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Abstract. The abstract mathematical structure behind the positive energy quantization of linear
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1. Introduction. In physics, by quantization one means various procedures that lead from
classical systems to quantum systems. In this paper we describe the basic mathematical
structure of the positive energy quantization of linear classical systems. One of its basic
requirements is the implementation of the quantum dynamics by a positive Hamiltonian. In
all the cases we consider, the resulting Hilbert space has a natural structure of a Fock space,
and the dynamics is obtained by the so-called second quantization of the dynamics on the
1-particle space.

Linear classical systems that we have in mind often have an infinite number of degrees
of freedom. The most typical examples are the space of solutions of the Klein-Gordon and
of the Dirac equation, possibly on a curved space-time and in the presence of external
potentials. We can also consider other systems, not necessarily relativistic, e.g. motivated
by the condensed matter physics at zero temperature.

The positive energy quantization, which we describe in an abstract fashion in this paper,
is used in quantum field theory as the starting point for the construction of free (that means
non-interacting) quantum fields and many-body quantum systems. We will not discuss the
quantization of non-linear dynamics, which is usually more difficult and often ambiguous.

In quantum physics, one can distinguish two basic types of particles: bosons and fermions.
Classical theories describing bosons have a natural symplectic structure. After quanti-

zation, one obtains quantum fields satisfying canonical commutation relations (abbreviated
CCR). They are usually represented on a bosonic Fock space.
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Classical theories describing fermions possess a natural euclidean structure. The corre-
sponding quantum fields satisfy canonical anticommutation relations (abbreviated CAR).
They are usually represented on a fermionic Fock space.

Thus classical bosonic and fermionic systems equipped with a linear dynamics can be
described by a symplectic, resp. euclidean vector space Y. This space has the interpretation
of the dual of the classical phase space. (We will not be very pedantic about this point, and
we will usually call Y the phase space as well). The classical dynamics is described by a
1-parameter group R 3 t 7→ rt of linear symplectic, resp. orthogonal transformations on Y.

Both fermionic and bosonic systems appear in two varieties: neutral and charged. In the
case of charged systems, the phase space is in addition endowed with an action of the group
U(1). Assuming that it is a representation of charge 1, it is natural to encode this symmetry
by viewing the phase space as a complex vector space. In the case of neutral systems, the
space Y is assumed to be real.

More precisely, on the classical level charged bosonic systems are described by a complex
vector space equipped with a nondegenerate anti-hermitian form. We will call such spaces
charged symplectic. We will assume that the dynamics rt preserves this form.

Charged fermionic systems are described by a unitary space (complex space equipped
with a positive scalar product) and its dynamics is a 1-parameter unitary group.

To sum up, we distinguish 4 basic formalisms for quantization:
(1) Neutral bosonic formalism, applied e.g. to real solutions of the Klein-Gordon equa-

tion;
(2) Neutral fermionic formalism, applied e.g. to Majorana spinors satisfying the Dirac

equation;
(3) Charged bosonic systems, applied e.g. to complex solutions of the Klein-Gordon

equation;
(4) Charged fermionic systems, applied e.g. to Dirac spinors satisfying the Dirac equa-

tion.

Remark 1.1. Note that in the most common physics applications one uses the neutral
bosonic formalism (e.g. for photons) and the charged fermionic formalism (e.g. for electrons).
Charged bosons are also quite common, e.g. charged pions or gauge bosons in the standard
model. On the other hand, until recently, the neutral fermionic formalism had mostly theo-
retical interest. However, in the modern version of the standard model right-handed massive
neutrinos are neutral fermions described by Majorana spinors [Sr].

One can distinguish 3 stages of quantization:
(1) Classical system. We consider one of the four kinds of the phase space Y, together

with a 1-parameter group of its automorphisms, R 3 t 7→ rt, which we view as a classical
dynamics.

(2) Algebraic quantization. We choose an appropriate ∗-algebra A, together with a 1-
parameter group of ∗-automorphisms R 3 t 7→ r̂t. The algebra A is sometimes called the
field algebra of the quantum system. The commutation, resp. anticommutation relations
satisfied by the appropriate distinguished elements of A are parallel to relations satisfied
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by elements of the phase space. The 1-parameter group of ∗-automorphisms r̂t describes
the quantum dynamics in the Heisenberg picture. The algebra A contains operators
that are useful in the theoretical description of the system. However, we do not assume
that all of its elements are physically observable, even in principle. Therefore, we also
distinguish the algebra of observables, which is a certain subalgebra of A, invariant with
respect to the dynamics, that consists of operators whose measurement is theoretically
possible.

(3) Hilbert space quantization. We represent the algebra A on a certain Hilbert space
H, so that the dynamics is implemented by a 1-parameter unitary group generated by
a positive operator, called the Hamiltonian H. Typically, this representation is faithful,
so that we can write A ⊂ B(H) and

r̂t(A) = eitHAe−itH , (1.1)

The description of quantization that one can find in numerous textbooks on quantum
field theory is almost always presented in a certain concrete context, typically that of the
Klein-Gordon or Dirac equation. In our approach we describe only the abstract underlying
mathematical structure. Let us stress, however, that our presentation, in spite of its abstract
mathematical language, follows very closely the usual exposition, see e.g. [We], and [Sr]; in
particular [Sr] Sec. 22 for complex bosons and [Sr] Sec. 49 for neutral fermions.

Note that among the three stages of quantization described above, the most important
is the first and the third. The second stage – the algebraic quantization – can be skipped
altogether. In the usual presentation, typical for physics textbooks, it is limited to a formal
level – one says that “commuting classical observables” are replaced by “non-commuting
quantum observables” satisfying the appropriate commutation, resp. anticommutation re-
lations. In our presentation, we tried to interpret this statement in terms of well defined
C∗-algebras. This is quite easy in the case of fermions. Unfortunately, in the case of bosons
it leads to certain technical difficulties related to the unboundedness of bosonic fields. We
discuss a number of possible choices for C∗-algebras describing bosonic observables. To some
extent, the algebraic quantization is merely an exercise of academic interest. Nevertheless,
in some situations it sheds light on some conceptual aspects of quantum theory.

One of the confusing conceptual points that we believe our abstract approach can explain
is the difference between the phase space and the 1-particle space. Throughout our paper, the
former is typically denoted by Y and the latter by Z. These two spaces are often identified.
They have, however, a different physical meaning and are equipped with a different algebraic
structure.

We also discuss abstract properties of two commonly used discrete symmetries of quan-
tum systems: the time reversal and the charge reversal. Their properties can be quite confus-
ing. We believe that the precise language of linear algebra is particularly adapted to explain
their properties. Note, for instance, that the charge reversal is antilinear with respect to the
complex structure on the phase space and linear with respect to the complex structure on
the 1-particle space. On the other hand, the time reversal is antilinear with respect to both.

Among well-known textbooks about rigorous foundations of quantum field theory one
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can quote [BSZ, BR, Em, GJ, Ha, RS2, Si]. In particular, [BSZ] contains a discussion of some
of the aspects of the positive energy quantization. One can argue that our paper collects
some elements of the knowledge that belongs to the folklore of theoretical and mathematical
physics. Nevertheless, a systematic and comprehensive discusssion of the topic described
in our paper is to our knowledge difficult to find in the literature. We are preparing a
monograph [DG2] that will cover it in greater detail.

Acknowledgement. The research of J.D. is supported in part by the grant N N201 270135.

2. Preliminaries. In this section we introduce a precise terminology and notation, mostly
about linear algebra, which we will use in this paper. All of this section is very elementary.
A large part of it is standard and well-known. For some concepts we found it convenient to
invent new names. The reader may wonder why we need to be so pedantic. We will see later
on that a surprisingly large variety of concepts from basic linear algebra plays an important
role in quantization.

2.1. Vector spaces. Let Y, W be vector spaces over the field K = R or K = C. L(Y,W)
denotes the space of linear maps from Y to W.

If Y is a complex space, then YR will denote its real form, that is Y considered as a real
space.

2.2. Symmetric forms. Let Y be a vector space. Consider a bilinear form ν on Y

Y × Y 3 (y1, y2) 7→ y1νy2 ∈ K.

We will say that ν is symmetric if

y1νy2 = y2νy1, y1, y2 ∈ Y.

2.3. Euclidean spaces. Let ν be a symmetric form on a real space Y. It is called positive if
yνy > 0 for y 6= 0. A couple (Y, ν), where ν is a positive form, is called a euclidean space. If
Y is complete for the norm ‖y‖ :=

√
yνy, then it is called a real Hilbert space.

Let (Y, ν) be a euclidean space and r ∈ L(Y). We say that

r is orthogonal if r is bijective and (ry1)νry2 = y1νy2.

The set of orthogonal elements in L(Y) is a group for the operator composition, denoted by
O(Y).

If the form ν is nondegenerate, but not necessary positive, then all the definitions are
the same except that we add the prefix “pseudo-” to the words “euclidean”, “isometric” and
“orthogonal”.

2.4. Symplectic spaces. Let Y be a vector space. We say that a bilinear form ω

Y × Y 3 (y1, y2) 7→ y1ωy2 ∈ K

is anti-symmetric if
y1ωy2 = −y2ωy1, y1, y2 ∈ Y.



POSITIVE ENERGY QUANTIZATION OF LINEAR DYNAMICS 7

A nondegenerate antisymmetric bilinear form is called a symplectic form. The pair (Y, ω) is
then called a symplectic space.

Let (Y, ω) be a symplectic space and r ∈ L(Y). We say that

r is symplectic if r is bijective and (ry1)ωry2 = y1ωy2,

r is anti-symplectic if r is bijective and (ry1)ωry2 = −y1ωy2.

2.5. Sesquilinear forms. Let Z be a complex vector spaces. Consider a sesquilinear form
(anti-linear in the first argument, linear in the second)

Z × Z 3 (z1, z2) 7→ (z1|βz2) ∈ C.

We say that

β is hermitian if (z2|βz1) = (z1|βz2), z1, z2 ∈ Z,
β is anti-hermitian if (z2|βz1) = −(z1|βz2), z1, z2 ∈ Z,

Clearly, β is hermitian iff iβ is anti-hermitian.

2.6. Unitary spaces. A hermitian form β is called positive if (z|βz) > 0 for z 6= 0. It is often
called a scalar product. A pair (Z, (·|β·)) is then sometimes called a unitary space. If Z is
complete for the norm ‖z‖ :=

√
(z|βz), then it is called a Hilbert space.

Let r ∈ L(Z).

r is unitary if r is bijective and (rz1|βrz2) = (z1|βz2).

The set of unitary operators on Z is a group denoted by U(Z).
Let r ∈ L(ZR) be anti-linear. We say that

r is anti-unitary if r is bijective and (rz1|βrz2) = (z1|βz2).

2.7. Charged symplectic spaces. If ω is anti-hermitian and non-degenerate, then (Z, ω) is
called a charged symplectic space.

Let (Z, ω) be a charged symplectic space and r ∈ L(Z). We say that

r is charged symplectic if r is bijective and (rz1|ωrz2) = (z1|ωz2),
r is charged anti-symplectic if r is bijective and (rz1|ωrz2) = −(z1|ωz2).

The set of charged symplectic operators on Z is a group for the operator composition denoted
by ChSp(Z).

Let r ∈ L(ZR) be antilinear. We adopt the following terminology for various kinds of an
anti-linear operator on a charged symplectic space:

r is anti-charged symplectic if r is bijective and (z1|ωz2) = (rz1|ωrz2),
r is anti-charged anti-symplectic if r is bijective and (z1|ωz2) = −(rz1|ωrz2).

Remark 2.1. The terminology “charged symplectic space” is motivated by applications in
quantum field theory: such spaces describe charged bosons.
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2.8. Complexification of a vector space. Consider a real space Y. Let CY denote its com-
plexification, that is C ⊗R Y, which is a complex vector space equipped with a natural
conjugation denoted by CY 3 w 7→ w ∈ CY.

Clearly, every r ∈ L(Y) extends uniquely to a linear operator on CY, which will be
denoted rC and to a unique anti-linear operator on CY, which will be denoted rC.

2.9. Anti-involutions. Let Y be a vector space. We say that j ∈ L(Y) is an anti-involution,
if j2 = −1.

Let Y be a real space equipped with an anti-involution j ∈ L(Y). We can consider it as
a complex space, with j identified with the imaginary unit i, and then we will denote it by
YC. However, we will seldom do so, and in what follows we treat Y as a real space.

Note that (CY)R has two distinguished anti-involutions: the usual i, and also jC. Set

Z := {y − ijy : y ∈ Y}, Z := {y + ijy : y ∈ Y}.

Z will be called the holomorphic subspace of CY, Z will be called the anti-holomorphic
subspace of CY. The corresponding projections equal 1lZ := 1

2 (1l− ijC) and 1lZ := 1
2 (1l+ ijC).

Clearly, 1l = 1lZ + 1lZ , and CY = Z ⊕ Z. We have Z = Ker(jC − i), Z = Ker(jC + i).
The converse construction is as follows: Let Z be a complex vector space. Let Z be the

space complex conjugate to Z (naturally isomorphic to Z as a real space, but with the
opposite complex structure). Set

Y := Re(Z ⊕ Z) := {(z, z) ∈ Z ⊕ Z : z ∈ Z}.

Clearly Y is a real vector space equipped with the anti-involution

j(z, z) := (iz, iz) = (iz,−iz).

2.10. (Pseudo-)Kähler spaces. Let (·|β·) be a hermitian form on a complex space Y. Then
on YR we have a symmetric form ν,

y2νy1 := Re(y2|βy1), (2.2)

an anti-symmetric form ω,
y2ωy1 := Im(y2|βy1), (2.3)

and an anti-involution j,
jy := iy. (2.4)

Note the relationship y1ωjy2 = y1νy2.
The name pseudo-Kähler space will be used for a space equipped with a nondegenerate

Hermitian form treated as a real space with the three structures (2.2), (2.3) and (2.4). Below
we give a more precise definition:

Definition 2.2. We say that a quadruple (Y, ν, ω, j) is a pseudo-Kähler space if
(1) Y is a real vector space,
(2) ν is a nondegenerate symmetric form,
(3) ω is a nondegenerate anti-symmetric form,
(4) j is an anti-involution,
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(5) y1ωjy2 = y1νy2, y1, y2 ∈ Y.
If in addition ν is positive, then we say that (Y, ν, ω, j) is a Kähler space.

Two structures out of ν, ω, j determine the third. This motivates the following definitions:

Definition 2.3. (1) Let (Y, ω) be a symplectic space. We say that an anti-involution j is
pseudo-Kähler if y1ωjy2 is a symmetric form. If in addition it is positive, then we say
that j is Kähler.

(2) Let (Y, ν) be a euclidean space. We say that an anti-involution j is Kähler if y1νjy2 is
an anti-symmetric form.

The definitions (1) and (2) have other equivalent versions, as seen from the following
theorem:

Theorem 2.4. (1) Let (Y, ω) be a symplectic space. Then (ω, j) pseudo-Kähler iff j ∈
Sp(Y).

(2) Let (Y, ν) be a euclidean space. Then (ν, j) is Kähler iff j ∈ O(Y).

2.11. U(1) symmetries of charge 1. Let Y be a real space. Let U(1) be the group R/2πZ.
Let U(1) 3 θ 7→ uθ ∈ L(Y) be a representation.

Definition 2.5. We say that it is a representation of charge 1 if there exists an anti-
involution jch such that

uθ = cos θ1l + sin θjch.

Proposition 2.6. Let (uθ)θ∈U(1) be a representation of charge 1.
(1) Assume that Y is a symplectic space. Then uθ is symplectic for θ ∈ U(1) iff jch is

pseudo-Kähler.
(2) Assume that Y is a euclidean space. Then uθ is orthogonal for θ ∈ U(1) iff jch is Kähler.

2.12. Operators on Hilbert spaces. If H, K are Hilbert spaces, then B(H,K), U(H,K), resp.
Cl(H,K) denotes the space of bounded, unitary, resp. closed operators from H to K. We set
B(H) := B(H,H), U(H) := U(H,H), Cl(H) := Cl(H,H).

Bh(H), resp. Clh(H) denotes the set of bounded self-adjoint, resp. closed self-adjoint
operators on H.

If (Zi)i∈I is a family of Hilbert spaces, then ⊕
i∈I
Zi will always denote the direct sum in

the sense of Hilbert spaces.
If Z,W are Hilbert spaces, then Z ⊗W will always denote the tensor product of Z and

W in the sense of Hilbert spaces.

3. Canonical commutation and anticommutation relations. In this section first we
will discuss the concept of a representation of canonical commutation relations, abbreviated
a CCR representation. Then we will introduce the notion of a representation of canonical
anticommutation relations, abbreviated a CAR representation. Both concepts come in two
varieties: neutral and charged.

CCR and CAR representations have a long history, going back to e.g. [Di1, JW]. They
were for quite some time an important subject of research in mathematical physics, let us
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mension [Ar1, Ar2, Ar3, ArShi, CMR, Sla]. For a textbook reference on CCR and CAR
representations let us quote [BR], see also [De].

Throughout this section, H will denote a Hilbert space.

3.1. CCR representations. Let (Y, ω) be a symplectic space. Let us first try to define the
concept of a CCR representation in a naive way. We would like to have a linear map

Y 3 y 7→ φπ(y) ∈ Clh(H) (3.1)

satisfying
[φπ(y1), φπ(y2)] = iy1ωy21l. (3.2)

We will call (3.2) the canonical commutation relation in the Heisenberg form. Unfortunately,
this relation is problematic from the rigorous point of view, because one needs to supply it
with the precise meaning of the commutator of unbounded operators on the left hand side.

Weyl proposed to replace (3.2) with another relation involving the operators eiφπ(y).
These operators are bounded, and therefore one does not need to discuss domain questions.
In our definition of CCR representations we will use the canonical commutation relations in
the so-called Weyl form. Under additional regularity assumptions they imply the CCR in
the Heisenberg form.

Definition 3.1. A representation of the canonical commutation relations or a CCR repre-
sentation over (Y, ω) in H is a map

Y 3 y 7→Wπ(y) ∈ U(H) (3.3)

satisfying
Wπ(y1)Wπ(y2) = e−

i
2y1ωy2Wπ(y1 + y2). (3.4)

Wπ(y) is then called the Weyl operator corresponding to y ∈ Y.

3.2. Regular CCR representations.

Definition 3.2. A CCR representation (3.3) is called regular if

R 3 t 7→Wπ(ty) ∈ U(H) is strongly continuous for any y ∈ Y. (3.5)

Clearly, R 3 t 7→ Wπ(ty) is a strongly continuous 1-parameter unitary group. By the
Stone theorem, for any y ∈ Y, we can define its self-adjoint generator

φπ(y) := −i
d
dt
Wπ(ty)

∣∣∣
t=0

.

In other words, eiφπ(y) = Wπ(y).

Definition 3.3. φπ(y) will be called the (bosonic) field operator corresponding to y ∈ Y.

Let w ∈ CY. We can write w = y1 + iy2 for y1, y2 ∈ Y. We set

φπ(w) := φπ(y1) + iφπ(y2).

with Domφπ(w) := Domφπ(y1) ∩Domφπ(y2).

Definition 3.4. φπ(w) will be called the complex field operator corresponding to w ∈ CY.
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It is easy to show the following proposition:

Proposition 3.5. Let y, y1, y2 ∈ Y.
(1) φπ(y) are closed.
(2) φπ(ty) = tφπ(y), t ∈ R.
(3) On Domφπ(y1) ∩Domφπ(y2) we have φπ(y1 + iy2) = φπ(y1) + iφπ(y2).
(4) [φπ(y1), φπ(y2)] = iy1ωy21l holds as a quadratic form on Domφπ(y1) ∩Domφπ(y2).

3.3. Charged CCR representations. CCR representations, as defined in Def. 3.1, are used
mainly to describe neutral bosons. Therefore, sometimes we will call them neutral CCR
representations. In the context of charged bosons one uses another formalism described in
the following definition.

Let (Y, (·|ω·)) be a charged symplectic space. Let us first try to define a charged CCR
representation in a naive way. We would like to have a linear map Y 3 y 7→ ψπ(y) ∈ Cl(H)
satisfying

[ψπ∗(y1), ψπ∗(y2)] = [ψπ(y1), ψπ(y2)] = 0,

[ψπ(y1), ψπ∗(y2)] = i(y1|ωy2)1l, y1, y2 ∈ Y. (3.6)

Again, the above definition is problematic. A possible rigorous definition is given below:

Definition 3.6. We say that a map

Y 3 y 7→ ψπ(y) ∈ Cl(H) (3.7)

is a charged CCR representation iff there exists a map

Y 3 y 7→ φπ(y) ∈ Clh(H)

such that
eiφπ(y1)eiφπ(y1) = e−

1
2Re(y1|ωy2)eiφπ(y1+y2), y1, y2 ∈ Y,

φπ(ty) = tφπ(y), t ∈ R, Domψπ(y) = Domφπ(y) ∩Domφπ(iy) and

ψπ(y) =
1√
2

(φπ(y) + iφπ(iy)) , y ∈ Y.

Note that a charged CCR representation satisfies the conditions of the “naive definition”:

Proposition 3.7. Consider a charged CCR representation. Let y, y1, y2 ∈ Y.
(1) ψπ(λy) = λψπ(y), λ ∈ C;
(2) On Domψπ(y1) ∩Domψπ(y2) we have ψπ(y1 + y2) = ψπ(y1) + ψπ(y2);
(3) In the sense of quadratic forms, we have the identities

[ψπ∗(y1), ψπ∗(y2)] = [ψπ(y1), ψπ(y2)] = 0,

[ψπ(y1), ψπ∗(y2)] = i(y1|ωy2)1l, y1, y2 ∈ Y.

Note that to any charged CCR representation (3.7) we can associate a regular neutral
CCR representation over Y equipped with Re(·|ω·)

Y 3 y 7→ eiφπ(y) ∈ U(H),
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as well as a U(1) symmetry of charge 1

U(1) 3 θ 7→ eiθ1l ∈ Sp(Y).

Conversely, charged CCR representations arise when we have a (neutral) CCR represen-
tation and the underlying symplectic space is equipped with a charge 1 symmetry. Let us
make this precise. Suppose that (Y, ω) is a symplectic space and

Y 3 y 7→ eiφ(y) ∈ U(H)

a neutral CCR representation. Suppose that jch is a pseudo-Kähler anti-involution, so that
U(1) 3 θ 7→ uθ = cos θ1l + sin θjch ∈ Sp(Y) is a charge 1 symmetry. Following Subsection
2.9, we introduce the holomorphic subspace for jch, that is

Zch := {y − ijchy : y ∈ Y} ⊂ CY.

We have a natural identification of the space Zch with Y:

Y 3 y 7→ z =
1√
2
(1l− ijch)y.

We use this identification to define charged fields parametrized by Y:

ψπ∗(y) := φπ (z) , ψπ(y) := φπ (z) .

Thus we obtain a charged CCR representation over YC with the complex structure given by
jch and the anti-hermitian form

(y1|ωy2) := y1ωy2 − iy1ωjchy2.

3.4. CAR representations. Let (Y, ν) be a euclidean space, that is a real vector space Y
equipped with a positive symmetric form ν.

In this subsection we introduce the concept of a representation of canonical anticom-
mutation relations. The definition that we use is very similar to the well-known definiton
of a representation of Clifford relations. In the case of CAR representations we assume in
addition that the operators satisfying the Clifford relations act on a Hilbert space and are
self-adjoint.

CAR representations appear in quantum physics in at least two contexts. First, they
describe many body fermionic systems. Second, they describe spinors, that is, representations
of Spin groups. In most applications the second meaning is restricted to the finite dimensional
case.

Recall that [A,B]+ := AB +BA is the anticommutator of A and B.

Definition 3.8. A representation of the canonical anticommutation relations or a CAR
representation over Y in H is a linear map

Y 3 y 7→ φπ(y) ∈ Bh(H) (3.8)

satisfying
[φπ(y1), φπ(y2)]+ = 2y1νy21l, y1, y2 ∈ Y. (3.9)

The operators φπ(y) are called (fermionic) field operators.
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Remark 3.9. Unfortunately, the analogy between the CAR (3.9) and the CCR (3.2) is
somewhat spoiled by the number 2 on the right hand side of (3.9). The reason for this
convention is to have the identity φπ(y)2 = yνy1l.

In what follows we assume that we are given a CAR representation (3.8). The operators
φπ(y) are called (fermionic) field operators. By complex linearity we can extend the definition
of field operators to w = y1 + iy2 ∈ CY, where y1, y2 ∈ Y:

φπ(w) := φπ(y1) + iφπ(y2).

Definition 3.10. The operators φπ(w) for w ∈ CY are called complex field operators.

3.5. Charged CAR representations. The concept of CAR relations, as defined in Def. 3.9,
is used mainly to describe neutral fermions. Therefeore, sometimes we will call them neu-
tral CAR representations. In the context of charged fermions one uses another formalism
described in the following definition.

Suppose that (Y, (·|·)) is a unitary space.

Definition 3.11. We say that a linear map

Y 3 y 7→ ψπ(y) ∈ B(H)

is a charged CAR representation iff

[ψπ∗(y1), ψπ∗(y2)]+ = [ψπ(y1), ψπ(y2)]+ = 0,

[ψπ(y1), ψπ∗(y2)]+ = (y1|y2)1l, y1, y2 ∈ Y.

Suppose that y 7→ ψπ(y) is a charged CAR representation. Set

φπ(y) := ψπ(y) + ψπ∗(y), (3.10)

y1νy2 := Re(y1|y2). (3.11)

Then Y 3 y 7→ φπ(y) ∈ Bh(H) is a neutral CAR representation over the euclidean space
(Y, ν). In addition, Y is equipped with a charge 1 symmetry U(1) 3 θ 7→ eiθ1l ∈ O(YR).

Conversely, charged CAR representations arise when we have a (neutral) CAR represen-
tation and the underlying euclidean space is equipped with a U(1) symmetry of charge 1.
Let us make this precise. Suppose that (Y, ν) is a euclidean space and

Y 3 y 7→ φπ(y) ∈ Bh(H)

is a neutral CAR representation. Suppose that jch is a Kähler anti-involution, so that U(1) 3
θ 7→ uθ = cos θ1l + sin θjch ∈ O(Y) is a charge 1 symmetry. Following Subsect, 2.9, we
introduce the holomorphic subspace for jch, that is

Zch := {y − ijchy : y ∈ Y} ⊂ CY.

We have a natural identification of the space Zch with Y:

Y 3 y 7→ z =
1
2
(1l− ijch)y.

We use this identification to define charged fields as

ψπ∗(y) := φπ (z) , ψπ(y) := φπ (z) .
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Thus we obtain a charged CAR representation over YC with the complex structure given by
jch and the scalar product

(y1|y2) := y1νy2 − iy1νjchy2, y1, y2 ∈ Y. (3.12)

4. Fock spaces. In this section we fix our terminology related to bosonic and fermionic
Fock spaces. In particular, we introduce the so-called Fock CCR and CAR representations.
Unfortunately, no uniform notation concerning this material seems to exist in the literature.

Let us quote, for example, the following works which discuss constructions related to
Fock spaces: [BR, De, DG1, GJ, RS2]

4.1. Tensor algebra. Let Z be a Hilbert space space. Let ⊗nZ denote the nth tensor power
of Z. We set ⊗0Z := C. The complete tensor algebra over Z is defined as

⊗Z :=
∞
⊕
n=0

⊗nZ,

It is also sometimes called the full Fock space.
The element 1 ∈ ⊗0Z is called the vacuum and will be denoted by Ω.

4.2. Operators dΓ and Γ on the tensor algebra. Let Z,Z1,Z2 be Hilbert spaces. Suppose
that p ∈ B(Z1,Z2) is a contraction. We define

Γn(p) := p⊗n ∈ B(⊗nZ1,⊗nZ2),

Γ(p) :=
∞
⊕
n=0

Γn(p) ∈ B(⊗Z1,⊗Z2).

Likewise, if h ∈ Cl(Z) then we define

dΓn(h) :=
n∑
j=1

1l⊗j−1
Z ⊗ h⊗ 1l⊗(n−j)

Z ∈ Cl(⊗nZ),

dΓ(h) :=
∞
⊕
n=0

dΓn(h) ∈ Cl(⊗Z).

The number operator and the parity operator are defined respectively as

N := dΓ(1l), (4.13)

I := (−1)N = Γ(−1l). (4.14)

Proposition 4.1. Let h, h1, h2 ∈ B(Z), p1 ∈ B(Z,Z1), p2 ∈ B(Z1,Z2), ‖p1‖, ‖p2‖ ≤ 1.
We then have

Γ(eh) = edΓ(h),

Γ(p2)Γ(p1) = Γ(p2p1),

[dΓ(h1),dΓ(h2)] = dΓ([h1, h2]).

4.3. Bosonic and fermionic Fock spaces. Let Z be a Hilbert space. If σ ∈ Sn, then there
exists a unique

Θ(σ) ∈ U(⊗nZ1)
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such that
Θ(σ)y1 ⊗ · · · ⊗ yn = yσ−1(1) ⊗ · · · ⊗ yσ−1(n).

Clearly,
Sn 3 σ 7→ Θ(σ) ∈ U(⊗nZ)

is a representation of the permutation group. We define the following operators on ⊗nZ:

Θn
s :=

1
n!

∑
σ∈Sn

Θ(σ),

Θn
a :=

1
n!

∑
σ∈Sn

sgnσΘ(σ).

It is easy to check that Θn
s and Θn

a are orthogonal projections.
We will write s/a as a subscript which can mean either s or a. We set

Γns/a(Z) := Θn
s/a ⊗

n Z,

Γs/a(Z) := ⊕∞n=0Γ
n
s/a(Z) = Θs/a

al⊗Z.

Γs/a(Z) are called the bosonic, resp. fermionic Fock space [Fo].
Occasionally, we will need the finite particle bosonic, resp. fermionic Fock spaces, denoted

Γfin
s/a(Z), which are the subspaces of Γs/a(Z) consisting of finite sums of n-particle vectors.

4.4. dΓ and Γ operators on Fock spaces. If p ∈ B(Z,W) is a contraction, then Γn(p) maps
Γns/a(Z) into Γns/a(W). Hence Γ(p) maps Γs/a(Z) into Γs/a(W). We will use the same symbols
Γn(p) and Γ(p) to denote the corresponding restricted operators. Γ(p) is sometimes called
the second quantization of p.

If h ∈ Cl(Z), then dΓn(h) maps Γns/a(Z) into itself. Hence, dΓ(h) maps Γs/a(Z) into
itself. We will use the same symbols dΓn(h) and dΓ(h) to denote the corresponding restricted
operators. Perhaps, the correct name of dΓ(h) should be the infinitesimal second quantization
of h.

4.5. Creation and annihilation operators. Let Z be a Hilbert space and z ∈ Z. We consider
the bosonic or fermionic Fock space Γs/a(Z).

Let z ∈ Z. We will now define two operators with the domain Γfin
s/a(Z).

The creation operator of z is defined as

c(z)Ψ :=
√
n+ 1Θn+1

s/a z ⊗Ψ, Ψ ∈ Γns/a(Z).

The annihilation operator of z, satisfies

a(z)Ψ :=
√
n(z|⊗1l Ψ, Ψ ∈ Γns/a(Z).

Proposition 4.2. (1) In the bosonic case, the operators c(z) and a(z) are densely defined
and closable. We denote their closures by the same symbols. They satisfy a(z)∗ = c(z).
Therefore we will write a∗(z) instead of c(z).

[a∗(z1), a∗(z2)] = 0, [a(z1), a(z2)] = 0,

[a(z1), a∗(z2)] = (z1|z2)1l.
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(2) In the fermionic case, the operators c(z) and a(z) are densely defined and bounded. We
denote by the same symbols their closures. They satisfy a(z)∗ = c(z). Therefore we will
write a∗(z) instead of c(z). We have

[a∗(z1), a∗(z2)] = 0, [a(z1), a(z2)] = 0,

[a(z1), a∗(z2)] = (z1|z2)1l.

4.6. Fock CCR representation. For a Hilbert space Z, we introduce the space

Y = Re(Z ⊕ Z) := {(z, z) : z ∈ Z},
which will serve as the phase space of our system. It will be equipped with a symplectic form
ω and a Kähler anti-involution j:

(z, z)ω(w,w) := 2Im(z|w), (4.15)

j(z, z) := (iz, iz). (4.16)

Proposition 4.3.

Y 3 y 7→W (y) = eia∗(z)+ia(z) ∈ U(Γs(Z)), y = (z, z). (4.17)

is a regular CCR representation over (Y, ω) on Γs(Z).

Definition 4.4. We call (4.17) the Fock CCR representation.

4.7. Fock CAR representation. Let Z, Y and j remain as in previous subsection. We equip
Y with the structure of a euclidean space with the scalar product ν:

(z, z)ν(w,w) := Re(z|w),

Clearly, j is a Kähler anti-involution for ν.

Proposition 4.5.

Y 3 y 7→ φ(y) = a∗(z) + a(z) ∈ Bh(Γs(Z)), y = (z, z). (4.18)

is a CAR representation over (Y, ν) on Γa(Z).

Definition 4.6. We call (4.18) the Fock CAR representation.

5. CCR and CAR algebras. In some approaches to quantum physics a considerable
importance is attached to the choice of a ∗-algebra, usually a C∗- or W ∗-algebra, which is
supposed to describe observables of a system [BR, Em, Ha]. By choosing a state (or a family
of states) and making the corresponding GNS construction, we obtain a representation of
this ∗-algebra in a Hilbert space. This philosophy allows us to study quantum systems in a
representation independent fashion.

Many authors try to apply this to bosonic and fermionic systems. This is especially
natural in the case of fermionic systems, where there exists an obvious choice of a C∗-algebra
describing the CAR over a given Euclidean space.

In the bosonic case the situation is more problematic. In particular, for a given symplectic
space several natural choices of CCR algebras are possible. We will describe some of them.
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5.1. Weyl CCR algebras. Let (Y, ω) be a symplectic space, not necessarily of finite di-
mension. In this section we introduce the notion of the Weyl CCR C∗-algebra over Y. It
is the C∗-algebra generated by elements satisfying the Weyl CCR relations over Y. Many
mathematical physicists use them in their description of bosonic systems.

Let us start with the definition of the algebraic Weyl CCR algebra over Y .

Definition 5.1. CCRWeyl
alg (Y) is defined as the ∗-algebra with a basis given by elements

W (y), y ∈ Y, satisfying the relations

W (y1)W (y2) = e−
i
2y1ωy2W (y1 + y2), y1, y2 ∈ Y;

W (y)∗ = W (−y), y ∈ Y.

The following theorem comes from [Sla], see also [BR]:

Theorem 5.2. There exist faithful ∗-representations of CCRWeyl
alg (Y). Let A ∈ CCRWeyl

alg (Y)
and let π be such a representation. Then ‖π(A)‖ does not depend on π.

Thus CCRWeyl
alg (Y) possesses a unique C∗-norm.

Definition 5.3. The Weyl CCR C∗-algebra is defined as

CCRWeyl(Y) :=
(
CCRWeyl

alg (Y)
)cpl

.

where cpl denotes the completion. Clearly, CCRWeyl(Y) is a C∗-algebra.
The following isomorphisms are sometimes called Bogoliubov automorphisms.

Proposition 5.4. Let r ∈ Sp(Y). Then there exists a unique ∗-automorphism r̂ : CCRWeyl(Y) →
CCRWeyl(Y) such that r̂(W (y)) = W (ry), y ∈ Y.

The following proposition explains the relationship between CCR representations and
CCR algebras.

Proposition 5.5. Let Y 3 y 7→Wπ(y) ∈ U(H) be a CCR representation. Then there exists
a unique ∗-representation π : CCRWeyl(Y) → B(H) such that π(W (y)) = Wπ(y). Moreover,
π is isometric.

5.2. Stone – von Neumann CCR algebras. One can argue that the Weyl CCR algebra is
somewhat artificial. In particular, it is a noncommutative analogue of the space of almost
periodic functions, which is quite a pathological object. One can therefore try to look for
alternatives for Weyl CCR algebras. In this and the next subsection we discuss some alter-
native algebras describing CCR.

In this subsection we always assume that (Y, ω) is a finite dimensional symplectic space.
Let us recall the Stone-von Neumann Theorem about the uniqueness of regular CCR rela-
tions (see e.g. [BR]).

Theorem 5.6. Suppose that, for i = 1, 2, Hi are Hilbert spaces and

Y 3 y 7→Wi(y) ∈ U(Hi)
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are regular CCR representations such that Span{Wi(y) : y ∈ Y} is weakly dense in
B(Hi). Then there exists U ∈ U(H1,H2), unique up to a phase factor, such that W2(y) =
UW1(y)U∗, y ∈ Y.

Theorem 5.6 suggests the following definition:

Definition 5.7. A Stone-von Neumann CCR algebra over Y is defined as the von Neumann
algebra B(H) for a certain Hilbert space H with distinguished unitary elements W (y), y ∈ Y,
such that Y 3 y 7→ W (y) is a regular CCR representation and Span{W (y) : y ∈ Y} is
weakly dense in B(H). It is denoted CCRSvN(Y).

By Theorem 5.6, CCRSvN(Y) is defined uniquely up to a unitary equivalence. Clearly,
CCRSvN(Y) is not very interesting as a von Neumann-algebra – it is isomorphic to the usual
type I factor. What is interesting is the category of Bogoliubov automorphisms between
these algebras, described in the following proposition:

Proposition 5.8. (1) Let r ∈ Sp(Y). Then there exists a unique spatially implementable
∗-automorphism r̂ of CCRSvN(Y) such that r̂(W (y)) = W (ry), y ∈ Y.

(2) Let Y1 be a symplectic subspace of Y. Then there is a unique embedding of CCRSvN(Y1)
in CCRSvN(Y), such that, for y ∈ Y1, W (y) in the sense of CCRSvN(Y1) coincide with
W (y) in the sense of CCRSvN(Y).

5.3. Regular CCR algebras. Let (Y, ω) be a symplectic space of arbitrary dimension. FinSym(Y)
will denote the set of finite dimensional symplectic subspaces of Y.

In this subsection we introduce the notion of the regular CCR algebra over Y. In the
literature, it is rarely used. Weyl CCR algebras are more common. Nevertheless, it is a nat-
ural construction, and we will find it useful, especially to describe charged bosonic systems.
Its use was advocated by I.Segal.

Let Y1,Y2 ∈ FinSym(Y) and Y1 ⊂ Y2. We can define their Stone-von Neumann CCR
algebras, as in Definition 5.7. By Proposition 5.8, we have a natural embedding

CCRSvN(Y1) ⊂ CCRSvN(Y2).

We can define the algebraic regular CCR ∗-algebra as the inductive limit of Stone-von
Neumann CCR algebras:

Definition 5.9. We set

CCRreg
alg(Y) :=

⋃
Y1∈FinSym(Y)

CCRSvN(Y1). (5.19)

Clearly, CCRreg
alg(Y) is a ∗-algebra equipped with a C∗-norm.

Definition 5.10. We define the regular CCR C∗-algebra over Y as

CCRreg(Y) :=
(
CCRreg

alg(Y)
)cpl

,

where the completion is with respect to the norm defined above.

Clearly, CCRreg(Y) is a generalization of the Stone-von Neumann algebra CCR(Y) from
Definition 5.7.
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We have an obvious extension of Proposition 5.8:

Proposition 5.11. Let r ∈ Sp(Y). Then there exists a unique ∗-isomorphism r̂ : CCRreg(Y) →
CCRreg(Y) such that r̂(W (y)) = W (ry), y ∈ Y, and if Y1 ∈ FinSym(Y), then r̂ restricted
to CCRSvN(Y1) → CCRSvN(rY1) is σ-weakly continuous.

Among the Bogoliubov automorphism one can distinguish the parity, that is α := −̂1l.
Clearly, α is an involution. Elements of CCRreg(Y) fixed by α are called even and form a
subalgebra denoted CCRreg

0 (Y).

Proposition 5.12. Let Y 3 y 7→ Wπ(y) ∈ U(H) be a regular CCR representation. Then
there exists a unique ∗-representation π : CCRreg(Y) → B(H) such that π(W (y)) = Wπ(y),
y ∈ Y, and which, for Y1 ∈ FinSym(Y), is σ-weakly continuous on the subalgebras CCRSvN(Y1) ⊂
CCRreg(Y). Moreover, π is isometric.

5.4. C∗-CAR algebras. In the case of the CAR, there is an obvious well-known choice of a
C∗-algebra, which we recall in this subsection. It is discussed in many places in the literature,
see for instance [Ar3, PR].

Throughout the subsection we assume that (Y, ν) is a euclidean space.

Definition 5.13. The complex unital ∗-algebra generated by selfadjoint elements φ(y) de-
pending linearly on y ∈ Y satisfying

[φ(y1), φ(y2)]+ = 2y1νy21l, y1, y2 ∈ Y, (5.20)

will be denoted by CARalg(Y).

It is easy to prove the following proposition:

Proposition 5.14. There exists a unique C∗-norm on CARalg(Y).

Definition 5.15. We set

CARC
∗
(Y) :=

(
CARalg(Y)

)cpl

,

where the completion is with respect to the C∗ norm defined above.

Remark 5.16. In the literature, CARC
∗
(Y) is usually denoted CAR(Y). Our more compli-

cated notation is motivated by the fact that there exist other natural ∗algebras that describe
the CAR over Y. Another choice, discussed in [DG2, PR], is the W ∗-algebra CARW

∗
(Y),

obtained by taking the weak closure in the GNS representation for the unique tracial state
on CARC

∗
(Y).

Clearly, CARC
∗
(Y) is a C∗ algebra. It coincides with CARC

∗
(Ycpl). Hence it is enough

to assume that Y is a real Hilbert space.
The following proposition describes the so-called fermionic Bogoliubov automorphisms:

Proposition 5.17. If r ∈ O(Y), there exists a unique ∗-automorphism r̂ of CARC
∗
(Y)

satisfying r̂(φ(y)) = φ(ry).
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Among the Bogoliubov automorphism a special role is played by the parity, that is
α := −̂1l. Clearly, α is an involution. Elements of CARC

∗
(Y) fixed by α are called even and

form a subalgebra denoted CARC
∗

0 (Y).
The relationship between CAR representations and the algebra CARC

∗
(Y) is given by

the following proposition:

Proposition 5.18. If
Y 3 y 7→ φπ(y) ∈ Bh(H)

is a CAR representation, then there exists a unique ∗-homomorphism of C∗-algebras

π : CARC
∗
(Y) → B(H)

such that π(φ(y)) = φπ(y), y ∈ Y.

CARC
∗
(Y) belongs to one of the best known classes of C∗-algebras, as seen from the

following proposition:

Proposition 5.19. If Y is infinite dimensional separable, then CARC
∗
(Y) is isomorphic to

the so-called uniformly hyperfinite C∗-algebra of the type 2∞, sometimes denoted UHF (2∞).

6. Quantization of neutral systems. In this and the next section we describe the positive
quantization of classical linear systems. It is natural to divide the discussion into two sections:
the first about neutral and the second about charged systems. In both sections we describe
bosonic and fermionic systems. Then we consider discrete symmetries: the time reversal and
the charge reversal.

In the neutral formalism the classical phase space Y is real and is equipped with a
symplectic form ω in the bosonic case, resp. with a positive scalar product ν in the fermionic
case. The dynamics describing the time evolution satisfies rt ∈ Sp(Y), resp. rt ∈ O(Y). The
problem adressed in this section is to find a CCR representation, resp. a CAR representation,
on a Hilbert space H and a positive selfadjoint operator H on H such that eitH implements
rt.

We will do it by finding a Kähler anti-involution that commutes with the dynamics, and
thus leads to a Fock representation in which the dynamics is implementable.

It turns out that this is easy in the fermionic case. The bosonic case is more technical.
In particular, one needs to assume that the dynamics is stable, which roughly means that
the classical Hamiltonian is positive.

One often assumes that the dynamics {rt}t∈R is a part of a larger group of symmetries
G. In other words, our starting point is a homorphism of a group G into Sp(Y), resp. O(Y).
One often asks whether the action of G can be implemented in the Hilbert space H by
unitary or, sometimes, anti-unitary operators.

6.1. Neutral bosonic systems.

6.1.1. Algebraic quantization of a symplectic dynamics. Let (Y, ω) be a symplectic space.
Let R 3 t 7→ rt ∈ Sp(Y) be a 1-parameter group.
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It is easy to describe the quantum counterpart of the above classical dynamical system.
We take one of the CCR algebras over (Y, ω), say CCRWeyl(Y), and equip it with the group
of Bogoliubov automorphisms r̂t, defined by

r̂t(W (y)) = W (rty), y ∈ Y.

6.1.2. Stable symplectic dynamics. Typical symplectic dynamics that appear in physics
have positive Hamiltonians. We will call such dynamics stable. We will see that (under some
technical conditions) such dynamics lead to uniquely defined Fock representations.

It is easy to make the concept of stability precise if dimY < ∞. In this case Y has a
natural topology. We, of course, assume that the dynamics t 7→ rt is continuous. Let a be
its generator, so that rt = eta. Clearly, the form β defined by

y1βy2 := y1ωay2, y1, y2 ∈ Y, (6.1)

is symmetric. We say that the group t 7→ rt is stable if β is strictly positive.

6.1.3. Kähler structure for a weakly stable symplectic dynamics. To generalize the concept
of stability to an infinite dimension, we need to equip (Y, ω) with a topology. There are
various possibilities to do this, let us consider the simplest one.

Definition 6.1. We say that (Y, ω, β, (rt)t∈R) is a weakly stable dynamics if the following
conditions are true:
(1) β is a positive definite symmetric form. We equip Y with the norm ‖y‖en := (y · βy) 1

2 .
We denote by Yen the completion of Y with respect to this norm.

(2) We assume that t 7→ rt ∈ Sp(Y) is bounded and strongly continuous. Thus we can
extend rt to a strongly continuous group on Yen and define its generator a, so that
rt = eta.

(3) Kera = {0}, or equivalently,
⋂
t∈R

Ker(rt − 1l) = {0}.

(4) We assume that Y ⊂ Dom a and

y1βy2 = y1ωay2, y1, y2 ∈ Y. (6.2)

If in addition ω is bounded for the topology given by β, so that it can be extended to the whole
Yen, we will say that the dynamics is strongly stable. In this case (Yen, ω) is a symplectic
space.

Note that β has two roles: it endows Y with a topology and it is the Hamiltonian for rt.

Theorem 6.2. Let (Y, ω, β, (rt)t∈R) be a weakly stable dynamics. Then
(1) rt are orthogonal transformations on the real Hilbert space Yen.
(2) a is anti-self-adjoint and Kera = {0}.
(3) Let h :=

√
aa∗ =

√
a∗a. The polar decomposition

a =: hj = jh

defines an anti-involution j on Yen.
(4) h is a positive selfadjoint operator.
(5) The dynamics is strongly stable iff h ≥ C for some C > 0.
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Recall that given a strictly positive operator h on Yen we can define a scale of Hilbert
spaces hsYen. Then rt and j are bounded on Yen∩hsYen for the norm of hsYen. Let rs,t and js
denote their extensions. Similarly, a and h are closable on Yen∩hsYen for the norm hsYen. Let
as, hs denote their closures. Clearly, for any s, as = hsjs = jshs is the polar decomposition,
js is an orthogonal anti-involution and rs,t = etas is an orthogonal 1-parameter group.

Let ·s denote the natural scalar product on hsYen. Let us express the scalar product and
the symplectic form in terms of (·|β·):

y1 ·s y2 = y1βh
−2sy2 = (h−2sy1)βy2,

y1ωy2 = y1βa
−1y2 = (a−1y1)βy2.

Note that the symplectic form does not need to be everywhere defined,
Of particular interest for us is the case s = 1

2 , for which we introduce the notation
Ydyn := h

1
2Yen. In what follows we drop the subscript s = 1

2 from rs,t, js, ·s, as and hs.

Proposition 6.3. Ydyn equipped with (·, ω, j) is a Kähler space.

Clearly, h is positive and we have a dynamics on Ydyn

rt = ejth.

6.1.4. Fock quantization of symplectic dynamics. In this subsection we drop the subscript
dyn from Ydyn. Let Z be the holomorphic subspace of CY for the Kähler anti-involution j
constructed in Thm. 6.2.

Clearly h commutes with j, hence its complexification hC preserves Z. We set hZ := hC

∣∣∣
Z

,

which is a positive self-adjoint operator on Z with KerhZ = {0}.
Likewise (rt)C preserves Z and we have

(rt)C

∣∣∣
Z

= eithZ .

For y ∈ Y define the field operators

φ(y) := a∗
(

1l− ij
2

y

)
+ a

(
1l− ij

2
y

)
.

Then
Y 3 y 7→ eiφ(y) ∈ U(Γs(Z)) (6.3)

is a Fock CCR representation. Introduce the positive operator H := dΓ(hZ) on Γs(Z). We
have

eitHφ(y)e−itH = φ(rty). (6.4)

Definition 6.4. (6.3) is called the positive energy Fock quantization for the weakly stable
dynamics t 7→ rt.

Example 6.5. Let us describe a typical application of the neutral bosonic formalism.
Let Y be the space of real solutions of the Klein-Gordon equation on the Minkowski space

that have a compact support on any space-like hypersurface. It is equipped with a natural
symplectic form obtained by integrating the well-known conserved current on any spacelike
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hypersurface. CY is the space of complex solutions and Z is the space of positive frequency
solutions of the Klein-Gordon equation.

More generally, instead of the Minkowski space we can take a stationary globally hyper-
bolic space-time and allow for a position-dependent mass.

6.2. Neutral fermionic systems.

6.2.1. Algebraic quantization of an orthogonal dynamics. Let (Y, ν) be a real Hilbert space.
We think of it as the phase space of a fermionic system. A strongly continuous 1-parameter
group {rt}t∈R with rt ∈ O(Y) will be called an orthogonal dynamics. We view it as a classical
dynamical system.

We choose CARC
∗
(Y) as the field algebra of our system. It is equipped with the 1-

parameter group of Bogoliubov automorphisms r̂t, defined by

r̂t(φ(y)) = φ(rty), y ∈ Y.

In quantum physics only even fermionic operators are observable. Therefore, it seems
natural to use the even subalgebra CARC

∗

0 (Y) as the observable algebra.

6.2.2. Kähler structure for a nondegenerate orthogonal dynamics. Let a be the generator
of rt, so that rt = eta and a = −a#.

Definition 6.6. We say that the dynamics t 7→ rt ∈ O(Y) is nondegenerate if

Kera = {0}, or equivalently
⋂
t∈R

Ker(rt − 1l) = {0}. (6.5)

Theorem 6.7. Set h :=
√
aa∗ =

√
a∗a. The polar decomposition

a =: hj = jh

defines an anti-involution j on Y, which is Kähler for ν.

Clearly, h is positive and
rt = ejth.

6.2.3. Fock quantization of orthogonal dynamics. Let Z be the holomorphic subspace of
CY for the Kähler anti-involution j.

The operator hC commutes with j. Hence, it preserves Z. We set hZ := hC

∣∣∣
Z

. Note that
hZ is positive.

Consider the Fock representation associated with the Kähler anti-involution j

Y 3 y 7→ φ(y) := a∗
(

1l− ij
2

y

)
+ a

(
1l− ij

2
y

)
∈ Bh(Γa(Z)), (6.6)

and the positive operator H := dΓ(hZ) on Γa(Z). We have

eitHφ(y)eitH = φ(rty). (6.7)

Definition 6.8. (6.6) is called the positive energy Fock quantization for the dynamics
t 7→ rt.
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Example 6.9. Let us describe a typical application of the neutral fermionic formalism.
Let Y be the space of solutions of the Dirac equation on the Minkowski space satisfying

the Majorana condition that have a compact support on any space-like hypersurface. It is
equipped with a natural scalar product obtained by integrating the well-known conserved cur-
rent on any spacelike hypersurface. CY is the space of all solutions, without imposing the
Majorana condition, and Z is the space of positive frequency solutions of the Dirac equation.

More generally, instead of the Minkowski space we can take a stationary globally hyper-
bolic space-time and allow for a position-dependent mass.

6.3. Time reversal in neutral systems.

6.3.1. Algebraic quantization of time reversal. Let (Y, ω) be a symplectic space space with
a dynamics R 3 t 7→ rt ∈ Sp(Y) in the bosonic case, or let (Y, ν) be a real Hilbert space
with a dynamics R 3 t 7→ rt ∈ O(Y) in the fermionic case.

Definition 6.10. A map τ ∈ L(Y) is called a time reversal if τrt = r−tτ and

is anti-symplectic

and τ2 = 1l in the bosonic case,

or

is orthogonal

and τ2 = 1l or τ2 = −1l in the fermionic case.

In the bosonic case we define an antilinear ∗-homomorphism of the algebra CCRWeyl(Y)
by setting τ̂(W (y)) := W (τy). Clearly, τ̂2 is the identity.

In the fermionic case, we we define an antilinear ∗-homomorphism of the algebra CARC
∗
(Y)

by setting τ̂(φ(y)) := φ(τy). Clearly, restricted to CARC
∗

0 (Y), τ̂2 is the identity.

6.3.2. Fock quantization of time reversal. In the bosonic case we assume that the dynamics
is weakly stable, in the fermionic case we assume that it is nondegenerate. In both cases we
can introduce a, j, h. Note that we have

τa = −aτ, τ j = −jτ, τh = hτ.

Recall that τC denotes the antilinear extension of τ to CY. Note that τC preserves Z. We

write τZ := τC

∣∣∣
Z

. Clearly, τZ is anti-unitary and

τZhZ = hZτZ .

τ2
Z = 1l in the bosonic case,

τ2
Z = 1l or τ2

Z = −1l in the fermionic case.

Consider the positive energy quantization of the dynamics on the Fock space Γs/a(Z). On
the quantum level the time reversal is defined as the antiunitary map T := Γ(τZ). We have

THT−1 = H, T eitHT−1 = e−itH ,
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Tφ(y)T−1 = φ(τy), y ∈ Y.

Note that

T 2 = 1l in the bosonic case

T 2 = 1l or T 2 = I in the fermionic case,

where I is the parity operator defined in (4.14).

7. Quantization of charged systems. In the charged formalism, the classical system
is described by a complex vector space Y. In the bosonic case, it is equipped with an
anti-Hermitian form (·|ω·) – we say that it is a charged symplectic space. The dynamics
(rt)t∈R describing the time evolution is assumed to preserve (·|ω·), we say that rt is charged
symplectic. In the fermionic case it is equipped with a positive scalar product (·|·) and without
decreasing the generality we can assume that it is complete – it is a complex Hilbert space.
The dynamics (rt)t∈R preserves (·|·) – it is unitary.

By a positive energy quantization of a charged classical system we mean finding a charged
CCR (resp. CAR) representation y 7→ ψ(y) on a Hilbert space H and a positive selfadjoint
operator H on H such that eitH implements rt.

The complex structure of Y is responsible for the action of a U(1) symmetry (eiθ)θ∈[0,2π].
On the level of the Fock representation it is implemented by the charge operator Q.

Charged systems can be viewed as special cases of neutral systems equipped in addition
with a certain symmetry. Recall that a homomorphism U(1) 3 θ 7→ uθ ∈ L(Y) is a U(1)
symmetry of charge 1 if there exists an anti-involution jch such that uθ = cos θ1l+sin θjch. We
assume that it preserves the symplectic, resp. euclidean form ω, resp. ν, which is equivalent
to saying that jch is pseudo-Kähler, resp. Kähler. We also assume that the dynamics rt
commutes with the symmetry, which is equivalent to saying that jch commutes with rt.

If we equip Y with a complex structure given by jch, then the symmetry uθ becomes
just the multiplication by eiθ. It is then natural to replace the real bilinear forms ω, resp. ν
by closely related sesquilinear forms (·|ω·), resp. (·|·). The invariance of the dynamics with
respect to the charge symmetry is now expressed by the fact that the dynamics is complex
linear.

At the end of this section, we will discuss the charge reversal and the time reversal for
charged systems.

7.1. Charged bosonic systems.

7.1.1. Algebraic quantization of a charged symplectic dynamics. Let (Y, (·|ω·)) be a charged
symplectic space. Let t 7→ rt ∈ ChSp(Y) be a charged symplectic dynamics.

By taking Re(y1|ωy2) we can view YR as a real symplectic space. We choose CCRreg(YR)
as the field algebra of our system. This algebra is generated (in the sense described in
Subsect. 5.3) by the Weyl elements denoted eiψ(y)+iψ∗(y), y ∈ Y, satisfying the relations

eiψ(y1)+iψ∗(y1)eiψ(y2)+iψ∗(y2) = e−iRe(y1|ωy2)eiψ(y1+y2)+iψ∗(y1+y2).
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We can equip CCRreg(YR) with the automorphism groups êiθ and r̂t defined by

êiθ
(
eiψ(y)+iψ∗(y)

)
= eiψ(eiθy)+iψ∗(eiθy),

r̂t

(
eiψ(y)+iψ∗(y)

)
= eiψ(rty)+iψ∗(rty).

As the observable algebra it is natural to choose the so-called gauge invariant regular
CCR algebra CCRreg

gi (Y), which is defined as the set of elements of CCRreg(YR) fixed by êiθ.
Note that CCRreg

gi (Y) is contained in the even algebra CCRreg
0 (YR) and is preserved by the

dynamics r̂t.

Remark 7.1. In this subsection, for the field algebra of our system we preferred to choose
CCRreg(YR) instead of CCRWeyl(YR). This is motivated by the fact that the only element left
invariant by the gauge symmetry êiθ in CCRWeyl(YR) is 1l, whereas in the case of CCRreg(YR)
we obtain a large gauge-invariant algebra.

7.1.2. Fock quantization of a charged symplectic dynamics. The concept of stability of dy-
namics in the charged case is analogous to the neutral case.

Definition 7.2. We say that (Y, (·|ω·), (·|β·), (rt)t∈R) is a weakly stable dynamics if the
following conditions are true:
(1) (·|β·) is a positive definite sesquilinear form. We equip Y with the norm ‖y‖en :=

(y|βy) 1
2 . We denote by Yen the completion of Y with respect to this norm.

(2) We assume that t 7→ rt is bounded and strongly continuous. Thus we can extend rt to
a strongly continuous group on Yen and define its generator ib, so that rt = etib.

(3) Kerb = {0}, or equivalently,
⋂
t∈R

Ker(rt − 1l) = {0}.

(4) We assume that Y ⊂ Domb and

(y1|βy2) := i(y1|ωby2), y1, y2 ∈ Y. (7.8)

If in addition
|(y1|ωy2)| ≤ (y1|βy1)

1
2 (y2|βy2)

1
2 ,

so that (·|ω·) can be extended to the whole Yen, we will say that the dynamics is strongly
stable.

Theorem 7.3. Let (Y, (·|ω·), (·|β·), (rt)t∈R) be a weakly stable dynamics. Then
(1) rt are unitary transformations on the Hilbert space Yen.
(2) b is self-adjoint and Kerb = {0}.

Set q := sgnb, j := i sgnb and h := |b|. Clearly h is positive, and rt = etjh.
Set Ydyn := h

1
2Yen. As in Subsect. 6.1.3, we can view rt, j, b and h as defined on Ydyn.

In what follows we drop the subscript dyn from Ydyn.
Let 1l± := 1l]0,∞[(±b) = 1l{±1}(q), Y± := Ran1l±. Let Z denote the space Y equipped

with the complex structure given by j. (In other words, Z := Y+ ⊕ Y−).
The operators h, q and b preserve Y±. Hence they can be viewed as complex linear

operators on Z as well, in which case they will be denoted hZ , qZ and bZ .
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Consider the space Γs(Z). For y ∈ Y, let us introduce the charged fields on Y, which are
closed operators on Γs(Z) defined by

ψ∗(y) = a∗ (1l+y) + a
(
1l−y

)
,

ψ(y) = a (1l+y) + a∗
(
1l−y

)
. (7.9)

We obtain a charged CCR representation

Y 3 y 7→ ψ(y) ∈ Cl(Γs(Z)). (7.10)

Define the self-adjoint operators on Γs(Z):

H := dΓ(hZ), Q := dΓ(qZ).

Clearly,

eitHψ(y)e−itH = ψ(eitby), eiθQψ(y)e−iθQ = ψ(eiθy), y ∈ Y.

Definition 7.4. (7.9) is called the positive energy Fock quantization for the dynamics
t 7→ rt.

Example 7.5. Let us describe a typical application of the charged bosonic formalism.
Let Y be the space of complex solutions of the Klein-Gordon equation that have a compact

support on any space-like hypersurface. We obtain Z by switching the sign of the imaginary
unit on negative frequency solutions. During quantization, this means that for negative fre-
quency solutions we switch the role of creation and annihilation operators.

As in the neutral case we can allow for a stationary globally hyperbolic space-time and
a position-dependent mass. In addition, we can include a time-independent external vector
potential.

7.2. Charged fermionic systems.

7.2.1. Algebraic quantization of a unitary dynamics. Let (Y, (·|·)) be a complex Hilbert
space describing a charged fermionic system. A strongly continuous 1-parameter group
{rt}t∈R with rt ∈ U(Y) will be called a unitary dynamics.

Clearly, by taking the real scalar product y1νy2 := Re(y1|y2) we can view YR as a real
Hilbert space. We can associate to our system the field algebra CARC

∗
(YR) with distin-

guished elements ψ(y). We can equip it with the automorphism group êiθ and r̂t defined
by

êiθ(ψ(y)) = ψ(eiθy),

r̂t(ψ(y)) = ψ(rty).

Similarly as in the bosonic case, for the observable algebra we choose the so-called gauge-
invariant CAR algebra CARC

∗

gi (Y), which is defined as the set of elements of CARC
∗
(YR)

fixed by êiθ. Note that CARC
∗

gi (Y) is contained in the even algebra CARC
∗

0 (YR) and is
preserved by the dynamics r̂t.



28 JAN DEREZIŃSKI AND CHRISTIAN GÉRARD

7.2.2. Fock quantization of a unitary dynamics. Let ib be the generator of rt, so that rt =
eitb and b is self-adjoint.

Definition 7.6. We say that the dynamics t 7→ rt ∈ U(Y) is nondegenerate if

Kerb = {0}, or equivalently
⋂
t∈R

Ker(rt − 1l) = {0}. (7.11)

Set q := sgnb, j := i sgnb and h := |b|. Clearly h is positive, and rt = etjh. Let 1l± :=
1l]0,∞[(±b) = 1l{±1}(q), Y± := Ran1l±. Let Z denote the space Y equipped with the complex
structure given by j. (In other words, Z := Y+ ⊕ Y−).

The operators h, q and b preserve Y±. Hence they can be also viewed as complex linear
operators on Z as well, in which case they will be denoted hZ , qZ and bZ .

Consider the space Γa(Z). For y ∈ Y, let us introduce the charged fields on Y, which are
closed operators on Γa(Z)

ψ∗(y) = a∗ (1l+y) + a
(
1l−y

)
, (7.12)

ψ(y) = a (1l+y) + a∗
(
1l−y

)
. (7.13)

We obtain a charged CAR representation

Y 3 y 7→ ψ(y) ∈ B(Γa(Z)). (7.14)

Define the self-adjoint operators on Γa(Z)

H := dΓ(hZ), Q := dΓ(qZ).

Clearly,
eitHψ(y)e−itH = ψ(eitby), eiθQψ(y)e−iθQ = ψ(eiθy), y ∈ Y.

Definition 7.7. (7.13) is called the positive energy Fock quantization for the dynamics
t 7→ rt.

Example 7.8. Let us describe a typical application of the charged fermionic formalism.
Let Y be the space of solutions of the Dirac equation that have a compact support on any

space-like hypersurface. We obtain Z by switching the sign of the imaginary unit on negative
frequency solutions. During quantization, this means that for negative frequency solutions
we switch the role of creation and annihilation operators.

As in the neutral case we can allow for a stationary globally hyperbolic space-time and
a position-dependent mass. In addition, we can include a time-independent external vector
potential.

7.3. Charge reversal.

7.3.1. Algebraic quantization of charge reversal. Let (Y, (·|ω·)) be a charged symplectic
space in the bosonic case, or let (Y, (·|·)) be a complex Hilbert space in the fermionic case.

Definition 7.9. We say that χ is a charge reversal iff χ is anti-linear, χ2 = 1l or χ2 = −1l,
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and

(χy1|ωχy2) = (y1|ωy2), (χ is anti-charged symplectic) in the bosonic case;

(χy1|χy2) = (y1|y2), (χ is anti-unitary) in the fermionic case.

Definition 7.10. Suppose that {rt}t∈R is a charged symplectic (resp. unitary) dynamics.
We say that the dynamics is invariant under the charge reversal χ if

χrt = rtχ, t ∈ R.

Similarly, if we have a group of symmetries {rg}g∈G we say that it is invariant under charge
reversal χ iff rgχ = χrg, g ∈ G.

In the bosonic case we define the (linear) automorphism χ̂ of the algebra CCRreg(YR) by

χ̂
(
eiψ(y)+iψ∗(y)

)
= eiψ(χy)+iψ∗(χy).

It restricts to an automorphism of CCRreg
gi (Y).

In the fermionic case we define the (linear) automorphism χ̂ of the algebra CARC
∗
(YR)

by χ̂(ψ∗(y)) = ψ(χy). It restricts to an automorphism of CARC
∗

gi (Y).

7.3.2. Fock quantization of charge reversal. In the bosonic case, assume that the dynamics is
weakly stable. In the fermionic case assume it is nondegenerate. Let b, h, q etc. be constructed
as before. In both bosonic and fermionic cases, it follows that

χh = hχ, χb = −bχ, χq = −qχ, χj = jχ.

We denote χZ the map χ considered on Z. Note that χZ , unlike χ, is unitary. We second-
quantize it by the unitary C := Γ(χZ). We have

CHC−1 = H, CQC−1 = −Q,

Cψ∗(y)C−1 = ψ(χy).

Note that

C2 = 1l or C2 = I.

7.3.3. Neutral subspace. Assume that χ2 = 1l. We can then define the space Yχ := {y ∈
Y : y = χy} and restrict the dynamics and the symmetry group to Yχ. One can call Yχ the
neutral subspace of Y. (In the fermionic case it is also called the Majorana subspace). Note
that Y = Yχ ⊕ iYχ, hence the system can be viewed as a couple of neutral systems.

Let us describe the converse construction. Suppose that we have a neutral system (Y, ω)
or (Y, ν) equipped with the dynamics t 7→ rt. We can extend it to a charged system as follows.
We consider the complexified space CY equipped with the natural conjugation denoted by
the “bar”. We equip it with the anti-hermitian form, resp. scalar product

(y1|ωy2) := y1ωy2,

or (y1|y2) := y1νy2, y1, y2 ∈ CY.
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We extend the dynamics rt to (rt)C on CY. Clearly, (rt)C is a charged symplectic, resp.
unitary dynamics and the complex conjugation χy := y is a charge reversal satisfying χ2 = 1l.
One gets back the original system by the restriction to the neutral subspace.

7.4. Time reversal in charged systems.

7.4.1. Algebraic quantization of time reversal. Let (Y, (·|ω·)) be a charged symplectic space
in the bosonic case, or let (Y, (·|·)) be a complex Hilbert space in the fermionic case.

Definition 7.11. We say that τ ∈ L(Y) is a time reversal iff τrt = r−tτ , τ is anti-linear,
τ2 = 1l or τ2 = −1l, and

(τy1|ωτy2) = −(y1|ωy2), (τ is anti-charged anti-symplectic) in the bosonic case;

(τy1|τy2) = (y1|y2), (τ is anti-unitary) in the fermionic case.

In the bosonic case we define the anti-linear ∗-automorphism τ̂ of the algebra CCRreg(YR)
by

τ̂
(
eiψ(y)+iψ∗(y)

)
= e−iψ(τy)−iψ∗(τy).

It restricts to an anti-linear ∗-automorphism of CCRreg
gi (Y).

In the fermionic case we define the anti-linear ∗-automorphism τ̂ of the algebra CARC
∗
(YR)

by τ̂(ψ(y)) = ψ(τy). It restricts to an automorphism of CARC
∗

gi (Y).

7.4.2. Fock quantization of time reversal. Clearly, we have τq = qτ . Thus τY+ = Y+,
τY− = Y−.

Let τZ denote τ considered on Z. It is anti-linear. We second-quantize τ by the anti-
unitary T := Γ(τ). We obtain

THT−1 = H, T eitHT−1 = e−itH ,

TQT−1 = Q, T eiθQT−1 = e−iθQ.

Tψ(y)T−1 = ψ(τy), Tψ∗(y)T−1 = ψ∗(τy).

T 2 = 1l or T 2 = I.

7.4.3. Commutation between charge and time reversal. It is natural to assume that on the
observable algebra (χ̂τ̂)2 is the identity. This is guaranteed if (χτ)2 equals 1l or −1l. This
leads to the following (anti-)commutation relations for χ and τ :

τχ = χτ or τχ = −χτ.

However, we are free to multiply either χ or τ by i. Therefore, possibly after a redefinition
of χ or τ , we can always assume that

τχ = χτ. (7.15)
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Thus we have 3 commuting symmetries: χ, τ and χτ . They satisfy one of the following sets
of relations:

χ2 = 1l, τ2 = 1l, (χτ)2 = 1l;

χ2 = −1l, τ2 = −1l, (χτ)2 = 1l;

χ2 = 1l, τ2 = −1l, (χτ)2 = −1l;

χ2 = −1l, τ2 = 1l, (χτ)2 = −1l.
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