

Temperature dependence of the condensed fraction

Bose gas at zero temperature

All atoms have the same wave function. They occupy the lowest energy state of the Gross-Pitaevski equation:
$\left\lfloor\frac{\vec{p}^{2}}{2 m}+V_{t r a p}(\vec{r})+N g|\psi(\vec{r}, t)|^{2}\right\rfloor \psi(\vec{r}, t)=i \hbar \frac{\partial}{\partial t} \psi(\vec{r}, t)$

Bose gas at zero temperature

All atoms have the same wave function. They occupy the lowest energy state of the Gross-Pitaevski equation:
$\left\lfloor\frac{\vec{p}^{2}}{2 m}+V_{t r a p}(\vec{r})+N g|\psi(\vec{r}, t)|^{2}\right\rfloor \psi(\vec{r}, t)=i \hbar \frac{\partial}{\partial t} \psi(\vec{r}, t)$

Hartree point of view

Full theory in second quantization:

$$
H=\int \hat{\Psi}^{+}\left\lfloor\frac{\vec{p}^{2}}{2 m}+V_{\text {rrap }}\right\rfloor \hat{\Psi} d^{3} r+\frac{g}{2} \int \hat{\Psi}^{+} \hat{\Psi}^{+} \hat{\Psi} \hat{\Psi} d^{3} r
$$

Heisenberg equation for atom field

$$
\left\lfloor\frac{\vec{p}^{2}}{2 m}+V_{t r a p}(\vec{r})+g|\hat{\Psi}(\vec{r}, t)|^{2}\right\rfloor \hat{\Psi}(\vec{r}, t)=i \hbar \frac{\partial}{\partial t} \hat{\Psi}(\vec{r}, t)
$$

Bogoliubov approximation: $\hat{\Psi}=\sqrt{N} \psi+\hat{\delta}$

$$
\left\lfloor\frac{\vec{p}^{2}}{2 m}+V_{t r a p}(\vec{r})+N g|\psi(\vec{r}, t)|^{2}\right\rfloor \psi(\vec{r}, t)=i \hbar \frac{\partial}{\partial t} \psi(\vec{r}, t)
$$

Full theory in second quantization:

$$
H=\int \hat{\Psi}^{+}\left\lfloor\frac{\vec{p}^{2}}{2 m}+V_{\text {rrap }}\right\rfloor \hat{\Psi} d^{3} r+\frac{g}{2} \int \hat{\Psi}^{+} \hat{\Psi}^{+} \hat{\Psi} \hat{\Psi} d^{3} r
$$

Heisenberg equation for atom field

$$
\left\lfloor\frac{\vec{p}^{2}}{2 m}+V_{t r a p}(\vec{r})+g|\hat{\Psi}(\vec{r}, t)|^{2}\right\rfloor \hat{\Psi}(\vec{r}, t)=i \hbar \frac{\partial}{\partial t} \hat{\Psi}(\vec{r}, t)
$$

Bogoliubov approximation: $\hat{\Psi}=\sqrt{N} \psi+\hat{\delta}$
condensate

$$
\left\lfloor\frac{\vec{p}^{2}}{2 m}+V_{t r a p}(\vec{r})+N g|\psi(\vec{r}, t)|^{2}\right\rfloor \psi(\vec{r}, t)=i \hbar \frac{\partial}{\partial t} \psi(\vec{r}, t)
$$

What did we learn from Quantum Optics?

It is useful to know the modes of the problem

If a given mode is highly occupied, the quantum description (creation and annihilation operators) is replaced by a classical (complex amplitude) one.

$$
\hat{a} \leftrightarrow \alpha
$$

$\hat{a} \leftrightarrow \alpha$

Why annihilation operators are less important for atoms?

photons are easily born and destroyed - atoms not
photon modes well defined by boundary conditions - in general case atomic modes depend on interaction and temperature

Convenient definition of atomic modes:

$$
\rho\left(\vec{r}, \vec{r}^{\prime}\right)=\sum_{j} \frac{<n_{j}>}{N} \varphi_{j}^{*}(\vec{r}) \varphi_{j}\left(\vec{r}^{\prime}\right)
$$

single particle density matrix

Symmetry!

Box with periodic boundary conditions

$$
\begin{gathered}
\rho\left(\vec{r}-\vec{r}^{\prime}\right)=\sum_{\vec{p}} \frac{<n_{\vec{p}}>}{N} \frac{\exp \left[i \vec{p}\left(\vec{r}-\vec{r}^{\prime}\right)\right]}{L^{3}} \\
\varphi_{\vec{p}}=\frac{1}{L^{3 / 2}} \exp [i \vec{p} \cdot \vec{r}] \quad \vec{p}=\frac{2 \pi}{L}\left(n_{1}, n_{2}, n_{3}\right)
\end{gathered}
$$

Convenient definition of atomic modes:

$$
\rho\left(\vec{r}, \vec{r}^{\prime}\right)=\sum_{j} \frac{<n_{j}>}{N} \varphi_{j}^{*}(\vec{r}) \varphi_{j}\left(\vec{r}^{\prime}\right)
$$

single particle density matrix

BEC - dominant mode

Symmetry!
Box with periodic boundary conditions

$$
\begin{gathered}
\rho\left(\vec{r}-\vec{r}^{\prime}\right)=\sum_{\vec{p}} \frac{<n_{\vec{p}}>}{N} \frac{\exp \left[i \vec{p}\left(\vec{r}-\vec{r}^{\prime}\right)\right]}{L^{3}} \\
\varphi_{\vec{p}}=\frac{1}{L^{3 / 2}} \exp [i \vec{p} \cdot \vec{r}] \quad \vec{p}=\frac{2 \pi}{L}\left(n_{1}, n_{2}, n_{3}\right)
\end{gathered}
$$

Let's look at the box:
exact Heisenberg equation for atomic field

$$
\left\lfloor\frac{\vec{p}^{2}}{2 m}+g|\hat{\Psi}(\vec{r}, t)|^{2}\right\rfloor \hat{\Psi}(\vec{r}, t)=i \hbar \frac{\partial}{\partial t} \hat{\Psi}(\vec{r}, t)
$$

mode decomposition:

$$
\hat{\psi}(\vec{r}, t)=\frac{1}{\sqrt{V}} \sum_{\vec{p}} \hat{a}_{\vec{p}}(t) \exp [i \vec{p} \cdot \vec{r}]
$$

coupled harmonic oscillators:

$$
\frac{d \hat{a}_{\vec{p}}(t)}{d t}=-i \frac{p^{2}}{2 m \hbar} \hat{a}_{\vec{p}}-i \frac{2 g}{V \hbar} \sum_{\bar{q}_{1}, \bar{q}_{2}} \hat{a}_{\bar{q}_{1}}^{*} \hat{a}_{\bar{q}_{2}} \hat{a}_{\vec{p}+\bar{q}_{1}-\bar{q}_{2}}
$$

$$
\frac{d \hat{a}_{\vec{p}}(t)}{d t}=-i \frac{p^{2}}{2 m \hbar} \hat{a}_{\vec{p}}-i \frac{2 g}{V \hbar} \sum_{\bar{q}_{1}, \bar{q}_{2}} \hat{a}_{\vec{q}_{1}}^{*} \hat{a}_{\vec{q}_{2}} \hat{a}_{\vec{p}+\vec{q}_{1}-\vec{q}_{2}}
$$

classical substitution

$$
\hat{a}_{\vec{p}}=\sqrt{N} \alpha_{\vec{p}}
$$

for highly occupied modes:

$$
<\hat{a}_{\vec{p}}^{\dagger} \hat{a}_{\vec{p}}>=N\left|\alpha_{\vec{p}}\right|^{2} \gg 1
$$

yields

$$
\frac{d \alpha_{\vec{p}}(t)}{d t}=-i \frac{p^{2}}{2 m \hbar} \alpha_{\vec{p}}-i \frac{2 g N}{V \hbar} \sum_{\vec{q}_{1}, \vec{q}_{2}} \alpha_{\vec{q}_{1}}^{*} \alpha_{\vec{q}_{2}} \alpha_{\vec{p}+\vec{q}_{1}-\vec{q}_{2}}
$$

Phase space portraits of the modes

thermal

$$
\Psi(\vec{r})=\left[\Phi(\vec{r})+u(\vec{r}) \exp [-i \omega t]+v^{*}(\vec{r}) \exp [i \omega t]\right] \exp [-i \mu t]
$$

Bogoliubov-deGennes equations

$$
\begin{aligned}
& {\left[T+V+2 N g|\Phi|^{2}-\hbar \omega-\mu\right] u+N g|\Phi|^{2} v=0} \\
& {\left[T+V+2 N g|\Phi|^{2}+\hbar \omega-\mu\right] v+N g|\Phi|^{2} u=0}
\end{aligned}
$$

spectra of thermal modes

Bogoliubov-Popov spectrum of collective excitations

Bogoliubov-Popov spectrum of collective excitations

$$
\begin{aligned}
& -\varepsilon(k)=\sqrt{\left(\frac{\hbar^{2} k^{2}}{2 m}+\frac{g N_{0}}{V}\right)^{2}-\left(\frac{g N_{0}}{V}\right)^{2}} \\
& \hat{H}_{B}=E_{0}+\sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} \hat{b}_{\mathbf{k}}^{+} \hat{b}_{\mathbf{k}} \quad \boldsymbol{k} \quad \begin{array}{l}
\hat{a}_{\mathbf{k}}=u_{\mathbf{k}} \hat{b}_{\mathbf{k}}+v_{\mathbf{k}} \hat{b}_{\mathbf{k}}^{+}
\end{array} \quad \begin{array}{l}
\hat{a}_{\mathbf{k}}^{+}=u_{\mathbf{k}} \hat{b}_{\mathbf{k}}^{+}+v_{\mathbf{k}} \hat{b}_{\mathbf{k}}
\end{array}
\end{aligned}
$$

Question of temperature

$$
\varepsilon(p) N_{\vec{p}}=k T \quad \varepsilon(p)\left|\alpha_{\vec{p}}\right|^{2}=k_{B} T / N
$$

We are solving lattice version of the Gross-Pitaevski equation...

$$
\psi=\frac{1}{\sqrt{V}} \sum_{\vec{p}} \alpha_{\vec{p}}(t) \exp [-i \vec{p} \cdot \vec{r}]
$$

We are solving lattice version of the Gross-Pitaevski equation...

$$
\psi=\frac{1}{\sqrt{V}} \sum_{\vec{p}} \alpha_{\vec{p}}(t) \exp [-i \vec{p} \cdot \vec{r}]
$$

Contradiction?

Resolution: exposure time and/or spatial resolution - coarse graining

$$
\begin{gathered}
\text { pure state } \\
\rho(t)=\frac{1}{N}<\hat{\Psi}^{+} \hat{\Psi}>\approx \psi^{*}(\vec{r}, t) \psi\left(\vec{r}^{\prime}, t\right)
\end{gathered}
$$

$$
\bar{\rho}(T)=\frac{1}{2 \Delta} \int_{T-1}^{T} \rho(t) d t=\sum\left|\alpha_{\vec{p}}\right|^{2} \frac{\exp \left[i \vec{p} \cdot\left(\vec{r}-\vec{r}^{\prime}\right)\right]}{V}
$$ modes dephasing time

$$
\bar{\rho}\left(\vec{r}, \vec{r}^{\prime}\right)=\frac{1}{V} \int_{V} \rho\left(\vec{r}+\vec{R}, \vec{r}^{\prime}+\vec{R}\right) d^{3} R
$$

mixed state

Our strategy:

choose a suitable spatial lattice
compute the ground state of GP equation
scramble its amplitude and/or phase to inject desired amount of energy
run the GP evolution to thermal equilibrium
diagnose the coarse-grained density matrix
high energy solution of GP equation at the steady state evolution

high energy solution of GP equation at the steady state evolution

Bose gas at nonzero temperature according to CFA.

Bose gas at nonzero temperature according to CFA.

Bose gas at nonzero temperature according to CFA.

Bose gas at nonzero temperature according to CFA.

Bose gas at nonzero temperature according to CFA.

vortices in the condensate:

$$
\Psi(r, \vartheta, \varphi)=\Phi_{m}(r, \vartheta) \exp [\operatorname{im} \varphi]
$$

lattice of singly charged vortices E. Cornell

new possibilities - optical dipole traps

atoms are dragged into high/low intensity region depending on the sign of detuning
K. Helmerson, M.F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. and W.D. Phillips

Generating persistent currents states of atoms using orbital angular momentum of photons

Nuclear Physics A, 790, (2007) 705-712

K. Helmerson, M.F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. and W.D. Phillips

Generating persistent currents states of atoms using orbital angular momentum of photons

Nuclear Physics A, 790, (2007) 705-712

scenario of Phillips' experiment for $\mathbf{m = 5}$

T. Karpiuk

T. Karpiuk

