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E. A. Cormell - Senior Scientist of NIST, Boulder ,Co.
W. Ketterle - John D. Mac Arthur Professor of MIT, Cambridge, Ma.

C. E. Wieman - Distinguished Professor of UC, Boulder, Co.
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The very first condensate, Boulder, June 1995
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The very first condensate, Boulder, June
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Evaporative cooling at work
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Changing aspect ratio of expanding
condensate(W. Ketterle)

Absorption 100% [ DD 0%
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inerference of two condensates (Ketterle,
Science 1997)
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An rf output coupler: F=1
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atom laser
W. Ketterle (PRL, 1997)
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Oscillations of the condensate
(C.E. Wieman, E.A. Cornell 96)

{b)

FIG. 1. 1In the unperturbed trap, contours of equipotential in
the transverse plane are symmetric (solid line). To drive the
m = ( excitation (a) we apply a weak harmonic modulation
with frequency »; to the trap radial spring constant. The
m = 2drive (b) breaks axial symmetry with elliptical contours
which rotate at »,/2. The amplitude of perturbation is shown
exaggerated for clatity.
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We apply a weak m =0 drive to an N = 4500
condensate in a 132 Hz (radial) trap. Afterward, the freely
evolving response of the condensate shows radial oscillations.
Also observed is a sympathetic response of the axial width,
approximately 180" out of phase. The frequercy of the
excitation is determined from a sine wave fit to the fieely
oscillating cloud widths. Each data point represents a single
destiuctive condensate measurement.
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coherence of the condensate
(C.E. Wieman, E.A. Cornell 97)

/ N
loss due to three body dN _ 3
collisions Jt ——K3J.n (x, t)dt

N Y,

local fluctuations £< n3 >—3l<n >3}

of the thermal cloud

condensate 3 3
has tiny fluctuations: £< n->=<n-> }
4 I
KI’ZC
experiment: 3C =7.4(2.6)
K3
N Y,
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speed of sound (W. Ketterle, 1997)

FI1G. 2(color). Observation of sound propagation in a conden-
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Height:

Atom laser gallery 5205 1mm

MIT ‘97 Munich ‘99 Yale ‘98  NIST ‘99
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vortices
(W. Ketterle, Science 2001)
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How to observe a vortex and measure
its topological charge ?
J. Dalibard, 2001

F1G. 2. Expected fringe pattern of a Bose-Einstein condensate
initially splitted into two parts and undergoing a free expansion
phase. Figure (a) is without a vortex and (b,c) are with a vortex. For
(b), close to our experimental conditions, the fringe spacing x, is
equal to 39 am, and it is equal to the separation of the vortex cores
after expansion |r,—1}|. (c) samwe as (b), with a fringe spacing x,
=13 um=|r,—71||/3 (this fringe spacing is too small to be de-
tected in our experimental setup). For (b) and (c), the relative phase
of the two condensates is .

F1G. 4. Interference pattern measured in the m =-+2 channel
with no (a), one (b) and (c), and several (d) vortices. For these
pictures, 7 =0.688 ms and 7, =1.320 ms. The sticring frequency
was set to {1 =27X125 Hz (a), 0 =2ax130 Hz (b<), and O
=2aX 154 Hz (d). The patterns (b) and (c) were recorded with the
same initial conditions, and the change in the interference pattern
results from a change in the relative phase of the two parts of the
condensate.
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FIG. 1 (oolor).

3578

bouncing condensate off a laser mirror
(W. Ertmer, 1999)

(a) Series of dark field images for condensates bourcing off a light sheet 270 m below the magnetic trap. Each

image was taken with a new condensate and with an additional time delay of 2 ms. The density of the condensate duting the first
few ms of expansion causes a phase shift in the detection light of move than 2, which explains the stripes in the middle of the
first two images. (b) A therrmal cloud bouncing off a light sheet situated 230 2m below the magnetic trap splits into two parts.
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spinor condensates

optical dipole traps hold atoms

with all orientations of spin.

17
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contact interaction of two
F=1 atoms

V=Vt +V,h (Fy=F,=1)

projection operators

1 o O — —
R=-(-FF . . (BB -F-F
3 F-F,= .

1 -
P=-C+FF,
3
resulting interaction operator

1 1 -
Vzg(Vo +2V2)+§(V2 -V, B F,
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contact interaction continued

2
= 4drth’a, 57 - 7,)
4 ’;:2 [V9L12+L22]:O
T
v, = ,,,,,% 57 - 7) V.5, +F,]=0

A

H= | dr (W HoW,+ 5 co Wi, Wl + 5y VoW FyFy W)

Y 7

C, g(a0 +2a,)
Anh* 1
¢, = —(a, —a,)
m 3

conventional choice of spin matrices:

1'010' 1'0—i0' 1 0 0
F=—1 0 1| F=—|i 0 —i|F=|{0 0 0
x\/z y\/E ‘ Z

0 1 0] 0 i 0 0 0 1
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For 8’Rb c2<0 and the ground state is ferromagnetic
assuming a single, universal, spatial mode:

W, (F) = /n(F) G,(F)

the energy functional takes a form

E= [ ar [%(v@u%wgrm
V(?)n+%2[co +e,(F) D

(F)=8F¢,

and has a minimum for the maximal value of the spin

(more complicated F=2 state of rubidium 1s
antiferromagnetic)

20
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minimizing we get:

1/2
E=U1/42 P=[1/4,1/2,1/4]
1/2

averaging over all angles:

<P>=|1/3,1/3,1/3]

1
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Domeny magnetyczne w kondensacie rubidowym
o F=1 (D. Stamper-Kurn - Berkeley 2007)
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