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Abstract

We consider the three most important equations of hypergeometric type,
2F1, 1F1 and 1F0, in the so-called degenerate case. In this case one of
the parameters, usually denoted c, is an integer and the standard basis of
solutions consists of a hypergeometric-type function and a function with a
logarithmic singularity. This article is devoted to a thorough analysis of the
latter solution to all three equations.

1 Introduction

The paper is devoted to three equations of hypergeometric type:

the 0F1 equation(
z∂2

z + c∂z − 1
)
f(z) = 0, (1)

the 1F1 or the confluent equation(
z∂2

z + (c− z)∂z − a
)
f(z) = 0, (2)

the 2F1 or the hypergeometric equation(
z(1− z)∂2

z +
(
c− (a+ b+ 1)z

)
∂z − ab

)
f(z) = 0. (3)

∗The financial support of the National Science Center, Poland, under the grant UMO-
2014/15/B/ST1/00126, is gratefully acknowledged.
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They are probably the most important exactly solvable differential equations
of mathematical physics. (Perhaps the 0F1 equation is not so well known—
by a simple transformation it is however equivalent to the much better known
Bessel equation).

The theory of these equations is quite different depending on whether
the parameter c is an integer or not. For integer c there exist additional
identities satisfied by solutions, and therefore it is more difficult to construct
all solutions. One of them is analytic at 0, but the remaining solutions have
a logarithmic singularity. The case of integer c will be called degenerate.

In our paper we would like to discuss systematically the equations (1), (2)
and (3) in the degenerate case. In particular, we will introduce and analyze
new special functions D(1+m; z), D(a; 1+m; z), and D(a, b; 1+m; z) useful
in describing solutions of these equations in this case.

Let us remark that the degenerate case of (1), (2) and (3), even though
it is in some sense exceptional, often appears in applications. For instance,
the Bessel equation with integer parameters corresponds to the degenerate
case of the 0F1 equation.

Separation of variables in the Laplacian on Rd leads to the Bessel equa-
tion. If d is odd, one obtains the Bessel equation with half-integer parameters—
this corresponds to the non-degenerate case. However if d is even, then one
obtains integer parameters—which is the degenerate case. This is related to
the fact that the resolvent of the Laplacian has a logarithmic singularity in
even dimensions. When studying the wave equation one observes a similar
phenomenon: the so-called Hadamard solutions and the Feynman propaga-
tor have a logarithmic singularity in even dimensions, e.g. in the dimension
4 of our space-time (see eg. Appendix E of [6]).

In the remaining part of the introduction we will give a short resume of
the results of our paper. Unlike in the rest of the paper, we will discuss in
parallel the three equations (1), (2) and (3). In the rest of the paper there
will be separate sections devoted to each of these three equations. Another
difference between the introduction and the rest of the paper is the choice of
parameters. In the introduction we use the traditional parameters a, b, c. In
the remaining part of the paper, instead of a, b, c we will use the parameters

α := c− 1, (4)

α := c− 1, θ := −c+ 2a; (5)

α := c− 1, β := a+ b− c, µ := a− b. (6)

These parameters, used in [4] and called there Lie-algebraic, are more con-
venient if we want to express symmetries of hypergeometric type equations.
In the degenerate case, the parameter α will be usually called m.
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1.1 Resumé of constructions and results of the pa-
per

Let us start with introducing the linear operators

F(c) := z∂2
z + c∂z − 1, (7)

F(a; c) := z∂2
z + (c− z)∂z − a, (8)

F(a, b; c) := z(1− z)∂2
z +

(
c− (a+ b+ 1)z

)
∂z − ab. (9)

Solving the equations (1), (2), resp. (3) means finding the nullspace of (7),
(8), resp. (9).

If c 6= 0,−1,−2, . . . , then the only solution of these equations ∼ 1 at 0 is

the 0F1 function

F (c; z) :=

∞∑
n=0

1

(c)n

zj

n!
(10)

= e∓2
√
zF
(2c− 1

2
; 2c− 1;±4

√
z
)
,

the 1F1 or the confluent function

F (a; c; z) :=
∞∑
n=0

(a)n
(c)n

zn

n!
, (11)

the 2F1 or the hypergeometric function

F (a, b; c; z) :=

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
. (12)

Often, it is more convenient to normalize differently these functions:

F(c; z) :=
F (c; z)

Γ(c)
=

∞∑
n=0

1

Γ(c+ n)

zn

n!
, (13)

F(a; c; z) :=
F (a; c; z)

Γ(c)
=

∞∑
n=0

(a)n
Γ(c+ n)

zn

n!
, (14)

F(a, b; c; z) :=
F (a, b; c; z)

Γ(c)
=
∞∑
n=0

(a)n(b)n
Γ(c+ n)

zn

n!
, (15)

so that they are defined for all c.
It is easy to check that the equations (7), (8) and (9) have another

solution

z1−cF(2− c; z), (16)

z1−cF(a+ 1− c; 2− c; z), (17)

z1−cF(b+ 1− c, a+ 1− c; 2− c; z). (18)
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However, for integer c, these two solutions are proportional to one an-
other. In fact, for m ∈ Z we have

F(1 +m; z) =
∑

n=max(0,−m)

1

n!(m+ n)!
zn, (19)

F(a; 1 +m; z) =
∑

n=max(0,−m)

(a)n
n!(m+ n)!

zn, (20)

F(a, b; 1 +m; z) =
∑

n=max(0,−m)

(a)n(b)n
n!(m+ n)!

zn. (21)

This easily implies the following identities for m ∈ Z:

F(1 +m; z) = z−mF(1−m; z), (22)

(a−m)mF(a; 1 +m; z) = z−mF(a−m; 1−m; z), (23)

(a−m)m(b−m)mF(a, b; 1 +m; z) = z−mF(a−m, b−m; 1−m; z). (24)

Thus, if c is an integer, the pairs of functions (13), (16); (14), (17); (15),
(18) do not span the whole solution space. This is the reason why this case
is called degenerate. As we see from the above identities, when discussing
the degenerate case it is convenient to replace c with 1 +m, m ∈ Z.

The pairs of functions (13), (16); (14), (17); (15), (18) are solutions with
a power-like behavior at 0. The equations (1), (2) and (3) possess also other
distinguished solutions. In particular, it is natural to introduce the following
solutions, which have a simple behavior at infinity:

U(c, z) := e−2
√
zz−

c
2

+ 1
4F
(
c− 1

2
,
3

2
− c;−;− 1

4
√
z

)
, (25)

U(a; c; z) := z−aF
(
a, a+ 1− c;−;−1

z

)
, (26)

U(a, b; c; z) := (−z)−aF
(
a, a− c+ 1; a− b+ 1;

1

z

)
. (27)

(25) is closely related to the MacDonald function, see (77). (26) is sometimes
called Tricomi’s function. (27) is one of elements of the so-called Kummer’s
table, which gives a list of standard solutions to the hypergeometric equation.

Both in (25) and (26) we use the 2F0 function, which is perhaps less
known. Note that it is not analytic at zero—it has a branch point there. It
satisfies

F (a, b;−; z) ∼
∞∑
n=0

(a)n(b)n
n!

zn (28)

in sectors |arg(z)| > ε for any ε > 0. For its definition and basic properties
the reader can consult e.g. [4].

Now the (25), (26), resp. (27) are additional solutions of the equations
(1), (2), resp. (3) typically not proportional to (13), (14), resp. (15). They
can be used in the degenerate case to obtain the full spaces of solutions.
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In our paper we also analyze a different method of solving the equations
(1), (2) and (3) in the degenerate case. This method is based on the ob-
servation that all solutions not proportional to (13), (14) and (15) have a
logarithmic singularity. It is natural to look for solutions of the equations
(7), (8) and (9) in the form

log zF(1 +m; z) + D(1 +m; z), (29)

log zF(a; 1 +m; z) + D(a; 1 +m; z), (30)

log(−z)F(a, b; 1 +m; z) + D(a, b; 1 +m; z). (31)

Note that we use the so-called principal branch of the logarithm, so that
the domain of log z is C\] −∞, 0]. Consequently, the domain of log(−z) is
C\[0,∞[. Solutions of the 2F1 equation usually have a branch point at 1,
therefore it is more convenient in this case to replace log z with log(−z).

The functions D(1 + m; z), D(a; 1 + m; z), resp. D(a, b; 1 + m; z) solve
the inhomogeneous equation

F(1 +m)D(1 +m; z) = −m
z
F(1 +m; z)

− 2∂zF(1 +m; z), (32)

F(a; 1 +m)D(a; 1 +m; z) =
(

1− m

z

)
F(a; 1 +m; z)

− 2∂zF(a; 1 +m; z), (33)

F(a, b; 1 +m)D(a, b; 1 +m; z) =
(
a+ b− m

z

)
F(a, b; 1 +m; z)

+ 2(z − 1)∂zF(a, b; 1 +m; z). (34)

We will show that these equations have solutions meromorphic around 0.
This does not fix them completely, because one can always add a multiple
of (13), (14), resp. (15). There exist however canonical solutions, which we
introduce in our paper.
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Using the digamma function ψ (see (195)), for m = 0, 1, 2, . . . we define

D(1 +m; z) :=
m∑
k=1

(−1)k−1 (k − 1)!

(m− k)!
z−k

−
∞∑
k=0

(
ψ(k + 1) + ψ(k + 1 +m)

) 1

k!(m+ k)!
zk, (35)

D(a; 1 +m; z) :=
m∑
k=1

(−1)k−1 (k − 1)!(a)−k
(m− k)!

z−k

+
∞∑
k=0

(
ψ(a+ k)− ψ(k + 1)− ψ(k + 1 +m)

) (a)k
(m+ k)!k!

zk,

(36)

D(a, b; 1 +m; z) :=
m∑
k=1

(−1)k−1 (k − 1)!(a)−k(b)−k
(m− k)!

z−k

+

∞∑
k=0

(
ψ(a+ k) + ψ(1− b− k)− ψ(k + 1)− ψ(m+ 1 + k)

) (a)k(b)k
(m+ k)!

zk

k!
. (37)

We extend these definitions to negative integers by setting

D(1−m; z) := zmD(1 +m; z), (38)

D(a; 1−m; z) := zmD(a; 1 +m; z), (39)

D(a, b; 1−m; z) := zmD(a, b; 1 +m; z). (40)

The functions D(1+m; z), D(a; 1+m; z), resp. D(a, b; 1+m; z) are solutions
of (32), (33), resp. (34). Therefore, (29), (30), resp. (31) are solutions of
(1), (2) and (3).

We prove that with the definitions (35), (36), resp. (37), the functions
(29), (30), resp. (31) are proportional to the special solutions (25), (26),
resp. (27):

U(1 +m; z) =
(−1)m+1

√
π

(
log z · F(1 +m; z) + D(1 +m; z)

)
, (41)

U(a; 1 +m; z) =
(−1)m+1

Γ(a−m)

(
log z · F(a; 1 +m; z) + D(a; 1 +m; z)

)
, (42)

U(a, b; 1 +m; z) =
(−1)m+1

Γ(1− b)Γ(a−m)
(43)

×
(

log(−z) · F(a, b; 1 +m; z) + D(a, b; 1 +m; z)
)
. (44)

The special functions D(1 + m; z), D(a; 1 + m; z), and D(a, b; 1 + m; z)
satisfy various identities, which we derive in our paper. In particular, we
compute recurrence relations satisfied by these functions. We show that they
are very similar to the usual recurrence relations for functions F(1 + m; ·),
F(a; 1 +m; ·) and F(a, b; 1 +m; ·), up to terms proportional to F(1 +m; ·),
F(a; 1+m; ·) and F(a, b; 1+m; ·) themselves. We also derive quadratic rela-
tions, which involve quadratic transformations of the independent variable
and doubling of parameters.
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1.2 Bibliographical remarks

(1), (2) and (3) or equivalent equations have been studied by mathematicians
for more than two centuries. Therefore, the material of our paper can be
traced back to many classic papers and books, such as the textbook of
Whittaker and Watson [12].

[12] contains in particular a detailed analysis of the Bessel equation,
closely related to the 0F1 equation. In particular that the function U(1 +
m; z) is closely related to the MacDonald function Km(z), whose degenerate
case is analyzed in Sect. 17.71 of [12]. A more complete study of the Bessel
equation can be found in [11].

The 1F1 equation is essentially equivalent to the Whittaker equation,
which is the subject of a treatise by Buchholz [3]. U(a; 1 +m; z) is the well-
known Tricomi’s function—see Equation 2.25a in [3] for the closely-related
Whittaker function. Buchholz analyzes its degenerate case in Sect. 2.5. He
introduces a function equivalent to our D(a; 1 +m; z), denoting it Mκ,m

2
(z).

Another treatise devoted to the 1F1 equation was written by Slater [7].
Its section 1.5 contains a discussion of the degenerate case—see in particular
equation 1.5.24, equivalent to our (42). As Slater remarks, this equation was
first stated incorrectly in the literature: negative powers was missing in the
formula for U(a; 1 + m; z) in [2]. The correct formula was given 20 years
later in [1].

The Legendre and the associated Legendre equation are the most impor-
tant degenerate cases of the 2F1 equation. They appear e.g. in the harmonic
analysis on the sphere. They were studied e.g. in Chap. XV of [12] or in [8].
The Legendre function of the second kind, as well as the associated Legendre
function of the second kind, discussed in Sec. 15.3 of [12], are closely related
to U(a, b; 1 +m; z).

Among the more recent references, let us mention [9], and especially
Digital Library of Mathematical Functions, [10]. In Equation 15.10.8 of
[10]. one can find the function that we call U(a, b; 1 + m; z). The so-called
associated Legendre functions of the second kind can be found in 15.9.16–23
of [10].

In our opinion, in the literature the degenerate case of (1), (2) and (3) is
usually treated in a rather ad hoc way. We think that this subject deserves
a more systematic treartment. To this end we introduce the functions D(1+
m; z), D(a; 1+m; z), and D(a, b; 1+m; z) and derive their various properties.
Most of these properties (e.g. recurrence relations and quadratic relations)
seem to be new.

1.3 Notation

We will often deal with multivalued analytic functions such as zα and log(z).
The standard form of these functions, called the pricipal branch has the do-
main C\]−∞, 0]. We can sometimes ”rotate” these functions. For instance,
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(−z)α or log(−z) have the domain C\]0,∞]. Note the relations

zα = eiπα(−z)±α, ±Im z > 0; (45)

log(−z) = log(z)± iπ, ±Im z > 0. (46)

2 The 0F1 equation

2.1 The 0F1 function

In this section we discuss the 0F1 equation, which is defined by the operator

Fα := z∂2
z + (α+ 1)∂z − 1.

It annihillates the 0F1 function Fα(z) = F (α+ 1; z). We will mostly use its
normalized version (13):

Fα(z) :=
Fα(z)

Γ(α+ 1)
=

∞∑
n=0

1

Γ(α+ 1 + n)

zn

n!
.

Another solution is
z−αF−α(z).

2.2 Solution with a simple behavior at infinity

It is natural to introduce another solution

Uα(z) := e−2
√
zz−

α
2
− 1

4F
(1

2
+ α,

1

2
− α;−;− 1

4
√
z

)
.

We have a connection formula

Uα(z) =

√
π

sinπ(−α)
Fα(z) +

√
π

sinπα
z−αF−α(z), (47)

and a discrete symmetry

Uα(z) = z−αU−α(z).

2.3 Degenerate case

If α = m ∈ Z, then

Fm(z) =

∞∑
k=max{0,−m}

1

(k +m)!

zk

k!
. (48)

Hence
Fm(z) = z−mF−m(z), (49)

so that Fm and z−mF−m are no longer linearly independent.
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Assume first that m = 0, 1, 2 . . . . We look for another function annihi-
lated by the operator Fm which has the form

log z · Fm(z) + Dm(z), (50)

where Dm(·) is a function meromorphic around zero. Note that we have
some freedom in the choice of Dm(·)—we may add to it any multiple of
Fm(·), i.e. the solution of the homogeneous problem.

The equation(
z∂2

z + (m+ 1)∂z − 1
)(

log z · Fm(z) + Dm(z)
)

= 0 (51)

leads to an inhomogeneous equation for Dm(·):(
z∂2

z + (m+ 1)∂z − 1
)
Dm(z) = −m

z
Fm(z)− 2F′m(z). (52)

Suppose Dm(z) =
∞∑

n=−N
dnz

n for some N (whose value will we find). Equa-

tion (52) reads then

∞∑
n=−N

dn
(
(n+m)nzn−1 − zn

)
= −

∞∑
n=0

m+ 2n

(m+ n)!n!
zn−1, (53)

which means that

d−NN(N −m)z−N−1 +
∞∑

n=−N

(
dn+1(n+ 1)(n+m+ 1)− dn

)
zn (54)

= − 1

(m− 1)!z
−
∞∑
n=0

m+ 2n+ 2

(m+ n+ 1)!(n+ 1)!
zn.

For this equality to be true, the coefficients dn with negative n have to fulfil

d−1 =
1

(m− 1)!
,

d−k = −(k − 1)(m+ 1− k)d−k+1 for k = 2, 3, . . . . (55)

This recurrence can be easily solved. For k = 1, 2, . . . it gives

d−k = (−1)k−1 (k − 1)!

(m− k)!
, (56)

where the factorial is understood in the sense of the Γ function, if needed.
This shows us that N = m (because d−k = 0 for k > m).
For n = 0, 1 . . . we have the recursion formula

dn+1 =
1

(n+ 1)(n+m+ 1)

(
dn −

m+ 2n+ 2

(m+ n+ 1)!(n+ 1)!

)
. (57)

It is solved by

dn = − 1

n!(m+ n)!

(
Hn +Hn(m) + C

)
, (58)
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where C ∈ C and Hn and Hn(m) are defined in (184) and (183). The choice
of C corresponds to adding a multiple of Fm(z). The formula (58) can be
proved by a simple induction argument.

We define the function Dm(z) for m = 0, 1, . . . by

Dm(z) :=
m∑
k=1

(−1)k−1 (k − 1)!

(m− k)!
z−k −

∞∑
k=0

ψ(k + 1) + ψ(k +m+ 1)

k!(m+ k)!
zk. (59)

hence we choose
C := 2γ −Hm, (60)

where γ is Euler’s constant (see (198)). We also set

D−m(z) = zmD(z). (61)

Thus we defined Dm(z) for all integer m. For m positive, it has a pole at
zero of order m, for m negative or zero it is analytic.

A close connection exists between Dm and Um function:

Theorem 1. For m ∈ Z,

Um(z) =
(−1)m+1

√
π

(
log z · Fm(z) + Dm(z)

)
. (62)

Proof. By (49) we can apply the de l’Hospital rule. As a preparation, we
compute

∂αFα(z) = −
∞∑
j=0

ψ(α+ j + 1)
zj

Γ(α+ j + 1)j!
, (63)

∂αFα(z)
∣∣∣
α=m

= −
∞∑
j=0

ψ(m+ j + 1)
zj

(m+ j)!j!
, (64)

∂αFα(z)
∣∣∣
α=−m

=
m−1∑
j=0

(−1)−m+j+1(−m+ j + 1)!zj

j!
(65)

−
∞∑
j=m

ψ(−m+ j + 1)
zj

(−m+ j)!j!
(66)

= zm
m∑
k=1

(−1)k+1(k − 1)!z−k

(m− k)!
(67)

− zm
∞∑
k=0

ψ(k + 1)
zk

k!(k +m)!
. (68)
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Now we can write

Um(z) = − lim
α→m

√
π

sinπα

(
Fα(z)− z−αF−α(z)

)
(69)

=
(−1)m+1

√
π

(
∂αFα(z)

∣∣∣
α=m

+ z−m∂αFα(z)
∣∣∣
α=−m

+ log z · Fm(z)
)

(70)

=
(−1)m+1

√
π

m∑
k=1

(−1)k−1 (k − 1)!

(m− k)!
z−k (71)

− (−1)m+1

√
π

∞∑
k=0

ψ(k + 1) + ψ(k +m+ 1)

k!(m+ k)!
zk (72)

+
(−1)m+1

√
π

log z · Fm(z). (73)

2.4 Recurrence relations

The function Fα satisfies the recurrence relations

∂zFα(z) = Fα+1(z),

(z∂z + α)Fα(z) = Fα−1(z).

The recurrence relations for (log zFm + Dm) are the same as for Fm.
They lead to the following recurrence relations for Dm:

∂zDm(z) = Dm+1(z)− Fm(z)

z
,

(z∂z +m)Dm(z) = Dm−1(z)− Fm(z). (74)

They imply the contiguity relation

Dm(z) =
1

m

(
Dm−1(z)− zDm+1(z)

)
. (75)

2.5 Bessel equation and modified Bessel equation

The functions Fm and Dm are closely related to the well-known solutions of
modified Bessel equation:

• to the modified Bessel function

Im(z) =
(z

2

)m
Fm

(z2

4

)
; (76)

• to the MacDonald function (the modified Bessel function of the second
kind)

Km(z) = (−1)m+1
(z

2

)m(
log
(z2

4

)
Fm
(z2

4

)
+ Dm

(z2

4

))
. (77)
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Similarly, the functions Fm and Dm are also closely related to respective
solutions of Bessel equation, namely

• to the Bessel function

Jm(z) =
(z

2

)m
Fm

(
− z2

4

)
; (78)

• to the Hankel functions of the first and the second type, respectively

H(1)
m (z) = − i

π

(
e

iπ
2
z

2

)m(
log
(
e−iπ z

2

4

)
Fm
(
e−iπ z

2

4

)
+ Dm

(
e−iπ z

2

4

))
,

H(2)
m (z) =

i

π

(
e−

iπ
2
z

2

)m(
log
(
eiπ z

2

4

)
Fm
(
eiπ z

2

4

)
+ Dm

(
eiπ z

2

4

))
. (79)

3 The 1F1 equation

3.1 The 1F1 function

In the parameters θ, α introduced in (5), the 1F1 operator (8) becomes

Fθ,α = z∂2
z + (1 + α− z)∂z −

1

2
(1 + θ + α),

It annihillates the 1F1 function Fθ,α(z) = F
(

1+α+θ
2 ;α+1; z

)
. We will mostly

use its normalized version (14):

Fθ,α(z) :=
Fθ,α(z)

Γ(α+ 1)
=
∞∑
n=0

(1+α+θ
2 )n

Γ(α+ n+ 1)n!
zn. (80)

There is also another solution

z−αFθ,−α(z). (81)

3.2 Tricomi’s function

One can also introduce a solution of the confluent equation with a simple
behavior at infinity. It is sometimes called Tricomi’s function

Uθ,α(z) := z
−1−θ+α

2 F
(1− α+ θ

2
,
1 + α+ θ

2
;−;−z−1

)
. (82)

We have a connection formula

Uθ,α(z) =
πFθ,α(z)

sinπ(−α)Γ
(

1+θ−α
2

) +
πz−αFθ,−α(z)

sinπαΓ
(

1+θ+α
2

) ,
and a discrete symmetry

Uθ,−α(z) = zαUθ,α(z). (83)
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3.3 Degenerate case

If α = m ∈ Z, then

Fθ,m(z) =
∞∑

n=max{0,−m}

(
θ+m+1

2

)
n

n!(m+ n)!
zn.

Therefore, (θ −m+ 1

2

)
m
Fθ,m(z) = z−mFθ,−m(z), (84)

so that Fθ,m and z−mFθ,−m are no longer linearly independent.
We will look for another solution of the form

log z · Fθ,m(z) + Dθ,m(z), (85)

where Dθ,m(·) is a meromorphic function around zero. Note that again we
have some freedom in the choice of Dθ,m(·)—we may add to it any multiple
of Fθ,m(·).

The equation(
z∂2

z + (1 + α− z)∂z −
1

2
(1 + θ + α)

)(
log z ·Fθ,m(z) + Dθ,m(z)

)
= 0 (86)

leads to an inhomogeneous equation(
z∂2

z +(1+α−z)∂z−
1

2
(1+θ+α)

)
Dθ,m(z) =

(
1−m

z

)
Fθ,m(z)−2∂zFθ,m(z).

(87)

Suppose again that Dθ,m =
∞∑

n=−N
dnz

n. We obtain a recurrence relation

d−1 =
1

(m− 1)!(−1+m+θ
2 )

,

d−k = −(k − 1)(m+ 1− k)

(1+m+θ
2 − k)

d−k+1 for k = 2, 3 . . . ,

dk+1 =
1

(k + 1)(k +m+ 1)

((
k +

1 +m+ θ

2

)
dk

+
(1+m+θ

2 )k

(m+ k + 1)!(k + 1)!

(
(k + 1)(m+ k + 1)−

(1 +m+ θ

2
+ k
)

(m+ 2k + 2)
))

for k = 0, 1, 2 . . .

These recursion relations are solved by

d−k = (−1)k−1
(k − 1)!

(
1+m+θ

2

)
−k

(m− k)!
, for k = 1, 2 . . . (88)

dk =

(
1+m+θ

2

)
k

(m+ k)!k!

(
ψ
(1 +m+ θ

2
+ k
)
−Hk −Hk(m) + C

)
, for k = 0, 1, 2, . . . ,m,
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where C is arbitrary. To define Dθ,m, we choose again

C := 2γ −Hm, (89)

which leads to

Dθ,m(z) =
∞∑
k=0

(1+m+θ
2 )k

(m+ k)!k!

(
ψ
(1 +m+ θ

2
+ k
)
− ψ(k + 1)− ψ(k +m+ 1)

)
zk

+

m∑
k=1

(−1)k−1
(k − 1)!

(
1+m+θ

2

)
−k

(m− k)!
z−k. (90)

For m = 1, 2, . . . , we set

Dθ,−m(z) := zmDθ,m(z). (91)

The Dθ,m function is closely related to Tricomi’s function:

Theorem 2. For m ∈ Z,

Uθ,m(z) =
(−1)m+1

Γ(1−m+θ
2 )

(
log z · Fθ,m(z) + Dθ,m(z)

)
. (92)

The proof is similar to the proof of Theorem 1 and is omitted.

3.4 Recurrence relations

The function Fθ,α fulfils the following recurrence relations:

∂zFθ,α(z) =
1 + α+ θ

2
Fθ+1,α+1(z),

(∂z − 1)Fθ,α(z) =
−1− α+ θ

2
Fθ−1,α+1(z),

(z∂z + α− z)Fθ,α(z) = Fθ−1,α−1(z),

(z∂z + α)Fθ,α(z) = Fθ+1,α−1(z),

(z∂z +
1

2
(1 + α+ θ))Fθ,α(z) =

1 + α+ θ

2
Fθ+2,α(z),

(z∂z +
1

2
(1 + α− θ)− z)Fθ,α(z) =

1 + α− θ
2

Fθ−2,α(z).

The recurrence relations for log(z)Fθ,m +Dθ,m are the same as for Fθ,m.
They lead to the recurrence relations for Dθ,m:

∂zDθ,m(z) =
1 + θ +m

2
Dθ+1,m+1(z)−

Fθ,m(z)

z
,

(∂z − 1)Dθ,m(z) =
−1 + θ −m

2
Dθ−1,m+1(z)−

Fθ,m(z)

z
,

(z∂z +m− z)Dθ,m(z) = Dθ−1,m−1(z)− Fθ,m(z),

(z∂z +m)Dθ,m(z) = Dθ+1,m−1(z)− Fθ,m(z),

(z∂z +
1

2
(1 +m+ θ))Dθ,m(z) =

1 +m+ θ

2
Dθ+2,m(z)− Fθ,m(z),

(z∂z +
1

2
(1 +m− θ)− z)Dθ,m(z) =

1 +m− θ
2

Dθ−2,m(z)− Fθ,m(z).
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They imply contiguous relations

Dθ,m(z) =
1 +m+ θ

2
Dθ+1,m+1(z) +

1 +m− θ
2

Dθ−1,m+1(z),

zDθ,m(z) = Dθ+1,m−1(z)−Dθ−1,m−1(z),

(θ + z)Dθ,m(z) =
1 +m+ θ

2
Dθ+2,m(z)− 1 +m− θ

2
Dθ−2,m(z).

3.5 Quadratic relations

It is well-known that the 0F1 equation and the 1F1 equation for θ = 0 are
related by a quadratic transformation. On the level of their solutions, we
have

Fα(z2) = e−2zF0,2α(4z), (93)

Uα(z2) = 2 · 4αe−2zU0,2α(4z). (94)

This leads to a simple relationship between Dm and D0,2m:

Theorem 3.

Dm(z2) =
2(−4)m

√
π

Γ(1
2 −m)

e−2z
(

log(4)F0,2m(4z) + D0,2m(4z)
)
. (95)

Proof. Inserting (93) into (62) we obtain

Um(z2) =
(−1)m+1

√
π

(
2 log(z)

Γ(1 + 2m)

Γ(1 +m)
e−2zF0,2m(4z) + Dm(z2)

)
. (96)

Inserting (93) into (92) we obtain

2 · 4me−2zU0,2m(z)

=− 2 · 4m

Γ(1
2 −m)

e−2z
((

(log 4 + log(z)
)
F0,2m(4z) + D0,2m(4z)

)
. (97)

Now by (94) we have (96)=(97). Using the identity

(−1)mΓ(1 + 2m)√
πΓ(1 +m)

=
4m

Γ(1
2 −m)

, (98)

we see that the terms with log(z) cancel and we obtain (95).

4 The 2F1 equation

4.1 The 2F1 function

In the parameters α, β, µ introduced in (6), the 2F1 operator (9) becomes

Fα,β,µ :=z(1− z)∂2
z +

(
(1 + α)(1− z)− (1 + β)z

)
∂z

+
µ2

4
− 1

4
(α+ β + 1)2. (99)
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It annihillates the 2F1 function Fα,β,µ(z) = F
(1+α+β+µ

2 , 1+α+β−µ
2 ; 1 + α; z

)
.

We will mostly use its normalized version (15):

Fα,β,µ(z) :=
Fα,β,µ(z)

Γ(α+ 1)
=

∞∑
n=0

(1+α+β+µ
2

)
n

(1+α+β−µ
2

)
n

Γ(1 + α+ n)n!
zn. (100)

There is also another solution with a power-like behavior at zero:

z−αF−α,β,−µ(z). (101)

4.2 Solution with a simple behaviour at infinity

The following function is annihilated by Fα,β,µ and behaves as 1
Γ(1+µ)(−z)

−1−α−β−µ
2

at ∞ (see e.g. [4]):

Uα,β,µ(z) := (−z)
−1−α−β−µ

2 Fµ,β,α(z−1). (102)

It can be expressed with use of Fα,β,µ function:

Uα,β,µ(z) = − π

sin(πα)

(
Fα,β,µ(z)

Γ(1−α−β+µ
2 )Γ(1−α+β+µ

2 )

−
(−z)−αF−α,β,−µ(z)

Γ(1+α+β+µ
2 )Γ(1+α−β+µ

2 )

)
. (103)

We have a set of identities

Uα,β,µ(z) (104)

= (−z)−αU−α,β,µ(z) (105)

= (1− z)−βUα,−β,µ(z) (106)

= (−z)−α(1− z)−βU−α,−β,µ(z), (107)

which are essentially a part of the so-called Kummer table, see e.g. [4]. They
follow by the following argument: all of them are annihilated by Fα,β,µ and

behave like 1
Γ(1+µ)(−z)

−1−α−β−µ
2 at∞. These conditions determine uniquely

a solution to the hypergeometric equation.
We have another identity

Uα,β,µ(z) = e∓iπ
(−1−α−β−µ)

2 Uβ,α,µ(1− z), ±Im z > 0. (108)

Indeed, Uβ,α,µ(1−z) is annihilated by Fα,β,µ and behaves as 1
Γ(1+µ)z

−1−α−β−µ
2

at ∞. Then we use (45).

4.3 Degenerate case

If α = m ∈ Z, then

Fm,β,µ(z) =

∞∑
n=max{0,−m}

(1+m+β+µ
2

)
n

(1+m+β−µ
2

)
n

n!(m+ n)!
zn.
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Therefore,

z−mF−m,β,−µ(z) =
(1−m− β − µ

2

)
m

(1−m− β + µ

2

)
m
Fm,β,µ(z) (109)

=
(1−m+ β + µ

2

)
m

(1−m+ β − µ
2

)
m
Fm,β,µ(z) (110)

= (−1)m
(1−m+ β + µ

2

)
m

(1−m− β + µ

2

)
m
Fm,β,µ(z). (111)

= (−1)m
(1−m− β − µ

2

)
m

(1−m+ β − µ
2

)
m
Fm,β,µ(z). (112)

Hence Fm,β,µ and z−mF−m,β,−µ are no longer linearly independent.
Note that (109)–(112) contain 4 ways of writing the coefficient in front

of Fm,β,µ—this follows from the identity (191).
For m ∈ N we will look for another solution of the form

log(−z) · Fm,β,µ(z) + Dm,β,µ(z). (113)

Again, this does not fix Dm,β,µ—we may add to it any multiple of Fm,β,µ.
Inserting (113) into the hypergeometric equation yields the recurrence rela-
tions

d−1 =
1

(m− 1)!

( 2

m− 1 + β + µ

)( 2

m− 1 + β − µ

)
,

d−k = − (k − 1)(m+ 1− k)(
1+m+β+µ

2 − k
)(

1+m+β−µ
2 − k

)d−k+1,

dk+1 =
1

(k + 1)(k + 1 +m)

((1 +m+ β + µ

2
+ k
)(1 +m+ β − µ

2
+ k
)
dk

+

(1+m+β+µ
2

)
k

(1+m+β−µ
2

)
k

k!(m+ k)!

(
(1 + β +m+ 2k)

−

(
1+m+β+µ

2 + k
)(

1+m+β−µ
2 + k

)
(1 +m+ k)(k + 1)

(2k +m+ 2)

))
.

These recursion relations are solved by

d−k = (−1)k−1 (k − 1)!(1+m+β−µ
2 )−k(

1+m+β+µ
2 )−k

(m− k)!
, for k = 1, 2 . . . ,m, (114)

dk =

(
Hk

(1 +m+ β + µ

2

)
+Hk

(1 +m+ β − µ
2

)
−Hk −Hk(m) + c

)
(1+m+β+µ

2 )k(
1+m+β−µ

2 )k

(m+ k)!k!
, for k = 0, 1, 2, . . . ,
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where C is arbitrary. We introduce a particular solution of these relations:

Dm,β,µ(z) =
∞∑
k=0

(
ψ
(1 +m+ β + µ

2
+ k
)

+ ψ
(1−m− β + µ

2
− k
)

−ψ(k + 1)− ψ(m+ k + 1)

)
(1+m+β+µ

2 )k(
1+m+β−µ

2 )k

(m+ k)!k!
zk

+

m∑
k=1

(−1)k−1 (k − 1)!(1+m+β+µ
2 )−k(

1+m+β−µ
2 )−k

(m− k)!
z−k. (115)

For m = 1, 2, . . . , we set

D−m,β,µ(z) := zmDm,β,µ(z). (116)

Note the identity

ψ
(1−m− β + µ

2
− k
)

(117)

=ψ
(1 +m+ β − µ

2
+ k
)

+ π cot
(
π

1 +m+ β − µ
2

)
, (118)

which can be used to put the definition of Dm,β,µ(z) in a different form.
The function Um,β,µ is closely related to Dm,β,µ:

Theorem 4. For m ∈ Z,

Um,β,µ(z) =
(−1)m+1

Γ(1−m−β+µ
2 )Γ(1−m+β+µ

2 )

(
log(−z) · Fm,β,µ(z) + Dm,β,µ(z)

)
.

(119)

Proof. Note that (111) can be rewritten as

(−z)−mF−m,β,−µ(z)

Γ(1+m+β+µ
2 )Γ(1+m−β+µ

2 )
=

Fm,β,µ(z)

Γ(1−m−β+µ
2 )Γ(1−m+β+µ

2 )
. (120)

Therefore, we can apply the de l’Hospital rule. As a preparation for this we
compute

∂α
Fα,β,µ(z)

Γ(1−α−β+µ
2 )Γ(1−α+β+µ

2 )
(121)

=

∞∑
k=0

(
1

2
ψ
(1− α− β + µ

2

)
+

1

2
ψ
(1− α+ β + µ

2

)
+

1

2
Hk

(1 + α+ β + µ

2

)
+

1

2
Hk

(1 + α+ β − µ
2

)
− ψ(1 + α+ k)

)

×
(1+α+β+µ

2

)
k

(1+α+β−µ
2

)
k
zk

Γ
(1−α−β+µ

2

)
Γ
(1−α+β+µ

2

)
Γ(1 + α+ k)k!

.
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Thus,

∂α
Fα,β,µ(z)

Γ(1−α−β+µ
2 )Γ(1−α+β+µ

2 )

∣∣∣
α=m

(122)

=
∞∑
k=0

(
1

2
ψ
(1−m− β + µ

2

)
+

1

2
ψ
(1−m+ β + µ

2

)
+

1

2
Hk

(1 +m+ β + µ

2

)
+

1

2
Hk

(1 +m+ β − µ
2

)
− ψ(1 +m+ k)

)

×
(1+m+β+µ

2

)
k

(1+m+β−µ
2

)
k
zk

Γ
(1−m−β+µ

2

)
Γ
(1−m+β+µ

2

)
(m+ k)!k!

,

∂α
Fα,β,µ(z)

Γ(1−α−β+µ
2 )Γ(1−α+β+µ

2 )

∣∣∣
α=−m

(123)

=

m−1∑
k=0

(−1)1−m+k(−1 +m− k)!
(1−m+β+µ

2

)
k

(1−m+β−µ
2

)
k
zk

Γ
(1+m−β+µ

2

)
Γ
(1+m+β+µ

2

)
k!

+
∞∑
k=m

(
1

2
ψ
(1 +m− β + µ

2

)
+

1

2
ψ
(1 +m+ β + µ

2

)
+

1

2
Hk

(1−m+ β + µ

2

)
+

1

2
Hk

(1−m+ β − µ
2

)
− ψ(1−m+ k)

)

×
(1−m+β+µ

2

)
k

(1−m+β−µ
2

)
k
zk

Γ
(1+m−β+µ

2

)
Γ
(1+m+β+µ

2

)
(−m+ k)!k!

=
m−1∑
k=0

(−1)1+k(−1 +m− k)!
(1+m+β+µ

2

)
k−m

(1+m+β−µ
2

)
k−mz

k

Γ
(1−m−β+µ

2

)
Γ
(1−m+β+µ

2

)
k!

+ (−z)m
∞∑
k=0

(
1

2
ψ
(1 +m− β + µ

2

)
+

1

2
ψ
(1 +m+ β + µ

2

)
+

1

2
Hk+m

(1−m+ β + µ

2

)
+

1

2
Hk+m

(1−m+ β − µ
2

)
− ψ(1 + k)

)

×
(1+m+β+µ

2

)
k

(1+m+β−µ
2

)
k
zk

Γ
(1−m+β+µ

2

)
Γ
(1−m−β+µ

2

)
k!(k +m)!

, (124)

where we shifted the variable k by m and used a few identities for the
Pochhammer symbol in (124). Now, recalling that F−α,β,−µ(z) = F−α,β,µ(z),
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we can write

Um,β,µ(z) = − lim
α→m

π

sin(πα)

(
Fα,β,µ(z)

Γ(1−α−β+µ
2 )Γ(1−α+β+µ

2 )
−

(−z)−αF−α,β,−µ(z)

Γ(1+α+β+µ
2 )Γ(1+α−β+µ

2 )

)

=(−1)m+1

(
∂α

Fα,β,µ(z)

Γ(1−α−β+µ
2 )Γ(1−α+β+µ

2 )

∣∣∣
α=m

+ (−z)−m∂α
Fα,β,µ(z)

Γ(1−α−β+µ
2 )Γ(1−α+β+µ

2 )

∣∣∣
α=−m

+ log(−z)(−z)−m
F−m,β,µ(z)

Γ(1+m−β+µ
2 )Γ(1+m+β+µ

2 )

)

= (−1)m+1
m−1∑
k=0

(−1 +m− k)!
(1+m+β+µ

2

)
k−m

(1+m+β−µ
2

)
k−m(−z)k−m

Γ
(1−m−β+µ

2

)
Γ
(1−m+β+µ

2

)
k!

+ (−1)m+1
∞∑
k=0

(
1

2
ψ
(1−m− β + µ

2

)
+

1

2
ψ
(1−m+ β + µ

2

)
+

1

2
ψ
(1 +m− β + µ

2

)
+

1

2
ψ
(1 +m+ β + µ

2

)
+

1

2
Hk

(1 +m+ β + µ

2

)
+

1

2
Hk

(1 +m+ β − µ
2

)
− ψ(1 +m+ k)

+
1

2
Hk+m

(1−m+ β + µ

2

)
+

1

2
Hk+m

(1−m+ β − µ
2

)
− ψ(1 + k)

)

×
(1+m+β+µ

2

)
k

(1+m+β−µ
2

)
k
zk

Γ
(1−m−β+µ

2

)
Γ
(1−m+β+µ

2

)
(m+ k)!k!

+ (−1)m+1 log(−z)
Fα,β,µ(z)

Γ(1−α−β+µ
2 )Γ(1−α+β+µ

2 )
.

Finally, we simplify the expression by using a few identities:

ψ
(1 +m+ β + µ

2

)
+Hk

(1 +m+ β + µ

2

)
= ψ

(1 +m+ β + µ

2
+ k
)
,

(125)

ψ
(1−m+ β + µ

2

)
+Hk+m

(1−m+ β + µ

2

)
= ψ

(1 +m+ β + µ

2
+ k
)
,

(126)

ψ
(1−m− β + µ

2

)
+Hk

(1 +m+ β − µ
2

)
= ψ

(1−m− β + µ

2
− k
)
,

(127)

ψ
(1 +m− β + µ

2

)
+Hk+m

(1−m+ β − µ
2

)
= ψ

(1−m− β + µ

2
− k
)
.

(128)
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4.4 Recurrence relations

To revise
Recurrence relations for the hypergeometric function have a more sym-

metric form if we use a special normalisation, namely

FI
α,β,µ(z) := Γ

(1 + α+ β − µ
2

)
Γ
(1 + α− β + µ

2

)
Fα,β,µ(z) (129)

= Γ
(1 + α− β + µ

2

) ∞∑
k=0

Γ
(1+α+β−µ

2 + k
)(1+α+β+µ

2

)
k

Γ(1 + α+ k)k!
zk.

The function FI
α,β,µ fulfils the following recurrence relations:

∂zF
I
α,β,µ(z) =

1 + α+ β + µ

2
FI
α+1,β+1,µ(z)(

z(1− z)∂z + α(1− z)− βz
)
FI
α,β,µ(z) =

−1 + α+ β − µ
2

FI
α−1,β−1,µ(z)(

(1− z)∂z − β
)
FI
α,β,µ(z) =

1 + α− β − µ
2

FI
α+1,β−1,µ(z)

(z∂z + α)FI
α,β,µ(z) =

−1 + α− β + µ

2
FI
α−1,β+1,µ(z)(

z∂z +
1

2
(1 + α+ β + µ)

)
FI
α,β,µ(z) =

1 + α+ β + µ

2
FI
α,β+1,µ+1(z)(

z∂z +
1

2
(1 + α+ β − µ)

)
FI
α,β,µ(z) =

−1 + α− β + µ

2
FI
α,β+1,µ−1(z)(

z(1− z)∂z − β +
1

2
(1 + α+ β + µ)(1− z)

)
FI
α,β,µ(z) =

−1 + α+ β − µ
2

FI
α,β−1,µ+1(z)(

z(1− z)∂z − β +
1

2
(1 + α+ β − µ)(1− z)

)
FI
α,β,µ(z) =

1 + α− β − µ
2

FI
α,β−1,µ−1(z)(

(z − 1)∂z +
1

2
(1 + α+ β + µ)

)
FI
α,β,µ(z) =

1 + α+ β + µ

2
FI
α+1,β,µ+1(z)(

(z − 1)∂z +
1

2
(1 + α+ β − µ)

)
FI
α,β,µ(z) =

1 + α− β − µ
2

FI
α+1,β,µ−1(z)(

z(1− z)∂z + α− 1

2
(1 + α+ β + µ)z

)
FI
α,β,µ(z) =

−1 + α+ β − µ
2

FI
α−1,β,µ+1(z)(

z(1− z)∂z + α− 1

2
(1 + α+ β − µ)z

)
FI
α,β,µ(z) =

−1 + α− β + µ

2
FI
α−1,β,µ−1(z).

In order to have recurrence relations for Dm,β,µ similar to relations for
FI
m,β,µ, we change its normalisation:

DI
m,β,µ(z) := Γ

(1 +m+ β − µ
2

)
Γ
(1 +m− β + µ

2

)
Dm,β,µ(z). (130)

The recurrence relations for log(−z)FI
m,β,µ + DI

m,β,µ are the same as for

FI
m,β,µ and they lead to the recurrence relations for DI

m,β,µ:
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∂zD
I
m,β,µ(z) =

=
1 +m+ β + µ

2
DI
m+1,β+1,µ(z) −

FI
m,β,µ(z)

z
,(

z(1− z)∂z +m(1− z)− βz
)
DI
m,β,µ(z) =

=
−1 +m+ β − µ

2
DI
m−1,β−1,µ(z) − (1− z)FI

m,β,µ(z),(
(1− z)∂z − β

)
DI
m,β,µ(z) =

=
1 +m− β − µ

2
DI
m+1,β−1,µ(z) − (1− z)

z
FI
m,β,µ(z),

(z∂z +m)DI
m,β,µ(z) =

=
−1 +m− β + µ

2
DI
m−1,β+1,µ(z) − FI

m,β,µ(z),(
z∂z +

1

2
(1 +m+ β + µ)

)
DI
m,β,µ(z) =

=
1 +m+ β + µ

2
DI
m,β+1,µ+1(z) − FI

m,β,µ(z),(
z∂z +

1

2
(1 +m+ β − µ)

)
DI
m,β,µ(z) =

=
−1 +m− β + µ

2
DI
m,β+1,µ−1(z) − FI

m,β,µ(z),(
z(1− z)∂z − β +

1

2
(1 +m+ β + µ)(1− z)

)
DI
m,β,µ(z) =

=
−1 +m+ β − µ

2
DI
m,β−1,µ+1(z) − (1− z)FI

m,β,µ(z),(
z(1− z)∂z − β +

1

2
(1 +m+ β − µ)(1− z)

)
DI
m,β,µ(z) =

=
1 +m− β − µ

2
DI
m,β−1,µ−1(z) − (1− z)FI

m,β,µ(z),(
(z − 1)∂z +

1

2
(1 +m+ β + µ)

)
DI
m,β,µ(z) =

=
1 +m+ β + µ

2
DI
m+1,β,µ+1(z) − z − 1

z
FI
m,β,µ(z),(

(z − 1)∂z +
1

2
(1 +m+ β − µ)

)
DI
m,β,µ(z) =

=
1 +m− β − µ

2
DI
m+1,β,µ−1(z) − z − 1

z
FI
m,β,µ(z),(

z(1− z)∂z +m− 1

2
(1 +m+ β + µ)z

)
DI
m,β,µ(z) =

=
−1 +m+ β − µ

2
DI
m−1,β,µ+1(z) − (1− z)FI

m,β,µ(z),(
z(1− z)∂z +m− 1

2
(1 +m+ β − µ)z

)
DI
m,β,µ(z) =

=
−1 +m− β + µ

2
DI
m−1,β,µ−1(z) − (1− z)FI

m,β,µ(z).
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They imply contiguous relations:

mDI
m,β,µ(z) =

−1 +m− β + µ

2
DI
m−1,β+1,µ(z)− 1 +m+ β + µ

2
zDI

m+1,β+1,µ(z),

m(1− z)DI
m,β,µ(z) =

−1 +m+ β − µ
2

DI
m−1,β−1,µ(z)− 1 +m− β − µ

2
zDI

m+1,β−1,µ(z),

µDI
m,β,µ(z) =

1 +m+ β + µ

2
DI
m,β+1,µ+1(z)− −1 +m− β + µ

2
DI
m,β+1,µ−1(z),

µ(1− z)DI
m,β,µ(z) =

−1 +m+ β − µ
2

DI
m,β−1,µ+1(z)− 1 +m− β − µ

2
DI
m,β−1,µ−1(z),

µDI
m,β,µ(z) =

1 +m+ β + µ

2
DI
m+1,β,µ+1(z)− 1 +m− β − µ

2
DI
m+1,µ,β−1(z),

µzDI
m,β,µ(z) =

−1 +m− β + µ

2
DI
m−1,β,µ−1(z)− −1 +m+ β − µ

2
DI
m−1,β,µ+1(z).

4.5 Kummer’s table relations

As a special case of relations from the so-called Kummer’s table, the hyper-
geometric function satisfies

Fα,β,µ(z) = (1− z)−βFα,−β,µ(z), (131)

Uα,β,µ(z) = (1− z)−βUα,−β,µ(z), (132)

(see e.g. [4], and also (106)). There is also an analogous identity for Dm:

Theorem 5. For m ∈ Z,

Dm,β,µ(z) = (1− z)−βDm,−β,µ(z). (133)

Proof. We use (119) together with (131), (132).

4.6 Quadratic relations

There exist also well-known “doubling relations” between hypergeometric
functions with special parameters, which involve a quadratic transformation
of the independent variable, such as

Γ(1 + 2α)F2α,β,β(z) =
( 2

2− z

) 1
2

+α+β
Γ(1 + α)Fα,β,− 1

2

( z2

(2− z)2

)
(134)

= (1− z)−
1
4
−α

2
−β

2 Γ(1 + α)Fα,− 1
2
,β

( z2

4(z − 1)

)
, (135)

Fβ,β,2α(z) = Fβ,− 1
2
,α

(
4z(1− z)

)
(136)

= (1− 2z)−
1
2
−β−αFβ,α,− 1

2

(4z(z − 1)

(1− 2z)2

)
. (137)

Indeed, we check that the functions that appear on the left and right hand
sides of (134) and (135) are annihilated by the hypergeometric operator
F2α,β,β , are analytic at 0, and equal 1 at 0. Using the fact that 0 is a
regular singular point of the hypergeometric equation, we conclude that
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they coincide, which proves identities (134) and (135). (136) and (137) can
be proven in a similar way.

(136) can be rewritten as

U2α,β,β(z) =
(
4(1− z)

)− 1
4
−α

2
−β

2Uα,− 1
2
,β

( z2

4(z − 1)

)
. (138)

Here is a doubling relation for the functions D:

Theorem 6. For m = 0, 1, . . . , we have

D2m,β,β(z) =
m!

2(2m)!
(1− z)−

1
4
−m

2
−β

2

(
Dm,− 1

2
,β

( z2

4(z − 1)

)
− log

(
4(1− z)

)
Fm,− 1

2
,β

( z2

4(z − 1)

))
. (139)

Proof. By (119), we have

U2m,β,β(z) (140)

=
−1

Γ(1
2 −m)Γ(1

2 −m+ β)

(
D2m,β,β(z) + log(−z)F2m,β,β(z)

)
(141)

=
(−1)1+mΓ(1 + 2m)

√
π4mΓ(1 +m)Γ(1

2 −m+ β)

(
D2m,β,β(z) + log(−z)F2m,β,β(z)

)
, (142)

where we used (98). Again, by (119), we have(
4(1− z)

)− 1
4
−m

2
−β

2Um,− 1
2
,β

( z2

4(z − 1)

)
(143)

=
(−1)m+1

(
4(1− z)

)− 1
4
−m

2
−β

2

Γ(1
4 −

m
2 + β

2 )Γ(3
4 −

m
2 + β

2 )

(
Dm,− 1

2
,β

( z2

4(z − 1)

)
(144)

+ log
( z2

4(1− z)

)
Fm,− 1

2
,β

( z2

4(z − 1)

))
(145)

(146)

=
(−1)m+1(1− z)−

1
4
−m

2
−β

2

21+2m
√
πΓ(1

2 −m+ β)

(
Dm,− 1

2
,β

( z2

4(z − 1)

)
(147)

+
(

2 log(−z)− log
(
4(1− z)

))
Fm,− 1

2
,β

( z2

4(z − 1)

))
, (148)

where we used

Γ
(1

4
− m

2
+
β

2

)
Γ
(3

4
− m

2
+
β

2

)
= 2

1
2

+m−β√πΓ
(1

2
−m+ β

)
. (149)

Now by (138) we have the identity (140)=(143). Then we notice that by
(135) the terms in (142) and (148) involving log(−z) cancel. We obtain
(139).
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4.7 Special normalization

The reader probably has noticed that the formulas involving the parameters
α, β, µ are often somewhat complicated. For this reason, we introduce an
additional parameter

n : −(α+ β + µ+ 1)

2
, (150)

treated as a function of the basic parameters α, β, µ. This parameter coin-
cides with −a from the usual parameters a, b, c. If n is an integer, then the
hypergeometric function is a polynomial, essentially the Jacobi polynomial,
and n is (usually) its degree. However, we will use this symbol also when n
is not an integer.

It is often natural to consider the hypergeometric function with different
normalizations than F and F. One of them, considered eg. in [], is

FI(a, b; c; z) = FI
α,β,µ(z) (151)

:=
Γ(a)Γ(c− a)

Γ(c)
F (a, b; c; z) =

Γ(−n)Γ(α+ n+ 1)

Γ(α+ 1)
Fα,β,µ(z). (152)

This normalization appears naturally when we consider the integral repre-
sentation of the following type:

FI(a, b; c; z) =

∫ ∞
1

tb−c(t− 1)c−a−1(t− z)−bdt, z 6∈ [1,∞[. (153)

In the context of degenerate hypergeometric functions, and especially
hypergeometric polynomials, another normalization is also useful:

FII(a, b; c; z) = FII
α,β,µ(z) (154)

:=
Γ(c− a)

Γ(1− a)Γ(c)
F (a, b; c; z) =

Γ(α+ n+ 1)

Γ(n+ 1)Γ(α+ 1)
Fα,β,µ(z). (155)

For non-integer a it is easy to pass from FI to FII:

FII(a, b; c; z) =
sin(πa)

π
FI(a, b; c; z). (156)

We also have a natural integral representation of FII valid if Re (c− a) > 0:

FII(a, b; c; z) =
1

2πi

∫
[1,(z,0)+,1]

(−t)b−c(1− t)c−a−1(z − t)−bdt. (157)

Here, the contour starts at 1, encircles z and 0 counterclockwise and ends
up at 1.

We have two important cases when FII is useful and its definition simpli-
fies: the degenerate case and the polynomial case. We discuss them below.
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4.8 Special normalization in the degenerate case

Let us consider α =: m ∈ Z, that is in the degenerate case. Using Γ(m+n+1)
Γ(n+1) =

(n+ 1)m, we can then write

FII
m,β,µ(z) =

(n+ 1)m
m!

Fm,β,µ(z). (158)

The identity (109) can now be rewritten in a simple form:

z−mFII
−m,β,−µ(z) = FII

m,β,µ(z). (159)

The contour for the integral representation also simplifies in this case:

FII(a, b; 1 +m; z) =
1

2πi

∫
[(z,0)+]

(−t)b−m−1(1− t)m−a(z − t)−bdt (160)

= − 1

2πi

∫
[(1,∞)+]

(−t)b−m−1(1− t)m−a(z − t)−bdt. (161)

Here, the first contour is a counterclockwise loop around z and 0, and the
second contour is a counterclockwise loop around 1 and ∞. (Note that
thanks to the degeneracy condition m ∈ Z the loops are closed on the
Riemann surface of the integrand).

Here is the effect of switching the sign in front of µ:

FII
m,β,µ(z) =

(n+ 1)m
(n+ µ+ 1)m

FII
m,β,−µ(z) (162)

=
(−1)m(n+ 1)m
(n+ β + 1)m

FII
m,β,−µ(z). (163)

4.9 Polynomial case

The second case when FII simplifies is n ∈ Z. Using Γ(α+n+1)
Γ(α+1) = (α + 1)n,

we can write

FII
α,β,µ(z) =

(α+ 1)n
n!

Fα,β,µ(z) = Pαβn (1− 2z) (164)

=
n∑
j=0

(1 + α+ j)n−j(1 + α+ β + n)j
(n− j)!j!

(−z)j , (165)

where Pαβn are the usual Jacobi polynomials. The degree of FII
α,β,µ is gener-

ically n if n ≥ 0, otherwise FII
α,β,µ = 0. The only exception is when µ is a

negative integer. This is the degenerate case at infinity and the degree of
FII
α,β,µ is

−1− α− β + µ

2
= −1− α− β − n = n+ µ. (166)
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The contour in the integral representation (157) can be again simplified,
using the fact that ∞ now becomes a pole:

FII(a, b; c; z) =
1

2πi

∫
[(0,1,z)+]

(−t)b−m−1(1− t)m−a(z − t)−bdt, (167)

where the contour is a counterclockwise loop around 0, 1, z (or a clockwise
loop around ∞). Substituting t = −1

s and reversing the orientation of the
contour, we can transform (169) to a more usual form

FII(a, b; c; z) =
1

2πi

∫
[0+]

sa−1(1 + s)c−a−1(1 + zs)−bds (168)

=
1

2πi

∫
[0+]

s−n−1(1 + s)α+n(1 + zs)−α−β−n−1ds. (169)

where the contour is a clockwise loop around 0.
The functions FII in the polynomial case enjoy many symmetries:

FII
α,β,µ(z) = (1− z)nFII

α,µ,β

( z

z − 1

)
= (−1)nFII

β,α,µ(1− z) = (−z)nFII
β,µ,α

(z − 1

z

)
= znFII

µ,β,α

(1

z

)
= (z − 1)nFII

µ,α,β

( 1

1− z

)
.

They have the following values at 0, 1 and the behavior at ∞:

FII
α,β,µ(0) =

(α+ 1)n
n!

, FII
α,β,µ(1) = (−1)n

(β + 1)n
n!

,

lim
z→∞

FII
α,β,µ(z)

zn
= (−1)n

(µ+ 1)n
n!

.

We have the identity

Uα,β,µ(z) =
(−1)nn!

Γ(1 + µ+ n)
FII
α,β,µ(z). (170)

Note that if n = −1,−2, . . . , then FII
α,β,µ(z) = 0. Therefore, to obtain a

regular solution we need to choose a different normalization, such that

FI
α,β,µ(z) =

∞∑
j=0

(j − n− 1)!(α+ β + n+ 1)j
(α+ n+ 1)j−nj!

zj , (171)

or Fα,β,µ(z) =
∞∑
j=0

(−n)j(α+ β + n+ 1)j
(α+ j)!j!

zj , (172)

(173)
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4.10 Degenerate polynomial case

The following identities are valid by (159) and (163) for a general n:

FII
α,β,µ(z) =

(n+ 1)α
(β + n+ 1)α

(−z)−αFII
−α,β,µ(z), α ∈ Z;

FII
α,β,µ(z) =

(n+ 1)β
(α+ n+ 1)β

(1− z)−βFII
α,−β,µ(z), β ∈ Z;

FII
α,β,µ(z) = (−z)−α(1− z)−βFII

−α,−β,µ(z), α, β ∈ Z.

They are especially useful if n is an integer, since they connect various
polynomials: clearly, degFII

α,β,µ = n, and the on the rhs we have

degFII
−α,β,µ = n+ α, degFII

α,−β,µ = n+ β, degFII
−α,−β,µ = n+ α+ β.

4.11 Complete elliptic integral

Let us discuss the case 000. We have

F000(z, ∂z) = z(1− z)∂2
z + (1− 2z)− 1

4
(174)

= z−1(1− z)−1∂zz
2(1− z)2∂z −

1

4
. (175)

The solution that behaves as 1 near 0 is

F000(z) = F000(z) = F
(1

2
,
1

2
; 1; z

)
=

∞∑
j=0

(1
2)2
jz
j

(j!)2
.

It satisfies

F000(z) ∼ ln
(1− z

16

)
, z ≈ 1; (176)

F000(z) ∼ (−z)−
1
2 ln

(
− z

16

)
, z ≈ ∞. (177)

It is closely related to the complete elliptic integral of the first kind:

K(k) =
π

2
F000(k2). (178)

The solution behaving as 1 near 1 is F000(1 − z). The solution that

behaves as (−z)−
1
2 near ∞ is

U000(z) = U000(z) = (−z)−
1
2F000(z−1) = (1− z)−

1
2F000

(
(1− z)−1

)
. (179)

We have

U000(z) = ±iU000(1− z), ±Im z > 0; (180)

U000(z) ∼ ln
(
− z

16

)
, z ≈ 0; (181)

U000(z) = ±iF (z)− F (1− z), ±Im z > 0. (182)
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A Some formulas

We use various functions related to the Gamma function Γ(z):

the shifted kth harmonic number Hk(z) :=
1

z
+ · · ·+ 1

z + k − 1
, (183)

the kth harmonic number Hk :=
1

1
+ · · ·+ 1

k
= Hk(1), (184)

the Pochhammer symbol (z)k :=
Γ(z + k)

Γ(z)
(185)

=

{
z(z + 1) · · · (z + k − 1), k ≥ 0,

1
(z+k)(z+k+1)···(z−1) , k ≤ 0.

Some of their properties are collected below:

Hk+n(z) = Hn(z) +Hk(z + n), (186)

Hk(z) = −Hk(1− z − k), (187)

H2p =
1

2

(
Hp +Hp

(1

2

))
, (188)

H2p+1 =
1

2

(
Hp +Hp+1

(1

2

))
, (189)

(z)k+n = (zn)(z + n)k, (190)

(z)k = (−1)k(1− k − z)k, (191)

(z)−k =
1

(z − k)k
. (192)

∂z
1

Γ(z)

∣∣∣
z=−n

= (−1)nn!, n = 0, 1, 2, ... (193)

∂z(z)n = Hn(z)(z)n. (194)

Here is the digamma function:

ψ(z) :=
∂zΓ(z)

Γ(z)
, (195)

∂z
1

Γ(z)
= −ψ(z)

Γ(z)
, (196)

ψ(z + k) = ψ(z) +Hk(z), (197)

ψ(1 + k) = −γ +Hk. (198)

ψ(z)− ψ(1− z) = −π cot(πz), (199)

ψ
(1

2
+ z
)
− ψ

(1

2
− z
)

= π tan(πz), (200)

2 log 2 + ψ(z) + ψ
(
z +

1

2

)
= 2ψ(2z). (201)
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[4] J. Dereziński, Hypergeometric Type Functions and Their Symmetries,
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