Short Curriculum Vitae
Name: Javier de Lucas Araujo
Date and place of Birth: Talavera de la
Reina (Spain) on September 2, 1981
Addresses:
Permanent position: Department of Mathematical Methods
in Physics, room 5.46, Faculty of Physics, University of
Warsaw, Pasteura 5, 02-093, Warsaw, Poland.
Temporary position: External member at the Math-Phys
Laboratorium of the Centre de Recherches Mathématiques,
Universite de Montreal, Pavillon Andre-Aisenstadt, 2920,
Chemin de la Tour, Montreal, QC H3T 1J4.
Email: javier.de.lucas@fuw.edu.pl
Degrees
Simons-CRM Professor at the Center de Recherchers
Mathematiques, University of Montreal (2023)
Associate Professor, Faculty of Physics, University of Warsaw
(2022)
Polish Habilitation in Physics, University of Warsaw (2017)
Spanish Hanilitation: Profesor contratado doctor in Applied
Mathematics, ANECA, Spain (2012)
PhD in Physics, University of Zaragoza, Spain (2009)
MSc in Physics, University of Salamanca, Spain (2004)
Prizes and Distintions (most relevant in bold)
• 2024 - Award in recognition of achievements affecting the
development and prestige of the University of Warsaw,
University of Warsaw
• 2024 - Chosen External member at the Math-Phys
Laboratorium of the Centre de Recherches Mathématiques,
Universite de Montreal,
• 2024 - Nomination to Didactic Award ‘Zygmunt Ajduk’ in
recognition to outstanding exercises classes (Analysis II
R), Faculty of Physics, University of Warsaw (Summer
Semester).
• 2023 - Individual prize of second degree for research
achievements, Faculty of Physics, University of Warsaw.
• 2023 - Simons–CRM Professorship, Centre de Recherches
Mathematiques (CRM), University of Montreal, Canada (one of
the most reputable research positions at the CRM).
• 2022 - Nomination to Didactic Award ‘Zygmunt Ajduk’ in
recognition to outstanding exercises classes (Analysis III
Special Functions in Mathematical Physics), Faculty of
Physics, University of Warsaw (Summer Semester).
• 2021 - Dean Prize of third degree for research
achievements.
• 2021 - Dean Prize in commemoration to Rector Stefan
Pienkowski and Rector Grzegorz Białkowski for the best
researcher in the Faculty of Physics of the University of
Warsaw (younger than 40 years old).
• 2020 - UW Rector Prize of second degree in recognition to
the publication “A Guide to Lie Systems with Compatible
Geometric Structures”, research on the differential geometry
properties of differential equations, and didactic
achievements, University of Warsaw.
• 2020 - UW Didactic Award ’Zygmunt Ajduk’ in
reocgnition to outstanding exercises classes (Differential
Geometry), Faculty of Physics, University of Warsaw.
• 2019 - Award in recognition of achievements affecting the
development and prestige of the University of Warsaw,
University of Warsaw.
• 2018 - Nomination to the best paper prize of the
conference ,,10th International Symposium on Quantum theory
and symmetries and 12th International Workshop on Lie
Theory and Its Applications in Physics”(+70 participants).
• 2017 - Didactic Award of the Dean of the University of
Warsaw.
• 2016 - Award in recognition of achievements affecting the
development and prestige of the University of Warsaw,
University of Warsaw.
• 2015 - Individual prize of third degree, Faculty of Physics,
University of Warsaw.
• 2014 - Best teacher of the Faculty of Physics, University of
Warsaw (UW Student council).
• 2013 - Didactic Award for outstanding classes and
lectures, Summer term, University of Warsaw.
• 2011 - Postdoc fellowship for young researchers, IMPAN.
• 2011 - Special Award for Doctoral Theses, University of
Zaragoza, year 2009/2010.
• 2010 - Postdoc fellowship for young researchers, IMPAN.
• 2009 - Postdoc fellowship for young researchers, IMPAN.
• 2006 - F.P.U. Fellowship funded by the Ministerio de
Educacion y Ciencia (Ministry of Education and Science) for
the best students in Spain to accomplish my PhD thesis
project “Lie systems and applications to Quantum Mechanics”.
• 2005 - Fellowship funded by the Faculty of Science of the
University of Salamanca for the best students in the
University of Salamanca starting their PhD.
• 2005 - F.P.I. Fellowship funded by the Junta de Castilla y
Le´ on ( Castilla y Leon council) for the best students in the
Castilla y Le´ on region starting their PhD.
• 2003 - Fellowship ‘Beca de colaboración funded by the
Ministry of Education, Culture and Sport (Spain) and granted
by the Faculty of Science of the University of Salamanca for
the best (5) students of the Faculty of Physics of the
University of Salamanca in the period from 1999 to 2003.
Gamma Research group
The Geometry and
Applications: Modern Mathematical Approaches (Gamma)
research group is researcg group
devoted to
- Geometric mechanics and field
theories
- Geometric
structures: symplectic and Poisson geometry, contact
geometry and its Generalisations
- Supergeometry
- Integrable
systems, superposition rules, Lie systems
- Stochasticity
and numerical methods
- Orbifolds
The research group is mainly led by dr. hab. J. de
Lucas Araujo in the University of Warsaw, while much of the
work is accomplished and supervised in collaboration with X.
Rivas ((University of Rovira and Virgili). The components of
the group are located in the University of Warsaw:
PhD Students:
- T. Sobczak, 1 year
- A. Maskalaniec (with J. Grabowski), 1 year
- J. Lange, defense planned 2026
- B. Zawora, defense planned 2025
- M. Borczyńska, planned to start in 2025
The group
counts with another less formal undergraduate members
accomplishing master and Bachelor theses, as well as other
research works.
The group has an online weekly seminar
called Gamma aimed at discussing basic and
advanced research topics conducted by the Polish-Spanish
geometric group gathering people from the University of
Warsaw, the Universitat Rovira i Virgili and the Polytechnic
University of Catalonia. The seminars are published to
YouTube.
Publications (last 10 years).
Citations: 1244, Hirsch: 20 (According to Google scholar).
- R. Campoamor-Stersberg, F.J. Herranz, J. de Lucas,
Nonlinear Lie-Hamilton systems: $t$-Dependent curved
oscillators and Kepler-Coulomb Hamiltonians,
submitted, 2025, arXiv:2505.13853
- A. Lopez-Gordon, J. de Lucas, B.M. Zawora, Stabillity
of contact Hamiltonian systems, 2025.
- J. de Lucas, J. Lange, C. Sardon, X. Rivas, Hamilton-Jacobi
equations in thte k-contact setting, To be submitted,
2025.
- J. de Lucas, J. Lange, Reduction of twisted Poisson
manifolds and applications to Hamilton–Jacobi equations.
To be submitted, 2025.
- J. de Lucas, X. Rivas, S. Vilariño, B.M. Zawora, Marsden--Meyer--Weinstein
reduction for k-contact field theories
. submitted, 2025, arXiv:2505.05462
- E. Fernandez-Saiz, J. de Lucas, M. Zajac, Hamiltonian
Stochastic Lie systems and applications, 2025, arXiv:2307.06232
- A.M. Grundland, J. de Lucas, and B.M. Zawora, Stability
analysis of the -dimensional Nambu-Goto action gas models,
- J. de Lucas, X. Rivas, T. Sobczak, Foundations on
k-contact geometry, submitted. ArXiv
- A.M. Grundland, J. de Lucas, Quasi-rectifiable
Lie algebras for partial differential equations,
Nonlinearity,38, 025006 (
2025). Nonlinearity
ariv:2312.05238
- L. Colombo, J. de Lucas, X. Rivas, B. Zawora, An
energy-momentum method for ordinary differential equations
with an underlying k-polysymplectic manifold, J.
Nonlinear Science, 2024. https://arxiv.org/abs/2311.15035
- J. de Lucas, J. Lange, X. Rivas, A symplectic approach
to Schrodinger equations in the infinite-dimensional
unbounded setting, AIMS Mathematics, 2024. https://arxiv.org/abs/2312.09192
https://www.aimspress.com/article/id/66f6a53fba35de7eae90727f
- J. de Lucas, A. Maskalaniec, and B.M. Zawora. A
cosymplectic energy-momentum method with applications,
J. Nonl. Math. Phys. 31, 64 (2024). https://A
cosymplectic energy-momentum method with applications,
- L. Blanco, F. Jimenez, J. de Lucas, C. Sardon, Geometry
preserving numerical methods for physical systems with
finite-dimensional Lie algebras, J. Nonlinear Science
34, 26 (2024). https://link.springer.com/article/10.1007/s00332-023-10000-8
- J. de Lucas, X. Rivas, S. Vilariño, B.M. Zawora, On
k-polycosymplectic Marsden-Weinstein reductions, J.
Geom. Phy. 191, 104899 (2023).
- J. de Lucas, X. Rivas, Contact Lie systems: theory and
applications, J. Phys. A 56, 335203 (2023).
- L. Blanco, F. Jime ́nez, J. de Lucas, C. Sardon, Geometric
numerical methods for Lie systems and their application in
optimal control, Symmetry 15, 1285 (2023).
- J. F. Cariñena, J. de Lucas, C. Sardón, Quantum
quasi-Lie systems: properties and applications, EPJP 138,
339 (2023).
- A.M. Grundland and J. de Lucas, Multiple Riemann wave
solutions of the general form of quasilinear hyperbolic
systems, Adv. Diff. Eq. 28, 73–112 (2023).
- O. Esen, J. de Lucas, C. Sardon, and M. Zajac, Decomposing
Euler-Poincare flow on the space of Hamiltonian vector
fields, Symmetry 15, 23 (2022).
- J. de Lucas, D. Wysocki, Darboux families and the
classification of real four-dimensional indecomposable
coboundary Lie bialgebras, Symmetry 13, 465
(2021).
- A. Ballesteros, R. Campoamor-Stursberg, E. Fernandez-Saiz,
F.J. Herranz, J. de Lucas, Poisson-Hopf deformations of
Lie-Hamilton systems revisited: deformed superposition
rules and applications to the oscillator algebra, J.
Phys. A 54, 205202 (2021).
- J. de Lucas and D. Wysocki, A Grassmann and graded
approach to coboundary Lie bialgebras, their classification,
and Yang-Baxter equations, J. Lie Theory 2020, 1161–1194.
- J. Lange and J. de Lucas, Geometric Models for
Lie–Hamilton systems on R2, Mathematics 2019, 7, 1053,
(2019).
- M.M. Lecanda, X. Gracia, J. de Lucas, and S. Vilarino,
Multisymplectic structures and invariant tensors for Lie
systems, J. Phys. A, 52, 215201, (2019).
- J.F. Cariñena, J. Grabowski, and J. de Lucas, Quasi-Lie
Schemes for PDEs, Int. J. Geom. Methods. Mod. Phys. 16,
1950096 (2019).
- J. de Lucas, C. Sardo ́n, A Guide to Lie systems with
Compatible Geometric Structures, World Scientific,
Singapore, 408 pp., 2020.
- A.M. Grundland and J. de Lucas,On the geometry of the
Clairin theory of conditional symmetries for higher-order
systems of PDEs with applications, Diff. Geom. Appl. 67,
101557 (2019).
- A.M. Grundland and J. de Lucas, A cohomological approach
to immersion formulas via integrable systems, Selecta
Mathematica - New Series 24, 4749–4780 (2018).
- A. Ballesteros, R. Campoamor-Stursberg, E. Fernandez-Saiz,
F.J. Herranz and J. de Lucas, A unified approach to
Poisson–Hopf deformations of Lie–Hamilton systems based on
sl(2), accepted in “Springer Proceedings in Mathematics,
Statistics” (2018).
- A. Ballesteros, R. Campoamor-Stursberg, E. Fernandez-Saiz,
F.J. Herranz and J. de Lucas, Poisson-Hopf algebra
deformations of Lie-Hamilton systems, J. Phys. A 51, 065202
(2018).
- F.J. Herranz, J. de Lucas, M. Tobolski Lie-Hamilton
systems on curved spaces: A geometrical approach, J. Phys. A
50, 495201 (2017).
- A. Ballesteros, R. Campoamor-Stursberg, E. Fernandez-Saiz,
F.J. Herranz and J. de Lucas, Poisson-Hopf algebra
deformations of Lie-Hamilton systems, J. Phys. A 51, 065202
(2018).
- F.J. Herranz, J. de Lucas and M. Tobolski, Lie-Hamilton
systems on curved spaces: A geometrical approach, J. Phys. A
50, 495201 (2017)
- A. Ballesteros, R. Campoamor-Stursberg, E. Fernandez-Saiz,
F.J. Herranz, and J. de Lucas, Poisson-Hopf algebra
deformations of Lie-Hamilton systems, J. Phys. A 51, 065202
(2018).
- F.J. Herranz, J. de Lucas, and M. Tobolski, Lie-Hamilton
systems on curved spaces: A geometrical approach, J. Phys. A
50, 495201 (2017).
- M.M. Lewandowski and J. de Lucas, Geometric features of
Vessiot–Guldberg Lie algebras of conformal and Killing
vector fields on R2,
Banach Center Publications 113, 243–262 (2017).
- A.M. Grundland and J. de Lucas, A Lie systems approach to
the Riccati hierarchy and partial differential equations, J.
Differential Equations 263, 299–337 (2017).
- P. Garcia-Estevez, F.J. Herranz, J. de Lucas, and C.
Sardón, Lie symmetries for Lie systems: Applications to
systems of ODEs and PDEs, Appl. Math. Comp. 273, 435–452
(2016).
- J. de Lucas, M. Tobolski, and S. Vilariño, Geometry of
Riccati equations over normed division algebras, J. Math.
Anal. Appl. 440, 394–414 (2016).
- J.F. Cariñena, J. de Lucas, and M.F. Rañada, Jacobi
multipliers, nonlocal symmetries, and harmonic oscillators,
J. Math. Phys. 56, 063505 (2015).
- J.F. Cariñena and J. de Lucas, Quasi–Lie families,
schemes, invariants and their applications to Abel
equations, J. Math. Anal. Appl. 430, 648–671 (2015).
- J. de Lucas and S. Vilariño, k-symplectic Lie systems:
theory and applications, J. Differential Equations 258 (6),
2221–2255 (2015).
- A. Ballesteros, A. Blasco, F.J. Herranz, and C. Sardón,
Lie–Hamilton systems on the plane: Properties,
classification and applications, J. Differential Equations
258, 2873–2907 (2015).
- A. Blasco, F.J. Herranz, J. de Lucas, and C. Sardón,
Lie–Hamilton systems on the plane: applications and
superposition rules, J. Phys. A 48, 345202 (2015).
- J. de Lucas, M. Tobolski, and S. Vilariño, A new
application of k-symplectic Lie systems, Int. J. Geom.
Methods Mod. Phys. 12, 1550071 (2015).
- F.J. Herranz, J. de Lucas, and C. Sardón, Jacobi–Lie
systems: theory and low dimensional classification, in: The
10th AIMS Conference on Dynamical Systems, Differential
Equations and Applications, 2015. Discrete Contin. Dyn.
Syst. Series A, 605–614, 2015.
- P.G. Estevez, F.J. Herranz, J. de Lucas, and C. Sardón,
Lie symmetries for Lie systems: applications of ODEs and
HODEs, Appl. Math. Comp. 273, 435–452 (2015).
- J.F. Cariñena and J. de Lucas, Quasi-Lie families,
quasi-Lie schemes, and their applications to Abel equations,
J. Math. Anal. Appl. 430, 648–671 (2015).
- F.J. Herranz, J. de Lucas, and C. Sardón, Jacobi--Lie
systems: theory and low dimensional classification, Accepted
in Proceedings AIMS (2015). [Arxiv]
- J. de Lucas, M. Tobolski, and S. Vilarino, A new
application of k-symplectic Lie systems, Int. J. Geom.
Methods Mod. Phys. 12, 1550071 (2015). [Arxiv]
- J. de Lucas and S. Vilariño, k-symplectic Lie systems:
theory and applications, J. Differential Equations 258 (6),
2221--2255 (2015). [Arxiv]
- A. Ballesteros, A. Blasco, J.F. Herranz, J. de Lucas, and
C. Sardón, Lie-Hamilton systems on the plane: theory,
classification and applications, J. Differential Equations
258, 2873--2907 (2015). [Arxiv]
- J.F. Cariñena, J. Grabowski, J. de Lucas, and C. Sardón,
Dirac-Lie systems and Schwarzian equations, J. Differential
Equations 257 (7), 2303--2340 (2014). [Arxiv]
- A. Ballesteros, J.F. Cariñena, F.J. Herranz, J. de Lucas,
and C. Sardón, From constants of motion to superposition
rules for Lie-Hamilton systems, J. Phys. A: Math. Theor. 46,
285203 (2013). [Arxiv]
- J. de Lucas and C. Sardón, On Lie systems and
Kummer-Schwarz equations, J. Math. Phys. 54, 033505 (2013).
[Arxiv]
- J.F. Cariñena, J. de Lucas, and C. Sardón, Lie-Hamilton
systems: theory and applications, Int. J. Geom. Methods Mod.
Phys. 10, 09129823 (2013). [Arxiv]
- J.F. Cariñena, J. de Lucas, and P. Guha, A quasi-Lie
schemes approach to the Gambier equation, SIGMA 9, 026
(2013). [Arxiv]
- J. Grabowski and J. de Lucas, Mixed superposition rules
and the Riccati hierarchy, J. Diff. Equ. 254, 179--198
(2013). [Arxiv]
- J.F. Cariñena, J. de Lucas, and J. Grabowski,
Superposition rules for higher-order systems and their
applications, J. Phys. A: Math. Theor. 45, 185202 (2012). [Arxiv]
- J.F. Cariñena, J. de Lucas, and M.F. Rañada, Un enfoque
geométrico de las ecuaciones diferenciales de Abel de
primera y segunda clase, Actas del XI Congreso del Dr.
Antonio Monteiro 2011, 63--82 (2012).
- J.F. Cariñena, J. de Lucas, and C. Sardón, A new Lie
systems approach to second-order Riccati equations, Int. J.
Geom. Methods Mod. Phys. 9, 1260007 (2012).
- J.F. Cariñena, J. de Lucas, and A. Ramos, A geometric
approach to integrability conditions for systems of ordinary
differential equations, SIGMA 7, 067 (2011). [Arxiv]
- J.F. Cariñena, J. de Lucas, and C. Sardón, Lie–Hamilton
systems: theory and applications, Int. J. Geom. Methods Mod.
Phys. 10, 1350047 (2013). [Arxiv]
- J.F. Cariñena, J. de Lucas, and C. Sardón, Lie–Hamilton
systems on the plane: Properties, classification and
applications, J. Phys. A: Math. Theor. 46, 285203 (2013). [Arxiv]
- J. de Lucas and C. Sardón, On Lie systems and
Kummer–Schwarz equations, J. Math. Phys. 54, 033505 (2013).
[Arxiv]
- J.F. Cariñena, J. de Lucas, and C. Sardón, Lie–Hamilton
systems: theory and applications, Int. J. Geom. Methods Mod.
Phys. 10, 1350047 (2013). [Arxiv]