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1 Introduction

These lecture notes are an expanded version of the lectures given by the first author
in the summer school ”Open Quantum Systems” held in Grenoble, June 16—July 4,
2003. We are grateful to Stphane Attal, Alain Joye, and Claude-Alain Pillet for their
hospitality and invitation to speak.

Acknowledgments. The research of both authors was partly supported by the
EU Postdoctoral Training Program HPRN-CT-2002-0277 and the Polish grants
SPUB127 and 2 P03A 027 25. A part of this work was done during a visit of the
first author to University of Montreal and to the Schrödinger Institute in Vienna. We
acknowledge useful conversations with H. Spohn, C. A. Pillet, W. A. Majewski, and
especially with V. Jaǩsić.

1.1 Fermi Golden Rule and Level Shift Operator in an abstract setting

We will use the name “the Fermi Golden Rule” to describe the well-known second
order perturbative formula for the shift of eigenvalues of a family of operatorsLλ =
L0 + λQ. Historically, the Fermi Golden Rule can be traced back to the early years
of Quantum Mechanics, and in particular to the famous paper by Dirac [Di]. Two
“Golden Rules” describing the second order calculations for scattering amplitudes
can be found in the Fermi lecture notes [Fe] on pages 142 and 148.
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In its traditional form the Fermi Golden Rule is applied to Hamiltonians of quan-
tum systems – self-adjoint operators on a Hilbert space. A nonzero imaginary shift
of an eigenvalue ofL0 indicates that the eigenvalue is unstable and that it has turned
into a resonance under the influence of the perturbationλQ.

In our lectures we shall use the term Fermi Golden Rule in a slightly more general
context, not restricted to Hilbert spaces. More precisely, we shall be interested in the
case whenLλ is a generator of a 1-parameter group of isometries on a Banach space.
For example,Lλ could be an anti-self-adjoint operator on a Hilbert space or the
generator of a group of∗-automorphisms of aW ∗-algebra. These two special cases
will be of particular importance for us.

Note that the spectrum of the generator of a group of isometries is purely imagi-
nary. The shift computed by the Fermi Golden Rule may have a negative real part and
this indicates that the eigenvalue has turned into a resonance. Hence, our convention
differs from the traditional one by the factor ofi.

In these lecture notes, we shall discuss several mathematically rigorous versions
of the Fermi Golden Rule. In all of them, the central role is played by a certain
operator that we call the Level Shift Operator (LSO). This operator will encode the
second order shift of eigenvalues ofLλ under the influence of the perturbation. To
define the LSO forLλ = L0 + λQ, we need to specify the projectionP commuting
with L0 (typically, the projection onto the point spectrum ofL0) and a perturbation
Q. For the most part, we shall assume thatPQP = 0, which guarantees the absence
of the first order shift of the eigenvalues. Given the datum(P, L0, Q), we shall define
the LSO as a certain operator on the range of the projectionP.

We shall describe several rigorous applications of the LSO for(P, L0, Q). One
of them is the “weak coupling limit”, called also the “van Hove limit”. (We will
not, however, use the latter name, since it often appears in a different meaning
in statistical physics, denoting a special form of the thermodynamical limit). The
time-dependent form of the weak coupling limit says that the reduced and rescaled
dynamicse−tL0/λ2PetLλ/λ2P converges to the semigroup generated by the LSO.
The time dependent weak coupling limit in its abstract form was proven by Davies
[Da1, Da2, Da3]. In our lectures we give a detailed exposition of his results.

We describe also the so-called “stationary weak coupling limit”, based on the re-
cent work [DF2]. The stationary weak coupling limit says that appropriately rescaled
and reduced resolvent ofLλ converges to the resolvent of the LSO.

The LSO has a number of other important applications. It can be used to de-
scribe approximate location and multiplicities of eigenvalues and resonances ofLλ

for small nonzeroλ. It also gives an upper bound on the number of eigenvalues of
Lλ for small nonzeroλ.

1.2 Applications of the Fermi Golden Rule to open quantum systems

In these lectures, by an open quantum system we shall mean a “small” quantum sys-
temS interacting with a large “environment” or “reservoir”R. The small quantum
system is described by a finite dimensional Hilbert spaceK and a HamiltonianK.
The reservoir is described by aW ∗-dynamical system(M, τ) and a reference state
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ωR (for a discussion of reference states see the lecture [AJPP]). We shall assume that
ωR is normal andτR-invariant.

If ωR is a(τR, β)-KMS state, then we say that that the reservoir at inverse tem-
peratureβ and that the open quantum system is thermal. Another important special
case is whenR has additional structure, namely consists ofn independent parts
R1, · · · ,Rn , which are interpreted as sub-reservoirs. If the reference state of the
sub-reservoirRj is βj-KMS (for j = 1, · · · , n), then we shall call the correspond-
ing open quantum system multi-thermal.

In the literature one can find at least two distinct important applications of the
Fermi Golden Rule to the study of open quantum systems.

In the first application one considers the weak coupling limit for the dynamics
in the Heisenberg picture reduced to the small system. This limit turns out to be
an irreversible Markovian dynamics—a completely positive semigroup preserving
the identity acting on the observables of the small systemS (n × n matrices). The
generator of this semigroup is given by the LSO for the generator of the dynamics.
We will denote it byM .

The weak coupling limit and the derivation of the resulting irreversible Marko-
vian dynamics goes back to the work of Pauli, Wigner-Weisskopf and van Hove
[WW, VH1, VH2, VH3] see also [KTH, Haa]. In the mathematical literature it was
studied in the well known papers of Davies [Da1, Da2, Da3], see also [LeSp, AL].
Therefore, the operatorM is sometimes called the Davies generator in the Heisen-
berg picture.

One can also look at the dynamics in the Schrödinger picture (on the space of
density matrices). In the weak coupling limit one then obtains a completely positive
semigroup preserving the trace. It is generated by the adjoint ofM , denoted byM∗,
which is sometimes called the Davies generator in the Schrödinger picture.

The second application of the Fermi Golden Rule to the study of open quan-
tum systems is relatively recent. It has appeared in papers on the so-called return to
equilibrium [JP1, DJ1, DJ2, BFS2, M]. The main goal of these papers is to show
that certainW ∗-dynamics describing open quantum systems has only one stationary
normal state or no stationary normal states at all. This problem can be reformulated
into a question about the point spectrum of the so-called Liouvillean—the generator
of the natural unitary implementation of the dynamics. To study this problem, it is
convenient to introduce the LSO for the Liouvillean. We shall denote it byiΓ . It
is an operator acting on Hilbert-Schmidt operators for the systemS—againn × n
matrices.

The use ofiΓ in the spectral theory hinges on analytic techniques (Mourre theory,
complex deformations), which we shall not describe in our lectures. We shall take
it for granted that under suitable technical conditions such applications are possible
and we will focus on the algebraic properties ofM , iΓ and M∗. To the best of
our knowledge, some of these properties have not been discussed previously in the
literature.

In Theorem 17 we give a simple characterization of the kernel of the imaginary
part the operatorΓ . This characterization implies thatΓ has no nontrivial real eigen-
values in a generic nonthermal case. In [DJ2], this result was proven in the context
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of Pauli-Fierz systems and was used to show the absence of normal stationary states
in a generic multithermal case. In our lectures we generalize the result of [DJ2] to a
more general setting.

The characterization of the kernel of the imaginary part ofΓ in the thermal case is
given in Theorem 18. It implies that generically this kernel consists only of multiples
of the square root of the Gibbs density matrix for the small system. In [DJ2], this
result was proven in the more restrictive context of Pauli-Fierz systems and was used
to show the return to equilibrium in the generic thermal case. A similar result was
obtained earlier by Spohn [Sp].

The operatorsM , iΓ andM∗ act on the same vector space (the space ofn ×
n matrices) and have similar forms. Naively, one may expect thatiΓ interpolates
in some sense betweenM and M∗. Although this expectation is correct, its full
description involves some advanced algebraic tools (the so-called noncommutative
Lp-spaces associated to a von Neumann algebra), and for reasons of space we will
not discuss it in these lecture notes (see [DJ4, JP6]).

In the thermal case, the relation between the operatorsM , iΓ andM∗ is consid-
erably simpler—they are mutually similar and in particular have the same spectrum.
This result has been recently proven in [DJ3] and we will describe it in detail in our
lectures.

The similarity ofiΓ andM in the thermal case is closely related to the Detailed
Balance Condition forM . In the literature one can find a number of different defini-
tions of the Detailed Balance Condition applicable to irreversible quantum dynamics.
In these lecture notes we shall propose another one and we will compare it with the
definition due to Alicki [A] and Frigerio-Gorini-Kossakowski-Verri [FGKV].

For reason of space we have omitted many important topics in our lectures—
they are treated in the review [DJ4], which is a continuation of these lecture notes.
Some additional information about the weak coupling limit and the Davies generator
can be also found in the lecture notes [AJPP].

2 Fermi Golden Rule in an abstract setting

2.1 Notation

Let L be an operator on a Banach spaceX . spL, spessL, sppL will denote the spec-
trum, the essential spectrum and the point spectrum (the set of eigenvalues) of the
operatorL. If e is an isolated point inspL, then1e(L) will denote the spectral pro-
jection ofL ontoe given by the usual contour integral. Sometimes we can also define
1e(L) if e is not an isolated point in the spectrum. This is well known ifL is a nor-
mal operator on a Hilbert space. The definition of1e(L) for some other classes of
operators is discussed in Appendix, see (69), (70).

Let us now assume thatL is a self-adjoint operator on a Hilbert space. LetA,B
be bounded operators. Suppose thatp ∈ R. We define

A(p± i0− L)−1B := lim
ε↘0

A(p± iε− L)−1B, (1)
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provided that the right hand side of (1) exists. We will say thatA(p ± i0 − L)−1B
exists if the limit in (1) exists.

The principal value ofp− L

AP(p− L)−1B :=
1
2
(
A(p + i0− L)−1B + A(p− i0− L)−1B

)
and the delta function ofp− L

Aδ(p− L)B :=
i

2π

(
A(p + i0− L)−1B −A(p− i0− L)−1B

)
are then well defined.

B(X ) denotes the algebra of bounded operators onX . If X is a Hilbert space,
then B1(X ) denotes the space of trace class operators andB2(X ) the space of
Hilbert-Schmidt operators onX . By a density matrix onX we meanρ ∈ B1(X )
such thatρ ≥ 0 andTrρ = 1. We say thatρ is nondegenerate ifKerρ = {0}.

For more background material useful in our lectures we refer the reader to Ap-
pendix.

2.2 Level Shift Operator

In this subsection we introduce the definition of the Level Shift Operator. First we
describe the basic setup needed to make this definition.

Assumption 2.1 We assume thatX is a Banach space,P is projection of norm1 on
X andetL0 is a 1-parameterC0- group of isometries commuting withP.

We setE := L0

∣∣∣
RanP

andP̃ := 1−P. Clearly,E is the generator of a 1-parameter

group of isometries onRanP. andL0

∣∣∣
RaneP generates a 1-parameter group of isome-

tries onRanP̃.
Later on, we will often writeL0P̃ instead ofL0

∣∣∣
RaneP. For instance, in (2)((ie +

ξ)P̃− L0P̃)−1 will denote the inverse of(ie + ξ)1− L0 restricted toRanP̃. This is
a slight abuse of notation, which we will make often without a comment.

Most of the time we will also assume that

Assumption 2.2 P is finite dimensional.

Under Assumption 2.1 and 2.2, the operatorE is diagonalizable and we can write
its spectral decomposition:

E =
∑

ie∈spE
ie1ie(E).

Note that1ie(E) are projections of norm one.
In the remaining assumptions we impose our conditions on the perturbation:
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Assumption 2.3 We suppose thatQ is an operator withDomQ ⊃ DomL0 and,
for |λ| < λ0, Lλ := L0 + λQ is the generator of a 1-parameterC0-semigroup of
contractions.

Assumption 2.3 implies that̃PQP andPQP̃ are well defined.

Assumption 2.4 PQP = 0.

The above assumption is needed to guarantee that the first nontrivial contribution
for the shift of eigenvalues ofLλ is 2nd order inλ.

It is also useful to note that if Assumption 2.2 holds, thenP̃QP andPQP̃ are
bounded. Note also that in the definition of LSO only the termsP̃QP andPQP̃ will
play a role and the term̃PQP̃ will be irrelevant.

Assumption 2.5 We assume that for allie ∈ spE there exists

1ie(E)Q((ie + 0)P̃− L0P̃)−1Q1ie(E)

:= lim
ξ↘0

1ie(E)Q((ie + ξ)P̃− L0P̃)−1Q1ie(E)
(2)

Under Assumptions 2.1, 2.2, 2.3, 2.4 and 2.5 we set

M :=
∑

ie∈spE
1ie(E)Q((ie + 0)P̃− L0P̃)−1Q1ie(E) (3)

and call it the Level Shift Operator (LSO) associated to the triple(P, L0, Q).
It is instructive to give time-dependent formulas for the LSO:

M = lim
ξ↘0

∑
ie∈spE

1ie(E)
∫∞
0

e−ξsQQ(s)1ie(E)ds

= lim
ξ↘0

∑
ie∈spE

1ie(E)
∫∞
0

e−ξsQ(−s/2)Q(s/2)1ie(E)ds,

whereQ(t) := etL0Qe−tL0 .

2.3 LSO for C∗
0 -dynamics

In the previous subsection we assumed thatLλ is a generator of aC0-semigroup.
In one of our applications, however, we will deal with another type of semigroups,
the so-calledC∗0 -semigroups (see Appendix for definitions and a discussion). In this
case, we will need to replace Assumptions 2.1 and 2.3 by their “dual versions”, which
we state below:

Assumption 2.1* We assume thatY is a Banach space andX is its dual, that is
X = Y∗, P is a w* continuous projection of norm1 onX andetL0 is a 1-parameter
C∗0 - group of isometries commuting withP.

Assumption 2.3* We suppose thatQ is an operator withDomQ ⊃ DomL0 and,
for |λ| < λ0, Lλ := L0 + λQ is the generator of a 1-parameterC∗0 -semigroup of
contractions.
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2.4 LSO for W ∗-dynamics

The formalism of the Level Shift Operator will be applied to open quantum systems
in two distinct situations.

In the first application, the Banach spaceX is aW ∗-algebra,P is a normal con-
ditional expectation andetL0 is aW ∗-dynamics.

Note thatW ∗-algebras are usually not reflexive andW ∗-dynamics are usually
not C0-groups. However,W ∗-algebras are dual Banach spaces andW ∗-dynamics
areC∗0 -groups.

The perturbation has the formi[V, ·] with V being a self-adjoint element of the
W ∗-algebra. Therefore,etLλ will be a W ∗-dynamics for all realλ – again aC∗0 -
group.

2.5 LSO in Hilbert spaces

In our second application,X is a Hilbert space. Hilbert spaces are reflexive, therefore
we do not need to distinguish betweenC0 andC∗0 -groups.

All strongly continuous groups of isometries on a Hilbert space are unitary
groups. Therefore, the operatorL0 has to be anti-self-adjoint (that meansL0 = iL0,
whereL0 is self-adjoint).

All projections of norm one on a Hilbert space are orthogonal. Therefore, the
distinguished projection has to be orthogonal.

In our applications to open quantum systemsetLλ is a unitary dynamics. This
means in particular thatQ has the formQ = iQ, whereQ is hermitian.

In the case of a Hilbert space the LSO will be denotediΓ . Thus we will isolate
the imaginary unit “i”, which is consistent with the usual conventions for operators
in Hilbert spaces, and also with the convention that we adopted in [DJ2].

Remark 1.In [DJ2] we used a formalism similar to that of Subsection 2.2 in the
context of a Hilbert space. Note, however, that the terminology that we adopted there
is not completely consistent with the terminology used in these lectures. In [DJ2] we
considered a Hilbert spaceX , an orthogonal projectionP , and self-adjoint operators
L0, Q. If Γ is the LSO for the triple(P,L0, Q) according to [DJ2], theniΓ is the
LSO for (P, iL0, iQ) according to the present definition.

Let us quote the following easy fact valid in the case of a Hilbert space.

Theorem 1.Suppose thatX is a Hilbert space, Assumptions 2.1, 2.2, 2.3 and 2.5
hold andQ is self-adjoint. TheneitΓ is contractive fort > 0.

Proof. We use the notationE = iE, L0 = iL, Q = iQ. We have

1
2i

(Γ − Γ ∗) = −
∑

e∈spE

1e(E)Qδ(e− L0)Q1e(E) ≤ 0

Therefore,iΓ is a dissipative operator andeitΓ is contractive fort > 0. 2
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Note that in Theorem 5 we will show that the LSO is the generator of a con-
tractive semigroup also in a more general situation, whenX is a Banach space. The
proof of this fact will be however more complicated and will require some additional
technical assumptions.

2.6 The choice of the projectionP

In typical application of the LSO, the operatorsL0 andQ are given and our goal is
to study the operator

Lλ := L0 + λQ. (4)

More precisely, we want to know what happens with its eigenvalues when we switch
on the perturbation.

Therefore, it is natural to choose the projectionP as “the projection onto the point
spectrum ofL0”, that is

P =
∑
e∈R

1ie(L0), (5)

provided that (5) is well defined.
More generally, if we were interested only about what happens around some

eigenvalues{ie1, . . . , ien} ⊂ sppL0, then we could use the LSO defined with the
projection

P =
n∑

j=1

1iej
(L0). (6)

Clearly, ifX is a Hilbert space andL0 is anti-self-adjoint, then1ie(L0) are well
defined for alle ∈ R. Moreover, both (5) and (6) are projections of norm one com-
muting withL0, and hence they satisfy Assumption 2.1.

There is no guarantee that the spectral projections1ie(L0) are well defined in the
more general case whenL0 is the generator of a group of isometries on a Banach
space. If they are well defined, then they have norm one, however, we seem to have
no guarantee that their sums have norm one. In Appendix we discuss the problem of
defining spectral projections onto eigenvalues in this more general case.

Note, however, that in the situation considered by us later, we will have no such
problems. In fact,P will be always given by (5) and will always have norm one.

If 1ie(L0) is well defined for alle ∈ R and we takeP defined by (5), thenP will
be determined by the operatorL0 itself. We will speak about “the LSO forLλ”, if
we have this projection in mind.

2.7 Three kinds of the Fermi Golden Rule

Suppose that Assumptions 2.1, 2.2, 2.3, 2.4 and 2.5, or 2.1*, 2.2, 2.3*, 2.4 and 2.5 are
satisfied. LetP be given by (5) andM be the LSO for(P, L0, Q). Our main object
of interest is the operatorLλ.

The assumption 2.4 (PQP = 0) guarantees that there are no first order effects
of the perturbation. The operatorM describes what happens with the eigenvalues of
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L0 under the influence of the perturbationλQ at the second order ofλ. Following
the tradition of quantum physics, we will use the name “the Fermi Golden Rule” to
describe the second order effects of the perturbation.

The Fermi Golden Rule can be made rigorous in many ways under various tech-
nical assumptions. We can distinguish at least three varieties of the rigorous Fermi
Golden Rule:

• Analytic Fermi Golden Rule: E + λ2M predicts the approximate location (up
to o(λ2)) and the multiplicity of the resonances and eigenvalues ofLλ in a neigh-
borhood ofsppL0 for smallλ.
The Analytic Fermi Golden Rule is valid under some analyticity assumptions on
Lλ. It is well known and follows essentially by the standard perturbation theory
for isolated eigenvalues ([Ka, RS4], see also [DF1]). The perturbation arguments
are applied not toLλ directly, but to the analytically deformedLλ. More or less
explicitly, this idea was applied to Liouvilleans describing open quantum systems
[JP1, JP2, BFS1, BFS2]. One can also apply it to theW ∗-dynamics of open
quantum systems [JP4, JP5].
Thestationary weak coupling (or van Hove) limit of [DF2], described in The-
orem 2 and 5, can be viewed as an infinitesimal version of the Analytic Fermi
Golden Rule.

• Spectral Fermi Golden Rule: The intersection of the spectrum ofE + λ2M
with the imaginary line predicts possible location of eigenvalues ofLλ for small
nonzeroλ. It also gives an upper bound on their multiplicity.
Note that if the Analytic Fermi Golden Rule is true, then so is the Spectral Fermi
Golden Rule. However, to prove the Analytic Fermi Golden Rule we need strong
analytic assumption, whereas the Spectral Fermi Golden Rule can be shown un-
der much weaker conditions. Roughly speaking, these assumptions should allow
us to apply the so-called positive commutator method.
The Spectral Fermi Golden Rule is stated in Theorem 6.7 of [DJ2], which is
proven in [DJ1]. Strictly speaking, the analysis of [DJ1] and [DJ2] is restricted
to Pauli-Fierz operators, but it is easy to see that their arguments extend to much
larger classes of operators.
To illustrate the usefulness of the Spectral Fermi Golden Rule, suppose thatX
is a Hilbert space,Lλ = iLλ with Lλ self-adjoint andiΓ is the LSO. Then the
Spectral Fermi Golden Rule implies the bound

dim Ran1p(Lλ) ≤ dim KerΓ I,

whereΓ I := 1
2i (Γ−Γ ∗). Bounds of this type were used in various papers related

to the Return to Equilibrium [JP1, JP2, DJ2, BFS2, M].
• Dynamical Fermi Golden Rule. The operatoret(E+λ2M) describes approxi-

mately the reduced dynamicsPetLλP for smallλ.
The Dynamical Fermi Golden Rule was rigorously expressed in the form ofthe
weak coupling by Davies [Da1, Da2, Da3, LeSp]. Davies showed that under
some weak assumptions we have
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lim
λ→0

e−tE/λ2
PetLλ/λ2

P = etM .

We describe his result in Theorems 3 and 5.

3 Weak coupling limit

3.1 Stationary and time-dependent weak coupling limit

In this section we describe in an abstract setting the weak coupling limit. We will
show that, under some conditions, the dynamics restricted to an appropriate sub-
space, rescaled and renormalized by the free dynamics, converges to the dynamics
generated by the LSO.

We will give two versions of the weak coupling limit: the time dependent and the
stationary one. The time-dependent version is well known and in its rigorous form is
due to Davies [Da1, Da2, Da3]. Our exposition is based on [Da3].

The stationary weak coupling limit describes the same phenomenon on the level
of the resolvent. Our exposition is based on recent work [DF2]. Formally, one can
pass from the time-dependent to stationary weak coupling limit by the Laplace trans-
formation. However, one can argue that the assumptions needed to prove the station-
ary weak coupling limit are sometimes easier to verify. In fact, they involve the exis-
tence of certain matrix elements of the resolvent (a kind of the “Limiting Absorption
Principle”) only at the spectrum ofE, a discrete subset of the imaginary line. This is
often possible to show by positive commutator methods.

Throughout the section we suppose that most of the assumptions of Subsection
2.2 are satisfied. We will, however, list explicitely the assumptions that we need for
each particular result.

The first theorem describes the stationary weak coupling limit.

Theorem 2.Suppose that Assumptions 2.1, 2.2, 2.3 and 2.4, or 2.1*, 2.2, 2.3* and
2.4 are true. We also assume the following conditions:

1) For ie ∈ spE, ξ > 0, we haveie + ξ 6∈ spP̃LλP̃.
2) There exists an operatorMst onRanP such that, for anyξ > 0,

Mst :=
∑

ie∈spE
lim
λ→0

1ie(E)Q
(
(ie + λ2ξ)P̃− P̃LλP̃

)−1

Q1ie(E). (7)

(Note that a priori the right hand side of (7) may depend onξ; we assume that
it does not).

3) For anyie, ie′ ∈ spE, e 6= e′ andξ > 0,

lim
λ→0

λ1ie(E)Q
(
(ie + λ2ξ)P̃− P̃LλP̃

)−1

Q1ie′(E) = 0,

lim
λ→0

λ1ie′(E)Q
(
(ie + λ2ξ)P̃− P̃LλP̃

)−1

Q1ie(E) = 0.
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Then the following holds:

1. etMst is a contractive semigroup.
2. For anyξ > 0∑

ie∈spE
lim
λ→0

1ie(E)
(
ξ − λ−2(Lλ − ie)

)−1 P = (ξP−Mst)−1.

3. For anyf ∈ C0([0,∞[),

lim
λ→0

∫ ∞

0

f(t)e−tE/λ2
PetLλ/λ2

Pdt =
∫ ∞

0

f(t)etMstdt. (8)

Next we describe the time-dependent version of the weak coupling limit forC0-
groups.

Theorem 3.Suppose that Assumptions 2.1, 2.3 and 2.4 are true. We make also the
following assumptions:

1) PQP̃ andP̃QP are bounded. (Note that this assumption guarantees thatP̃LλP̃
is the generator of aC0-semigroup onRanP̃).

2) Set

Kλ(t) :=
∫ λ−2t

0

e−sEPQesePLλ
ePQPds. (9)

We suppose that for allt0 > 0, there existsc such that

sup
|λ|<λ0

sup
0≤t≤t0

‖Kλ(t)‖ ≤ c.

3) There exists a bounded operatorK onRanP such that

lim
λ→0

Kλ(t) = K

for all 0 < t < ∞.
4) There exists an operatorMdyn such that

s− lim
t→∞

t−1

∫ t

0

esEKe−sEds = Mdyn.

Then the following holds:

1. etMdyn is a contractive semigroup.
2. For anyy ∈ RanY andt0 > 0,

lim
λ→0

sup
0≤t≤t0

‖e−Et/λ2
PetLλ/λ2

Py − etMdyny‖ = 0.
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One of possibleC∗0 -versions of the above theorem is given below.

Theorem 3* Suppose that Assumptions 2.1*, 2.3* and 2.4 are true. We make also
the following assumptions:

0) etE is aC0-group. (We already know that it is aC∗0 -group).
1) PQP̃ and P̃QP are w* continuous. (Note that this assumption guarantees that

P̃LλP̃ is a generator of aC∗0 -semigroup onRanP̃).
2) In the sense of a w* integral [BR1] we set

Kλ(t) :=
∫ λ−2t

0

e−sEPQesePLλ
ePQPds. (10)

We suppose that for allt0 > 0, there existsc such that

sup
|λ|<λ0

sup
0≤t≤t0

‖Kλ(t)‖ ≤ c.

3) there exists a w* continuous operatorK onRanP such that

lim
λ→0

Kλ(t) = K

for all 0 < t < ∞.
4) There exists an operatorMdyn such that

s− lim
t→∞

t−1

∫ t

0

esEKe−sE = Mdyn.

Then the same conclusions as in Theorem 3 hold.
Theorem 3 is due to Davies (we put together Theorem 5.18 and 5.11 from [Da3]).

Note that, following Davies, in Theorems 3 and 3* we do not make Assumption
2.2 about the finite dimension ofRanP. Instead, we make the assumption 4) about
spectral averaging. If we impose Assumption 2.2, then we can drop 4) and make
some other minor simplifications, as is described below:

Theorem 4.Suppose that Assumptions 2.1, 2.2, 2.3 and 2.4 or 2.1*, 2.2, 2.3* and
2.4 are true. Set

Kλ(t) :=
∫ λ−2t

0
e−sEPQesePLλ

ePQPds.

We make also the following assumptions:
1) We suppose that for allt0 > 0, there existsc such that

sup
|λ|<λ0

sup
0≤t≤t0

‖Kλ(t)‖ ≤ c.

2) There exists an operatorK onRanP such that

lim
λ→0

Kλ(t) = K

for all 0 < t < ∞. We set

Mdyn :=
∑

ie∈spE
1ie(E)K1ie(E)
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Then the following holds:

1. etMdyn is a contractive semigroup.
2. For anyt0 > 0,

lim
λ→0

sup
0≤t≤t0

‖e−Et/λ2
PetLλ/λ2

P− etMdyn‖ = 0. (11)

Note that if there exists an operatorMst satisfying (8), and an operatorMdyn

satisfying (11), then they clearly coincide. In our last theorem of this section we will
describe a connection betweenMst, Mdyn and the LSO.

Theorem 5.Suppose that Assumptions 2.1, 2.2, 2.3 and 2.4, or 2.1*, 2.2, 2.3* and
2.4 are true. Suppose also that the following conditions hold:

1)
∫∞
0

sup
|λ|≤λ0

‖PQesePLλ
ePQP‖ds < ∞.

2) For anys > 0, lim
λ→0

PQesePLλ
ePQP = PQesePL0QP.

Then

1. Assumption 2.5 holds, and hence the LSO for(P, L0, Q), defined in (3) and de-
notedM , exists.

2. etM is a contractive semigroup.
3. The assumptions of Theorem 2 hold andM = Mst, consequently, for anyξ > 0

lim
λ→0

∑
ie∈spE

1ie(E)
(
ξ − λ−2(Lλ − ie)

)−1 P = (ξP−M)−1.

4. The assumptions of Theorem 4 hold andM = Mdyn, consequently

lim
λ→0

sup
0≤t≤t0

‖e−Et/λ2
PetLλ/λ2

P− etM‖ = 0.

3.2 Proof of the stationary weak coupling limit

Proof of Theorem 2.We follow [DF2]. Let ie ∈ spE. Set

Gλ(ξ, ie) := ξP + λ−2(ieP− E)

−PQ
(
(λ2ξ + ie)P̃− P̃LλP̃

)−1

QP.

By the so-called Feshbach formula (see e.g. [DJ1, BFS1]), forξ > 0 we have

Gλ(ξ, ie)−1 = P
(
ξ + λ−2(ie− Lλ)

)−1 P

This and the dissipativity ofLλ implies the bound

‖Gλ(ξ, ie)−1‖ ≤ ξ−1. (12)
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Write for shortnessG instead ofGλ(ξ, ie). For ie′ ∈ spE, set

Pe′ := 1ie′(E),

Pe′ := P− 1ie′(E).

DecomposeG = Gdiag + Goff into its diagonal and off-diagonal part:

Gdiag :=
∑

ie′∈spE
Pe′GPe′ ,

Goff :=
∑

ie′∈spE
Pe′GPe′ =

∑
ie′∈spE

Pe′GPe′ .

First we would like to show that forξ > 0 and small enoughλ, Gdiag is invertible.
By an application of the Neumann series,PeGdiag is invertible onRanPe, and we
have the bound

‖PeG
−1
diag‖ ≤ cλ2. (13)

It is more complicated to prove thatPeGdiag is inverible onRanPe.
We fix ξ > 0. We know thatG is invertible and‖G−1‖ ≤ ξ−1. Hence we can

write
GdiagG

−1 = 1−GoffG−1.

Therefore
PeGdiagG

−1 = Pe − PeGoffPeG
−1,

PeGdiagG
−1 = Pe − PeGoffG−1.

(14)

The latter identity can be for small enoughλ transformed into

PeG
−1 = G−1

diagPe −G−1
diagPeGoffG−1. (15)

We insert (15) into the first identity of (14) to obtain

PeGdiagG
−1 = Pe − PeGoffPeG

−1
diag + PeGoffPeG

−1
diagGoffG−1. (16)

We multiply (16) from the right byPe to get

PeGdiagPeG
−1Pe = Pe + PeGoffPeG

−1
diagGoffG−1Pe. (17)

Now, using
lim
λ→0

λ‖Goff‖ = 0, (18)

(12) and (13) we obtain

lim
λ→0

PeGoffPeG
−1
diagGoffG−1Pe = 0.

Thus, for small enoughλ,
PeGdiagB1 = Pe,

where
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B1 := PeG
−1Pe

(
Pe + PeGoffPeG

−1
diagGoffG−1Pe

)−1

.

Similarly, for small enoughλ, we findB2 such that

B2PeGdiag = Pe.

This implies thatPeGdiag is invertible onRanPe.
Next, we can write

G−1 = G−1
diag −G−1

diagGoffG−1
diag + G−1

diagGoffG−1
diagGoffG−1.

Hence,

PeG
−1 = PeG

−1
diag

(
1−GoffPeG

−1
diag + GoffPeG

−1
diagGoffG−1

)
. (19)

Therefore, for a fixedξ, by (12), (13) and (18) we see that asλ → 0 we have

−GoffPeG
−1
diag + GoffPeG

−1
diagGoffG−1 → 0.

Therefore, for small enoughλ, we can invert the expression in the bracket of (19).
Consequently,

Pe(G−1
diag −G−1) = PeG

−1
(
1−GoffPeG

−1
diag + GoffPeG

−1
diagGoffG−1

)−1

×
(
GoffPeG

−1
diag −GoffPeG

−1
diagGoffG−1

)
.

(20)
Therefore, for a fixedξ, by (12), (13) and (18) we see that, asλ → 0, we have

Pe(G−1
diag −G−1) → 0. (21)

Hence, (12) and (21) imply thatPeG
−1
diag is uniformly bounded asλ → 0. We

know that
PeGdiag → Peξ − PeMst. (22)

Therefore,ξPe − PeMst is invertible onRanPe and

PeG
−1
diag → (Peξ − PeMst)−1.

Using again (21), we see that

PeG
−1 → (Peξ − PeMst)−1. (23)

Summing up (23) overe, we obtain∑
ie∈spE

PeGλ(ξ, ie)−1 → (ξP−Mst)−1, (24)

which ends the proof of 2.
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Let us now prove 1. We have∑
ie∈spE

PeGλ(ξ, ie)−1 =
∑

ie∈spE

∞∫
0

e−t(ξ+λ−2ie)PeetLλ/λ2Pdt

=
∞∫
0

e−tξe−tE/λ2PetLλ/λ2Pdt

(25)

Clearly,‖e−tE/λ2PetLλ/λ2P‖ ≤ 1. Therefore,∥∥∥∥∥∥
∑

ie∈spE
PeGλ(ξ, ie)−1

∥∥∥∥∥∥ ≤ ξ−1.

Hence, by (24), ∥∥(ξP−Mst)−1
∥∥ ≤ ξ−1,

which proves 1.
Let f ∈ C0([0,∞[) andδ > 0. By the Stone-Weierstrass Theorem, we can find

a finite linear combination of functions of the forme−tξ for ξ > 0, denotedg, such
that‖etδf − g‖∞ < ε. Set

Aλ(t) := e−tE/λ2
PetLλ/λ2

P, A0(t) := etMdyn .

Note that‖Aλ(t)‖ ≤ 1 and‖A0(t)‖ ≤ 1. Now

‖
∫

f(t)(Aλ(t)−A0(t))dt‖ ≤ ‖
∫

e−δtg(t)(Aλ(t)−A0(t))dt‖

+‖
∫

(f(t)− e−δtg(t))Aλ(t)dt‖ +‖
∫

(f(t)− e−δtg(t))A0(t)dt‖.

By 2. and by the Laplace transformation, the first term on the right hand side goes
to 0 asλ → 0. The last two terms are estimated byε

∫∞
0

e−δtdt, which can be made
arbitrarily small by choosingε small. This proves 3.2

3.3 Spectral averaging

Before we present the time-dependent version of the weak coupling limit, we discuss
the spectral averaging of operators, following [Da3].

In this subsection,Y is an arbitrary Banach space andetE is a 1-parameterC0-
group of isometries onY. ForK ∈ B(Y) we define

K\ := s− lim
t→∞

t−1

∫ t

0

esEKe−sEds, (26)

provided that the right hand side exists.

Theorem 6.Suppose thatK\ exists. Then, for anyt0 > 0, y ∈ Y,

lim
λ→0

sup
0≤t≤t0

‖e−tE/λet(E+λK)/λy − etK\

y‖ = 0.
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Proof. Consider the spaceC([0, t0],Y) with the supremum norm. SetK(t) =
etE/λKe−tE/λ. Forf ∈ C([0, t0],Y), define

Bλf(t) :=
∫ t

0

K(s/λ)f(s)ds,

B0f(t) := K\

∫ t

0

f(s)ds.

Clearly,B0 andBλ are linear operators onC([0, t0],Y) satisfying

‖Bλ‖ ≤ t0‖K‖. (27)

Moreover
lim
λ→0

Bλf = B0f. (28)

To prove (28), by (27) it suffices to assume thatf ∈ C1([0, t0],Y). Now

Bλf(t) =
(∫ t

0
K(s/λ)ds

)
f(t)−

∫ t

0

(∫ s

0
ds1K(s1/λ)

)
f ′(s)ds

→ tK\f(t)−
∫ t

0
sK\f ′(s)ds = B0f(t).

We easily get

‖Bn
λ‖ ≤

tn0
n!
‖K‖n, ‖Bn

0 ‖ ≤
tn0
n!
‖K‖n. (29)

Let y ∈ Y. Setyλ(t) := e−tE/λet(E+λK)/λy. Note that

yλ(t) = y + Bλyλ(t), y0(t) = y + B0y0(t).

Treatingy as an element ofC([0, t0],Y) – the constant function equal toy we can
write

(1−Bλ)−1y =
∞∑

n=0

Bn
λy, (1−B0)−1y =

∞∑
n=0

Bn
0 y,

where both Neumann series are absolutely convergent. Therefore, in the sense of the
convergence in inC([0, t0],Y), we get

yλ =
∞∑

n=0

Bn
λy →

∞∑
n=0

Bn
0 y = y0.

2

Theorem 7.LetY be finite dimesional. ThenK\ exists for anyK ∈ B(Y) and

K\ =
∑

ie∈spE
1ie(E)K1ie(E) = lim

t→∞
t−1

∫ t

0
esEKe−sEds,

lim
λ→0

sup
0≤t≤t0

‖e−tE/λet(E+λK)/λ − etK\‖ = 0.
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Proof. In finite dimension we can replace the strong limit by the norm limit. More-
over,

t−1

∫ t

0

esEKe−sEds =
∑

ie1,ie2∈spE
1ie1(E)K1ie2(E)

eit(e1−e2) − 1
i(e1 − e2)t

.

2

Remark 2.The following results generalize some aspects of Theorem 7 to the case
whenP is not necessarily finite dimensional. They are proven in [Da3]. We will not
need these results.

1) If K\ exists, then it commutes withetE.
2) If K is a compact operator andY is a Hilbert space, thenK\ exists and we can

replace the strong limit in (26) by the norm limit.
3) If E has a total set of eigenvectors, thenK\ exists as well.

3.4 Second order asymptotics of evolution with the first order term

In this subsection we consider a somewhat more general situation than in Subsection
3.1. We make the Assumptions 2.1, 2.3 and 2.4, or 2.1*, 2.3* and 2.4 but we do not
assume thatP is finite dimensional, nor thatPQP = 0. Thus we allow for a term of
first order inλ in the asymptotics of the reduced dynamics. We again follow [Da3].

We assume also thatPQP̃ andP̃QP are bounded or w* continuous and thatE +
λPQP generates aC0- or C∗0 -group of isometries onRanP.

Using the boundedness of off-diagonal elementsPQP̃ and P̃QP, we see that
P̃LλP̃ is the generator of a continuous semigroup.

In this subsection, the definition ofKλ(t) slightly changes as compared with (9):

Kλ(t) :=
∫ λ−2t

0

e−s(E+λPQP)PQesePLλ
ePQPds.

Theorem 8.Suppose that the following assumptions are true:
1) For all t0 > 0, there existsc such that

sup
|λ|<λ0

sup
0≤t≤t0

‖Kλ(t)‖ ≤ c.

2) There exists a bounded (w* continuous in theC∗0 case) operatorK on RanP
such that

lim
λ→0

Kλ(t) = K

for all 0 < t < ∞.
Then fory ∈ RanP

lim
λ→0

sup
0≤t≤t1

∥∥∥PetLλ/λ2
Py − et(E+λPQP+λ2K)/λ2

y
∥∥∥ = 0.
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Proof. SetY := RanP. Consider the spaceC([0, t0],Y). For f ∈ C([0, t0],Y)
define

Hλf(t) :=
∫ t

0
e(E+PQP)(t−s)/λ2

Kλ(t− s)f(s)ds,

Gλf(t) :=
∫ t

0
e(E+PQP)(t−s)/λ2

Kf(s)ds.

Note thatHλ andGλ are linear operators onC([0, t0],Y) satisfying

‖Hn
λ ‖ ≤ cntn0/n!, ‖Gn

λ‖ ≤ cntn0/n!,

Thus1−Hλ and1−Gλ are invertible. In fact, they can be defined by the Neumann
series:

(1−Hλ)−1 =
∑
j=0

Hn
λ , (1−Gλ)−1 =

∑
j=0

Gn
λ.

Next we note that

‖Hn
λ −Gn

λ‖ ≤ ‖Hλ −Gλ‖cn−1tn−1
0 /(n− 1)!, (30)

because

‖Hn
λ −Gn

λ‖ ≤
n−1∑
j=0

‖Hj
λ‖‖G

n−j−1
λ ‖‖Hλ −Gλ‖

≤
n−1∑
j=0

cn−1tn−1
0

k!(n−k−1)!‖Hλ −Gλ‖ = (2ct0)n−1‖Hλ −Gλ‖/(n− 1)!.

Therefore,
‖(1−Hλ)−1 − (1−Gλ)−1‖ ≤ c‖Hλ −Gλ‖, (31)

Next,

(Hλ −Gλ)f(t) =
∫ t

0

e(E+λPQP)(t−s)/λ2
(Kλ(t− s)−K)f(s)ds.

and hence

‖Hλ −Gλ‖ ≤
∫ t0

0

‖Kλ(s)−K‖ds → 0.

Thus
‖(1−Hλ)−1 − (1−Gλ)−1‖ → 0. (32)

Let y ∈ Y. Define the following elements of the spaceC([0, t0],Y):

gλ(t) := e(E+λPQP)t/λ2
y,

hλ(t) := PeLλt/λ2Py,

gλ(t) := e(E+λPQP+λ2K)t/λ2
y.

Now
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hλ = gλ + Hλhλ,

gλ = gλ + Gλgλ.

Thus
hλ − gλ = (1−Hλ)−1gλ − (1−Gλ)−1gλ → 0.

2

3.5 Proof of time dependent weak coupling limit

Proof of Theorem 3 and 3*.In addition to the assumptions of Theorem 8 we sup-
pose thatPQP = 0 andK\ exists.

Theorem 7 implies that

lim
λ→0

sup
0≤t≤t0

‖e−Et/λ2
et(E+λ2K)/λ2

y − etK\

y‖ = 0.

Theorem 8 yields

lim
λ→0

sup
0≤t≤t0

‖PetLλ/λ2
Py − et(E+λ2K)/λ2

y‖ = 0.

Using thatetE is isometric we obtain

lim
λ→0

sup
0≤t≤t0

‖e−Et/λ2
PetLλ/λ2

Py − etK\

y‖ = 0. (33)

It is clear from (33) thatetK\

is contractive.2

Proof of Theorem 4Because of the finite dimension all operators onRanP are w*
continuous and the strong and norm convergence coincide. Besides, we can apply
Theorem 7 about the existence ofK\. 2

3.6 Proof of the coincidence ofMst and Mdyn with the LSO

Proof of Theorem 5.Set

f(s) := sup
|λ|≤λ0

‖PQesePLλ
ePQP‖.

We know thatf(t) is integrable.
For anye ∈ R andξ ≥ 0 we can dominate the integrand in the integral

Fλ(ie, ξ) :=
∫∞
0

PQesePLλ
ePQPe−(ie+λ2ξ)sds

= PQ
(
P̃(ie + λ2ξ)− P̃LλP̃

)−1

QP
(34)
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by f(s). Hence, using the dominated convergence theorem we see thatFλ(ie, ξ) is
continuous atλ = 0 andξ ≥ 0. But∑

ie∈spE
1ie(E)F0(ie, 0)1ie(E)

=
∑

ie∈spE
lim
λ→0

1ie(E)Q
(
P̃(ie + λ2ξ)− P̃LλP̃

)−1

QP1ie(E) = Mst.

Recall (9), the definition ofKλ(t):

Kλ(t) :=
∫ λ−2t

0

e−sEPQesePLλ
ePQPds.

Its integrand can also be dominated byf(s). Hence, using again the dominated con-
vergence theorem, we see that, forλ → 0, Kλ(t) is convergent to

K =
∫ ∞

0

e−sEPQesePL0QPds.

Therefore,
K\ =

∑
ie∈spE

1ie(E)
∫∞
0

QesL0ePQ1ie(E)e−iesds

=
∑

ie∈spE
1ie(E)F0(ie, 0)1ie(E).

2

4 Completely positive semigroups

In this section we recall basic information about completely positive maps and semi-
groups, which are often used to describe irreversible dynamics of quantum systems.
For simplicity, most of the time we restrict ourselves to the finite dimensional case.

4.1 Completely positive maps

The following facts are well known and can be e.g. found in [BR2], Notes and Re-
marks to Section 5.3.1.

LetK1,K2 be Hilbert spaces. We say that a linear mapΞ : B(K1) → B(K2) is
positive iff A ≥ 0 impliesΞ(A) ≥ 0. We say that it is completely positive (c.p. for
short) iff for anyn, Ξ ⊗ 1B(Cn) is positive as a mapB(K1 ⊗ Cn) → B(K2 ⊗ Cn).

We will say that a positive mapΞ is Markov if Ξ(1) = 1.
Recall thatB1(Ki) denotes the space of trace class operators onKi. We can

define positive and completely positive maps fromB1(K2) toB1(K1) repeating ver-
batim the definition for the algebra of bounded operators. We will say that the map
is Markov if it preserves the trace.
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We can also speak of positive and completely positive maps onB2(K).
We will sometimes say that maps on the algebraB(K) are “in the Heisenberg

picture”, maps onB1(K) are “in the Schr̈odinger picture” and maps onB2(K) are
“in the standard picture” (see the notion of the standard representation later on and
in [DJP]).

From now on, for simplicity, in this section we will assume that the spacesKi are
finite dimensional. ThusB(Ki) andB2(Ki) andB1(Ki) coincide with one another
as vector spaces. IfΞ is a map from matrices onK1 to matrices onK2, it is often
useful to distinguish whether it is understood as a map fromB(K1) to B(K2) (we
then say that it is in the Heisenberg picture), as a map fromB2(K1) to B2(K2) (we
then say that it is in the standard picture) or as a map fromB1(K1) to B1(K2) (we
then say that it is in the Schrödinger picture).

Note thatB1(Ki) andB(Ki) are dual to one another. (This is one of the places
where we use one of propertie of finite dimensional spaces. In general,B(Ki) is only
dual toB1(Ki) and not the other way around.) The (sesquilinear) duality between
B1(Ki) andB(Ki) is given by

Trρ∗A, ρ ∈ B1(Ki), A ∈ B(Ki).

If Ξ is a map “in the Heisenberg picture”, then its adjointΞ∗, is a map “in the
Schr̈odinger picture” (and vice versa). Clearly,Ξ is a Markov transformation in the
Heisenberg picture iffΞ∗ is Markov in the Schr̈odinger picture.

Note that (in a finite dimension) the definition ofΞ∗ does not depend on whether
we considerΞ in the Heisenberg, standard or Schrödinger picture.

4.2 Stinespring representation of a completely positive map

By the Stinespring theorem [St],Ξ : B(K1) → B(K2) is completely positive iff there
exists an auxilliary finite dimensional Hilbert spaceH andW ∈ B(K2,K1⊗H) such
that

Ξ(B) = W ∗ B⊗1H W, B ∈ B(K1). (35)

In practice it can be useful to transform (35) into a slightly different form. Let
us fix an orthonormal basis(e1, . . . , en) in H. Then the operatorW is completely
determined by giving a family of operatorsW1, . . . ,Wn ∈ B(K2,K1) such that

WΨ2 =
n∑

j=1

(WjΨ2)⊗ ej , Ψ2 ∈ K2.

Then

Ξ(B) =
n∑

j=1

W ∗
j BWj . (36)

There exists a third way of writing (35), which is sometimes useful. LetH be the
space conjugate toH and letH 3 Φ 7→ Φ ∈ H be the corresponding conjugation
(see e.g. [DJ2]). We defineW ? ∈ B(K1,K2 ⊗H) by
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(W ?Ψ1|Ψ2 ⊗ Φ)K2⊗H = (Ψ1 ⊗ Φ|WΨ2)K1⊗H, (37)

(see [DJ2]). (Note that we use two different kinds of stars:∗ for the hermitian conju-
gation and? for (37)). LetTrH denote the partial trace overH. Then

Ξ(B) = TrHW ?BW ?∗. (38)

If Ξ is given by (35), thenΞ∗ can be written in the following three forms:

Ξ∗(C) = TrHWCW ∗

=
n∑

j=1

WjCW ∗
j

= W ?∗C⊗1HW ?,

whereC ∈ B1(K2).

4.3 Completely positive semigroups

LetK be a finite dimensional Hilbert space andt 7→ Λ(t) a continuous 1-parameter
semigroup of operators onB(K). Let M be its generator, so thatΛ(t) = etM .

We say thatΛ(t) is a completely positive semigroup iffΛ(t) is completely pos-
itive for any t ≥ 0. Λ(t) is called a Markov semigroup iffΛ(t) is Markov for any
t ≥ 0.

Λ(t) is a completely positive semigroup iff there exists an operator∆ onK and
a completely positive mapΞ onB(K) such that

M(B) = ∆B + B∆∗ + Ξ(B), B ∈ B(K). (39)

Operators of the form (39) are sometimes called Lindblad or Lindblad-Kossakowski
generators [GKS, L].

Let [·, ·]+ denote the anticommutator.Λ(t) is Markov iff

M(B) = i[Θ,B]− 1
2
[Ξ(1), B]+ + Ξ(B),

whereΘ := 1
2 (∆ + ∆∗).

If Ξ is given by (35), then

M(B) = i[Θ,B] + 1
2

(
W ∗(WB −B⊗1W ) + (BW ∗ −W ∗B⊗1)W )

)
= i[Θ,B] + 1

2

n∑
j=1

(W ∗
j [Wj , B] + [B,W ∗

j ]Wj),
(40)

and
M∗(B) = i[Θ, B]− 1

2 [W ∗W,B]+ + TrHWBW ∗

= i[Θ, B] +
n∑

j=1

(
− 1

2 [W ∗
j Wj , B]+ + W ?∗

j B⊗1W ?
j

)
.
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Suppose thatetM is a positive Markov semigroup in the Heisenberg picture. We
say that a density matrixρ on K is stationary with respect to this semiigroup iff
etM∗

(ρ) = ρ. Every positive Markov semigroup in a finite dimension has a stationary
density matrix.

Markov completely positive semigroups (both in the Heisenberg and Schrödinger
picture) are often used in quantum physics. In the literature, they are called by many
names such as quantum dynamical or quantum Markov semigroups.

4.4 Standard Detailed Balance Condition

In the literature one can find a number of various properties that are called the De-
tailed Balance Condition (DBC). In the quantum context, probably the best known
is the defintion due to Alicki [A] and Frigerio-Gorini-Kossakowski-Verri [FGKV],
which we describe in the next subsection and call the DBC in the sense of AFGKV.

In this subsection we introduce a slightly different property that we think is the
most satisfactory generalization of the DBC from the clasical to the quantum case.
It is a modification of the DBC in the sense of AFGKV. To distinguish it from other
kinds of the DBC, we will call it the standard Detailed Balance Condition. The name
is justified by the close relationship of this condition to the standard representation.
We have not seen the standard DBC in the literature, but we know that it belongs to
the folklore of the subject. In particular, it was considered in the past by R. Alicki
and A. Majewski (private communication).

In the literature one can also find other properties called the Detailed Balance
Condition [Ma1, Ma2, MaSt]. Most of them involve the notion of the time reversal,
which is not used in the case of the standard DBC or the DBC in the sense of AFGKV.

Let us assume thatρ is a nondegenerate density matrix onK. (That means,ρ > 0,
Trρ = 1, andρ−1 exists). On the space of operators onK we introduce the scalar
product given byρ:

(A|B)ρ := Trρ1/2A∗ρ1/2B. (41)

This space equipped with the scalar product (41) will be denoted byB2
ρ(K). Let ∗ρ

denote the hermitian conjugation with respect to this scalar product. Thus ifM is a
map onB(K), thenM∗ρ is defined by

(M∗ρ(A)|B)ρ = (A|M(B))ρ.

Explicitly,
M∗ρ(A) = ρ−1/2M∗(ρ1/2Aρ1/2)ρ−1/2.

Definition 1. Let M be the generator of a Markov c.p. semigroup onB(K). We will
say thatM satisfies the standard Detailed Balance Condition with respect toρ if
there exists a self-adjoint operatorΘ onK such that

1
2i

(M −M∗ρ) = [Θ, ·]. (42)

Theorem 9.LetM be the generator of a Markov c.p. semigroup onB(K).
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1) LetM satisfy the standard DBC with respect toρ. Then

M(A) = i[Θ,A] + Md(A),

M∗(A) = −i[Θ,A] + ρ1/2Md(ρ−1/2Aρ−1/2)ρ1/2.
(43)

whereMd is a generator of another Markov c.p. semigroup satisfyingMd =
M∗ρ

d andΘ is a self-adjoint operator onK. Moreover,[Θ, ρ] = 0, M∗(ρ) =
M∗

d (ρ) = 0.
2) LetM be given by (40). If there exists a unitary operatorU : H → H such that

[Θ, ρ] = 0, [W ∗W,ρ] = 0,

W ? = ρ−1/2⊗U Wρ1/2,

thenM satisfies the standard DBC wrtρ.

Proof. 1) By (42),

[Θ, ·] = −[Θ, ·]∗ρ = −ρ−1/2[Θ, ρ1/2 · ρ1/2]ρ−1/2.

Using[Θ, 1] = 0, we obtain[Θ, ρ] = 0.
SettingMd := 1

2 (M + M∗ρ) we obtain the decomposition (43). Clearly,0 =
M(1) = Md(1). HenceMd is Markov. Next0 = Md(1) = M∗ρ

d (1) givesMd(ρ) =
0.

To see 2) we note that if

Md =
1
2
[W ∗W,B]+ −W ∗ B⊗1 W,

then

M∗ρ
d (B) = ρ−1/2

(
1
2 [W ∗W,ρ1/2Bρ1/2]+ −W ?∗ ρ1/2Bρ1/2 ⊗ 1 W ?

)
ρ−1/2

= 1
2 [W ∗W,B]+ − (ρ1/2⊗1 W ?ρ1/2)∗ B⊗1 ρ1/2⊗1 W ?ρ−1/2.

2

Md is called the dissipative part of the generatorM .

4.5 Detailed Balance Condition in the sense of
Alicki-Frigerio-Gorini-Kossakowski-Verri

In this subsection we recall the definition of Detailed Balance Condition, which can
be found in [A, FGKV].

Let us introduce the scalar product

(A|B)(ρ) := TrρA∗B.

Let B2
(ρ)(K) denote the space of operators onK equipped with this scalar product.

Let M∗(ρ) denote the conjugate ofM with respect to this scalar product. Explicitly:

M∗(ρ)(A) = ρ−1M∗(ρA).
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Definition 2. We will say thatM satisfies the Detailed Balance Condition with re-
spect toρ in the sense of AFGKV if there exists a self-adjoint operatorΘ such that

1
2i

(M −M∗(ρ)) = [Θ, ·].

Note that for DBC in the sense of AFGKV, the analog of Theorem 9 1) holds,
where we replace the scalar product(·|·)ρ with (·|·)(ρ).

In practical applications, c.p. semigroups usually originate from the weak cou-
pling limit of reduced dynamics, as we describe further on in our lectures. In this
case the standard DBC is equivalent to DBC in the sense of AFGKV, which follows
from the following theorem:

Theorem 10.Suppose thatM satisfies

ρ1/4M(ρ−1/4Aρ1/4)ρ−1/4 = M(A).

Then M satisfies the DBC in the sense of (42) iff it satisfies DBC in the sense of
AFGKV. Moreover, the decompositionsM = i[Θ, ·] + Md obtained in both cases
concide.

Proof. It is enough to note that the map

B2
ρ(K) 3 A 7→ ρ−1/4Aρ1/4 ∈ B2

(ρ)(K)

is unitary.2

5 Small quantum system interacting with reservoir

In this section we describe the class ofW ∗-dynamical systems that we consider in
our notes. They are meant to describe a small quantum systemS interacting with a
large reservoirR. Pauli-Fierz systems, considered in [DJ2], are typical examples of
such systems.

In Subsect. 5.1 we recall basic elements of the theory ofW ∗-algebras (see
[BR1, BR2, DJP] for more information). In Subsect. 5.2 we introduce the class
of W ∗-dynamical systems describingS + R in purely algebraic (representation-
independent) terms. In Subsect. 5.3 and 5.4 we explain the construction of two rep-
resentations of ourW ∗-dynamical system: the semistandard and the standard rep-
resentation. Both representations possess a distinguished unitary implementation of
the dynamics. Its generator will be called the semi-Liouvillean in the former case
and the Liouvillean in the latter case.

The standard representation and the Liouvillean can be defined for an arbitrary
W ∗-algebra (see next subsection, [DJP] and references therein). The semistandard
representation and the semi-Liouvillean are concepts whose importance is limited to
a system of the formS +R considered in these notes. Their names were coined in
[DJ2]. The advantage of the semistandard representation over the standard one is its
simplicity, and this is the reason why it appears often in the literature [Da1, LeSp].
The semistandard representation is in particular well adapted to the study of the
reduced dynamics.
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5.1 W ∗-algebras

In this subsection we recall the definitions of basic concepts related to the theory of
W ∗-algebras (see [BR1, BR2, DJP]).

A W ∗-dynamical system(M, τ) is a pair consisting of aW ∗-algebraM and
a 1-parameter (pointwise)σ-weakly continuous group of∗-automorphisms ofM,
R 3 t 7→ τ t.

A standard representation of aW ∗-algebraM is a quadruple(π,H, J,H+) con-
sisting of a representationπ, its Hilbert spaceH, an antilinear involutionJ and a
self-dual coneH+ satisfying the following conditions:

1) Jπ(M)J = π(M)′;
2) Jπ(A)J = π(A)∗ for A in the center ofM;
3) JΨ = Ψ for Ψ ∈ H+;
4) π(A)Jπ(A)H+ ⊂ H+ for A ∈ M.

J is called the modular conjugation andH+ the modular cone. EveryW ∗-algebra
possesses a standard representation, unique up to the unitary equivalence.

Suppose that we are given a faithful stateω on M. In the corresponding GNS
representationπω : M → B(Hω), the stateω is given by a cyclic and separating
vectorΩω. The Tomita-Takesaki theory yields the modularW ∗-dynamicst 7→ σt

ω,
the modular conjugationJω and the modular coneH+

ω := {AJωAΩω : A ∈ M}cl,
wherecl denotes the closure. The stateω satisfies the−1-KMS condition for the
dynamicsσω. The quadruple(πω,Hω, Jω,H+

ω ) is a standard representation ofM.
Until the end of this subsection, we suppose that a standard representation

(π,H, J,H+) of M is given.
Let ω be a state onM. Then there exists a unique vector in the modular cone

Ω ∈ H+ representingω. Ω is cyclic iff Ω is separating iffω is faithful.
Let t 7→ τ t be aW ∗-dynamics onM. The LiouvilleanL of τ is a self-adjoint

operator onH uniquely defined by demanding that

π(τ t(A)) = eitLπ(A)e−itL, eitLH+ = H+, t ∈ R.

(L implements the dynamics in the representationπ and preserves the modular cone).
It has many useful properties that make it an efficient tool in the study of the ergodic
properties of the dynamicsτ . In particular,L has no point spectrum iffτ has no
normal invariant states, andL has a 1-dimensional kernel iffτ has a single invariant
normal state.

5.2 Algebraic description

The Hilbert space of the systemS is denoted byK. Throughout the notes we will
assume thatdimK < ∞. Let the self-adjoint operatorK be the Hamiltonian of the
small system. The free dynamics of the small system isτ t

S(B) := eitKBe−itK , B ∈
B(K). Thus the small system is described by theW ∗-dynamical system(B(K), τS).

The reservoirR is described by aW ∗-dynamical system(MR, τR). We assume
that it has a unique normal stationary stateωR (not necessarily a KMS state). The
generator ofτR is denoted byδR (that isτ t

R = eδRt).
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The coupled systemS +R is described by theW ∗-algebraM := B(K)⊗MR.
The free dynamics is given by the tensor product of the dynamics of its constituents:

τ t
0(A) :=

(
τ t
S ⊗ τ t

R

)
(A), A ∈ M.

We will denote byδ0 the generator ofτ0.
Let V be a self-adjoint element ofM. The full dynamicst 7→ τ t

λ := etδλ is
defined by

δλ := δ0 + iλ[V, ·].

(One can consider also a more general situation, whereV is only affilliated toM—
see [DJP] for details).

5.3 Semistandard representation

Suppose thatMR is given in the standard form on the Hilbert spaceHR. Let1R stand
for the identity onHR. We denote byH+

R, JR, andLR the corresponding modular
cone, modular conjugation, and standard Liouvillean. LetΩR be the (unique) vector
representative inH+

R of the stateωR. Clearly,ΩR is an eigenvector ofLR. |ΩR)(ΩR|
denotes projection onΩR.

Let us representB(K) onK and take the representation ofM in the Hilbert space
K⊗HR. We will call it the semistandard representation and denote byπsemi : M →
B(K ⊗ HR). (To justify its name, note that it is standard on its reservoir part, but
not standard on the small system part). We will usually dropπsemi and treatM as a
subalgebra ofB(K ⊗HR).

Let us introduce the so-called free semi-Liouvillean

Lsemi
0 = K ⊗ 1 + 1⊗ LR. (44)

The full semi-Liouvillean is defined as

Lsemi
λ = Lsemi

0 + λV.

It is the generator of the distinguished unitary implementation of the dynamicsτλ:

τ t
λ(A) = eitLsemi

λ Ae−itLsemi
λ , A ∈ M, (45)

with
δλ = i[Lsemi

λ , ·].

5.4 Standard representation

Let us recall how one constructs the standard representation for the algebraB(K).
Recall thatB2(K) denotes the space of Hilbert-Schmidt operators onK. Equipped
with the inner product(X|B) = Tr(X∗B) it is a Hilbert space. Note thatB(K)
acts naturally onB2(K) by the left multiplication. This defines a representationπS :
B(K) → B(B2(K)). Let JS : B2(K) → B2(K) be defined byJS(X) = X∗, and let
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B2
+(K) be the set of all positiveX ∈ B2(K). The algebraπS(B(K)) is in the standard

form on the Hilbert spaceB2(K), and its modular cone and modular conjugation are
B2

+(K) andJS .
There exists a unique representationπ : M → B(B2(K)⊗HR) satisfying

π(B ⊗ C) = πS(B)⊗ C. (46)

The von Neumann algebraπ(M) is in standard form on the Hilbert spaceB2(K) ⊗
HR. The modular conjugation isJ = JS ⊗ JR. The modular cone can be obtained
as

H+ := {π(A)Jπ(A) (ρ⊗ΩR) : A ∈ M}cl ,

whereρ is an arbitrary nondegenerate element ofB2
+(K).

The Liouvillean of the free dynamics (the free Liouvillean) equals

L0 = [K, · ]⊗ 1 + 1⊗ LR. (47)

and the Liouvillean of the full dynamics (the full Liouvillean) equals

Lλ = L0 + λ(π(V )− Jπ(V )J). (48)

Sometimes we will assume that the reservoir is thermal. By this we mean thatωR
is aβ-KMS state for the dynamicsτR. Set

Ψ0 := e−βK/2 ⊗ΩR.

Then the state(Ψ0|π(·)Ψ0)/‖Ψ0‖2 is a(τ0, β)-KMS state.
The Araki perturbation theory yields that

Ψ0 ∈ Dom(e−β(L0+λπ(V ))/2),

the vector
Ψλ := e−β(L0+λπ(V ))/2Ψ0 (49)

belongs toH+ ∩ KerLλ, and that(Ψλ|π(·)Ψλ)/‖Ψλ‖2 is a (τλ, β)-KMS state (see
[BR2, DJP]). In particular, zero is always an eigenvalue ofLλ. Thus, in the thermal
case,(M, τλ) has at least one stationary state.

6 Two applications of the Fermi Golden Rule to open quantum
systems

In this section we keep all the notation and assumtions of the preceding section.
We will describe two applications of the Fermi Golden Rule to theW ∗-dynamical
system(M, τλ) introduced in the previous section.

In the first application we compute the LSO for the generator of the dynamicsδλ.
We will call it the Davies generator and denote byM . In the literature,M appears in
the context of the Dynamical Fermi Golden Rule. It is the generator of the semigroup
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obtained by the weak coupling limit to the reduced dynamics. This result can be used
to partly justify the use of completely positive semigroups to describe dynamics of
small quantum systems weakly interacting with environment [Da1, LeSp].

In the second application we consider the standard representation of theW ∗-
dynamical system in the Hilbert spaceH with the LiouvilleanL. We will compute
the LSO foriLλ. We denote it byiΓ . In the literature,iΓ appears in the context of
the Spectral Golden Rule. It is used to study the point spectrum of the Liouvillean
Lλ. The main goal of this study is a proof of the uniqueness of a stationary state in
the thermal case and of the nonexistence of a stationary state in the non-thermal state
under generic conditions [DJ1, DJ2, DJP]. (See also [JP1, JP2, BFS2] for related
results).

In Subsection 6.3, we will describe the result of [DJ3], which gives a relationship
between the two kinds of LSO’s in the thermal case.

In Subsections 6.4–6.6 we compute both LSO’s explicitly. In the case of the
Davies generator, these formulas are essentially contained in the literature, in the case
of the LSO for the Liouvillean, they are generalizations of the analoguous formulas
from [DJ2]. Both LSO’s can be expressed in a number of distinct forms, each having
a different advantage. In particular, as a result of our computations, we describe a
simple characterization of the kernel of imaginary part ofΓ , which can be used in
the proof of the return to equilibrium. This characterization is a generalization of a
result from [DJ2].

6.1 LSO for the reduced dynamics

It is easy to see that there exists a unique bounded linear mapP on M such that for
B ⊗ C ∈ M ⊂ B(K ⊗HR)

P(B ⊗ C) = ωR(C)B ⊗ 1R.

P ∈ B(M) is a projection of norm 1. (It is an example of aconditional expectation).
We identifyB(K) with RanP by

B(K) 3 B 7→ B ⊗ 1R ∈ RanP. (50)

Note thatδ0

∣∣∣
RanP

can be identified withi[K, ·].
We assume thatωR(V ) = 0. That impliesP[V, ·]P = 0.
Note that Assumptions 2.1*, 2.2, 2.3* and 2.4 are satisfied for the Banach space

M, the projectionP, theC∗0 -group of isometriesetδ0 , and the perturbationi[V, ·].

Remark 3.One can ask whether the above defined projectionP is given by the for-
mula (5). Note thatM is not a reflexive Banach space, so it is even not clear if this
formula makes sense.

Assume thatδR has no eigenvectors apart from scalar operators. Then the set of
eigenvalues ofδ0 equals{i(k − k′) : k, k′ ∈ spK}. One can also show that for
anye ∈ R, δ0 is globally ergodic atie ∈ iR (see Appendix) and the corresponding
eigenprojection is given by



32 Jan Dereziński and Rafał Fr̈uboes

1ie(δ0)(B ⊗ C) =
∑

k∈spK

ωR(C) (1k(K)B1k−e(K))⊗1R.

Therefore, in this case the answer to our question is positive and

P =
∑
e∈R

1ie(δ0),

as suggested in Subsection 2.6.

We make the following assumption:

Assumption 6.1 Assumption 2.5 holds for(P, δ0, i[V, ·]). This means that there ex-
ists

M := −
∑

e∈sp([K,·])

1e([K, · ])[V, · ](ie + 0− δ0)−1[V, · ]1e([K, · ]). (51)

M is the LSO for(P, δ0, i[V, ·]). It will be called the Davies generator (in the
Heisenberg picture).

To describe the physical interpretation ofM , suppose that we are interested only
in the evolution of the observables corresponding to systemS (taking, however, into
account the influence ofR). We also suppose that initially the reservoir is given by
the stateωR. Let X be a density matrix on the Hilbert spaceK, such that the initial
state of the system is described by the density matrixX⊗|ΩR)(ΩR|. LetB ∈ B(K)
be an observable for the systemS, such that the measurement at the final timet is
given by the operatorB ⊗ 1R. Then the expectation value of the measurement is
given by

TrK
(
X ⊗ |Ω)(Ω| τ t

λ(B⊗1R)
)

(52)

Obviously, (52) tensored with1R equals

TrK
(
XPτ t

λP(B ⊗ 1R)
)
.

Now under quite general conditions [Da1, Da2, Da3] we have

lim
λ→0

e−it[K,·]/λ2
Pτ

t/λ2

λ P = etM . (53)

ThusM describes the reduced dynamics renormalized by[K, ·]/λ2 in the limit of
the weak coupling, where we rescale the time byλ2.

Let us note the following fact:

Theorem 11.Suppose Assumption 6.1 holds. ThenM is the generator of a Markov
c.p. semigroup and for anyz ∈ C,

M(B) = ezKM(e−zKBezK)e−zK . (54)
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Proof. We know that LSOM commutes withE = i[K, ·]. This is equivalent to
ezEMe−zE = M , which means (54).

The fact thatM is a Lindblad-Kossakowski generator and annihilates1 will fol-
low immediately from explicit formulas given in Subsection 6.4.

If we can prove 53, then an alternative proof is possible: we immediately see that
the left hand side of (53) is a Markov c.p. map for anyt andλ, hence so isetM . 2

6.2 LSO for the Liouvillean

Consider the the Hilbert spaceB2(K)⊗HR and the orthogonal projection

P := 1B2(K) ⊗ |ΩR)(ΩR|.

We havePL0 = L0P = [K, ·]P . We identifyB2(K) with RanP by

B2(K) 3 B 7→ B ⊗ΩR ∈ RanP. (55)

We again assume thatωR(V ) = 0. This impliesPπ(V )P = PJπ(V )JP = 0.
Note that Assumptions 2.1, 2.2, 2.3 and 2.4 are satisfied for the Hilbert space

B2(K)⊗HR, the projectionP , the strongly continuous unitary groupeitL0 , and the
perturbationi(π(Q)− Jπ(Q)J).

Remark 4.Assume thatLR has no eigenvectors apart fromΩR. Then the set of eigen-
values ofδ0 equals{i(k − k′) : k, k′ ∈ spK} and

1e(L0)B ⊗ Ψ = (ΩR|Ψ)
∑

k∈spK

(1k(K)B1k−e(K))⊗ΩR.

Therefore,
P =

∑
e∈R

1ie(iL0)

is the spectral projection on the point spectrum ofiL0, as suggested in Subsection
2.6.

Assumption 6.2 Assumption 2.5 for(P, iL0, i(π(V ) − Jπ(V )J)) is satisfied. This
means that there exists

iΓ := −
∑

e∈sp([K,·])
1e([K, · ])(π(V )− Jπ(V )J)

×(ie + 0− iL0)−1(π(V )− Jπ(V )J)1e([K, · ]).

iΓ is the LSO for
(
P, iL0, i(π(V ) − Jπ(V )J)

)
. We will call it the LSO for the

Liouvillean. The operatorΓ appeared in [DJ1], where it was used to give an upper
bound on the point spectrum ofLλ for small nonzeroλ.
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Theorem 12.Suppose that Assumption 6.2 holds. TheniΓ is the generator of a con-
tractive c.p. semigroup and for anyz ∈ C,

Γ (B) = ezKΓ (e−zKBezK)e−zK . (56)

Proof. The proof of (56) is the same as that of (54).etiΓ is contractive by Theorem
1. The proof of its complete positivity will be given later on (after (60)).2

6.3 Relationship between the Davies generator and the LSO for the
Liouvillean in thermal case.

Obviously, as vector spaces,B(K) andB2(K) coincide. We are interested in the
relation betweeniΓ and generatorM . We will see that in the thermal case the two
operators are similar to one another.

The following theorem was proven in [DJ3]:

Theorem 13.Suppose thatωR is a (τR, β)-KMS state. Assumption 6.1 holds if and
only if Assumption 6.2 holds. If these assumptions hold, then forB ∈ B(K), we have

M(B) = iΓ (Be−βK/2)eβK/2

= eβK/4iΓ (e−βK/4Be−βK/4)eβK/4.
(57)

Remark 5.Let ρ := e−βK andγρ : B(K) → B2(K) be the linear invertible map
defined by

γρ(B) := Bρ1/2. (58)

Then the first identity of Theorem 13 can be written asM = iγ−1
ρ ◦Γ ◦γρ. Therefore,

bothiΓ andM have the same spectrum.

Theorem 13 follows from the explicit formulas forM andiΓ given in Subsec-
tions 6.4–6.6. It is, however, instructive to give an alternative, time dependent proof
of Identity (57), which avoids calculating both LSO’s. Strictly speaking, the identity
will be proven for the “the dynamical Level Shift Operators”Mdyn andiΓdyn which,
however, according to the Dynamical Fermi Golden Rule, under broad conditions,
coincide with the usual Level Shift OperatorsM andiΓ .

Theorem 14.Suppose thatωR is a(τR, β)-KMS state. Then the following statements
are equivalent:

1) there exists an operatorMdyn satisfying

lim
λ→0

e−it[K,·]/λ2
Pτ

t/λ2

λ P = etMdyn .
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2) there exists an operatorΓdyn satisfying

lim
λ→0

e−it[K,·]/λ2
P e−itLλ/λ2

P = eitΓdyn .

Moreover,
Mdyn = γ−1

ρ ◦ iΓdyn ◦ γρ.

Proof. The Araki perturbation theory (see [DJP] and references therein) yields that
the vectorΨλ, defined by (49), satisfiesΨλ = Ψ0 + O(λ) and LλΨλ = 0. For
X, B ∈ B(K) = B2(K), using the identifications (50) and (55), we have

TrK
(
X∗Pτ−t

0 τ t
λ(B⊗1R)

)
=

(
XeβK/2 ⊗ΩR

∣∣∣ (e−itL0eitLλ B⊗1R e−itLλeitL0) e−βK/2⊗ΩR

)
O(λ)
= (XeβK/2 ⊗ΩR | e−itL0eitLλ B⊗1R e−itLλΨλ)

O(λ)
= (XeβK/2 ⊗ΩR | e−itL0eitLλ B⊗1R e−βK/2⊗ΩR)

=
(
X | (P e−itL0eitLλ

(
Be−βK/2⊗ΩR)

)
eβK/2

)
uniformly for t ≥ 0. Hence, sincedimK < ∞,

e−it[K,·]/λ2
Pτ t

λ(B⊗1R) =
(
e−it[K,·]/λ2

P eitLλ(Be−βK/2⊗ΩR)
)
eβK/2 + O(λ)

uniformly for t ≥ 0. We conclude that for a givent the limit

lim
λ→0

e−it[K,·]/λ2
P eitLλ/λ2

P =: T t

exists iff the limit
lim
λ→0

e−it[K,·]/λ2
Pτ

t/λ2

λ P =: Tt

exists. Moreover, if the limits exist, then

Tt = γ−1
ρ ◦ T t ◦ γρ.

In particular,Tt is a semigroup iffT t is a semigroup and their generators (Mdyn and
iΓdyn respectively) satisfy (57).2

It is perhaps interesting that Theorem 14 can be immediately generalized to some
non-thermal cases.

Theorem 15.Suppose that instead of assuming thatωR is KMS, we make the fol-
lowing stability assumption: We suppose thatρ is a nondegenerate density ma-
trix on K, and for |λ| ≤ λ0 there exists a normalized vectorΨλ ∈ H such that
Ψλ = ρ1/2 ⊗ ΩR + o(λ0) andLλΨλ = 0. Then all the statements of Theorem 14
remain true, withρ replacinge−βK .
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Let us return to the thermal case. It is well known [A, FGKV] that in this case
the Davies generator satisfies the Detailed Balance Condition. We will see that this
fact is essentially equivalent to Relation (57).

Theorem 16.Suppose thatωR is a (τR, β)-KMS state and Assumption 6.1 holds.
Then the Davies generatorM satisfies DBC fore−βK both in the standard sense
and in the sense of AFGKV.

Proof. Recall that the operatorγρ defined in (58) is unitary fromB2
(ρ)(K) toB2(K).

Recall also that in the thermal case

M = γ−1
ρ ◦ iΓ ◦ γρ.

Hence,
M∗(ρ) = −γ−1

ρ ◦ iΓ ∗ ◦ γρ.

Thus,
1
2i (M −M∗(ρ)) = γ−1

ρ ◦ 1
2 (Γ + Γ ∗) ◦ γρ

= γ−1
ρ ◦ [∆R, ·] ◦ γρ = [∆R, ·],

(where∆R will be defined in the next subsection). This proves DBC in the sense of
AFGKV.

By Theorem 11 and the fact thatρ is proportional toe−βK , for anyz ∈ C we
have

M(B) = ρzM(ρ−zBρz)ρ−z.

Therefore, by Theorem 10, the DBC in the sense of AFGKV is equivalent to the
standard DBC.2

6.4 Explicit formula for the Davies generator

In this subsection we suppose that Assumption 6.1 is true and we describe an explicit
formula for the Davies generatorM .

We introduce the following notation for the set of allowed transition frequencies
and the set of allowed transition frequencies fromk ∈ spK:

F := {k1 − k2 : k1, k2 ∈ spK} = sp[K, ·], Fk := {k − k1 : k1 ∈ spK}.

Let |Ω) denote the map

C 3 z 7→ |Ω)z := zΩ ∈ HR.

Then1K⊗|Ω) ∈ B(K,K ⊗HR). Set

v := V 1K⊗|Ω)

Note thatv belongs toB(K,K ⊗HR). We also define
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vk1,k2 := 1k1(K)⊗1R v 1k2(K);

ṽp :=
∑

k∈spK

vk,k−p;

∆ =
∑

k∈spK

∑
p∈Fk

(v∗)k,k−p1⊗(p + i0− LR)−1vk−p,k

=
∑

p∈F
(ṽp)∗1⊗(p + i0− LR)−1ṽp.

The real and the imaginary part of∆ are given by

∆R := 1
2 (∆ + ∆∗) =

∑
k∈spK

∑
p∈Fk

(v∗)k,k−p1⊗P(p− LR)−1vk−p,k

=
∑

p∈F
(ṽp)∗1⊗P(p− LR)−1ṽp;

∆I := 1
2i (∆−∆∗) = π

∑
k∈spK

∑
p∈Fk

(v∗)k,k−p1⊗δ(p− LR)vk−p,k

= π
∑

p∈F
(ṽp)∗1⊗δ(p− LR)ṽp;

Note that∆I ≥ 0. Below we give four explicit formulas for the Davies generator in
the Heisenberg picture:

M(B) = i(∆B −B∆∗)

+2π
∑

p∈F
(ṽp)∗ B⊗δ(p− LR)ṽp

= i
∑

p∈F
(ṽp)∗1⊗(p− i0− LR)−1 (ṽpB −B⊗1Rṽp)

−i
∑

p∈F
(B(ṽp)∗ − (ṽp)∗B⊗1R)1⊗(p + i0− LR)−1ṽp

= i[∆R, B]

+π
∑

p∈F
(ṽp)∗1⊗δ(p− LR) (B⊗1Rṽp − ṽpB)

+π
∑

p∈F
((ṽp)∗B⊗1R −B(ṽp)∗)1⊗δ(p− LR)ṽp

= i
∑

k∈spK

∑
p∈Fk

∞∫
0

1k(K)(Ω|V 1k−p(K)τ s
0 (V )Ω)1k(K)Bds

−i
∑

k∈spK

∑
p∈Fk

0∫
−∞

B1k(K)(Ω|V 1k−p(K)τ s
0 (V )Ω)1k(K)ds

+2π
∑

k,k′∈spK

p∈Fk∩Fk′

∞∫
−∞

1k(K)(Ω|V 1k−p(K)B1k′−p(K)τ s
0 (V )Ω)1k′(K)ds.
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The first expression on the right has the standard form of a Lindblad-Kossakowski
generator (39). The second expression can be used in a characterization of the kernel
of M . In particular, it implies immediately that1K ∈ KerM . The third expression
shows the splitting ofM into a reversible part and an irreversible part. The fourth
expression uses uses time-dependent quantities and is analoguous to formulas ap-
pearing often in the physics literature.

6.5 Explicit formulas for LSO for the Liouvillean

In this subsection we suppose that Assumption 6.2 is true and we describe an explicit
formula foriΓ , the LSO for the Liouvillean.

Recall thatπ denotes the standard representation ofM andLR is the Liouvillean
of the free reservoir dynamicsτR. Let L0

R denote the Liouvillean of the modular
dynamics for the stateωR. The fact thatωR is stationary forτ t

R implies that the two
Liouvilleans commute:

eitLReisL0
R = eisL0

ReitLR , t, s ∈ R.

The following identities follow from the modular theory and will be useful in our
explicit formulas forΓ :

Proposition 1. The following identities are true forB ∈ B2(K):

π(V ) B⊗ΩR = vB,

Jπ(V )J B⊗ΩR = B⊗eL0
R/2v.

Moreover, ifB1, B2 ∈ B2(K) andΦ ∈ HR, then

(B1 ⊗ Φ|vB2) = (eL0
R/2vB1|B2 ⊗ JRΦ). (59)

Proof. To prove the second identity we note that

J B⊗ΩR = B∗⊗ΩR,

Jπ(V )B∗⊗ΩR = eL0
R/2B⊗π(V )ΩR.

To see (59), we note that it is enough to assume thatΦ = A′ΩR, whereA′ ∈
π(MR)′ andπ(MR)′ denotes the commutant ofπ(MR). Then

(B1 ⊗ Φ|vB2) = (B1 ⊗A′ΩR|π(V )B2 ⊗ΩR)

= (π(V )B1 ⊗ΩR|B2 ⊗A′∗ΩR)

= (vB1|B2 ⊗ eL0
R/2JRA′ΩR).

2

Note that if we compare (59) with the definition of the?-operation (37), and if
we make the identificationΦ = JRΦ, then we see that (59) can be rewritten as
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v? = eL0
R/2v.

The LSO for the Liouvillean equals

iΓ (B) = i∆B − iB∆∗

+2π
∑

p∈F
(ṽp)∗ B⊗δ(p− LR)eL0

R/2ṽp.
(60)

Note that the term on the second line of (60) is completely positive. Therefore, (60)
is in the Lindblad-Kossakowski form. HenceeitΓ is a c.p. semigroup. This completes
the proof of Theorem 12.

Let us splitΓ into its real and imaginary part:

ΓR :=
1
2
(Γ + Γ ∗), Γ I :=

1
2i

(Γ − Γ ∗).

(Γ ∗ is defined using the natural scalar product inB2(K)). Then the real part is given
by

ΓR(B) = [∆R, B]. (61)

The imaginary part equals

Γ I = π
∑

p∈F
(ṽp)∗1⊗δ(p− LR)

(
B⊗eL0

R/2ṽp − ṽpB
)

+π
∑

p∈F

(
(ṽp)∗B⊗eL0

R/2 −B(ṽp)∗
)
1⊗δ(p− LR)ṽp.

(62)

Another useful formula forΓ I represents it as a quadratic form:

TrB1Γ
I(B2)

= π
∑

p∈F
Tr(ṽpB1 −B1⊗eL0

R/2ṽp)∗1⊗δ(p− LR)(ṽpB2 −B2⊗eL0
R/2ṽp).

(63)

To see (63) we note the following identities:

(ṽp)∗1⊗δ(p− LR)ṽp = TrHR1⊗δ(p− LR)eL0
R ṽp(ṽp)∗,

(ṽp)∗B⊗δ(p− LR)eL0
R/2ṽp = TrHR1⊗δ(p− LR)eL0

R/2ṽp B(ṽp)∗,

which follow from (59).
The study of the kernel ofΓ I is important in applications based on the Spectral

Fermi Golden Rule. The identity (63) is very convenient for this purpose. It was first
discovered in the context of Pauli-Fierz systems in [DJ2].

In the thermal case (63) can be transformed into

TrB1Γ
I(B2) = π

∑
p∈F

Tre−βK(ṽpB1eβK/2 −B1eβK/2⊗1R ṽp)∗

×1⊗δ(p− LR)(ṽpB2eβK/2 −B2eβK/2⊗1R ṽp).
(64)
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6.6 Identities using the fibered representation

Using the decomposition of the Hilbert spaceHR into the fibered integral given by
the spectral decomposition ofLR, we can rewrite (63) in an even more convenient
form. To describe the fibered form of (63), we will not strive at the greatest generality.
We will make the following assumptions (which are modelled after the version of the
Jaǩsić-Pillet gluing condition considered in [DJ2]):

Assumption 6.3 There exists a Hilbert spaceG and a linear isometryU : G ⊗
L2(R) → HR such thatRan v,Ran eβL0

R/2v ⊂ K ⊗ RanU and U∗LRU is the
operator of the multiplication by the variable inR.

We will identify RanU with L2(R)⊗G. Note thatΨ ∈ L2(R)⊗G can be identified
with an almost everywhere defined functionR 3 p 7→ Ψ(p) ∈ G such that

(LRΨ)(p) = pΨ(p),

(see e.g. [DJ2]). We can (at least formally) writeL0
R as the direct integral:

(L0
RΨ)(p) = L0

R(p)Ψ(p),

whereL0
R(p) are operators onG.

Likewise,v ∈ B(K,K⊗HR) can be interpreted as an almost everywhere defined
functionR 3 p 7→ v(p) ∈ B(K,K ⊗ G) such that

(LRvΦ)(p) = pv(p)Φ, Φ ∈ K.

Assumption 6.4 R 3 p 7→ v(p), L0
R(p) are continuous atp ∈ F , so that we can

define unambiguouslyv(p), L0
R(p) for those values ofp.

Under the above two assumptions we can define

wp := ṽp(p) p ∈ F .

Then we can rewrite the formula (63) as

TrB1Γ
I(B2)

= π
∑

p∈F
Tr(wpB1 −B1⊗eL0

R(p)/2wp)∗(wpB2 −B2⊗eL0
R(p)/2wp).

(65)

(65) implies immediately

Theorem 17.The kernel ofΓ I consists ofB ∈ B2(K) such that

wp B = B⊗eL0
R(p)/2 wp, p ∈ F .
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Note that Theorem 17 implies that genericallyKerΓ I = {0}. Therefore, for a
generic open quantum system, if the Spectral Fermi Golden Rule can be applied,
then the LiouvilleanLλ has no point spectrum for small nonzeroλ. Therefore, for
the sameλ, theW ∗-dynamical system(M, τλ) has no invariant normal states.

Identities (63), (65) and Theorem 17 are generalizations of similar statements
from [DJ2]. In [DJ2] the reader will find their rigorous application to Pauli-Fierz
systems.

If ωR is a(τR, β)-KMS state, we can transform (65) as follows:

TrB1Γ
I(B2) = π

∑
p∈F

Tr e−βK(wp B1eβK/2 −B1eβK/2⊗1R wp)∗

×(wp B2eβK/2 −B2eβK/2⊗1R wp).
(66)

Following [DJ2], define

N := {C : wp C = C⊗1R wp, p ∈ F}. (67)

Repeating the arguments of [DJ2] we get

Theorem 18. 1) N is a∗-algebra invariant wrteitK · e−itK and containingC1.
2) The kernel ofΓ I consists ofe−βK/2C with C ∈ N .

Theorem 18 implies that in a thermal case, generically,KerΓ I = {0}. There-
fore, if the Spectral Fermi Golden Rule can be applied, for a generic open quantum
system, for small nonzeroλ, the LiouvilleanLλ has no point spectrum except for
a nondegenerate eigenvalue at zero. Therefore, for the sameλ, theW ∗-dynamical
system(M, τλ) has a unique stationary normal state.

Again, Identity (66) and Theorem 18 are generalizations of similar statements
from [DJ2], where they were used to study the return to equilibrium for thermal
Pauli-Fierz systems.

7 Fermi Golden Rule for a composite reservoir

In this section we describe a small quantum system interacting with several reser-
voirs. We will assume that the reservoirsR1, . . . ,Rn do not interact directly—they
interact with one another only through the small systemS. We will compute both
kinds of the LSO for the composite system. We will see that it is equal to the sum of
the LSO’s corresponding to the interaction ofS with a single reservoirRi.

Our presentation is divided into 3 subsections. The first uses the framework of
Section 2, the second—that of Section 5 and the third—that of Section 6.

7.1 LSO for a sum of perturbations

Let X be a Banach space. LetP1, . . . , Pn be projections of norm 1 onX such that
PiPj = PiPj . Let L0 be the generator of a group of isometries such thatL0Pi =



42 Jan Dereziński and Rafał Fr̈uboes

PiL0, i = 1, . . . , n. Let Qi be operators such thatRanPi ⊂ DomQi andQiPj =
PjQi, i 6= j. Set

Q :=
n∑

j=1

Qj , P :=
n∏

j=1

Pj , Xj := Ran
∏
i 6=j

Pi.

Clearly,Xj is left invariant byL0, Pj , Qj . Therefore, these operators can be restricted
toXj . We set

L0,j := L0

∣∣∣
Xj

, Pj := Pj
∣∣∣
Xj

= P
∣∣∣
Xj

, Qj := Qj
∣∣∣
Xj

.

Clearly,

RanP = RanPj L0

∣∣∣
RanP

= L0,j

∣∣∣
RanPj

.

We setE := L0

∣∣∣
RanP

.

Theorem 19.Suppose thatPjQjPj = 0, j = 1, . . . , n. Then:
1) PQP = 0, PjQjPj = 0, j = 1, . . . , n.
2) Suppose in addition that the LSO’s for(Pi, L0,i, Qi), denotedMi, exist. Then

the LSO for(P, L0, Q), denotedM , exists as well and

M =
n∑

i=1

Mi.

Proof. SetJj :=
∏

i 6=j Pi.
1) It is obvious thatPiQiPi = 0 impliesPiQiPi = 0.
2) We have

M =
n∑

i,j=1

∑
ie∈spE

1ie(E)Qi(ie + 0− L0)−1Qj1ie(E),

Mj =
∑

ie∈spE
1ie(E)Qj(ie + 0− L0,j)−1Qj1ie(E).

.

For i 6= j,

PQi(ie + 0− L0)−1QjP = PQiJj(ie + 0− L0)−1QjP = 0,

sincePQiJj = PPiQiPiJj = 0. Clearly,

PQi(ie + 0− L0)−1QiP = PQi(ie + 0− L0,i)−1QiP.

2
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7.2 Multiple reservoirs

Suppose that(MR1 , τR1),. . . , (MRn , τRn) areW ∗-dynamical systems withτ t
Ri

=
etδRi . Let1Ri

denote the identity onHRi
. Suppose thatMRi

have a standard repre-
sentation in Hilbert spacesHRi with the modular conjugationsJRi . Let LRi be the
Liouvillean of the dynamicsτRi .

Let (B(K), τS) describe the small quantum system, withτ t
S := eit[K,·], as in

Section 5. Define the free systems(Mi, τ0,i) where

Mi := B(K)⊗MRi
,

Hi := B2(K)⊗HRi
,

Ji := JS ⊗ JRi
,

τ t
0,i := τ t

S ⊗ τ t
Ri

= etδ0,λ ,

δ0,i = i[K, ·] + δRi
,

L0,i = [K, ·] + LRi
.

Let πi be the standard representation ofMi in Hi andJi the corresponding conju-
gations.

Let Vi ∈ Mi and define the perturbed systems(Mi, τλ,i) whereτ t
λ,i := etδλ,i

and
δλ,i := δ0,i + iλ[Vi, ·],

Lλ,i = L0,i + λ(πi(Vi)− Jiπi(Vi)Ji).

Likewise, consider the composite reservoirR described by theW ∗-dynamical
system(MR, τR), where

MR := MR1 ⊗ · · · ⊗MRn ,

HR := HR1 ⊗ · · · ⊗ HRn
,

JR := JR1 ⊗ · · · ⊗ JRn
,

τ t
R := τ t

R1
⊗ · · · ⊗ τ t

Rn
= etδR ,

δR := δR1 + · · ·+ δRn
,

LR = LR1 + · · ·+ LRn
.

Define the free composite system(M, τ0) where
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M := B(K)⊗MR,

H := B2(K)⊗HR,

J = JS ⊗ JR,

τ t
0 := τ t

S ⊗ τ t
R = etδ0 ,

δ0 = i[K, ·] + δR,

L0 = [K, ·] + LR.

Let π be the standard representation ofM in H.
SetV = V1 + · · · + Vn. The perturbed composite system describing the small

systemS interacting with the composite reservoirR is (M, τλ), whereτ t
λ := etδλ ,

δλ := δ0 + iλ[V, ·],

Lλ := L0 + λ(π(V )− Jπ(V )J).
.

7.3 LSO for the reduced dynamics in the case of a composite reservoir

Suppose that the reservoir dynamicsτRi
have stationary statesωRi

. We introduce a
projection of norm one inM, denotedPi, such that

Pi(B ⊗A1⊗, · · · ⊗Ai ⊗ · · · ⊗An) = ωRi
(Ai)B ⊗A1 ⊗ · · · ⊗ 1Ri

⊗ · · · ⊗An.

SetP :=
∏n

i=1 Pi. The projectionPi restricted toMi (which can be viewed as a
subalgebra ofM) is denoted byPi. Explicitly,

Pi(B ⊗Ai) = ωRi
(Ai)B ⊗ 1Ri

.

Assume thatωRi
(Vi) = 0 for i = 1, . . . , n.

Note that we can apply the formalism of Subsection 7.1, where the Banach space
isX is M, the projectionsPi arePi, the generator of an isometric dynamicsL0 is δ0

and the perturbationsQi arei[Vi, ·]. Clearly,Xi can be identified withMi andRanP
with B(K).

We obtain the LSO for(P, δ0, i[V, ·]), denotedM , and the LSO’s for(Pi, δ0,i, i[Vi, ·]),
denotedMi. By Theorem 19, we have

M =
n∑

i=1

Mi,

7.4 LSO for the Liovillean in the case of a composite reservoir

Let ΩRi be the standard vector representative ofωRi . We define the orthogonal pro-
jection inB(H)
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P i := 1B2(K) ⊗ 1R1 ⊗ · · · ⊗ |ΩRi
)(ΩRi

| ⊗ · · · ⊗ 1Rn
.

The projectionP i restricted toHi is denoted byPi and equals

Pi = 1B2(K) ⊗ |ΩRi)(ΩRi |.

SetP =
∏n

i=1 P i.
We can apply the formalism of Subsection 7.1, where the Banach space isX is

H, the projectionsPi areP i, the generator of an isometric dynamicsL0 is iL0 and
the perturbationsQi are i(Vi − JiViJi). Clearly,Xi can be identified withHi and
RanP with B2(K) (which as a vector space coincides withB(K)).

We obtain the LSO for(P, iL0, i(V − JV J)), denotediΓ , and the LSO for
(Pi, iL0,i, i(Vi − JiViJi)), denotediΓi. By Theorem 19, we have

iΓ =
n∑

i=1

iΓi.

The following theorem follows from obvious properties of negative operators:

Theorem 20.Suppose that for somei 6= j, dim KerΓ I
i = dim KerΓ I

j = 1 and
KerΓ I

i 6= KerΓ I
j . ThenKerΓ = {0}.

Corollary 1. Suppose that for somei 6= j, the statesωRi
andωRj

are (τRi
, βi) and

(τRj
, βj)-KMS. LetNi andNj be the corresponding∗-algebras defined as in (67).

Suppose thatβi 6= βj andN ′
i = N ′

j = C1. ThenKerΓ = {0}.

If we can apply the Spectral Fermi Golden Rule, then under the assumptions of
1, for sufficiently small nonzeroλ, Lλ has no point spectrum. Consequently, for the
sameλ, the system(Mλ, τλ), has no invariant normal states.

A Appendix – one-parameter semigroups

In this section we would like to discuss some concepts related to one-parameter
semigroups of operators in Banach spaces, which are used in our lectures. Even
though the material that we present is quite standard, we could not find a reference
that presents all of it in a convenient way. Most of it can be found in [BR1]. Less
pedantic readers may skip this appendix altogether.

Let X be a Banach space. Recall that[0,∞[3 t 7→ U(t) ∈ B(X ) is called
a 1-parameter semigroup iffU(0) = 1 andU(t1)U(t2) = U(t1 + t2). If [0,∞[
is replaced withR, then we speak about a one-parameter group instead of a one-
parameter semigroup.

We say thatU(t) is a strogly continuous semigroup (or aC0-semigroup) iff for
anyΦ ∈ X , t 7→ U(t)Φ is continuous. EveryC0-semigroup possesses its generator,
that is the operatorA defined as follows:

Φ ∈ DomA ⇔ lim
t↘0

t−1(U(t)− 1)Φ =: AΦ exists.



46 Jan Dereziński and Rafał Fr̈uboes

The generator is always closed and densely defined and uniquely determines the
semigroup. We writeU(t) = etA.

Recall also the following well known characterization of contractive semigroups:

Theorem 21.The following conditions are equivalent:
1) etA is contractive for allt ≥ 0.
2) A is densely defined,spA ⊂ {z ∈ C : Rez ≤ 0} and‖(z−A)−1‖ ≤ (Rez)−1

for Rez > 0.
3) (i) A is densely defined and for somez+ with Rez+ > 0, z+ 6∈ spA,

(ii) A is dissipative, that is for anyΦ ∈ DomA there existsξ ∈ X ∗ with
(ξ|Φ) = ‖Φ‖ and(ξ|AΦ) ≤ 0.

Moreover, ifA is bounded, then we can omit(i) in 3).

There exists an obvious corollary of the above theorem for groups of isometries:

Theorem 22.The following conditions are equivalent:
1) etA is isometric for allt ∈ R.
2) A is densely defined,spA ⊂ iR and‖(z −A)−1‖ ≤ |Rez|−1 for Rez 6= 0.
3) (i) A is densely defined and for somez± with±Rez± > 0, z± 6∈ spA,

(ii) A is conservative, that is for anyΦ ∈ DomA there existsξ ∈ X ∗ with
(ξ|Φ) = ‖Φ‖ andRe(ξ|AΦ) = 0.

Morover, ifA is bounded, then we can omit(i) in (3).

Not all semigroups considered in our lectures areC0-semigroups. An important
role in our lectures (and in applications to statistical physics) is played by somewhat
less knownC∗0 -semigroups. In order to discuss them, first we need to say a few words
about dual Banach spaces.

LetX ∗ denote the Banach space dual toX (the space of continuous linear func-
tionals onX ). We will use the sesquilinear duality betweenX ∗ andX : the form
(ξ|Φ) will be antilinear inξ ∈ X ∗ and linear inΦ ∈ X .

The so-called weak∗ (w∗) topology onX ∗ is defined by the seminorms|(·|Φ)|,
whereΦ ∈ X .

The space of w∗ continuous linear operators onX ∗ will be denoted byBw∗(X ∗).
Note thatBw∗(X ∗) ⊂ B(X ∗). If A ∈ B(X ), andA∗ is its adjoint, thenA∗ ∈
Bw∗(X ∗). Conversely, ifB ∈ Bw∗(X ∗), then there exists a uniqueA ∈ B(X ),
sometimes called the preadjoint ofB, such thatB = A∗. Likewise, if A is closed
and densely defined onX , thenA∗ is w∗ closed and w∗ densely defined onX ∗.

We say that[0,∞[3 t 7→ W (t) ∈ Bw∗(X ∗) is a w∗ continuous semigroup (or
a C∗0 -semigroup) ifft 3 W (t)ξ is w∗ continuous for anyξ ∈ X ∗. Note that if
U(t) is a C0 -semigroup, thenU(t)∗ is a C∗0 -semigroup. Conversely, ifW (t) is a
C∗0 -semigroup onX ∗, then there exists a uniqueC0-semigroupU(t) onX such that
W (t) = U(t)∗.

EveryC∗0 -semigroupW (t) possesses its generator, that is the operatorB defined
as follows:

ξ ∈ DomB ⇔ w ∗ − lim
t↘0

t−1(W (t)− 1)ξ =: Bξ exists.
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The generator is always w∗-closed and w∗-densely defined and uniquely determines
the semigroup. We writeW (t) = etB . We have

(etA)∗ = etA∗
.

On a reflexive Banach space, e.g. on a Hilbert space, the concepts of aC0- and
C∗0 -semigroup coincide. Unfortunately,W ∗-algebras are usually not reflexive. They
are, however, dual Banach spaces: they are dual to the space of normal function-
als. In the context ofW ∗-algebras the w∗-topology is usually called theσ-weak or
ultraweak topology.

Groups of automorphisms ofW ∗-algebras are rarelyC0-groups. To see this note
that if H is a self-adjoint operator on a Hilbert spaceH, then

t 7→ eitH · e−itH (68)

is always aC∗0 -group onB(H). It is aC0-group (and even a norm continuous group)
iff H is bounded, which is usually a very severe restriction.

In the context ofW ∗-algebras,C∗0 groups are usually called (pointwise)σ-
weakly continuous groups.C∗0 -groups of∗-automorphisms are often calledW ∗-
dynamics.

So far, all the material that we recalled can be found e.g. in [BR1]. Now we
would like to discuss how to define the spectral projection onto a (not necessarily
isolated) eigenvalue of a generator of contractive semigroup. We will see that a fully
satisfactory answer is available for purely imaginary eigenvalues in the case of a
reflexive Banach spaces. For non-reflexive Banach spaces the situation is much more
complicated. Our discussion is adapted from [Zs] and partly from [Da3].

LetA be the generator of a contractiveC0-semigroup onX ande ∈ R. Following
[Zs], we say thatA is ergodic atie iff

1ie(A) := lim
ξ↘0

ξ(ξ + ie−A)−1 (69)

exists.
Let B be the generator of a contractiveC∗0 -semigroup onX ∗ ande ∈ R. Follow-

ing [Zs], we say thatB is globally ergodic atie iff

1ie(B) := w ∗ − lim
ξ↘0

ξ(ξ + ie− B)−1 (70)

exists and is w∗-continuous.
As we will see from the theorem below, (69) and (70) can be called spectral

projections onto the eigenvalueie.

Theorem 23.LetA, B ande ∈ R be as above.
1) If A is ergodic atie, then1ie(A) is a projection of norm1 such that

Ran1ie(A) = Ker(A− ie), Ker1ie(A) = (Ran (A− ie))cl .
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2) On a reflexive Banach space, we have always the ergodic property for all gen-
erators of contractive semigroups and allie ∈ iR.

3) If B is globally ergodic atie, then1ie(B) is a w∗-continuous projection of
norm1 such that

Ran1ie(B) = Ker(B − ie), Ker1ie(B) = (Ran (A− ie))w∗cl
.

4) A is ergodic atie iff A∗ is globally ergodic at−ie and

1ie(A)∗ = 1−ie(A∗).

1) and 2) are proven in [Da3] Theorem 5.1 and Corollary 5.2. 3) and 4) can be
proven by adapting the arguments of [Zs] Theorem 3.4 and Corollary 3.5.

As an ilustration of the above concepts consider theW ∗-dynamics (68). Clearly,
it is a group of isometries and the spectrum of its generatori[H, ·] is contained iniR.
If H possesses only point spectrum, theni[H, ·] is globally ergodic for anyie ∈ iR.
In fact, we have the following formula for

1ie(i[H, ·])(C) =
∑
x∈R

1x+e(H)C1x(H).

Note thati[H, ·] always possesses an eigenvalue0 and the corresponding eigen-
vectors are all operators commuting withH. It is never globally ergodic at0 if H
has some continuous spectrum.
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