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Excitation Spectrum of Interacting Bosons
in the Mean-Field Infinite-Volume Limit

Jan Dereziński and Marcin Napiórkowski

Abstract. We consider homogeneous Bose gas in a large cubic box with
periodic boundary conditions, at zero temperature. We analyze its exci-
tation spectrum in a certain kind of a mean-field infinite-volume limit.
We prove that under appropriate conditions the excitation spectrum has
the form predicted by the Bogoliubov approximation. Our result can be
viewed as an extension of the result of Seiringer (Commun. Math. Phys.
306:565–578, 2011) to large volumes.

1. Introduction and Main Results

Many physical properties of complicated interacting systems can be derived
from simple Hamiltonians involving independent (bosonic or fermionic) quasi-
particles (see [5] for a detailed discussion of this concept) with appropriately
chosen dispersion relation (the dependence of the quasiparticle energy on the
momentum). One of such systems is the weakly interacting Bose gas at zero
temperature. On the heuristic level, the quasiparticle description of the Bose
gas can be derived from the Bogoliubov approximation ([2], see also [4]). The
main goal of this paper is a rigorous justification of this approximation for a
homogeneous system of N interacting bosons in a certain kind of a mean-field
large-volume limit.

Let us state the assumptions on the 2-body potential that we will use
throughout the paper. Consider a real function R

d � x �→ v(x), with its
Fourier transform defined by

v̂(p) :=
∫

Rd

v(x) e−ipx dx.

We assume that v(x) = v(−x), and that v ∈ L1(Rd) and v̂ ∈ L1(Rd). We also
suppose that the potential is positive and positive definite, i.e.

v(x) ≥ 0, x ∈ R
d, v̂(p) ≥ 0, p ∈ R

d.
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We will consider Bose gas in large but finite volume. To do this, following
the standard approach, we replace the infinite space R

d by the torus Λ = ] −
L/2, L/2]d, that is, the d-dimensional cubic box of side length L. We will always
assume that L ≥ 1.

The original potential v is replaced by its periodized version

vL(x) :=
1
Ld

∑
p∈(2π/L)Zd

eipx v̂(p).

Here, p ∈ (2π/L)Zd is the discrete momentum variable. Note that vL is peri-
odic with respect to the domain Λ and that vL(x) → v(x) as L → ∞. Consider
the Hamiltonian

−
N∑

i=1

ΔL
i + λ

∑
1≤i<j≤N

vL(xi − xj) (1.1)

acting on the space L2
s (Λ

N ) (the symmetric subspace of L2(ΛN )). The Lapla-
cian is assumed to have periodic boundary conditions.

Let ρ = N/Ld be the density of the gas. The Bogoliubov approximation
[2] predicts that the ground-state energy is

1
2
λρv̂(0)(N − 1) − 1

2

∑
p∈ 2π

L Zd\{0}

(
|p|2 + ρλv̂(p) − |p|

√
|p|2 + 2ρλv̂(p)

)

and that the low-lying excited states can be derived from the following ele-
mentary excitation spectrum:

|p|
√

|p|2 + 2ρλv̂(p). (1.2)

Note that within the Bogoliubov approximation both the ground-state
energy and the excitation spectrum depend on ρ and λ only through the prod-
uct ρλ. The dependence on L is very weak:

1. The elementary excitation spectrum (1.2) depends on L only through the
spacing of the momentum lattice 2π

L Z
d.

2. The expression for the ground-state energy divided by the volume Ld con-
verges for L → ∞ to a finite expression

1
2
ρ2λv̂(0) − 1

2(2π)d

∫ (
|p|2 + ρλv̂(p) − |p|

√
|p|2 + 2ρλv̂(p)

)
dp. (1.3)

We believe that it is important to understand the Bogoliubov approxi-
mation for large L. Important physical properties, such as the phonon group
velocity and the description of the Beliaev damping in terms of analyticity
properties of Green’s functions, have an elegant description when we can view
the momentum as a continuous variable, which is equivalent to taking the limit
L → ∞.

Note that in our problem there are three a priori uncorrelated parameters:
λ, N and L. By the mean-field limit one usually understands N → ∞ with
λ � 1

N and L = const. However, when both N and L are large it is natural to
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consider a somewhat different scaling. In our paper the mean-field limit will
correspond to N → ∞ with λ � 1

ρ = Ld

N .
Motivated by the above argument, we will consider a system described

by the Hamiltonian

HL
N = −

N∑
i=1

ΔL
i +

Ld

N

∑
1≤i<j≤N

vL(xi − xj). (1.4)

It is translation invariant: it commutes with the total momentum operator

PL
N := −

N∑
i=1

i∂L
xi
. (1.5)

We will denote by EL
N the ground-state energy of (1.4). If p ∈ 2π

L Z
d\{0}

let KL,1
N (p),KL,2

N (p), . . . be the eigenvalues of HL
N −EL

N of total momentum p
in the order of increasing values, counting the multiplicity. The lowest eigen-
value of HL

N −EL
N of total momentum p = 0 is 0 by general arguments [4]. Let

KL,1
N (0),KL,2

N (0), . . . be the next eigenvalues of HL
N −EL

N of total momentum
0, also in the order of increasing values, counting the multiplicity.

We also introduce the Bogoliubov energy

EL
Bog := −1

2

∑
p∈ 2π

L Zd\{0}

(
|p|2 + v̂(p) − |p|

√
|p|2 + 2v̂(p)

)

and the Bogoliubov elementary excitation spectrum

ep = |p|
√

|p|2 + 2v̂(p). (1.6)

For any p ∈ 2π
L Z

d we consider the corresponding excitation energies with
momentum p:{

j∑
i=1

eki
: k1, . . . ,kj ∈ 2π

L
Z

d\{0}, k1 + · · · + kj = p, j = 1, 2, . . .

}
.

LetKL,1
Bog(p),KL,2

Bog(p), . . . be these excitation energies in the order of increasing
values, counting the multiplicity. We will use the term excitation spectrum in
the Bogoliubov approximation to denote the set of pairs

(
KL,j

Bog(p),p
)

∈ R×R
d.

Later on we will see that it coincides with the joint spectrum of commuting
operators HL

Bog−EL
Bog and PL with (0,0) removed. (See (6.3) for the definition

of HL
Bog.)
Below we present pictures of the excitation spectrum of 1-dimensional

Bose gas in the Bogoliubov approximation (Figs. 1, 3) for two potentials, v1
and v2 (Figs. 2, 4). Both potentials are appropriately scaled Gaussians. (Note
that Gaussians satisfy the assumptions of our main theorem). On both pictures
the (black) dot at the origin corresponds to the quasiparticle vacuum, (red)
dots correspond to 1-quasiparticle excitations, (blue) triangles correspond to 2-
quasiparticles excitations, while (green) squares correspond to n-quasiparticles
excitations with n ≥ 3. We also give the graphs of the Fourier transforms of
both potentials.
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Figure 1. Excitation spectrum of 1-dimensional homoge-
neous Bose gas with potential v1 in the Bogoliubov approxi-
mation

Figure 2. v̂1(p) = e−p2/5

10

Note that all figures are drawn in the same scale, apart from Fig. 4, where
the potential had to be scaled down because of space limitations. In our units
of length 2π

L = 15
100 .

Notice that for some total momentum p many-quasiparticle excitation
energies are lower than the elementary excitation spectrum. In particular, for
the potential v1 it happens already for low momenta. Physically this means
that the corresponding 1-quasiparticle excitation is not stable: it may decay
to m-quasiparticle states, m ≥ 2, with a lower energy. This phenomenon has
been observed experimentally [10] and is called the Beliaev damping [1]. If one
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Figure 3. Excitation spectrum of 1-dimensional homoge-
neous Bose gas with potential v2 in the Bogoliubov approxi-
mation

Figure 4. v̂2(p) = 15 e−p2/2

2

can assume that the momentum variable is continuous, the Beliaev damping
corresponds to a pole of the Green’s function on a non-physical sheet of the en-
ergy complex plane. The imaginary part of the position of this pole, computed
by Beliaev, is responsible for the rate of decay of quasiparticles.

The excitation spectrum for potential v2 has a very different shape—it has
local maxima and local minima away from the zero momentum. On the picture
we show traditional names of quasiparticles—phonons in the low-momentum
region, where the dispersion relation is approximately linear, maxons near
the local maximum and rotons near the local minimum of the elementary
excitation spectrum (see [9] for details).
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From now on, we will drop the superscript L. Let us state our main result.
It is slightly different for the upper and lower bounds:

Theorem 1.1. 1. Let c > 0. Then there exists C such that
(a) if

L2d+2 ≤ cN, (1.7)

then

EN ≥ 1
2
v̂(0)(N − 1) + EBog − CN−1/2L2d+3; (1.8)

(b) if in addition

Kj
N (p) ≤ cNL−d−2, (1.9)

then

EN +Kj
N (p) ≥ 1

2
v̂(0)(N − 1) + EBog +Kj

Bog(p)

− CN−1/2Ld/2+3
(
Kj

N (p) + Ld
)3/2

. (1.10)

2. Let c > 0. Then there exists c1 > 0 and C such that
(a) if

L2d+1 ≤ cN (1.11)

and Ld+1 ≤ c1N, (1.12)

then

EN ≤ 1
2
v̂(0)(N − 1) + EBog + CN−1/2L2d+3/2; (1.13)

(b) if in addition

Kj
Bog(p) ≤ cNL−d−2 (1.14)

and Kj
Bog(p) ≤ c1NL

−2, (1.15)

then

EN +Kj
N (p) ≤ 1

2
v̂(0)(N − 1) + EBog +Kj

Bog(p)

+ CN−1/2Ld/2+3(Kj
Bog(p) + Ld−1)3/2. (1.16)

Let us stress that the constants C and c1 that appear in the theorem
depend only the potential v, the dimension d, and the constant c, but do not
depend on N , j and L. Note also that both in (1), resp. (2) we can deduce (a)
from (b) by setting Kj

N (p) = 0, resp. Kj
Bog(p) = 0.

Theorem 1.1 expresses the idea that the Bogoliubov approximation be-
comes exact for large N and L provided that the volume does not grow too
fast. This may appear not very transparent, since the error terms in the the-
orem depend on two parameters L and N as well as on the excitation energy.
Therefore, we give some consequences of our theorem, where the error term
depends only on N . They generalize the corresponding remarks of [18].
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Corollary 1.2. Let b > 1,−1 − 1
2d+1 < α ≤ 1 and L4d+6 ≤ bN1−α. Then there

exists M such that if N > M , then

1. EN = 1
2 v̂(0)(N − 1) + EBog +O(N−α/2);

2. if min
(
Kj

N (p),Kj
Bog(p)

)
≤ (bN1−αL−d−6)1/3, then

Kj
N (p) = Kj

Bog(p) +O(N−α/2);

3. if 0 < α ≤ 1 and min
(
Kj

N (p),Kj
Bog(p)

)
≤ bN1−αL−d−6, then

Kj
N (p) = Kj

Bog(p) +
(
1 +Kj

Bog(p)
)
O(N−α/2).

The proof that Theorem 1.1 implies Corollary 1.2 is given in Appendix.

Remark 1.3. 1. The case α = 1, L = 1 of Corollary 1.2 corresponds directly
to the result of [18].

2. In part (3) of Corollary 1.2 one can also include the case α = 0 provided
that L is sufficiently large.

Thus, for large N within a growing range of the volume, the low-lying
energy–momentum spectrum of the homogeneous Bose gas is well described
by the Bogoliubov approximation. In the infinite-volume limit momentum be-
comes a continuous variable, which is important when we want to consider the
so-called critical velocity and phase velocity introduced by Landau. They play
a crucial role in his theory of superfluidity ([11,12], see also [4,20]).

Mathematically, the Bogoliubov approximation has been studied mostly
in the context of the ground-state energy ([6,7,15,16,19,21], see also [14]). This
makes the work of Seiringer [18], Grech and Seiringer [8] and more recently by
Lewin et al. [13] even more notable, since they are devoted to a rigorous study
of the excitation spectrum of a Bose gas.

Seiringer [18] proves that for a system of N bosons on a flat unit torus
T

d which interacts with a two-body interaction v(x)/(N − 1), the excitation
spectrum up to an energy κ is formed by elementary excitations of momentum
p with a corresponding energy of the form (1.2) up to an error term of the
order O(κ3/2N−1/2). Also in [8] and [13] the authors are concerned with finite
systems in the large particle number limit.

Our result can be considered as an extension of Seiringer’s result to sys-
tems of arbitrary volume. The ultimate goal would be to prove similar results
in the thermodynamic limit with a fixed coupling constant. Since this is at
the moment out of reach, we try to pass to some other limits, which involve
convergence of the volume to infinity.

The rest of this paper is devoted to a proof of Theorem 1.1. It uses partly
the methods presented in [18]. Note, however, that naive mimicking leads to a
much weaker result, which involves assuming that N ≥ C ecLd/2

to ensure that
the error terms tend to zero when taking the infinite-volume limit. This can
be easily seen by looking for example at equation (24) of [18]. In this equation
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one of the constants is given by the expression eC2 where C2 is given by
√

64N
N − 1

∑
p �=0

β2
p.

In the infinite-volume limit the sum could be replaced by an integral which
one can compensate by the factor Ld/2. This leads to a factor ecLd/2

in the
estimates.

Our proof uses certain identities that allow us to simplify the algebraic
computations involved in the proof. We use the method of second quantization,
working in the Fock space containing all N -particle spaces at once. We embed
this space in the so-called extended space, which contains non-physical states
with a negative number of zero modes. This method leads to relatively simple
algebraic calculations, which is helpful when we want to control the volume
dependence. Note also that our method yields the same results as in [18] if one
takes L = 1.

Strangely, we have never seen the method of the extended space in the
literature. Some authors (starting with Bogoliubov [3]) introduce the operator
a†
0(1 +N0)−1/2, which coincides with our operator U† on the physical space.

Both operators increase the number of zeroth modes by one. The operator U†,
however, acts on the extended space and is unitary, whereas a†

0(1 + N0)−1/2

acts on the physical space and is only isometric.
One can also see some similarity of our method with that of [13] where,

however, states with a negative number of modes do not appear.

2. Miscellanea

Let us describe some notation and basic facts from operator theory used in
our paper.

If A, B are operators, then the following inequality will be often used:

−A†A−B†B ≤ A†B +B†A ≤ A†A+B†B. (2.1)

We will write A+ hc for A+A†.
If A is a self-adjoint operator and Ω a Borel subset of the spectrum of A,

then 1Ω(A) will denote the spectral projection of A onto Ω.
Let A be a bounded from below self-adjoint operator on Hilbert space H.

For simplicity, let us assume that it has only discrete spectrum.
We define

−→sp(A) := (E1, E2, . . .),

where E1, E2, . . . are the eigenvalues of A in the order of increasing values,
counting the multiplicity. If dimH = n, then we set En+1 = En+2 = · · · = ∞.

We will use repeatedly two consequences of the min-max principle [17]:

A ≤ B implies −→sp(A) ≤ −→sp(B),
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and the so-called Rayleigh-Ritz principle: if K is a closed subspace of H, let
PK be the projection onto K. Then we have

−→sp(A) ≤ −→sp
(
PKAPK

∣∣∣
K

)
. (2.2)

3. Second Quantization

As discussed in the introduction, the main object of our paper, the Hamiltonian
HN is defined on the N -particle bosonic space

HN := L2
s (Λ

N ).

We will work most of the time in the momentum representation, in which the
1-particle space L2(Λ) is represented as l2

(
2π
L Z

d
)
, thus

HN � ⊗N
s l

2

(
2π
L

Z
d

)
.

It is convenient to consider simultaneously the direct sum of the N -
particle spaces, the bosonic Fock space

H :=
∞⊕

N=0
HN = Γs

(
l2
(

2π
L

Z
d

))
. (3.1)

The direct sum of the Hamiltonians HN will be denoted H. Using the
notation of the second quantization it can be written as

H :=
∞⊕

N=0
HN =

∑
p

p2a†
pap +

1
2N

∑
p,q,k

v̂(k)a†
p+ka

†
q−kaqap.

If A is an operator on the one-particle space, then by its second quanti-
zation we will mean the operator that on the N -particle space equals

N∑
i=1

Ai.

If we use an orthonormal basis, say, |p〉, p ∈ 2π
L Z

d, then this operator written
in the second quantized notation equals

1
2

∑
p1,p2

〈p1|A|p2〉a†
p1
ap2 .

Let us introduce some special notation for various operators and their
second quantization.

Let P be the projection onto the constant function in L2(]L/2, L/2]d),
and Q = 1 − P . The operator that counts the number of particles in, resp.
outside the zero momentum mode will be denoted by N0, resp. N>, i.e.

N0 =
N∑

i=1

Pi, N> =
N∑

i=1

Qi. (3.2)
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In the second quantization notation,

N0 = a†
0a0, N> =

∑
p �=0

a†
pap.

For N -particle bosonic wave functions Ψ,Φ we have

〈Ψ|N>|Φ〉 = N〈Ψ|Q1|Φ〉, (3.3)
〈Ψ|N>(N> − 1)|Φ〉 = N(N − 1)〈Ψ|Q1Q2|Φ〉. (3.4)

The symbol T will denote the kinetic energy of the system: T =−∑N
i=1 Δi.

For further reference, note that

〈Ψ|N>|Ψ〉 ≤ L2

(2π)2
〈Ψ|T |Ψ〉. (3.5)

We will also need the notion of the second quantization of certain 2-
body operators. More precisely, let w be an operator on the symmetrized
2-particle space. Then by its second quantization, we will mean the operator
that restricted to the N -particle space equals∑

1≤i<j≤N

wij .

If w is an operator on the unsymmetrized 2-particle space, then we can also
speak about its second quantization, but now its restriction to the N -particle
space equals

1
2

∑
1≤i�=j≤N

wij .

In the momentum basis this operator written in the second quantized language
equals

1
2

∑
p1,p2,p3,p4

〈p1,p2|w|p3,p4〉a†
p1
a†
p2
ap3ap4 .

4. Bounds on Interaction

The potential v can be interpreted as an operator of multiplication by v(x1−x2)
on L2

s (Λ
2). Following [18], we would like to estimate this 2-body operator

by simpler, 1-body operators. As a preliminary step we record the following
bound:

Lemma 4.1. Let ε > 0. Then

v ≥ P ⊗ PvP ⊗ P + P ⊗ PvQ⊗Q+Q⊗QvP ⊗ P

+(1 − ε)(P ⊗Q+Q⊗ P )v(P ⊗Q+Q⊗ P )
+(1 − ε−1)Q⊗QvQ⊗Q,
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v ≤ P ⊗ PvP ⊗ P + P ⊗ PvQ⊗Q+Q⊗QvP ⊗ P

+(1 + ε)(P ⊗Q+Q⊗ P )v(P ⊗Q+Q⊗ P )
+(1 + ε−1)Q⊗QvQ⊗Q.

Proof. Using the translation invariance of v we obtain

v = (P ⊗ P +Q⊗Q)v(P ⊗ P +Q⊗Q)
+(P ⊗Q+Q⊗ P )v(P ⊗Q+Q⊗ P )
+(P ⊗Q+Q⊗ P )vQ⊗Q+Q⊗Qv(P ⊗Q+Q⊗ P ).

Then we apply the Schwarz inequality to the last two terms. �

Let us now identify the second quantization of various terms on the r.h.s
of the estimates of Lemma 4.1:

P ⊗ PvP ⊗ P
1

2Ld
v̂(0)a†

0a
†
0a0a0 =

1
2Ld

v̂(0)N0(N0 − 1),

P ⊗ PvQ⊗Q
1

2Ld

∑
p �=0

v̂(p)a†
0a

†
0apa−p,

Q⊗QvP ⊗ P
1

2Ld

∑
p �=0

v̂(p)a†
pa

†
−pa0a0,

P ⊗QvQ⊗ P, Q⊗ PvP ⊗Q
1

2Ld

∑
p �=0

v̂(0)a†
papN0,

P ⊗QvP ⊗Q, Q⊗ PvQ⊗ P
1

2Ld

∑
p �=0

v̂(p)a†
papN0.

The second quantization of Q⊗QvQ⊗Q can be bounded from above by

v(0)
∑

1≤i<j≤N

QiQj = v(0)
1
2
N>(N>−1).

Introduce the family of estimating Hamiltonians

HN,ε :=
1
2
v̂(0)(N − 1) +

∑
p �=0

(|p|2 + v̂(p)
)
a†
pap

+
1

2N

∑
p �=0

v̂(p)
(
a†
0a

†
0apa−p + a†

pa
†
−pa0a0

)

− 1
N

∑
p �=0

(
v̂(p) +

v̂(0)
2

)
a†
papN

> +
v̂(0)
2N

N>

+
ε

N

∑
p �=0

(v̂(p) + v̂(0)) a†
papN0

+(1 + ε−1)
1

2N
v(0)LdN>(N> − 1).
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The operators HN,ε preserve the N -particle sectors. By the above calcu-
lations we obtain the following estimates on the Hamiltonian:

HN ≥ HN,−ε, 0 < ε ≤ 1; (4.1)
HN ≤ HN,ε, 0 < ε. (4.2)

5. Extended Space

So far we used the physical Hilbert space (3.1). By the exponential property of
Fock spaces we have the identification

H � Γs(C) ⊗ Γs

(
l2
(

2π
L

Z
d\{0}

))
. (5.1)

Let us embed the space of zero modes Γs(C) = l2({0, 1, . . .}) in a larger space
l2(Z). Thus we obtain the extended Hilbert space

Hext := l2(Z) ⊗ Γs

(
l2
(

2π
L

Z
d\{0}

))
. (5.2)

The physical space (5.1) is spanned by vectors of the form |n0〉 ⊗ Ψ>, where
|n0〉 represents n0 zero modes (n0 ≥ 0) and Ψ> represents a vector outside the
zero mode.

The space (5.2) is also spanned by vectors of this form, where now the
relation n0 ≥ 0 is not imposed. The orthogonal complement of H in Hext will
be denoted by Hnph (for “non-physical”).

On Hext we have a self-adjoint operator N ext
0 such that N ext

0 |n0〉⊗Ψ> =
n0|n0〉 ⊗ Ψ>. Its spectrum equals Z. Clearly

N ext
0

∣∣∣
H

= N0, H = Ran1[0,∞[(N ext
0 ), Hnph = Ran1]−∞,0[(N ext

0 ).

If N ∈ Z, we will write Hext
N for the subspace of Hext corresponding to N> +

N ext
0 = N .

We have also a unitary operator

U |n0〉 ⊗ Ψ> = |n0 − 1〉 ⊗ Ψ>.

Notice that both U and U† commute with both ap and a†
p with p �= 0. We

now define for p �= 0 the following operator on Hext:

bp := apU
†.

Operators bp and b†q satisfy the same CCR as ap and a†
q.

The extended space is useful in the study of N -body Hamiltonians. To
illustrate this, on Hext

N let us introduce the extended Hamiltonian

Hext
N =

∑
p �=0

(
p2 +

N ext
0

N
(v̂(p) + v̂(0)

)
b†pbp

+
1
2

∑
p �=0

(
v̂(p)

√
N ext

0 (N ext
0 − 1)

N
bpb−p + hc

)
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+
1
N

∑
k,p �=0

(
v̂(k)b†kb

†
p−kbp

√
max(N ext

0 , 0) + hc
)

+
1

2N

∑
p,q,k�=0

v̂(k)b†p+kb
†
q−kbqbp.

It is easy to see that Hext
N preserves the N -particle physical space HN and on

HN it coincides with HN .
In our paper we will use the extended estimating Hamiltonian, which is

the following operator on Hext
N :

Hext
N,ε :=

1
2
v̂(0)(N − 1) +

∑
p �=0

(|p|2 + v̂(p)
)
b†pbp

+
1
2

∑
p �=0

v̂(p)

(√
(N ext

0 − 1)N ext
0

N
bpb−p + hc

)

− 1
N

∑
p �=0

(
v̂(p) +

v̂(0)
2

)
b†pbpN

> +
v̂(0)
2N

N>

+
ε

N

∑
p �=0

(v̂(p) + v̂(0)) b†pbpN
ext
0

+(1 + ε−1)
1

2N
v(0)LdN>(N> − 1).

Note that Hext
N,ε preserves HN and restricted to HN coincides with HN,ε.

6. Bogoliubov Hamiltonian

Consider the operator
∑
p �=0

(|p|2 + v̂(p)
)
b†pbp +

1
2

∑
p �=0

v̂(p)
(
bpb−p + b†pb

†
−p

)
.

acting on Hext. It commutes with N0 +N> and U . In particular, it preserves
Hext

N . Its restriction to Hext
N will be denoted HBog,N .

We can write

Hext
N,ε =

1
2
v̂(0)(N − 1) +HBog,N +RN,ε, (6.1)

RN,ε :=
1
2

∑
p �=0

v̂(p)

((√
(N ext

0 − 1)N ext
0

N
− 1

)
bpb−p + hc

)

− 1
N

∑
p �=0

(
v̂(p) +

v̂(0)
2

)
b†pbpN

> +
v̂(0)
2N

N>

+
ε

N

∑
p �=0

(v̂(p) + v̂(0)) b†pbpN
ext
0

+(1 + ε−1)
1

2N
v(0)LdN>(N> − 1). (6.2)
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Clearly, all HBog,N are unitarily equivalent to one another: UHBog,NU
†

= HBog,N−1. It is easy to see that they are all unitarily equivalent to what we
can call the standard Bogoliubov Hamiltonian:

HBog =
∑
p �=0

(|p|2 + v̂(p)
)
a†
pap +

1
2

∑
p �=0

v̂(p)
(
apa−p + a†

pa
†
−p

)
. (6.3)

HBog acts on Γs

(
l2
(

2π
L Z

d\{0})).
We would now like to find a unitary transformation diagonalizing HBog.

To this end set

Ap := |p|2 + v̂(p), Bp := v̂(p).

Introduce also αp, βp, cp and sp by

αp =
1
Bp

(
Ap −

√
A2

p −B2
p

)
= tanh(2βp),

cp =
1√

1 − α2
p

= cosh(2βp),

sp =
αp√

1 − α2
p

= sinh(2βp).

Now let S = e−X , where

X =
∑
p �=0

βp

(
a†
pa

†
−p − apa−p

)
. (6.4)

Then using the Lie formula

e−X aq eX =
∞∑

j=0

(−1)j

j!
[X, . . . [X, aq] . . .]

j times

= 1 + 2βqa
†
−q +

1
2
4β2

qaq + · · ·
we get

SaqS
† = cqaq + sqa

†
−q. (6.5)

Therefore,

HBog =
∑
p �=0

1
2

(
Ap(a†

pap + a†
−pa−p) +Bp(a†

pa
†
−p + apa−p)

)

= −1
2

∑
p �=0

(
Ap −

√
A2

p −B2
p

)
(6.6)

+
∑
p �=0

√
A2

p −B2
p

(
cpa

†
p + spa−p

) (
cpap + spa

†
−p

)
(6.7)

= EBog + S

⎛
⎝∑

p �=0

epa
†
pap

⎞
⎠S†, (6.8)
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where ep and EBog are defined in the introduction. Thus the spectrum of
HBog − EBog equals

{
j∑

i=1

eki
: k1, . . . ,kj ∈ 2π

L
Z

d\{0}, j = 0, 1, 2, . . .

}
.

For further reference note the following identities:

αp =
v̂(p)

|p|2 + v̂(p) + |p|√2v̂(p) + |p|2 ,

(cp − sp)2 =
1 − αp

1 + αp
=

|p|√|p|2 + 2v̂(p)
, (6.9)

sp(cp − sp) =
αp

1 + αp
=

v̂(p)
|p|2 + 2v̂(p) + |p|√|p|2 + 2v̂(p)

, (6.10)

2spcp(cp − sp)2 =
αp

(1 + αp)2
=

v̂(p)
|p|2 + 2v̂(p)

.

We note also an alternative formula for the Bogoliubov energy:

EBog = −1
2

∑
p∈ 2π

L Zd\{0}

v̂(p)2

|p|2 + v̂(p) + |p|√|p|2 + 2v̂(p)|p| .

7. Lower Bound

In this section, we prove the lower bound part of Theorem 1.1. Using the nota-
tion introduced in the previous sections it follows from the following statement:

Theorem 7.1. Let c > 0. Then there exists C such that for any κ ≥ 0 with

Ld+2(Ld + κ) ≤ cN (7.1)

we have

−→sp (
1[0,κ](HN − EN )HN

) ≥ 1
2
v̂(0)(N − 1) + −→sp (HBog)

−CN−1/2Ld/2+3(κ+ Ld)3/2.

The proof of the lower bound starts with estimates analogous to Lemmas
1 and 2 of [18]. Note that in these estimates all operators involve the physical
Hilbert space.

Lemma 7.2. The ground-state energy EN of HN satisfies the bounds

0 ≥ EN − 1
2

(N − 1) v̂(0) ≥ 1
2
(
v̂(0) − Ldv(0)

)
. (7.2)
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Proof. The upper bound to the ground-state energy follows by using a constant
trial wave function Ψ = L−Nd/2, which gives

1
2
(N − 1)v̂(0) ≥ EN . (7.3)

Using v̂(p) ≥ 0 for every p ∈ 2π
L Z

d we obtain supx v(x) = v(0). Moreover,

1
2Ld

∑
p∈ 2π

L Zd\{0}
v̂(p)

∣∣∣∣∣
N∑

i=1

eipxj

∣∣∣∣∣
2

≥ 0.

This is equivalent to
∑

1≤i<j≤N

v(xi − xj) ≥ N2

2Ld
v̂(0) − N

2
v(0). (7.4)

Hence,

HN ≥ T +
Ld

N

(
N2

2Ld
v̂(0) − N

2
v(0)

)
, (7.5)

and so

EN ≥ Ld

N

(
N2

2Ld
v̂(0) − N

2
v(0)

)
.

�

Let κ ≥ 0. For brevity, we introduce the following notation for the spectral
projection onto the spectral subspace of HN corresponding to the energy less
than or equal to EN + κ:

1N
κ := 1[0,κ](HN − EN ).

1N
κ can be understood as a projection acting on the extended space with range

in the physical space.

Lemma 7.3. There exists C such that

N> ≤ CL2(HN − EN + Ld). (7.6)

Consequently,

1N
κ N

>1N
κ ≤ CL2

(
Ld + κ

)
. (7.7)

Proof. Using first (7.5) and (7.3) we obtain

T ≤ HN − EN − 1
2
v̂(0) +

1
2
Ldv(0)

≤ C(HN − EN + Ld).

By (3.5) this implies (7.6). �

Lemma 7.4. We have

1N
κ (N>)21N

κ ≤ CL4
(
Ld + κ

)2
. (7.8)
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Proof. Let 1N
κ Ψ = Ψ. As in [18],

〈Ψ|N>T |Ψ〉 =
〈

Ψ|N>

(
HN − EN − 1

2
κ

)
|Ψ

〉
(7.9)

+N

〈
Ψ|Q1

⎛
⎝EN +

1
2
κ− Ld

N

∑
2≤i<j≤N

v(xi − xj)

⎞
⎠ |Ψ

〉

(7.10)

− Ld

〈
Ψ|Q1

∑
2≤j≤N

v(x1 − xj)|Ψ
〉
. (7.11)

Using Schwarz’s inequality, the first term can be bounded as

|(7.9)| ≤ ‖N>Ψ‖
∥∥∥HN − EN − 1

2
κ
∥∥∥

≤ κ

2
〈Ψ|(N>)2Ψ〉1/2.

Let us estimate the second term. Using (7.4) we get

EN − Ld

N

∑
2≤i<j≤N

v(xi − xj)

≤ 1
2
(N − 1)v̂(0) +

Ld

2N
(N − 1)v(0) − 1

2N
(N − 1)2v̂(0)

=
1
2
N − 1
N

(
v̂(0) + Ldv(0)

)
.

Hence,

(7.10) ≤
(
κ

2
+

1
2
N − 1
N

(
v̂(0) + Ldv(0)

))
N〈Ψ|Q1|Ψ〉

≤
(
κ

2
+

1
2
(
v̂(0) + Ldv(0)

)) 〈Ψ|N>|Ψ〉.

Finally, let us consider the third term:

〈Ψ|Q1v(x1 − x2)|Ψ〉 = 〈Ψ|Q1Q2v(x1 − x2)|Ψ〉
+〈Ψ|Q1P2v(x1 − x2)Q2|Ψ〉
+〈Ψ|Q1P2v(x1 − x2)Q2|Ψ〉,

|〈Ψ|Q1Q2v(x1 − x2)|Ψ〉| ≤ v(0)〈Ψ|Q1Q2|Ψ〉1/2,

|〈Ψ|Q1P2v(x1 − x2)Q2|Ψ〉| ≤ v(0)〈Ψ|Q1|Ψ〉,
〈Ψ|Q1P2v(x1 − x2)P2|Ψ〉| = v̂(0)〈Ψ|Q1P2|Ψ〉 ≥ 0.

Therefore, using (3.3) and (3.4)

|(7.11)| ≤ v(0)Ld

(√
N − 1
N

〈Ψ|(N>−1)N>|Ψ〉1/2 +
N − 1
N

〈Ψ|N>|Ψ〉
)

≤ v(0)Ld
(
〈Ψ|(N>)2Ψ〉1/2 + 〈Ψ|N>|Ψ〉

)
.
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Now

〈ψ|(N>)2|ψ〉 ≤ L2

(2π)2
〈ψ|N>T |ψ〉. (7.12)

We can add the three estimates, use (7.12) and obtain

〈Ψ|N>T |Ψ〉 ≤ C(κ+ Ld)
(
〈Ψ|(N>)2|Ψ〉1/2 + 〈Ψ|N>|Ψ〉

)

≤ CL2(κ+ Ld)2

+CL(κ+ Ld)〈Ψ|N>T |Ψ〉1/2.

Setting X := 〈ψ|N>T |ψ〉1/2 we can rewrite this as X2 < c+aX in the obvious
notation. Solving this inequality we get that

X2 ≤ a2

2
+ c+

√
a2 + 4c.

This implies

1N
κ N

>T1N
κ ≤ CL2

(
Ld + κ

)2
. (7.13)

If in addition we use (7.12), we obtain (7.8). �

Lemma 7.5.

sup
0<ε≤1

1N
κ RN,−ε1

N
κ ≥ −CN−1/2Ld/2+3(Ld + κ)3/2. (7.14)

Proof.

1N
κ RN,−ε1

N
κ ≥ 1N

κ

1
2

∑
p �=0

v̂(p)

((√
(N0 − 1)N0

N
− 1

)
bpb−p + hc

)
1N

κ

−1N
κ

1
N

∑
p �=0

(
v̂(p) +

v̂(0)
2

)
b†pbpN

>1N
κ

−ε1N
κ

1
N

∑
p �=0

(v̂(p) + v̂(0)) b†pbpN01
N
κ

−ε−11N
κ

1
2N

v(0)Ld(N>)21N
κ . (7.15)

Note that the range of 1N
κ is inside the physical space, so whenever possible

we replaced N ext
0 by N0. It is easy to estimate from below various terms on

the right of (7.15) by expressions involving N>. The first term requires more
work than the others. We have

N −
√

(N0 − 1)N0 =
2NN> − (N>)2 +N −N>

N +
√

(N −N> − 1)(N −N>)
≤ 2N> + 1.
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Then we use (√
(N0 − 1)N0 −N

)∑
p �=0

v̂(p)bpb−p + hc

≥ −
⎛
⎝∑

p �=0

v̂(p)bpb−p

⎞
⎠

† ∑
p �=0

v̂(p)bpb−p

−
(√

(N0 − 1)N0 −N
)2

≥ −C(N>)2 − (2N> + 1)2

≥ −C1

(
(N>)2 + 1

)
.

To bound the third term we use N0 ≤ N . We obtain

1N
κ RN,−ε1

N
κ ≥ −C1N

κ

(N>)2 + 1
N

1N
κ

−C1N
κ

(N>)2

N
1N

κ

−εC1N
κ N

>1N
κ

−ε−1C1N
κ L

d (N>)2

N
1N

κ .

Using that 0 ≤ ε ≤ 1 and L ≥ 1, we can partly absorb the first two terms in
the fourth:

≥ −C

N
1N

κ − εC1N
κ N

>1N
κ − ε−1C1N

κ L
d (N>)2

N
1N

κ .

By (7.6) and (7.8), this can be estimated by

≥ −CN−1 − εCL2(Ld + κ) − ε−1CN−1Ld+4(Ld + κ)2. (7.16)

Setting ε = c−1/2Ld/2+1(Ld + κ)1/2N−1/2 in (7.16), which by Condition (7.1)
is less than 1, we bound it by

≥ −CN−1 − CN−1/2Ld/2+3(Ld + κ)3/2.

Using L ≥ 1, we can absorb the first term in the second. �

Proof of Theorem 7.1. Recall inequality (4.1), which implies for 0 < ε ≤ 1

1N
κ HN1N

κ ≥ 1N
κ

(
1
2
v̂(0)(N − 1) +HBog,N +RN,−ε

)
1N

κ . (7.17)

Thus, it suffices to apply Lemma 7.5 and the min-max principle. �

Proof of Theorem 1.1 (1). First set κ = 0. Then Condition (7.1) becomes Con-
dition (1.7) and we obtain Theorem 1.1 (1a).

Next set κ = Kj
N (p). Then Condition (7.1) is equivalent to the conjunc-

tion of Conditions (1.7) and (1.9). We obtain Theorem 1.1 (1b). �
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8. Upper Bound

In this section we prove the following theorem, which implies the upper bound
of Theorem 1.1:

Theorem 8.1. Let c > 0. Then there exist c1 > 0 and C such that if κ ≥ 0 and

Ld+2(κ+ Ld−1) ≤ cN, (8.1)

L2(κ+ Ld−1) ≤ c1N (8.2)

then

−→sp (HN ) ≤ 1
2
v̂(0)(N − 1) + −→sp (

1[0,κ](HBog − EBog)HBog

)

+CN−1/2Ld/2+3(κ+ Ld−1)3/2.

For brevity, we set

1Bog
κ := 1[0,κ](HBog,N − EBog).

From now on, to simplify the notation we will also write HBog instead of
HBog,N , even though this is an abuse of notation. (HBog,N is unitarily equiv-
alent, but strictly speaking distinct from (6.3)).

We also set

dp := SbpS
†

where S is defined as in (6.4) with operators a’s replaced by b’s. Clearly,

dp = cpbp + spb
†
−p, d†

p = cpb
†
p + spb−p.

Lemma 8.2. There exist C1, C2 such that

HBog − EBog ≥ C1L
−2N> − C2L

d−1. (8.3)

Consequently,

1Bog
κ N>1Bog

κ ≤ CL2(Ld−1 + κ). (8.4)

Proof. Using (6.6) we have that

HBog − EBog =
∑
p �=0

epSb
†
pbpS

†

≥
∑
p �=0

π
√

8v̂(0)
L

Sb†pbpS
† =

π
√

8v̂(0)
L

SN>S†.

Now

SN>S† =
∑

±p �=0

(
d†
pdp + d†

−pd−p

)
=

∑
±p �=0

(
(c2p + s2p)

(
b†pbp + b†−pb−p

)

+2cpsp
(
b†pb

†
−p + bpb−p

)
+ 2s2p

)
.
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(When we write ±p under the summation symbol, we sum over all pairs
{p,−p}). Using

b†pb
†
−p + bpb−p ≥ −

(
b†pbp + b†−pb−p + 1

)

we obtain ∑
±p �=0

(
d†
pdp + d†

−pd−p

)

≥
∑

±p �=0

(
(cp − sp)2

(
b†pbp + b†−pb−p

)
− 2sp(cp − sp)

)
. (8.5)

By (6.9) we know that infp �=0(cp − sp)2 ≥
√

2π√
v̂(0)L

. Also, (6.10) yields

1
Ld

∑
±p �=0

sp(cp − sp) < ∞,

uniformly in L. Thus

HBog − EBog ≥ C

L
SN>S†

≥ C1

L2

∑
±p �=0

(
b†pbp + b†−pb−p

)
− C2L

d−1

Ld

∑
±p �=0

2sp(cp − sp)

= C1L
−2N> − C2L

d−1.

This proves (8.3), which can be rewritten as

N> ≤ C−1
1 L2(HBog − EBog + C2L

d−1), (8.6)

which implies (8.4). �
Lemma 8.3. Set

M :=
∑
p �=0

(cp − sp)2b†pbp,

A1 :=
∑
p �=0

2sp(cp − sp),

A2 :=
∑
p �=0

4(cp − sp)2s2p.

Then

(SN>S† +A1)2 ≥ M2 −A2. (8.7)

Proof. ⎛
⎝ ∑

±p �=0

(
d†
pdp + d†

−pd−p + 2sp(cp − sp)
)⎞⎠

2

=
∑

±p,±q�=0

(
d†
p

(
d†
qdq + d†

−qd−q + 2sq(cq − sq)
)
dp
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+d†
−p

(
d†
qdq + d†

−qd−q + 2sq(cq − sq)
)
d−p

)

+
∑

±p,±q�=0

2sp(cp − sp)
(
d†
qdq + d†

−qd−q + 2sq(cq − sq)
)

+
∑

±p �=0

(
d†
pdp + d†

−pd−p

)
.

Using (8.5) we bound this from below by

∑
±p,±q�=0

(cq−sq)2
(
d†
p

(
b†qbq+b†−qb−q

)
dp+d†

−p

(
b†qbq + b†−qb−q

)
d−p

)

+
∑

±p,±q�=0

2sp(cp−sp)(cq−sq)2
(
b†qbq+b†−qb−q

)

+
∑

±p �=0

(
(cp−sp)2

(
b†pbp+b†−pb−p

)
−2sp(cp−sp)

)

=
∑

±p,±q�=0

(cq−sq)2
(
b†q

(
d†
pdp+d†

−pd−p

)
bq+b†−q

(
d†
pdp+d†

−pd−p

)
b−p

)

+
∑

±p �=0

(cp − sp)2
(
2s2p

(
b†pbp+b†−pb−p

)
+2cpsp

(
b†pb

†
−p+bpb−p

)
+2s2p

)

+
∑

±p,±q�=0

2sp(cp − sp)(cq − sq)2
(
b†qbq + b†−qb−q

)

+
∑

±p �=0

(
(cp − sp)2

(
b†pbp + b†−pb−p

)
− 2sp(cp − sp)

)

=
∑

±p,±q�=0

(cq − sq)2
(
b†q

(
d†
pdp + d†

−pd−p + 2sp(cp − sp)
)
bq

+b†−q

(
d†
pdp + d†

−pd−p + 2sp(cp − sp)
)
b−p

)

+
∑

±p �=0

(cp−sp)2
((

2s2p+1
) (
b†pbp + b†−pb−p

)
+2cpsp

(
b†pb

†
−p+bpb−p

))

+
∑

±p �=0

(
(cp − sp)22s2p − 2sp(cp − sp)

)
.

Using (8.5) one more time, we bound this from below by

∑
±p,±q�=0

(cq − sq)2(cp − sp)2

×
(
b†q

(
b†pbp + b†−pb−p

)
bq + b†−q

(
b†pbp + b†−pb−p

)
b−q

)

+
∑

±p �=0

(cp − sp)2(2s2p − 2cpsp + 1)
(
b†pbp + b†−pb−p

)
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+
∑

±p �=0

(
(−2cpsp + 2s2p)(cp − sp)2 − 2sp(cp − sp)

)

=

⎛
⎝ ∑

±p �=0

(cp − sp)2
(
b†pbp + b†−pb−p

)⎞⎠
2

−
∑

±p �=0

4(cp − sp)2cpsp.

�
Lemma 8.4. There exist C1, C2 such that

(HBog − EBog)
2 ≥ C1L

−4(N>)2 − C2L
2d−2. (8.8)

Therefore,

1Bog
κ (N>)21Bog

κ ≤ CL4(Ld−1 + κ)2. (8.9)

Proof. As in the proof of Lemma 8.2,

(HBog − EBog)
2 ≥

(
π
√

8v̂(0)
)2

L2

(
SN>S†)2

. (8.10)

For any δ > 0, Lemma 8.3 implies

(1 + δ)(SN>S†)2 + (1 + δ−1)A2
1 ≥ M2 −A2.

Moreover, the limits limL→∞ A1
Ld and limL→∞ A2

Ld exist. Therefore,
(
SN>S†)2 ≥ M2 − CL2d.

Using (8.10) and M ≥ C1L
−1N>, we easily conclude that (8.8) holds. Hence

(N>)2 ≤ C−1
2 L4

(
(HBog − EBog)2 + C3L

2d−2
)
,

which easily implies (8.9). �
Suppose now that G is a smooth nonnegative function on [0,∞[ such that

G(s) =

{
1, if s ∈ [0, 1

3 ]
0, if s ∈ [1,∞[.

(8.11)

Set

AN := G(N>/N), Anph
N := 1 −AN .

The operator AN will serve as a smooth approximation to the projection onto
the physical space. Set

Yκ := 1Bog
κ AN .

Lemma 8.5. We have

1Bog
κ − YκY

†
κ = O

(
L2(κ+ Ld−1)N−1

)
.

Proof. We have

1Bog
κ −YκY

†
κ = 1Bog

κ

(
1−G(N>/N)2

)
1Bog

κ

= 1Bog
κ (N>/N)1/2

((
1−G(N>/N)2

)
(N>/N)−1

)
(N>/N)1/21Bog

κ .
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But

‖ (1 −G(N>/N)2
)
(N>/N)−1‖ = sup

s
{|(1 −G(s)2)s−1|} < ∞,

and by (8.4)

(N>/N)−1/21Bog
κ = O

(
L(κ+ Ld−1)1/2N−1/2

)
.

�
Let 0 < c0 < 1. If

‖1Bog
κ − YκY

†
κ ‖ ≤ c0, (8.12)

then YκY
†
κ is invertible on Ran1Bog

κ . We will denote by
(
YκY

†
κ

)−1 the corre-
sponding inverse. We set

Xκ :=
(
YκY

†
κ

)−1/2
.

On the orthogonal complement of Ran1Bog
κ we extend it by 0.

By Lemma 8.5 and Condition (8.2) with a sufficiently small c1, we can
guarantee that (8.12) holds with, say, c0 ≤ 1/2. Therefore, in what follows Xκ

is well defined.

Lemma 8.6.

1Bog
κ −Xκ = O

(
L2(κ+ Ld−1)N−1

)
. (8.13)

Proof.

‖1Bog
κ − (

YκY
†
κ

)−1 ‖ ≤ c0(1 − c0)−1

by the convergent Neumann series. This is O
(
L2(κ+ Ld−1)N−1

)
. This implies

(8.13) by the spectral theorem. �

Lemma 8.7.

Xκ[AN , [AN ,HBog]]Xκ = O
(
N−2L2(κ+ Ld−1)

)
.

Proof. We have

[N>, [N>,HBog]] = 2
∑

v̂(p)(bpb−p + b†pb
†
−p).

Using

−b†pbp − b†−pb−p − 1 ≤ bpb−p + b†pb
†
−p ≤ b†pbp + b†−pb−p + 1

we obtain

−C(N> + Ld) ≤ [N>, [N>,HBog]] ≤ C(N> + Ld).

This implies∥∥∥(N> + Ld)−1/2
[
N>, [N>,HBog]

]
(N> + Ld)−1/2

∥∥∥ ≤ C. (8.14)

Now we use one of the well-known methods for dealing with functions of op-
erators, for instance, the representation
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AN = G(N>/N) =
1
2π

∫
Ĝ(t) eitN>/N dt.

To this end, note that for operators S and T one has

[
eitS , T

]
=

t∫

0

d
du

eiuS T e−iuS du eitS =

t∫

0

ieiuS [S, T ] ei(t−u)S du

which together with the representation mentioned above yields

[AN , [AN ,HBog]] =
−1

4π2N2

∫
dp

p∫

0

ds
∫

dt

t∫

0

duĜ(p)Ĝ(t)

× ei(s+u) N>

N

[
N>, [N>,HBog]

]
ei(t−u+p−s) N>

N .

Therefore,

‖Xκ[AN , [AN ,HBog]]Xκ‖
≤ 1

4π2N2

∫
dp

∫
dt|pĜ(p)tĜ(t)|‖Xκ(N> + Ld)1/2‖

×‖(N> + Ld)−1/2[N>, [N>,HBog]](N> + Ld)−1/2‖‖(N> + Ld)1/2Xκ‖.
Now, by Lemma 8.2,

‖Xκ(N> + Ld)1/2‖‖(N> + Ld)1/2Xκ‖ = ‖Xκ(N> + Ld)Xκ‖
≤ C

(‖1Bog
κ N>1Bog

κ + Ld
)

≤ 2CL2(Ld−1 + κ).

Besides, Ĝ decays fast. Thus it is enough to use (8.14) to complete the proof.
�

We define

Zκ := XκAN =
(
1Bog

κ A2
N1Bog

κ

)−1/2
AN .

Clearly, Zκ is a partial isometry with initial space Ran(AN1Bog
κ ) and final

space Ran(1Bog
κ ).

Lemma 8.8.

1Bog
κ (HBog −EBog)1Bog

κ = Zκ(HBog − EBog)Z†
κ

+O
(
L2(Ld−1 + κ)κN−1

)
+O

(
L2(Ld−1 + κ)N−2

)
.

Proof. We have

1Bog
κ (HBog−EBog)1Bog

κ =
(
1Bog

κ −Xκ

)
(HBog−EBog)1Bog

κ (8.15)

+Xκ(HBog−EBog)
(
1Bog

κ −Xκ

)
(8.16)

+Xκ(HBog − EBog)Xκ;

Xκ(HBog − EBog)Xκ = −XκA
nph
N (HBog − EBog)A

nph
N Xκ

+Xκ(HBog − EBog)A
nph
N Xκ (8.17)
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+XκA
nph
N (HBog − EBog)Xκ (8.18)

+XκAN (HBog − EBog)ANXκ;

−XκA
nph
N (HBog − EBog)A

nph
N Xκ = −1

2
Xκ(Anph

N )2(HBog − EBog)Xκ (8.19)

− 1
2
Xκ(HBog − EBog)(A

nph
N )2Xκ (8.20)

+
1
2
Xκ

[
Anph

N , [Anph
N ,HBog]

]
Xκ. (8.21)

The error term in the lemma equals the sum of (8.15), . . . ,(8.21). By (8.13),

(8.15), (8.16) = O
(
L2(Ld−1 + κ)κN−1

)
.

By (8.9),

(8.17), . . . , (8.20) = O
(
L2(Ld−1 + κ)κN−1

)
.

By Lemma 8.7,

(8.21) = O
(
L2(Ld−1 + κ)N−2

)
.

�

Lemma 8.9. Assume (8.1). Then

inf
0<ε≤1

ZκRN,εZ
†
κ ≤ CLd/2+3(Ld−1 + κ)3/2N−1/2. (8.22)

Proof.

ZκRN,εZ
†
κ ≤ Zκ

1
2

∑
p �=0

v̂(p)

((√
(N0 − 1)N0

N
− 1

)
bpb−p + hc

)
Z†

κ

+Zκ
v̂(0)
2N

N>Z†
κ

+εZκ
1
N

∑
p �=0

(v̂(p) + v̂(0)) b†
pbpN

ext
0 Z†

κ

+(1 + ε−1)Zκ
1

2N
v(0)LdN>(N> − 1)Z†

κ

≤ 1Bog
κ C

(N>)2 + 1
N

1Bog
κ

+1Bog
κ C

N>

N
1Bog

κ

+ε1Bog
κ CN>1Bog

κ

+(1 + ε−1)1Bog
κ C

Ld(N>)2

N
1Bog

κ .

Using ε ≤ 1, we can simplify the bound as follows:

≤ 1Bog
κ

C

N
+ε1Bog

κ CN>1Bog
κ +ε−11Bog

κ C
Ld(N>)2

N
1Bog

κ , (8.23)
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By (8.4) and (8.9). this can be estimated by

CN−1 + εCL2(Ld−1 + κ) + ε−1CLd+4(Ld−1 + κ)2N−1.

Setting ε = c−1/2N−1/2Ld/2+1(Ld−1 +κ)1/2, which is less than 1 by Condition
(8.1), we obtain

CN−1 + CLd/2+3(Ld−1 + κ)3/2N−1/2. (8.24)

By changing C, the second term can obviously absorb CN−1. �
Proof of Theorem 8.1. Zκ is a partial isometry with the initial space contained
in the physical space and the final projection 1Bog

κ . Therefore,

−→spHN ≤ −→sp
(
Z†

κZκHNZ
†
κZκ

∣∣∣
RanZ†

κ

)

= −→sp
(
ZκHNZ

†
κ

∣∣∣
Ran1Bog

κ

)
.

ZκHNZ
†
κ ≤ ZκHN,εZ

†
κ

=
1
2
v̂(0)(N − 1)1Bog

κ +HBog1
Bog
κ

+Zκ(HBog − EBog)Z†
κ − (HBog − EBog)1Bog

κ (8.25)

+ZκRN,εZ
†
κ. (8.26)

By Lemma 8.8,

(8.25) ≤ CL2(Ld−1 + κ)κN−1 (8.27)

+CL2(Ld−1 + κ)N−2. (8.28)

Using κ < κ+ Ld−1 and later (8.1) we have

(8.27) ≤ CL2(Ld−1 + κ)2N−1

≤ CL−d/2+1(Ld−1 + κ)3/2N−1/2.

Thus (8.27) can be absorbed in O(Ld/2+3(Ld−1 + κ)3/2N−1/2).
We easily check that the same is true in the case of (8.28). To bound

(8.26) we use Lemma 8.9. �
Proof of Theorem 1.1 (2). First set κ = 0. Then Condition (8.1) becomes Con-
dition (1.11) and Condition (8.2) becomes Condition (1.12). We obtain Theo-
rem 1.1 (2a).

Next set κ = Kj
Bog(p). Then Condition (8.1) is equivalent to the con-

junction of Conditions (1.11) and (1.14). Condition (8.2) is equivalent to the
conjunction of Conditions (1.12) and (1.15). This shows Theorem 1.1 (2b). �
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Appendix A. Proof of Corollary 1.2

The proof of the corollary is based on the following lemma:

Lemma A.1. 1. Let b > 1, −1 − 1
d+1 ≤ α ≤ 1 and L4d+6 ≤ bN1−α. Then

(a) 1
2 v̂(0)(N − 1) + EBog ≤ EN +O(N−α/2);

(b) if Kj
N (p) ≤ (bN1−αL−d−6)1/3, then

1
2
v̂(0)(N − 1) + EBog +Kj

Bog(p) ≤ EN +Kj
N (p) +O(N−α/2);

(c) if 0 ≤ α ≤ 1 and Kj
N (p) ≤ bN1−αL−d−6, then

1
2
v̂(0)(N − 1) + EBog +Kj

Bog(p) ≤ EN +Kj
N (p)

+
(
1 +Kj

N (p)
)
O(N−α/2).

2. Let b > 1,−1 − 1
2d+1 < α ≤ 1 and L4d+3 ≤ bN1−α. Then there exists M

such that if N > M , then
(a) EN ≤ 1

2 v̂(0)(N − 1) + EBog +O(N−α/2);
(b) if Kj

Bog(p) ≤ (bN1−αL−d−6)1/3, then

EN +Kj
N (p) ≤ 1

2
v̂(0)(N − 1) + EBog +Kj

Bog(p) +O(N−α/2);

(c) if 0 < α ≤ 1 and Kj
Bog(p) ≤ bN1−αL−d−6, then

EN +Kj
N (p) ≤ 1

2
v̂(0)(N − 1) +EBog +Kj

Bog(p)

+
(
1 +Kj

Bog(p)
)
O(N−α/2).

Proof. To prove (1), resp. (2) we use Theorem 1.1 (1), resp. (2). We give a proof
of the latter part, since it is slightly more involved (because of the parameter
c1).

(2a): First we check Condition (1.11):

L2d+1 =
(
L4d+3

) 2d+1
4d+3 ≤ (

bN1−α
) 2d+1

4d+3 . (A.1)

For −1 − 1
2d+1 ≤ α we have (A.1)≤ cN .

Next,

Ld+1 =
(
L4d+3

) d+1
4d+3 ≤ (

bN1−α
) d+1

4d+3 . (A.2)
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We have (A.2)≤ cNN
−3d−2−α(d+1)

4d+3 . Therefore, for −1 − 1
2d+1 ≤ α, Condition

(1.12) is satisfied for large enough N .
Then we apply Theorem 1.1 (2)(a), using

N−1/2L2d+ 3
2 ≤ N−1/2(bN1−α)1/2 = O(N−α/2).

(2b): We check Condition (1.14):

Kj
Bog(p) ≤ (

bN1−αL−d−6
)1/3

≤ (
bN1−αL−d−6

)1/3 (
bN1−αL−4d−3

) 2d
12d+9

= CN
(1−α)(2d+1)

12d+9 L−d−2. (A.3)

For −1 − 1
2d+1 ≤ α we have (A.3)≤ CNL−d−2.

Also

A.3 = O
(
N

−(2+α)(4d+3)+2d(1−α)
12d+9

)
NL−2−d

which implies

Kj
Bog(p) ≤ O

(
N

−(2+α)(4d+3)+2d(1−α)
12d+9

)
NL−2.

Therefore, if −1 − 1
2d+1 < α, Condition (1.15) is satisfied for large enough N .

We clearly have

N−1/2Ld/2+3
(
Kj

Bog(p)+Ld−1
)3/2

≤ 23/2N−1/2Ld/2+3Kj
Bog(p)3/2 (A.4)

+23/2N−1/2L2d+ 3
2 . (A.5)

We already know that (A.5) is O(N−α/2). Thus to apply Theorem 1.1 (2b) we
need only to bound (A.4):

N−1/2Ld/2+3Kj
Bog(p)3/2 ≤ N−1/2Ld/2+3

(
bN1−αL−d−6

)1/2
= O(N−α/2).

(2c): Condition (1.14) is trivially satisfied, since for L ≥ 1, N ≥ 1 and
α > 0

Kj
Bog(p) ≤ bN1−αL−d−6 ≤ bNL−d−2.

We have

Kj
Bog(p) ≤ bN1−αL−d−6Ld+4

= O(N−α)NL−2.

Therefore, Condition (1.15) is satisfied for large enough N .
To apply Theorem 1.1 (2b) we bound (A.4):

N−1/2Ld/2+3Kj
Bog(p)3/2 = b1/2N−α/2

(
b−1N−(1−α)Ld+6

)1/2

Kj
Bog(p)3/2

≤ O(N−α/2)Kj
Bog(p).

�
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Proof of Corollary 1.2. Part (1) follows directly from Lemma A.1 (1a)
and (2a).

Let us prove (2). To simplify notation we drop p from Kj
N (p) and

Kj
Bog(p).

Assume first that Kj
N ≤ Kj

Bog. By Lemma A.1 (1b) for some C > 0

1
2
v̂(0)(N − 1) + EBog +Kj

Bog ≤ EN +Kj
N + CN−α/2

≤ EN +Kj
Bog + CN−α/2.

Thus
1
2
v̂(0)(N − 1) + EBog − EN +Kj

Bog − CN−α/2 ≤ Kj
N ≤ Kj

Bog.

By Lemma A.1 (2a),

−CN−α/2 ≤ 1
2
v̂(0)(N − 1) + EBog − EN .

Hence the statement follows.
Assume now that Kj

Bog ≤ Kj
N . Then we use Lemma A.1 (2b) and obtain

Kj
Bog ≤ Kj

N ≤ 1
2
v̂(0)(N − 1) + EBog − EN +Kj

Bog + CN−α/2.

By Lemma A.1 (1a),
1
2
v̂(0)(N − 1) + EBog − EN ≤ CN−α/2.

The statement follows again. This ends the proof of part (2).
The proof of part (3) is similar, except that one uses Lemma A.1 (1c)

and (2c). �
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