
Lecture 2   BEC
Equipped with the Hartree approximation, which implies that the zero temperature 
multiparticle wave function may be well approximated by the product state with the 
common orbital satisfying the GP equation the question remains how good is this 
approximation. After all we know that the exact ground state must have a massively 
entangled form. If we new this wave function then how we would determine “how many 
atoms are in the condensate and what is the condensate wave function?”. The formal 
answer to these questions was given more than 50 years ago by Onsager and Penrose. 
Here is what they propose:
Let 

 
Ψ(r1,...,

rN ) be the exact ground state. Since we consider bosons, this is a totally 

symmetric function of the arguments. Construct the one particle, reduced density matrix:

 
ρ(r , r ') = Ψ(r , r2 ,...

rN )Ψ
*(r ',∫ r2 ,...

rN )d
3r2 ...d

3rN 
 
 
 
 (1)

Of course this is a hermitian matrix of its position arguments. Hence we can write its 
spectral decomposition:

 

ρ(r , r ') = nj
j
∑ ϕ j

*(r )ϕ j (
r ') 
 
 
 
 
 
 
 (2)

To secure a unit trace the eigenvalues must add-up to 1:

nj
j
∑ = 1 
 
 
 
 
 
 
 
 
 (3)

The classics say: The presence of the condensate in the wave function (1) is manifested 
by the presence of a dominant single eigenvalue in the decomposition (2). The dominant 
eigenvalue is by definition a fraction of condensed atoms and its corresponding 
eigenfunction is the condensate wave function. This definition is easily tested on the case 
of the ideal gas. In this case the function (1) is just a product of the single particle ground 
states of the trap 

 
ϕ0 (
r ) . The reduction to one particle density matrix is trivial and for the 

ideal Bose gas we get:

 
ρ(r , r ') =ϕ0

*(r )ϕ0 (
r ') 

 
 
 
 
 
 
 (4)

with a single nonzero eigenvalue which is equal to 1 and an eigenfunction which is the 
ground state of the trap. Thus every atom is in the condensate, as it should be. Of course 
as we turn-on the interaction the dominant eigenvalue departs downward. The difference 
between 1 and the dominant eigenvalue is called the quantum depletion.
It is very hard to tell what is the value of the quantum depletion for actual dilute gas 
harmonic trap experiments but the estimate put this number at a few percent. On the other 
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hand an old example of the quantum degenerate Bose system, 4He is believed to have 

something close to 90% of atoms outside of the condensate.
A few years ago E. Lieb and coworkers have proved (under rather restrictive assumptions) 

that if the crucial interaction parameter f = an1/3 (n being a number density of atoms) tends 

to zero than the quantum depletion tends to zero and the only relevant eigenvector tends 
to the ground state of the GP equation.

Now, in a typical dilute gas experiment 
 

n 1014 atoms
cm3  . Hence for instance for rubidium

f ≈1.24 ⋅10−2 . We can use GP equation for this most standard condensate safely. One of 

the most beautiful aspect of quantum gases, however is the tunability of the scattering 
length with the help of a suitable magnetic field. The method is known as Feshbach 
resonance. You will hear about it this afternoon. This way one can make the interaction 
both: nearly vanishing and very strong departing from the realm of the GP equation, known 
in the trade as the mean field approximation.
Now let us look at the ground state of the GP equation. If we neglect the nonlinear 
collisions term, the ground state for the simplest case of the spherically symmetric 
harmonic trapping potential is just the standard Gaussian:

 

ψ (r) = N exp − mω
2

r2⎡
⎣⎢

⎤
⎦⎥

 
 
 
 
 
 (5)

The width of the probability distribution is

 

d = 

mω

 
 
 
 
 
 
 
 (6)

which is often used as a convenient unit of length. Such units are called “the oscillator 
units”.
As the number of atoms grows, the role of the nonlinear term grows as well. The 
interaction energy is proportional to the square of the number of atoms while the kinetic 
and the potential trap energy are linear functions of N. Let us assume for a moment the 
repulsive (a>0) interaction. The cloud must broaden with growing N . This way it also 
smoothes-out. The kinetic energy is proportional to the curvature of the wave function. As 
a result the relative role of the kinetic energy decreases. A drastic approximation, valid for 
standard condensate with more than 10000 atoms is to drop the laplacian altogether. This 
is called Thomas-Fermi approximation - a somewhat misleading name since the original 
TF approximation was for fermions - for multielectron atoms.
Once the laplacian is dropped we have just an algebraic equation:
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1
2
mω 2r2ϕ + Ng |ϕ |2 ϕ = µϕ 

 
 
 
 
 (7)

Hence the nonzero solution is:

|ϕ |2= 1
Ng
(µ − 1

2
mω 2r2 ) 
 
 
 
 
 
 (8)

an inverted parabola which extends all the way until the density vanishes (it can not be 
negative!). The size of the parabola,

 Rtf =
2µ
mω 2 
 
 
 
 
 
 
 
 (9)

is called the Thomas-Fermi radius of the condensate. Of course for an asymmetric 
harmonic trap there are up to three different TF sizes. Now we have 2 unknowns: 
Rtf   and  µ . We can compute both of them since we have an additional relation:

|ϕ |2∫ d 3r = 1 
 
 
 
 
 
 
 
 (10)

The integral is:
4πR3

Ng
(µ
3
− mω

2

10
R3) = 1 
 
 
 
 
 
 (11)

Substituting (9) into (11) we get:

Rtf = 15d 4aN⎡⎣ ⎤⎦
1/5 
 
 
 
 
 
 
 (12)

Note that N1/5 is a very weak dependence on the number of atoms and you should 

remember that in a typical experiment with 100000 to a few million atoms the Thomas 
Fermi radius is 5 to 6 times larger than the corresponding oscillator unit.
The TF solution is clearly wrong just at the edge. The GP equation has certainly 
differentiable solution. Thus it is no surprise that the  exact solution has a gradual fall-off 
near the edge:
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Just a quick look at the solution (8) indicates that something is deeply wrong if we try to 
apply it to the attractive gas. In fact attractive gas collapses if the number of atoms 
exceeds some threshold, typically rather small number. It is not hard to make a rough 
estimate of this threshold. Imagine bosons trapped in a spherical harmonic potential with 
the negative scattering length. 
Suppose we write a trial wave function in a form discussed already in our BEC-1 lecture:

 
ψλ = λ 3/2ϕ(λr ) 
 
 
 
 
 
 (13)

Functions in this family have all the same shape (we would typically chose Gaussian if 
interested in numerical values), are all normalized and differ by spatial scaling. We now 
take the energy functional and obtain, like in BEC-1:
E(λ) = λ2T + λ−2Vtr + λ

3Eint 
 
 
 
 
 (14)

The last term is now negative and proportional to the number of atoms. 
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We see a shallow minimum and it is clear that increasing the number of atoms we can 
make negative term win and the minimum will disappear. Thus there would be no stable 
solution of the GP equation. For the first condensate of lithium obtained by Randy Hulet at 
the beginning the situation was so confused that he was not among those considered for 
the Nobel prize. Now we know that in his trap he could hold a BEC containing about 2000 
atoms. 
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