Bose statistics and classical fields

Emilia Witkowska Mariusz Gajda

Kazimierz Rzążewski

the idea of classical field approximation:

the idea of classical field approximation:

long wavelength part of Bose atomic field may be replaced by a classical function.

the idea of classical field approximation:

long wavelength part of Bose atomic field may be replaced by a classical function.

close analogy to electromagnetic field

the idea of classical field approximation:

long wavelength part of Bose atomic field may be replaced by a classical function.
close analogy to electromagnetic field
the most relevant question: where to cut?

- testing classical fields on a soluble model desirable
- ideal gas ideal
- ideal gas does not thermalize
- equilibrium thermodynamics via statistical ensemble is a good testing ground

ID ideal Bose gas

calculating the canonical partition function:

$$
\begin{gathered}
Z(N, \beta)=\sum_{n_{0}=0}^{\infty} \sum_{n_{1}=0}^{\infty} \sum_{n_{2}=0}^{\infty} \cdots \sum_{n_{k}=0}^{\infty} \exp \left[-\beta \hbar \omega \sum_{k=0}^{\infty} k n_{k}\right] \delta_{\sum_{k=0}^{\infty} n_{k}, N} \\
\delta_{\Sigma n, N}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \exp \left[i \eta \sum_{k} n_{k}\right] \exp [-i \eta N] d \eta \\
\xi=\exp (-\beta \hbar \omega) \quad z=\exp [-i \eta] \\
Z(N, \beta)=\frac{1}{2 \pi i} \oint d z z^{N-1} \prod_{k=0}^{\infty} \frac{z}{z-\xi^{k}} \\
Z(N, \beta)=\sum_{j=0}^{\infty} \xi^{j N} \prod_{k \neq j}^{\infty} \frac{1}{1-\xi^{k-j}}
\end{gathered}
$$

... the same with classical fields:

$$
\begin{aligned}
& Z(N, \beta)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \eta \exp (-i N \eta) \prod_{j=0}^{K} \frac{d^{2} \alpha}{\pi} \exp \left[-(\beta \hbar \omega j-i \eta)|\alpha|^{2}\right] \\
& Z(N, \beta)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \eta \exp (-i N \eta) \prod_{j=0}^{K} \frac{1}{\beta \hbar \omega j-i \eta}
\end{aligned}
$$

$$
Z(N, \beta)=\sum_{j=0}^{K} \xi^{j N} \prod_{k \neq j}^{K} \frac{1}{(\ln \xi)(j-k)}
$$

canonical partition function of the excited atoms

no contribution of the ground state

$$
Z_{\alpha}\left(N_{\alpha}, \beta\right)=\sum_{n=0}^{\sum} \sum_{n=0} \sum_{n=0}^{\infty} \ldots \sum_{n=0}^{\infty} \ldots \exp \left[-\beta \hbar \omega \sum_{k=0}^{\infty} \sum_{n} n_{n}\right] \delta_{\sum_{n}=, N_{a}}
$$

$$
Z_{e x}\left(N_{\alpha x}, \beta\right)=\sum_{j=1}^{\infty} \xi^{N_{\alpha} \alpha} \prod_{\ell \neq j}^{\infty} \frac{1}{1-\xi^{k-j}}
$$

no contribution of the ground state

Probability distribution of the number of excited atoms

$$
P\left(N_{e x}, \beta\right)=\frac{Z_{e x}\left(N_{e x}, \beta\right)}{Z(N, \beta)}
$$

analytic 3D results following

V. V. Kocharovsky, V1. V. Kocharovsky, and Marlan O. Scully, Phys. Rev. Lett. 84, 2306, (2000)

optimal cut-off for D-dimensional harmonic oscillator:

$\hbar \omega K_{\text {max }} \beta=\left\{\begin{array}{cc}1 & D=1 \\ {[\zeta(D)(D-1)(D-1)!]^{1 /(D-1)}} & D \geq 2\end{array}\right.$
mean occupation of the highest retained mode for 3D harmonic oscillator

mean occupation of the highest retained mode for 3D box

$$
\frac{\hbar^{2} k_{\max }^{2}}{2 m} \beta=\pi\left[\frac{\zeta(3 / 2)}{4}\right]^{4}
$$

For weakly interacting Bose gas we have a finite dimensional classical system!

$$
\begin{gathered}
P\left(\left\{\alpha_{j}\right\}\right)=\frac{1}{Z} \exp \left[-\beta\left(\sum_{k} \varepsilon(k)\left|\alpha_{k}\right|^{2}+E_{\text {int }}\left(\left\{\alpha_{j}\right\}\right)\right)\right] \\
\sum_{k=0}^{k_{\text {kax }}}\left|\alpha_{k}\right|^{2}=N
\end{gathered}
$$

Metropolis algorithm may be used to generate this classical probability distribution

testing the method on 1D box with $\mathrm{N}=1000$ noninteracting atoms

3D box with $\mathrm{N}=1000$ atoms

saturation with interaction:

summary

with optimal choice of the cut-off, classical fields are able to match full statistical properties of the ideal Bose gas
the finite weakly interacting classical system may be studied with the help of Monte Carlo methods

