〉 from which other vectors can be obtained by the
action of an arbitrary number (which can also be infinite) of creation operators corre-
sponding to the kinds of particles which are “put in” into the system (as its fundamental
constituents); the theory is constructed by adding to the free hamiltonian H0 an inter-
action operator Vint acting in H. The resulting quantum mechanics of a many particle
system with the Hamiltonian similar to the ones considered in Chapter 5 is a model of
(nonrelativistic) quantum field theory and properties of excitations of the resulting sys-
tem, interpreted in terms of quasi-particles, are in general very different than properties
of the “fundamental” particles “put” in the system - see the disscussion in Section 5.7.

In the approach developed in this and in the two following chapters, relativistic field
theories will be formulated in the similar spirit, as quantum theories of interacting rela-
tivistic particles. Therefore the starting point will be a relativistic theory of free particles
of a finite number of definite kinds, a, b, . . ., constructed on the basis of the second quan-
tization formalism of Section 6.5. The “arena” of the latter theory is the big multiparticle
Hilbert space H which is a direct sum of multiple tensor products of single-particle Hilbert
spaces H(1)

a , H(1)
b , . . . , of several types of particles and of the one dimensional H(0) as in

Section 5.1. The big Hilbert space is therefore spanned by the vector |void〉 (which spans
H(0)) and all possible multi-particle state-vectors

|(p1σ1,p2σ2, . . . ,pNσN )0〉 , (7.1)

constructed as (appropriately symmetrized/antisymmetrized) tensor products of one-
particle state-vectors.4 In the continuum (i.e. in the infinite space volume) the vectors
(7.1) are normalized so that (somewhat symbolically)

〈(p′
Nσ

′
N ,p

′
N−1σ

′
N−1, . . . ,p

′
1σ

′
1)0|(p1σ1,p2σ2, . . . ,pMσM)0〉

= δNM

∑

P

ζP δΓ(p
′
1 − pP (1)) . . . δΓ(p

′
N − pP (N)) , (7.2)

where ζ = ±1 depending on whether particles are bosons or fermions and the (anti)sym-
metrization is understood to be done only within the groups of identical particles. The sum
in (7.2) is over permutations within groups of labels corresponding to identical particles
and (−1)P is the sign of the permutation of fermionic labels in a given permutation P . The

4If the vector (7.1) represents Na particles of type a, Nb particles of type b, etc. (Na +Nb + . . . = N),
different groups of labels, e.g. (piσi, . . . ,pi+Na

σi+Na
) correspond to different types of particles but we do

not introduce any additional index to distinguish which labels correspond to which type of particles. Only
labels corresponding to identical particles are symmetrized or antisymmetrized as described in Chapter
5. Basis N -particle states constructed as appropriate linear combinations of the states (7.1) are also in
use (see Section 6.4 for examples of such alternative bases of the H(2) subspace). The subscript “0” is
used to distinguish these vectors from the in and out vectors which will also be be labeled by listing the
momenta and spin variables of the particles they represent.
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symbol δΓ(p
′ − p) which here is assumed to include also the Kronecker delta of the spin

variables σ, depends on the normalization of the one-particle states; with the one usually
adopted in nonrelativistic applications δΓ(p

′ − p) = (2π)3δσ′σδ
(3)(p′ − p); in relativistic

theories more convenient is the normalization such that δΓ(p
′−p) = (2π)32Epδσ′σδ

(3)(p′−
p), corresponding to 2Ep particles in the unit volume (see Section 10.2). Because in
general considerations we will be not interested in the detailed particle compositon of the
multi-particle state-vectors, it is practical to introduce a compact notation, in which |α0〉
stands for state-vectors of the form (7.1) and the scalar product (7.2) is concisely written
as

〈β0|α0〉 = δ(β − α) ≡ δβα . (7.3)

The completeness relation

1̂ = |void〉〈void|+
∞
∑

N=1

(

∑

N1

∑

N2

. . .

)

δN,(N1+N2+...)
1

N1!N2! . . .
(7.4)

∑

σ1,...,σN

∫ N
∏

i=1

dΓpi
|(p1σ1, . . . ,pNσN )0〉〈(pNσN , . . . ,p1σ1)0| ,

in which the summation is over different numbers Ni of distinct types of particles, will be
then compactly written as

1̂ =

∫

dα |α0〉〈α0| , i.e. |Ψ〉 =
∫

dα |α0〉〈α0|Ψ〉 . (7.5)

where |Ψ〉 is any vector of the Hilbert space H.

The vectors (7.1) are the eigenvenctors of the free Hamiltonian H0 which is taken to
be a sum H0 = Ha

0 + Hb
0 + . . . of terms (6.113) with the energies Ea(p) =

√

p2 +m2
a,

Eb(p) =
√

p2 +m2
b , . . . - hence the subscript 0 in |α0〉. In the continuum (infinite volume

V of the space) the only normalizable eigenvector of H0 is the vector |void〉; the other
eigenvectors |α0〉 of H0 are non-normalizable.5 Because the vector |void〉 is also the
lowest energy H0 eigenvector, it will be denoted |Ω0〉 (in relativistic theories the numbers
of particles will not be conserved by the interaction, so there is no point to consider, as in
nonrelativistic theories, separate H0 eigenvectors |Ω(Na,Nb...)

0 〉 in each H(Na,Nb...) subspace).
As explained in Section 5.1, even in the finite volume V , when allowed particle momenta
form a discrete set (as a result of imposing periodic boundary conditions) and all state-
vectors are normalizable, the Hilbert space is not separable - the set of vectors |α0〉 which
span the big Hilbert space H is not countable.6 The separable subspace spanned in the

5Non-normalizable state-vectors |α0〉, called generalized vectors, are in this respect similar to the plane
waves ψp = eip·x of ordinary nonrelativistic Quantum Mechanics of a single particle which are generalized

(non-normalizable) eigenvectors of the H0 = P̂2/2m and P̂ operators.
6This follows from the mathematical facts that for integer M and N both limits

lim
N→∞

lim
M→∞

MN and lim
N→∞

2N ,
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big Hilbert space by the vectors obtained by acting on |Ω0〉 = |void〉 with an arbitrary
but finite number of the creation operators forms the most natural (but not the only one
which can be selected) Fock space.

The relativistic character of the theory of free particles constructed in Section 6.5,
is ensured by the relativistic form of the energies Ea(p), Eb(p), . . . , entering the free
Hamiltonians Ha

0 , H
b
0, . . . of the form (6.113) and the possibility of constructing (as

bilinear combinations of the creation and annihilation operators of the “fundamental”
particles “put in” into the system) the remaining Poincaré group generators J0, P0, and
K0, acting in H satisfying together with H0 the rules (6.21). Of course the manifestly
relativistic character of the dynamics is lost when the theory of free particles is considered
not in the continuum; nevertheless, considering the the system of particles as enclosed in
a finite volume V is necessary for example to consider thermodynamical properties of a
gas of free relativistic (in the sense of their energy-momentum relation) particles.

The theory of interacting relativistic particles (which in this approach is the quantum
field theory) is constructed by adding to the free Hamiltonian H0 an interaction operator
Vint acting in the big Hilbert space H spanned by the vector |void〉 = |Ω0〉 and all vectors
(7.1). Whether the resulting theory of the “fundamental” particles “put in” into the
system and now allowed to interact with each other is still relativistic, that is, whether it
is possible to construct in H new Poincaré group generators J, P, and K which together
with H = H0 + Vint would satisfy the commutation rules (6.21) and additional physical
requirements which will be formulated below depends, of course, on the form of Vint.

Assuming that the theory obtained by replacing H0 by H = H0+Vint, is still a theory
of particles (that is, assuming that the Hamiltonian H = H0 + Vint has still eigenvectors
which can be interpreted as representing some kinds of particles - see below), the question
what interactions Vint allow for constructing the Poincaré group generators requires formu-
lating the theory in the continuum and is, for this reason, most conveniently investigated
within the framework of the scattering theory:7 S-matrices characterizing interactions
of relativistic particles, that is the set of amplitudes allowing to compute probabilities

(relevant for counting bosonic and fermionic basis states) are equal to the power of the continuum. It is
precisely the nonseparability of the Hilbert space H which is at the origin of the mentioned insensitivity
of the ultimate formalism to the “ontology” underlying the theory.

7Although from the fundamental perspective it should be regarded as matter of pure calculational
convenience that quantum field theory (or, more generally, any quantum theory) is formulated in the
infinite space volume - there is a strong conviction that essential physics of considered systems must be
the same, whether they are considered in the infinite space or as confined to a (large) finite volume and
that in the latter case their measurable characteristics (if properly defined) do not depend on the size
(if it is sufficiently large) of this volume that is, tend to well defined limits as V → ∞ - the proper
formulation of the scattering theory requires considering the theory in the infinite space. The point is
that in the finite volume, when all eigenvectors of the Hamiltonian are normalizable, scattering processes
cannot be sharply distinguished from the general time evolution of the system: all reactions would occur
multiply as time goes and it would not make sense to appeal to the infinite time limits in order to define
measurable quantities characterizing what in the real world is observed as scattering processes. Therefore,
to meaningfully define state-vectors representing scattering reactions the infinite volume is crucial.
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(rates) of particle reactions, should transform in a well defined way when the reference
frame is changed - they should be Lorentz covariant. Therefore in this chapter we will
first formulate the scattering theory which in its general form applies to the ordinary non-
relativistic as well as to relativistic quantum mechanics. In fact, despite some important
differences between its simplest version - the theory of scattering by an external potential
based on the nonrelativistic quantum mechanics of a single particle and the scattering
theory applied to the relativistic quantum mechanics of particles (that is quantum field
theory) developed here,8 keeping in mind the former is helpful in understanding also the
latter one. Thus we will first derive general formulae, applicable in relativistic and in
nonrelativistic theories, expressing the S-matrix elements in different ways useful in dis-
cussing its various aspects and will work out various approximate and iterative ways of
computing them in addition to the basic one based on the Dyson expnasion and the Wick
theorem. This one will be illustrated here on the example of the elastic scattering of
nonrelativistic particles which will serve us to derive the result used in Section 5.5.

We will then investigate in detail the requirement of Lorentz covariance of the S-
matrix and will formulate sufficient conditions under which the Hamiltonian H = H0+Vint
leads to a Lorentz covariant S-matrix. It will be seen that if the S-matrix is Poincaré
covariant (which is the case if J0, P0, and K0 commute with Vint) it is also possible to
construct the generators J, P, and K having the required properties. As will turn out,
these sufficient conditions are not satisfied in some theories of physical interest and the
ultimate Poincaré covariance of their S-matrices must be ensured by additional special
features of these theories; nevertheless, the conditions formulated here constitute a useful
reference point for further constructions. Finally, we will discuss in some details general
properties of S-matrices in relativistic theories such as unitarity, partial wave expansion
and its various possible symmetries.

Of course the fact that the relativistic character of the constructed theory is investi-
gated by appealing to the infinite volume limit and the scattering theory does not mean
that the S-matrix exhaust all the physically interesting information which can be ob-
tained from it! Once it is formulated as a relativistic theory, various other properties of
the underlying system, like for example its thermal properties which require keeping the
volume finite, can be investigated by various other methods and means of general quantum
mechanics (e.g. by the Rayleigh-Schrödinger stationary perturbative expansion).

7.1 Time evolution, the S-matrix and the S0 operator

In developing the scattering theory within the quantum mechanics of interacting particles
formulated along the lines sketched above we make the following important but physically
motivated assumptions. Firstly, we assume that the Hamiltonian H = H0 + Vint is still a

8There exist, of course, intermediate level theories based on nonrelativistic quantum mechanics of
many particles which, similarly to the relativistic quantum field theories allow to consider multichannel
scattering process.
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Hamiltonian of a system of particles, by which we mean that it possesses particle-like gen-
eralized eigenvectors, which in the sense which will be made precise below have properties
similar to the multi-particle generalized eigenvectors (7.1) of a free Hamiltonian H̃0, not
necessarily identical with H0 we start with, that is of a Hamiltonian H̃0 which is a sum of
(a finite number of) terms H̃ ã

0 , H̃
b̃
0, . . . of the form (6.113) with some relativistic energies

Eã(p), Eb̃(p), . . . and with the original operators a†σ(p), aσ(p) replaced by some other
operators ã†σ(p), ãσ(p) (constructed out of the original ones by means of some sort of a
- perhaps very complicated compared to the one used in Section 5.5 - Bogolyubov trans-
formation) satisfying analogous commutation relations.9 We assume that all operators
ãσ(p) annihilate some normalizable (in the continuum) vector |Ω̃0〉 which is the ground
state-vector of H̃0 and that the H̃0 generalized eigenvectors |α̃0〉 obtained by acting on
|Ω̃0〉 with the operators ã†σ(p) also span the original Hilbert space. In a relativistic theory
this in particular means that H = H0 + Vint possesses, among others, generalized (in
the infinite space) eigenvectors which with respect to the transformations generated by
the operators H , P, J and K satisfying the rules (6.21) transform in the same way as
do the discussed in Chapter 6 one-particle states and that the one-particle eigenvectors
of H̃0 have precisely the same properties (with respect to transformations generated by
H̃0, P̃0, J̃0 and K̃0). Furthermore we will assume that, similarly to H0 (and to H̃0), the
Hamiltonian H = H0+Vint has (in the infinite space volume) only a single (at least in the
Fock space built on the vacuum vector |Ω̃0〉) normalizable ground-state eigenvector of H
denoted |Ω〉 and called the vacuum, that the particle-like non-normalizable eigenvectors of
H , which will be introduced in Section 7.3, together with |Ω〉 span the whole Hilbert space
(or at least the Fock space built on the vacuum vector |Ω̃0〉) and, finally, that the spectra
of the Hamiltonians H = H0+ Vint and of H̃0 are identical.

10 We therefore postulate that
there is a strict one-to-one correspondence between all eigenvectors of H = H0 + Vint and
the eigenvectors of H̃0 and that energies of the corresponding eigenvectors (with respect
to the respective Hamiltonians, H and H̃0) are equal. The physical motivation for these
assumptions is that if H = H0 + Vint is the Hamiltonian of a system of particles, its
non-normalizable (in the continuum) eigenvectors should all represent (as is the case in
ordinary nonrelativistic quantum mechanical scattering on a fixed potential which does
not admit bound states) collision-type processes in which long before and long after the
reaction particles look as (mutually) noninteracting. Therefore, it should be possible to
associate with a given scattering process the Hilbert space (Heisenberg picture) state-
vectors which, in a well defined way, correspond, as far as their transformation properties
and energies are concerned, to eigenvectors of some H̃0.

The assumptions formulated above could of course be checked if the theory could be

9It is therefore clear that at least formally, the Poincaré group generators P̃0, J̃0 and K̃0 satisfying
together with H̃0 the commutation relations (6.21) can also be built as operators bilinear in the creation
and annihilation operators ã†σ(p), ãσ(p).

10This is not always true in the scattering theory based on (nonrelativistic) quantum mechanics of
a single particle in which the potential Vint added to H0 can lead to the existence of normalizable
eigenvectors of H (i.e. bound states) but seems to be quite a natural assumption in a many-particle
quantum theory formulated in the infinite space.
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solved exactly. Unfortunately, in most cases one has to rely on some sort of approximations
which usually hinge on the second assumption we are going to make. A method with the
help of which the true spectrum of H could, at least in principle, be investigated will be
outlined in Chapter 13.

In their abstract form the assumptions formulated above do not allow to go too far11

within the approach to the quantum field theory developped in this and in the two fol-
lowing chapters. Therefore, in order to construct theories in which practical calculations
(based on a systematic perturbative expansion) can be performed we will make a “tech-
nical”, simplifying assumption that Vint is “small” in the sense that the spectrum of
H = H0 + Vint is the same as the spectrum of H0, i.e. the full H eigenvectors have the
properties of the eigenvectors |α0〉 of H0. In other words, we will assume that H̃0 = H0

and that the strict one to-one correspondence holds between the the H0 and H eigen-
vectors (including the equality of the corresponding eigenvalues) which form alternative
bases of the same Fock space. In the considerations of this chapter, however, although we
will use the notation H0, and |α0〉, one can treat them as H̃0 and |α̃0〉.

It is important to realize that these assumptions are neither a priori obvious, nor are
they always fulfilled. It could happen that H = H0 + Vint does not possess particle-like
eigenstates at all (or not all of its eigenvectors can be interpreted as representing states
of particles). This is indeed so in conformal field theory models or theories of “unparti-
cles” discussed in the literature,12 so that there are theories to which even the general,
seemingly well motivated assuption does not apply. Furthermore, even all H = H0 + Vint
eigenvectors represent states of particles, they can be in one-to-one corresponcence with
eigenvectors of a free-particle Hamiltonian H̃0 which is very different from H0 used to
build H . The most prominent example of such a theory is Quantum Chromodynamics
(QCD) - the theory of strong interactions in which the H0 eigenvectors represent states of
free spin 1

2
coloured (i.e. transforming nontrivially under the action of the colour SU(3)c

symmetry group) quarks, antiquarks and spin 1, massless coloured gluons, whereas the
true H (and, therefore, also H̃0) eigenvectors represent colourless, i.e. SU(3)c singlets,
baryons, antibaryons and mesons. The approach exploiting the “technical” assumption
was largely shaped by the historical developement of quantum electrodynamics of elec-
trons, positrons and photons, which as a quantum field theory is very special in that
the interaction between charged particles and photons is quite weak and, moreover, all
particles of this theory are absolutely stable.13 The unified theory of weak and electro-

11At least in fully relativistic theories - there are simplified nonrelativistic models, like e.g. the Lee
model, in which the Hamiltonian H̃0 can be explicitly constructed.

12Eigenvectors of free Hamiltonians H0 of such theories represent massless particles.
13Positronium - a bound state of electron and positron - is unstable. However already electrodynamics

of electrons and muons (which are stable in the absence of weak interactions) does not fully fit into the
assumed scheme (although the interaction is still weak): the bound state of electron and antimuon (or
of positron and muon) is stable and therefore the nonnormalizable eivenvectors of the full Hamiltonian
of such electrodynamics should correspond, strictly speaking, to the eigenvectors of H̃0 which is the free
Hamiltonian of electrons positrons, muons, antimuons, and of e−µ+ and e+µ− bound states treated as
elementary particles.
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magnetic interactions (of which quantum electrodynamics is only a part) is also weakly
coupled but certainly violates the assumption that there is a strict one-to-one correspon-
dence between the particle-like eigenvectors of H and of H0: W

± bosons of spin 1, muons,
taons are “put in” into the theory as particles and have the corresponding eigenvectors
of H0 but not being absolutely stable they have no, strictly speaking, their counterparts
among the particle-like eigenvectors of H .

Thus, the assumptions adopted in the approach to quantum field theory based on
relativistic quantum mechanics of particles, which is developed in Chapters 7-9 can be
satisfied only in a very special (rather narrow) class of theories and require in addition a
judicious construction of the interaction operator Vint. This will become clear in Section
9.7, where it will turn out that observance of these assumptions (by appropriately ad-
justing Vint) is crucial for avoiding some type of ill defined contributions to the transition
amplitudes (S-matrix elements) that would otherwise occur in perturbative calculations.

With the two assumptions clearly spelled out as above it becomes possible to formulate
the scattering theory based on relativistic Quantum Mechanics of particles in the Fock
space spanned by the H0 eigenvectors. To the proper Hilbert space which we will consider
initially belong all possible normalizable state-vectors |Ψ〉 that can be constructed out of
the Fock space of generalized H0 eigenvectors as

|Ψ〉 =
∫

dα |α0〉〈α0|Ψ〉 ≡
∫

dα |α0〉ψ(α) , (7.6)

with integrable profiles ψ(α):
∫

dα|ψ(α)|2 = 1. One can then consider such states prepared
at t = 0 and their time evolution generated either by H or H0. Guided by the physical
intuition and in line with the general framework adopted, we assume that the Schrödinger
picture counterparts (we set ~ = c = 1)

|Ψ(t)〉 = e−iHt|Ψ〉 ≡ U(t, 0)|Ψ〉 , (7.7)

(in the notation of Chapter 1) of normalizable Heisenberg picture state-vectors |Ψ〉 which
represent reactions between particles converge as t→ ∓∞ (in the sense of convergence in
the Hilbert space of sequences of vectors) to some state-vectors14

|Ψin/out
as (t)〉 = e−iH0t|Ψin/out

as 〉 ≡ U0(t, 0)|Ψin/out
as 〉 , (7.8)

because in experiments one prepares states representing particles which before the collision
are well localized and separated in space and are therefore from the practical point of view
non-interacting with each other; likewise, long after the collision particles are again well
separated and again look as mutually non-interacting. Thus, any state |Ψ〉 representing
a scattering process can be written (employing the notation of Chapter 1) as

|Ψ〉 = lim
t→∓∞

U †(t, 0)U0(t, 0)|Ψin/out
as 〉 = U †

I (t, 0)|Ψin/out
as 〉 . (7.9)

14The states |Ψin/out
as 〉 considered here should not be identified with the in and out states analogous to

the ones introduced in Section 1.3; the states playing the roles of the in and out states in the present
context will be defined in Section 7.3.
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As any smooth, normalized superposition (7.6) of the H0 eigenvectors |α0〉 should repre-
sent a possible initial or a possible final state of particles which will participar of have
participated in some reaction, one assumes that on the whole proper Hilbert space the
operators

Ω(t) ≡ eiHte−iH0t = U †
I (t, 0) , (7.10)

do have the limits15

lim
t→∓∞

Ω(t) = Ω(∓∞) ≡ Ω± , (7.11)

on any normalizable smooth superposition of the |α0〉 vectors. Ω± are called M6 oller
operators. Since

d

dt
Ω(t) =

d

dt

(

eiHte−iH0t
)

= i U †(t, 0)VintU0(t, 0) ≡ i U †
I (t, 0)V

I
int(t) ,

and since Ω(0) = 1̂, the operator Ω(t) can alternatively be defined by the integral relation

Ω(t) = 1̂ + i

∫ t

0

dt′ U †(t′, 0)VintU0(t
′, 0) . (7.12)

Furthermore, as the operators Ω(t) are unitary for any fixed t, that is satisfy Ω†(t)Ω(t) = 1̂
(and also Ω(t)Ω†(t) = 1̂) the M6oller operators Ω± are at least isometric, which means that
similarly to Ω(t) they are defined on the whole Hilbert space H and preserve the norm:
(Ω±Ψ|Ω±Ψ) = (Ψ|Ψ) and, therefore, also the scalar products of normalizable states:

(Ω±Φ|Ω±Ψ) = (Φ|Ψ) , (7.13)

that is they satisfy the relations

Ω†
+Ω+ = Ω†

−Ω− = 1̂ ,

(but, in general, not necessarily the relations Ω+Ω
†
+ = Ω−Ω

†
− = 1̂). In relativistic quantum

mechanics of particles (i.e. in QFT) one assumes that16 Ω±H = H (and not Ω±H ⊂ H),
that is that any H space state-vector can be represented as the image of the action of Ω+

and Ω− on some states |Ψin/out
as 〉:17

|Ψ〉 = Ω+|Ψin
as〉 = Ω−|Ψout

as 〉 . (7.14)

15Since Ω± clearly correspond to the ε → 0 limits of the operators Uε
I (0,∓∞) considered in Section

1.2, this amounts to assuming that these regularized interaction picture evolution operators do have finite
ε→ 0 limits on all smooth, normalized superpositions of the H0 eigenvectors. In particular, one assumes
here that the operators Uε

I (0,∓∞) acting on the ground-state eigenvector |Ω0〉 give in the limit ε → 0
directly the state-vectors |Ω±〉, which are normalized lowest energy H eigenvectors and can differ one
from another only by a phase factor (recall that in the Gell-Mann - Low construction one obtains the
same eigenvector of H , whether one considers the t → −∞ or t → ∞ limit). As disscussed, and as will
be seen, this can be true only if the interaction Vint is judiciously adjusted.

16This is not necessarily true in nonrelativistic QuantumMechanics of a single particle. See Appendix E.
17Again, this is in line with the intuition that if there exists a stable bound state, it can be prepared

in the far past and registered in the far future.
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(This implies that the relations Ω+Ω
†
+ = Ω−Ω

†
− = 1̂ also do hold.)

Already at this point one can introduce the S0 operator. As usually in a quantum
theory, one is interested in scalar products SΦΨ ≡ 〈Φ|Ψ〉 of normalized states. Expressing
|Ψ〉 as the Ω+ image of the appropriate |Ψin

as〉 and |Φ〉 as the Ω− image of |Φout
as 〉 one gets

SΦΨ ≡ 〈Φ|Ψ〉 = 〈Φout
as |S0|Ψin

as〉 , (7.15)

where the S0 operator is defined as the product (compare the formula (1.72))

S0 ≡ Ω†
−Ω+ . (7.16)

It maps the asymptotic “incoming” states onto the corresponding “outgoing” ones: |Ψout
as 〉 =

S0|Ψin
as〉. The scalar product SΦΨ - which is equal to the appropriate matrix elements of

S0 - has the natural interpretation of the probability amplitude of finding the system in
the state |Φ〉, which, if evolved in time,18 would become in the far future indistinguishable
from an appropriately (i.e. with H0) evolved state |Φout

as 〉 which has direct interpretation
in terms of noninteracting (and spatially separated in the far future) particles, if it is pre-
pared as the state |Ψ〉 which, if evolved in time, has in the far past a similar free-particle
interpretation, being indistinguishable from the evolved state |Ψin

as〉. The scalar products
SΦΨ thus contain answers to a prevailing amount of experimentally accessible questions
which usually are formulated in the form “what is the probability that the detectors will
register a given free-particle state produced as a result of an interaction of particles which
long before interaction were prepared (in the accelerator) as another free-particles state?”

It is also convenient to introduce an alternative notation (corresponding to a slightly
different labeling of states) and to call |Ψ+〉 and |Ψ−〉 the two different states which are
the images of the same state |Ψ〉 under Ω+ and Ω−, respectively. Thus, in this notation
|Ψ±〉 = Ω±|Ψ〉 which means that

lim
t→∓∞

U(t, 0)|Ψ±〉 = lim
t→∓∞

U0(t, 0)|Ψ〉 . (7.17)

Scalar products (7.15) can be now written as 〈Φ−|Ψ+〉 = 〈Φ|S0|Ψ〉 and since

|Ψ+〉 = Ω+Ω
†
−|Ψ−〉 , |Ψ−〉 = Ω−Ω

†
+|Ψ+〉 , (7.18)

they can also be expressed as the matrix elements

SΦΨ ≡ 〈Φ−|Ψ+〉 = 〈Φ−|S|Ψ−〉 = 〈Φ+|S|Ψ+〉 , (7.19)

of the S operator

S ≡ Ω+Ω
†
− . (7.20)

18Notice that the states are always identified at t = 0; that is we implicitly work in the Heisenberg
picture (see Section 1.1) which in a relativistic theory allows to keep its Poincaré covariance as manifest
as it is possible.
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The S operator (which has been used in Section 1.3 - c.f. the formula (1.73)) which is
different from the S0 one19 will be of little use in the approach developed in Chapters
7-9 (it becomes of relevant only in the approach based on Green’s functions, when the
structure of the asymptotic states is reconstructed from the poles of these functions).
However the notation |Ψ±〉 will be useful.

Under the assumptions underlying the considerations of this section the operators
H = H0 + Vint and H0 satisfy the important intertwining relation

H Ω± = Ω±H0 , (7.21)

which in particular implies20 that Ω†
±HΩ± = H0. Indeed,

eiHtΩ± = eiHt lim
τ→∓∞

(

eiHτe−iH0τ
)

= lim
τ→∓∞

(

eiH(τ+t)e−iH0(τ+t)
)

eiH0t = Ω± e
iH0t .

Differentiating this equality with respect to t at t = 0 yields the relation (7.21). This
result should be compared with the more rigorously derived formula (1.29); this again
shows that (7.21) can hold only if the interaction Vint is very special. The intertwining
relations (7.21) mean, in particular, that

〈Ψ|H|Ψ〉 = 〈Ψin
as|H0|Ψin

as〉 = 〈Ψout
as |H0|Ψout

as 〉 .

Furthermore, exploiting (7.21) it is easy to see that

[S0, H0] = 0 . (7.22)

Indeed:21

S0H0 = Ω†
−Ω+H0 = Ω†

−H Ω+ = Ω†
−H Ω−Ω

†
−Ω+ = H0Ω

†
−Ω+ = H0S0 . (7.23)

Since any normalizable state-vector |Ψ〉 can be written as a superposition of non-
normalizable generalized (i.e. not belonging to the proper Hilbert space) H0 eigenvectors
|α0〉, one can write

〈β0|Ψout
as 〉 = 〈β0|S0|Ψin

as〉 =
∫

dα 〈β0|S0|α0〉〈α0|Ψin
as〉 .

19The difference between the S0 and S operators is particularly sharp in the nonrelativistic potential
scattering theory, if H possesses bound states: while S0 acts nontrivially on the whole Hilbert space H,
S annihilates the whole subspace Hbound - see Appendix E.

20If the operators Ω± are truly unitary, these relations imply that the spectra of H and H0 are identical
(which is one of our assumptions adopted here). This shows that in the case of ordinary potential
scattering Ω± cannot be unitary if H has bound states (normalizable eigenvectors) because the spectrum
of H0 is continuous. In such a case Ω± are only isometric operators.

21We assume here that the M6oller operators are unitary; see (E.2) in Appendix E for a justification in
the case they are only isometric.
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One is thus led to consider the matrix elements Sβα ≡ 〈β0|S0|α0〉. From (7.22) it follows
that

0 = 〈β0|[H0, S0]|α0〉 = (Eβ − Eα)〈β0|S0|α0〉 ,

which shows that 〈β0|S0|α0〉 ∝ δ(Eβ − Eα) (because xδ(x) = 0). Furthermore, because
for Vint = 0 the S0 operator reduces to the unit operator, it is convenient to write

S0 = 1̂− iT0 , (7.24)

thereby introducing the reaction operator T0. Thus

Sβα ≡ 〈β0|S0|α0〉 = δαβ − 2πi δ(Eβ − Eα) tβα(Eα) , (7.25)

where 2πδ(Eβ −Eα) tβα(Eα) = 〈β0|T0|α0〉. As will be shown in Chapter 10, it is precisely
the quantity tβα(Eα) which is needed to compute the rate of the process α → β. In the case
of the nonrelativistic potential scattering the quantity tβα ≡ t(p′,p) is directly related to
the standard scattering amplitude f(θ) - see Appendix E. All measurable characteristics of
scattering processes predicted by a given theory defined by the Hamiltonian H = H0+Vint
can be extracted from the matrix elements Sβα of the corresponding S0 (or T0) operator of
this theory. One useful representation for this operator will be derived directly from the
differential equation satisfied by the (interaction picture) evolution operator introduced
in Section 1.1:

UI(t2, t1) = eiH0t2e−iH(t2−t1)e−iH0t1 = Ω†
−(t2)Ω+(t1) , (7.26)

of which S0 is the double limit:

S0 = Ω†
−Ω+ = lim

t2→+∞
lim

t1→−∞
UI(t2, t1) . (7.27)

It will be therefore possible to evaluate S-matrix elements using the Dyson expansion of
Section 5.8 (in conjunction with the Wick theorem of Section 5.9). Before exploiting this
representation of the S0 operator one has, however, to introduce the non-normalizable
(generalized) H eigenvectors and the rezolvent operators which allow to relate these to
the H0 eigenvectors |α0〉.

7.2 Rezolvents and the T operator representation of the S-matrix

A very important role in the formal scattering theory is played by the rezolvent operators

G(z) ≡ (z −H)−1 , and G0(z) ≡ (z −H0)
−1 . (7.28)

Their matrix elements between normalizable states are analytic functions on the complex
z plane except for isolated poles corresponding to normalizable H (H0) eigenstates and a
branch cut along the continuous part of the H (H0) spectrum.
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Substituting for A and B in the obvious operator identity

1

A
− 1

B
=

1

B
(B − A)

1

A
,

the operators z−H and z−H0 (the operators z−H0 and z−H) one obtains two relations

G(z) = G0(z) +G0(z)VintG(z) ,

G(z) = G0(z) +G(z)VintG0(z) , (7.29)

It is also easy to see that because H = H† (H0 = H†
0),

G(z∗) = [G(z)]† , G0(z
∗) = [G0(z)]

† . (7.30)

Matrix elements of the resolvent operator G0(z) between the non-normalizable H0 eigen-
vectors are explicitly given by

〈β0|G0(z)|α0〉 = δβα
1

z − Eα
. (7.31)

Another very important operator is the T (z) operator defined as

T (z) ≡ Vint + VintG(z)Vint . (7.32)

It has the same analytic properties as G(z) and satisfies the following relations

G0(z)T (z) = G(z)Vint , (7.33)

T (z)G0(z) = VintG(z) ,

which readily follow from the relations (7.29). They allow to express G(z) through T (z):
replacing in (7.29) VintG(z) (or G(z)Vint) using (7.33) one gets

G(z) = G0(z) +G0(z)T (z)G0(z) . (7.34)

Using (7.33) in (7.32) leads instead to

T (z) = Vint + VintG0(z)T (z) , (7.35)

which is known as the Lippman-Schwinger equation for T (z). Iterating it yields the series

T (z) = Vint + VintG0(z)Vint + VintG0(z)VintG0(z)Vint + . . . (7.36)

Matrix elements of the S0 operator between generalized H0 eigenstates can be ex-
pressed through the operator T (z). To this end, instead of representing S0 as the double
limit of the UI(t2, t1) operator, as in (7.27), it is written as the single limit

S0 = Ω†
−Ω+ = lim

τ→∞
UI(τ,−τ) = lim

τ→∞
eiH0τe−2iHτeiH0τ .
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Differentiating with respect to τ the operator UI(τ,−τ) one obtains the differential equa-
tion satisfied by it, which, together with the obvious boundary condition at τ = 0, allows
to write for this operator an integral expression, similar to (1.6). Using it, matrix element
of the S0 operator between normalizable states can be written as

〈Φ|S0|Ψ〉 = 〈Φ|Ψ〉 − i

∫ ∞

0

dt e−εt〈Φ|eiH0t Vint e
−2iHteiH0t + eiH0te−2iHt Vint e

iH0t|Ψ〉 .

The factor e−εt is not necessary when the matrix element is taken between two normal-
izable states, but when introduced,22 it allows to replace |Ψ〉 and |Φ〉 by the generalized
H0 eigenvectors |α0〉 and |β0〉:

〈β0|S0|α0〉 = δβα − i

∫ ∞

0

dt 〈β0|Vint ei(Eβ+Eα−2H+i0)t + ei(Eβ+Eα−2H+i0)t Vint|α0〉

= δβα +
1

2
〈β0|VintG

(

Eβ + Eα

2
+ i0

)

+G

(

Eβ + Eα

2
+ i0

)

Vint|α0〉 .

Using the operator identities (7.33) one can replace here the operators G(z) by the G0(z)
ones which can act directly on the states |α0〉 and 〈β0|. The second term can be then cast
in the form

{

1

Eβ − Eα + i0
+

1

Eα −Eβ + i0

}

〈β0|T
(

Eβ + Eα

2
+ i0

)

|α0〉 ,

which, upon using the Sochocki formula, leads to

〈β0|S0|α0〉 = δβα − 2πi δ(Eβ − Eα) 〈β0|T (Eα + i0)|α0〉 . (7.37)

This shows that the matrix element tβα of the T0 operator introduced in (7.25) is given by
the special limit z → Eα + i0 of the general matrix element of the T (z) operator. Com-
bining this with the truncated to its first term iterative solution (7.36) of the Lippmann-
Schwinger equation (7.35) for T (z), one immediately obtains the formula known as the
Born approximation

tβα(Eα) ≈ 〈β0|Vint|α0〉 . (7.38)

If it is known how to compute the action of Vint on free particle states (which is precisely
the case, when Vint is expressed in terms of the creation and annihilation operators of
free particles) this formula provides the simplest working approximation to amplitudes of
particle reactions.23

22It is usually (incorrectly) introduced from the beginning as a factor ensuring “adiabatic” switching
on and off the interaction - something which certainly does not happen in Nature! Notice also that if
Vint was defined with such a factor, the evolution operator U(t, t0) corresponding to the Hamiltonian H
(explicitly time dependent then) would have to have the form (1.9) instead of e−iH(t−t0).

23However, frequently in relativistic theories of interacting particles tβα(Eα) = 0 in this approxima-
tion. In Quantum Field Theory the name “Born approximation” is sometimes also used to denote what
otherwise is called the tree-level approximation (see Chapter 9); it coincides with (7.38) only for very
special interactions Vint.
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7.3 In and out state-vectors

One can now define the in and out generalized state-vectors |α±〉 by the formula

|α±〉 ≡ Ω±|α0〉 ≡ lim
t→∓∞

eiHte−iH0t|α0〉 . (7.39)

Owing to the intertwining relations (7.21), |α±〉 turn out to be just the generalized (non-
normalizable) eigenvectors of the Hamiltonian H = H0 + Vint:

H|α±〉 = Eα|α±〉 , (7.40)

with the eigenvalue Eα equal to the energy (w.r.t. H0) of the corresponding |α0〉 states.
With the assumption that the spectra of H and H0 are identical, the vectors |α0〉, |α+〉
and |α−〉 related to each other in the same way as are the vectors |Ψ〉, |Ψ+〉 and |Ψ−〉 in
(7.17) form three equivalent bases (of generalized vectors) of the theory Hilbert space H.
From this point of view the S-matrix elements

Sβα = 〈β−|α+〉 = 〈β0|S0|α0〉 , (7.41)

form a collection of numbers, such that

|α+〉 =
∫

dβ |β−〉Sβα , 〈β−| =
∫

dα 〈α+|Sβα . (7.42)

As a matrix connecting two complete sets of orthonormal states (it is just the matrix of
the change of bases) Sβα must be unitary:

∫

dβ S∗
βγSβα =

∫

dβ 〈γ+|β−〉〈β−|α+〉 = 〈γ+|α+〉 = δγα . (7.43)

This reflects also the unitarity of the S0 operator: S−1
0 = S†

0. The state-vectors |α+〉 and
|α−〉 are, in turn, connected by the S operator defined in (7.20):

S|α−〉 = |α+〉 , or 〈β+|S = 〈β−| , (7.44)

so that, in analogy to (7.19),

Sβα = 〈β+|S|α+〉 = 〈β−|S|α−〉 . (7.45)

From the practical point of view (7.39) establishes a strict one-to-one correspondence

between the in and out eigenvectors of H and the eigenvectors of H0 on which the formu-
lation of the perturbative calculation of the S-matrix elements will be based. (This strict
correspondence will be relaxed only in Chapter 13 where a more flexible, nonperturbative
in essence, way of accessing S-matrix elements will be formulated).
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Since any normalizable state |Ψ〉 can be decomposed into the generalized H0 eigen-
vectors |α0〉: |Ψ〉 =

∫

dα |α0〉ψ(α), from the relation |Ψ±〉 = Ω±|Ψ〉 one gets

|Ψ±〉 = Ω±

∫

dα |α0〉ψ(α) =
∫

dα |α±〉ψ(α) , (7.46)

That is, normalizable state-vectors |Ψ±〉 decompose onto the generalized H eigenvectors
|α±〉 with the same profile ψ(α) as do their Ω†

± images onto the generalized H0 eigenvec-
tors |α0〉. Moreover, from the fact that the Ω± operators preserve the scalar product of
normalizable states (cf. (7.13)) it follows that

〈β±|α±〉 = 〈β0|α0〉 = δβα . (7.47)

Since the in and out state-vectors |α+〉 and |α−〉 are in the one-to-one correspon-
dence with the free particle vectors |α0〉, in addition to the operators a(k, σ), a†(k, σ)
(which build the states |α0〉 out of |Ω0〉) one can define also the in and out creation and
annihilation operators ain(k, σ), a

†
in(k, σ) and aout(k, σ), a

†
out(k, σ) which acting on the

corresponding vacua24 |Ω±〉 = Ω±|Ω0〉 build the in and out states. These operators satisfy
the same commutation relations as do the original operators a(k, σ), a†(k, σ) and have the
same transformation properties (in the relativistic case with respect to the full Poincaré
symmetry group generated by H = H0 + Vint, P, J and K = K0 +W - see section 7.5)
as do the operators creating and annihilating the free-particle states |α0〉. From (7.44) it
then follows (cf. (1.59)) that

S†a†in(k, σ)S = a†out(k, σ) , S†ain(k, σ)S = aout(k, σ) . (7.48)

Finally, it should be stressed that by themselves the vectors U(t, 0)|α±〉 = e−iEαt|α±〉
do not converge to U0(t, 0)|α0〉 = e−iEαt|α0〉 in the limits t→ ∓∞. The convergence holds
only for normalizable states built as smooth superpositions of such states. Nevertheless,
(7.39) stay true in the literal sense.

The operator identities established above allow to derive useful representations for
the in and out states |α±〉 either in terms of the rezolvent G(z) or in terms of the T (z)
operator. To this end we consider first the action of Ω± on a normalizable state-vector
|Ψ〉. One gets then the scattering states |Ψ±〉 which, using the formula (7.12) can be
written as

|Ψ±〉 = Ω±|Ψ〉 = |Ψ〉+ i

∫ ∓∞

0

dt′ e−ε|t′|U †(t′, 0)VintU0(t
′, 0)|Ψ〉 . (7.49)

Again the factor e−ε|t′| is not necessary for convergence when |Ψ〉 is a normalizable state,
but is necessary when |Ψ〉 is decomposed into generalized H0 eigenstates |α0〉:

|Ψ±〉 = |Ψ〉+ i

∫

dα

∫ ∓∞

0

dt e−i(Eα−H±iε)t Vint|α0〉〈α0|Ψ〉

24Do not confuse the |Ω±〉 vacua with the M6 oller operators Ω∓. The vacua |Ω+〉 and |Ω−〉 of closed
systems, i.e. systems, the Hamiltonians H of which do not depend on time, differ only by a phase factor.
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= |Ψ〉+
∫

dαG(Eα ± i0)Vint|α0〉〈α0|Ψ〉 . (7.50)

To obtain the representations of the in and out states |α±〉 one rewrites (7.50), de-
composing |Ψ〉 onto the |α0〉 states, in the form

|Ψ±〉 =
∫

dα

(

|α0〉+ G(Eα ± i0)Vint|α0〉
)

ψ(α) .

Comparing this with (7.46) one gets the representation

|α±〉 = |α0〉+G(Eα ± i0)Vint|α0〉 . (7.51)

Yet another representation can be obtained using the identity

T (Eα ± i0)|α0〉 = Vint[1̂ +G(Eα ± i0)Vint]|α0〉 = Vint|α±〉 , (7.52)

which follows from the definition (7.32) of the T (z) operator and (7.51). This relation,
combined with the result (7.37), immediately allows to write the element tβα(Eα) in the
S0 matrix element (7.25) as25

tβα(Eα) = 〈β0|T (Eα + i0)|α0〉 = 〈β0|Vint|α+〉 . (7.53)

The identity (7.52) applied to (7.51) after trading in this formula the product G(Eα±
i0) Vint for G0(Eα ± i0) T (Eα ± i0) in agreement with (7.33), leads to the Lippmann-
Schwinger equation for |α±〉:

|α±〉 = |α0〉+G0(Eα ± i0)Vint|α±〉 ≡ |α0〉+
1

Eα −H0 ± i0
Vint|α±〉 , (7.54)

or

|α±〉 = |α0〉+
∫

dβ |β0〉
tβα(Eα)

Eα − Eβ ± i0
. (7.55)

Notice that the formula (7.54) agrees with the identification of the |α±〉 vectors as the
eigenvectors of H , if the relation (7.40) is rewritten in the form

(Eα −H0)|α±〉 = Vint|α±〉 .

The ±i0 prescription specifies the way of inverting the operator (Eα−H0) which has |α0〉
as its zero eigenvector.26 Iterating the Lippmann-Schwinger equation (7.54) eg. for |α+〉

25Similar representation of tβα(Eα) in terms of the out state is obtained by taking the Hermitian
conjugation of T (Eα− i0)|β0〉 = Vint|β−〉 and using the property T †(z) = T (z∗). This leads to tβα(Eα) =
〈β−|Vint|α0〉.

26Weinberg in his book derives the formula (7.55) directly from this equality. His derivation (quicker
than the one given here) suffers, however, from the not fully convincing application of the residue method
to the integral over Eβ implicit in (7.55): it does not extend to the whole real axis as requires this method,
but is restricted to Eβ > Mmin ≥ 0 (energy of the states |α0〉 representing particles is never negative).
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Figure 7.1: Strong interaction induced rescattering of pions produced in the decay of
Kaon.

gives the series

|α+〉 = |α0〉+G0(Eα + i0)Vint|α0〉
+G0(Eα + i0)VintG0(Eα + i0)Vint|α0〉+ . . . , (7.56)

When closed from the left with 〈β0|Vint, it reproduces the Born series for tβα(Eα) =
〈β0|T (Eα + i0)|β0〉 which can be obtained from (7.36); the latter series, truncated to the
first term, gives the Born approximation (7.38).

Another useful approximation can be obtained if the interaction Vint consists of two
parts: Vint = Vstrong + Vweak of which one is “strong” and the other one “weak”. One is
then interested in accounting for the strong interactions exactly, while the effects of the
weak ones can be treated in the simplest approximation. To this end, in addition to the
in and out eigenstates |α±〉 of the full Hamiltonian H = H0 + Vstrong + Vweak one defines
also the in and out states with respect to the strong interaction

|βstrong
± 〉 = |β0〉+

1

Eβ −H0 ± i0
Vstrong|βstrong

± 〉 , (7.57)

so that

〈β0| = 〈βstrong
± | − 〈βstrong

± |Vstrong
1

Eβ −H0 ∓ i0
. (7.58)

The full matrix tβα(Eα) (7.53) can be then written in the form

tβα =

[

〈βstrong
− | − 〈βstrong

− |Vstrong
1

Eβ −H0 + i0

]

(Vstrong + Vweak)|α+〉

= 〈βstrong
− |Vweak|α+〉+ 〈βstrong

− |Vstrong|α0〉 , (7.59)

where the formula (7.54) with Vint replaced by Vstrong + Vweak has been used (in the de-
nominator Eβ can be replaced by Eα because we need tβα for Eβ = Eα) to replace the
product [Eβ −H0+ i0]

−1(Vstrong+Vweak)|α+〉 by |α+〉− |α0〉. This (exact) formula is most
useful if the strong interaction cannot induce the α → β transition. The second term,
which is just tβα in the absence of weak interactions (just set Vweak to zero in the formula
given in the footnote related to the formula (7.53) to see it!), that is corresponds to all
possible transitions α → β induced by Vstrong alone, is then zero and, moreover, since the
effects of Vweak are small, one can approximate the full Hamiltonian in state |α+〉 in the
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first term by |αstrong
+ 〉. The resulting formula tβα ≈ 〈βstrong

− |Vweak|αstrong
+ 〉 is used e.g. in

nuclear physics to compute rates of nuclear weak beta decays (|αstrong
+ 〉 and |αstrong

− 〉 are
then the initial and final nucleon states). Furthermore, using the property (7.42) of the
S matrix, this formula can be rewritten as

tβα =

∫

dγ Sstrong
βγ 〈γstrong+ |Vweak|αstrong

+ 〉 . (7.60)

In this form it is used to account for the strong interaction re-scattering effects (shown
graphically in figure 7.1) in hadronic weak decays; such effects are crucial for CP violation
effects in the Kaon system.

The Born formula (7.38) is the first term of the entire perturbative series which is
obtained either by sandwiching the series (7.36) between the states 〈β0| and |α0〉 and
evaluating it for z = Eα+ i0, or by using the Lippmann-Schwinger formula (7.55) for |α+〉
in the exact expression (7.53) for tβα:

tβα ≡ 〈β0|Vint|α+〉 = Vβα +

∫

dγ
Vβγtγα(Eα)

Eα −Eγ + i0
, (7.61)

where Vβα ≡ 〈β0|Vint|α0〉. Iterating this equation yields the series:

tβα = Vβα +

∫

dγ
VβγVγα

Eα − Eγ + i0

+

∫

dγ

∫

dγ′
VβγVγγ′Vγ′α

(Eα −Eγ + i0)(Eα −Eγ′ + i0)
+ . . . , (7.62)

This is the so-called “old-fashioned” perturbation calculus. While in some situations it is
convenient to investigate some specific issues, its main drawback in relativistic theories is
the lack of manifest Lorentz covariance.

An alternative, more satisfactory in this respect, approach to perturbative calculation
of the S-matrix elements is developed by starting directly from the formulae (7.27) and
(7.26). Differentiating the latter with respect to t2 we get as in section 1.1 the formula
(1.23) and, hence,

S0 = UI(+∞,−∞) = T exp

(

−i
∫ +∞

−∞

dt V I
int(t)

)

, (7.63)

where the interaction operator in the Dirac picture reads

V I
int(t) ≡ eiH0t Vint e

−iH0t . (7.64)

The formula (7.63) is the basis of the commonly used time-dependent perturbation cal-
culus.
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The equivalence of the formula (7.63) and the formulae (7.25) and (7.62) should be
clear from the construction (at least at the formal level), but can also be seen directly by
making use of the identity

1

Eα − Eβ + i0
=

1

i

∫ +∞

0

dτ ei(Eα−Eβ+i0)τ , (7.65)

to represent the energy denominators in (7.62). For example, the first terms in the
expansion of (7.63) give

Sβα = 〈β0|S0|α0〉 = 〈β0|1− i

∫ +∞

−∞

dt V I
int(t) + . . . |α0〉

= δβα − i

∫ +∞

−∞

dt e−i(Eα−Eβ)t Vβα + . . .

= δβα − 2πi δ(Eα − Eβ)Vβα + . . . (7.66)

+
(−i)2
2!

∫ +∞

−∞

dt1

∫ +∞

−∞

dt2 〈β0|T
(

V I
int(t1)V

I
int(t2)

)

|α0〉+ . . .

and so on. The advantage of the time-dependent perturbative expansion based on the for-
mula (7.63) lies in the fact that in relativistic theories it allows to keep Lorentz invariance
manifest at each stage of the calculations.

7.4 Scattering of nonrelativistic particles

Before discussing scattering of relativistic particles (as a mean to construct theories of
relativistic particles interactions) it is instructive to see how the developed formalism
applies to the simpler case of the nonrelativistic elastic scattering. Its application to the
scattering of a single spinless particle on a fixed potential - the simplest possible case
which can be treated in the framework of the ordinary nonrelativistic quantum mechanics
- is discussed in Appendix E. Here we apply the S-matrix approach to the problem
of the elastic scattering of two nonrelativistic identical particles (fermions or bosons of
arbitrary spin). We first recall the usual treatment of this problem in the framework of
the two-body Schrödinger equation and then reformulate it using the formalism of second
quantization of Chapter 5. The purpose of this is twofold: firstly we want to show how the
Dyson expansion (Section 5.8) and the Wick theorem (Section 5.9) provide an efficient and
flexible mean to compute scattering cross sections; we also want to establish the relation
between elements tβα(Eα) (7.24) of the T0 operator (7.25) to the ordinary scattering
amplitude f(k, θ) known from the Schrödinger equation based approach. Secondly we
want to derive the result (5.94) used in the discussion of the ground state of a system of
interacting bosons. This will also give the opportunity to go beyond the first nontrivial
order of the Dyson expansion and to have a first encounter with the problem of divergences
and their treatement (within the relativistic theory this problem will be discussed in
Chapter 14).
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In ordinary nonrelativistic Quantum Mechanics the amplitude of the elastic scattering
of two particles of masses m1 and m2 is obtained by solving the two-body Schrödinger
equation

(

− ~
2

2m1

∇
2
r1
− ~

2

2m2

∇
2
r2
+ Vpot(r1 − r2)

)

Ψ(r1, r2) = EΨ(r1, r2) .

In the variables r = r1 − r2 and R = (m1r1 +m2r2)/(m1 +m2) this equation takes the
form

(

− ~
2

2M
∇

2
R − ~

2

2mred
∇

2
r + Vpot(r)

)

Ψ(R, r) = EΨ(R, r) ,

where M = m1+m2 and mred = m1m2/(m1+m2) is the reduced mass of the two-particle
system. Writing then Ψ(R, r) = ψ(r) exp(iP ·R/~) reduces the problem to the one of
scattering in an external potential Vpot(r) of a single fictitious particle of mass mred:

(

− ~
2

2mred
∇

2
r + Vpot(r)

)

ψ(r) = E ′ψ(r) . (7.67)

Here E ′ = E − P2/2M is the energy of the two scattering particles in their center of
mass system (CMS). In this system, going over to which means just setting P = 0, the
momenta of the two particles are ~k and −~k and the energy E ′ ≡ E ascribed to the
fictitious particle is the total energy of the two colliding particles:

E =
1

2
m1v

2
1 +

1

2
m2v

2
2 =

~
2

2

(

m1
k2

m2
1

+m2
k2

m2
2

)

=
~
2k2

2mred
.

Therefore, the vector k playing the role of the wave vector of the fictitious particle of
mass mred must be identified with the wave vector of one of the scattering particles. The
scattering amplitude f(k, θ), in which k ≡ |k|, is defined in terms of the asymptotic form
(|k′| = |k|, k′ ·k = k2 cos θ)

ψ
(+)
k (r) = eik·r +

f(k′,k)

r
eikr ≡ eik·r +

f(k, θ)

r
eikr , (7.68)

of the solution of the Schrödinger equation (7.67) (with E ′ = ~
2k2/2mred), and the dif-

ferential scattering cross section dσ/dΩ is simply given by |f(k, θ)|2.

If the scattering particles are indistinguishable and both have spin s (integer or half-
integer) but the potential is spin-independent, the complete wave function of the system
can be written as a product Ψ(r1, r2)χ(σ1, σ2) in which σ1,2 = −s, . . . ,+s, of the spin
part and the space part. According to the principles of Quantum Mechanics, the complete
wave function of indistinguishable particles moving in the three-dimensional space must be
either totally symmetric Ψ(r1, r2)χ(σ1, σ2) = +Ψ(r2, r1)χ(σ2, σ1) or totally antisymmetric
Ψ(r1, r2)χ(σ1, σ2) = −Ψ(r2, r1)χ(σ2, σ1), depending on whether s is integer or half-integer
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(this is the celebrated spin-statistics connection which will be discussed in Chapter 8).
The total spin S of the two particle system is in this situation preserved separately (from
the orbital angular momentum) and the spin part χ(σ1, σ2) of the wave function can
be chosen to be symmetric or antisymmetric. The function ψ(r) in the decomposition
Ψ(r1, r2) = ψ(r) exp(iP·R/~) must then be27 either even ψ(−r) = ψ(r) or odd ψ(−r) =
−ψ(r) in order that ψ(r)χ(σ1, σ2) has the appropriate symmetry corresponding to the
spin s of the two indistinguishable particles. The general rule given in the Landau &
Lifschitz textbook (Vol. III, par. 137) is that if the total spin S of the two particles is
an even number (S = 0, 2, . . .), ψ(r) must be even and the asymptotic solution of the
Schrödinger equation must be taken in the form

ψ
(+)
k (r) = eik·r + e−ik·r + [f(k, θ) + f(k, π − θ)]

eikr

r
,

whereas when the total spin S is an odd number (S = 1, 3, . . .), ψ(r) must be odd and
the asymptotic solution of the Schrödinger equation must be constructed as

ψ
(+)
k (r) = eik·r − e−ik·r + [f(k, θ)− f(k, π − θ)]

eikr

r
.

Indeed, if the two particles have no spin, s = 0, then also S = 0 (so it is even) and
ψ(r) must be even; similarly, if s = 1

2
but S = 0 (again S is even), which means that

χ(σ1, σ2) = −χ(σ2, σ1) and ψ(r) must again be even etc. Thus the proper scattering
amplitude, the modulus squared of which gives the differential cross section, is

f(k, θ) + f(k, π − θ) ,

when S = 0, 2, . . . and

f(k, θ)− f(k, π − θ) ,

when S = 1, 2, . . . and the differential scattering cross sections are given either by |f(k, θ)+
f(k, π − θ)|2 or by |f(k, θ)− f(k, π − θ)|2.

To relate the ordinary scattering amplitude f(|k|, θ) to the matrix element of the
operator T0 defined in (7.24) and to the amplitude A (it is A that that is naturally
obtained in the formalism based on the Dyson expansion), which is obtained from the
element tβα defined by (7.25) after factoring out from it (2π)3δ(3)((Pβ − Pα)/~) (see
(7.80)) we consider the two-body spin-independent interaction (in the formalism of second
quantization)

Vint =
1

2

∫

d3x

∫

d3yψ†
α(x)ψ

†
β(y)Vpot(|x− y|)ψβ(y)ψα(x) , (7.69)

with a general two-body translationally and rotationally invariant interaction potential
Vpot and the field operators constructed as in (5.46). The first nontrivial term of the

27The factor exp(iP·R/~) in which in this case R = 1
2 (r1 + r2) is obviously symmetric.
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expansion of the formula (7.63) with the initial and final states in which |α0〉 and |β0〉 are
the states (eigenstates of H0) of two free fermions:

|α0〉 = a†σ2
(k2) a

†
σ1
(k1)|0〉 ≡ a†2a

†
1|0〉 ,

|β0〉 = a†σ′

2

(k′
2) a

†
σ′

1

(k′
1)|0〉 ≡ a†2′a

†
1′ |0〉 , (7.70)

then reads28

Sβα = δβα − i

2~

∫

d3x

∫

d3y

∫

dt Vpot(x− y)〈a1′a2′ T[ψ†I
σ (t,x)ψ†I

σ̄ (t,y)ψI
σ̄(t,y)ψ

I
σ(t,x)]a

†
2a

†
1〉,

where 〈. . .〉 stands for the expectation value of . . . in the state |void〉. As the chronological
product is irrelevant here (all operators under it are taken at the same instant), the
matrix element can be easily worked out, after moving all the c-number factors and
integrals involved in the field operators outside the brackets, by just (anti)commuting the
creation operators to the left and the annihilation operators to the right, so that they
ultimately act on the |void〉 vectors giving zeroes. These operations produce Dirac delta
functions depending on the wave vectors and the Kronecker deltas in the spin labels.
Furthermore, representing the potential Vpot(x − y) as a Fourier transform as in (??)
allows to explicitly perform the integrals over the time t and the positions x and y. This
produces two additional three-dimensional Dirac delta functions depending on the wave
vectors and one delta function expressing the conservation of the linear combination of
the frequencies ωk (originating from the field operators). Finally using the Dirac deltas all
integrals over the wave vectors originating from the field operators and from the Fourier
transform of Vpot(x− y) can be eliminated and one obtains29

Sβα = δβα − i

~
(2π)4δ(ωk′

1
+ ωk′

2
− ωk1

− ωk2
) δ(3)(k′

1 + k′
2 − k1 − k2)Aβα , (7.71)

with30

Aβα = δσ1σ′

1
δσ2σ′

2
Ṽpot(|k′

1 − k1|)± δσ1σ′

2
δσ2σ′

2
Ṽpot(|k′

2 − k1|) , (7.72)

28V I
int(t) defined in (7.64) is obtained by simply inserting in (7.69) the field operators taken in the

interaction picture (instead of the Schrödinger picture ones) which amounts to replacing in the formulae
(5.46) ±ik·x by ∓i(ωkt− k·x) where ωk = ~k2/2m.

29It is instructive to check the dimensions: since the wave vectors have dimension [L]−1,

δαβ = (2π)6[δσ′

1
σ1
δσ′

2
σ2
δ(3)(k′

1 − k1)δ
(3)(k′

2 − k2)± δσ′

1
σ2
δσ′

2
σ1
δ(3)(k′

1 − k2)δ
(3)(k′

2 − k1)] ,

has dimension [L]6 and the second term has dimension (the dimension of ω is [T ]−1)
~
−1[T ][L]3[L]2[L]×energy = (~c)−1c[T ][L]3[L]2[L]×energy which is also [L]6 because the dimension of ~c

is energy×[L].
30If the potential is of the Yukawa form Vpot(x) =

g2

|x| e
−Mφc|x|/~ with the coupling constant g (g2 has

the physical dimension of energy times length and Mφ has the mass dimension - such a potential arises
as a low energy limit of a relativistic interation mediated by a boson of mass Mφ) then

Aβα = 4π g2

[

δσ′

1
σ1
δσ′

2
σ2

(k′
1 − k1)2 +M2

φc
2/~2

±
δσ′

1
σ2
δσ′

2
σ1

(k′
2 − k1)2 +M2

φc
2/~2

]

.
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where the + sign applies to bosons and the − sign to fermions. Using the CMS kinematics
(in the four-vector notation):

kµ1 = (E, 0, 0, |k|) ,
kµ2 = (E, 0, 0, − |k|) ,
(k′1)

µ = (E, 0, |k|sθ, |k|cθ) ,
(k′2)

µ = (E, 0, − |k|sθ, − |k|cθ) ,

one gets |k1 − k′
1| = 2|k| sin(θ/2), |k1 − k′

2| = 2|k| cos(θ/2) = 2|k| sin((π − θ)/2), so that

Aβα = δσ′

1
σ1
δσ′

2
σ2
Ṽpot(|k| sin(θ/2))± δσ′

1
σ2
δσ′

2
σ1
Ṽpot(|k| sin((π − θ/2)) .

The two terms of Aβα must be therefore proportional to the first terms in the expansions
of the nonrelativistic amplitudes f(k, θ) and f(k, π − θ).

One can now check the quoted rules of Landau & Lifschitz for f(k, θ) ± f(k, π − θ).
If the (identical) scattering particles are spinless bosons, the amplitude Aβα (7.72) comes
with the plus sign between its two terms and the rule is obviously satisfied (the total
spin S = 0). Consider now the scattering of spin s = 1/2 fermions. How it happens
that when the total spin S is even (that is S = 0), the pieces with θ and π − θ combine
with the plus sign (despite the minus sign between the two terms in (7.72))? Denote
Sθ ≡ Ṽpot(|k| sin(θ/2)) and Cθ ≡ Ṽpot(|k| cos(θ/2)) and consider the scattering amplitudes
with different spin configurations. One finds:

A(↑↑ −→ ↑↑) = Sθ − Cθ ,

A(↓↓ −→ ↓↓) = Sθ − Cθ .

In these two cases both terms contribute because all the spin dependent Kronecker deltas
in (7.72) are nonzero. In contrast,

A(↑↓ −→ ↑↓) = Sθ ,

A(↓↑ −→ ↓↑) = Sθ ,

A(↑↓ −→ ↓↑) = −Cθ ,

A(↓↑ −→ ↑↓) = −Cθ ,

because when the initial (and therefore also final) spins are opposite, only one of the two
terms contributes. Now, if the two initial fermions are in the S = 0 total spin state the
final ones must be in the same spin state too, because spin is separately (independently
of the orbital angular momentum) preserved and to obtain the corresponding scattering
amplitude one must combine the four amplitudes as follows:

A
(↑↓ − ↓↑√

2
−→ ↑↓ − ↓↑√

2

)

=
1

2
[A(↑↓−→↑↓)−A(↑↓−→↓↑)

−A(↓↑−→↑↓) +A(↓↑−→↓↑)] = Sθ + Cθ .
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And indeed the quoted rule is obeyed. Instead, if the two fermions were in the S = 1
total spin state with Sz = 0, the amplitude would be

A
(↑↓ + ↓↑√

2
−→ ↑↓ + ↓↑√

2

)

=
1

2
[A(↑↓−→↑↓) +A(↑↓−→↓↑)

+A(↓↑−→↑↓) +A(↓↑−→↓↑)] = Sθ − Cθ ,

again in agreement with the general rule. In the similar manner one can check the working
of these rules in the scattering of say two identical spin 1 bosons.

Finally using the considered approximation to the complete amplitude, it is straight-
forward to establish the (generally valid) relation between the amplitude A in (7.71) and
the ordinary scattering amplitude f(k, θ). Taking opposite directions of spins of the two
scattering particles, one obtains

A = Ṽpot(|k′
1 − k|) .

The corresponding scattering amplitude f(k, θ) (without the spin factors) defined by the
asymptotic form (7.68) of the solution of the Schrödinger equation (7.67) can be computed
using the Born approximation which gives

fBorn(k, θ) = −mred

2π~2

∫

d3r e−i(k′−k)·r Vpot(r) = −mred

2π~2
Ṽpot(|k′

1 − k) .

Comparing the two amplitudes one finds that the rule is

f(k, θ) = −mred

2π~2
A(k, θ) . (7.73)

If the two scattering particles are identical and both have mass m, then mred = m/2.
It should be clear that higher orders of the Dyson expansion of the formula (7.63) will
yield higher order terms of the Born expansion of the scattering amplitude. The great
advantage of the formalism based on the second quantization formalism is that symmetry
requirements are automatically fulfilled (they are encoded in the properties of the field
operators). One is also not bound to the center of mass frame - particles in the initial state
(7.70) can have arbitrary momenta; if the scattering particles are different, the reduced
mass mred will come out automatically from the kinematics of the process. Moreover one
can easily consider also spin dependent interactions (the arguments bases on separate
spin conservation are then invalid and the analysis in the language of the wave functions
becomes difficult).

In general, the elastic scattering amplitude f(k, θ) defined by (7.68) can be expressed
through the partial wave shifts as

f(k, θ) =
1

k

∞
∑

ℓ=0

(2ℓ+ 1) eiδℓ(k) sin δℓ(k)Pℓ(cos θ)

=

∞
∑

ℓ=0

(2ℓ+ 1)
1

k cotδℓ − ik
Pℓ(cos θ) ,

285


