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Hypergeometric Type Functions
and Their Symmetries

Jan Dereziński

Abstract. The paper is devoted to a systematic and unified discussion
of various classes of hypergeometric type equations: the hypergeometric
equation, the confluent equation, the F1 equation (equivalent to the Bessel
equation), the Gegenbauer equation and the Hermite equation. In partic-
ular, recurrence relations of their solutions, their integral representations
and discrete symmetries are discussed.
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1. Introduction

Following [10], we adopt the following terminology. Equations of the form
(
σ(z)∂2

z + τ(z)∂z + η
)
f(z) = 0, (1.1)

where σ is a polynomial of degree ≤ 2, τ is a polynomial of degree ≤ 1, η
is a number, will be called hypergeometric type equations, and their solutions
—hypergeometric type functions. Differential operators of the form σ(z)∂2

z +
τ(z)∂z + η will be called hypergeometric type operators.

The theory of hypergeometric type functions is one of the oldest and most
useful chapters of mathematics. In usual presentations, it appears complicated
and messy. The main purpose of this paper is an attempt to present its basics
in a way that shows clearly its internal structure and beauty.

1.1. Classification

Let us start with a short review of basic classes of hypergeometric type equa-
tions. We will always assume that σ(z) �= 0. Every class, except for (9), will
be simplified by dividing by a constant and an affine change of the complex
variable z.

(1) The 2F1 or hypergeometric equation
(
z(1 − z)∂2

z + (c − (a + b + 1)z)∂z − ab
)
f(z) = 0.

(2) The 2F0 equation
(
z2∂2

z + (1 + (1 + a + b)z)∂z + ab
)
f(z) = 0.
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(3) The 1F1 or confluent equation

(z∂2
z + (c − z)∂z − a)f(z) = 0.

(4) The 0F1 equation

(z∂2
z + c∂z − 1)f(z) = 0.

(5) The Gegenbauer equation
(
(1 − z2)∂2

z − (a + b + 1)z∂z − ab
)
f(z) = 0.

(6) The Hermite equation

(∂2
z − 2z∂z − 2a)f(z) = 0.

(7) 2nd order Euler equation
(
z2∂2

z + bz∂z + a
)
f(z) = 0.

(8) 1st order Euler equation for the derivative

(z∂2
z + c∂z)f(z) = 0.

(9) 2nd order equation with constant coefficients

(∂2
z + c∂z + a)f(z) = 0.

One can divide these classes into three families:

1. (1), (2), (3), (4);
2. (5), (6);
3. (7), (8), (9).

Each equation in the first family has a solution equal to the hypergeo-
metric function pFq with appropriate p, q. This function gives a name to the
corresponding class of equations.

The second family consists of reflection invariant equations.
The third family consists of equations solvable in elementary functions.

Therefore, it will not be considered in what follows.
The 2F0 and 1F1 equation are equivalent by a simple substitution; there-

fore, they can be discussed together.
Up to an affine transformation, (5) is a subclass of (1). However, it has

additional properties; therefore, it is useful to discuss it separately.
The main part of our paper consists of 5 sections corresponding to the

classes (1), (2)–(3), (4), (5) and (6). The discussion will be divided into two
levels:

1. Properties of the operator that defines the equation.
2. Properties of functions solving the equation.
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1.2. Properties of Hypergeometric Type Operators

We will discuss the following types of properties of hypergeometric type oper-
ators:

(i) equivalence between various classes,
(ii) integral representations of solutions,

(iii) discrete symmetries,
(iv) factorizations,
(v) commutation relations.

Let us give some examples of these properties. All these examples will be
related to the 1F1 equation.

We have

(−w)a+1
(
w2∂2

w + (−1 + (1 + a + b)w)∂w + ab
)
w−a (1.2)

= z∂2
z + (c − z)∂z − a, w = −z−1. (1.3)

Therefore, the 1F1 operator, appearing in (1.3), is equivalent to the 2F0 oper-
ator, which is inside the brackets of (1.2). This is an example of (i).

As an example of (ii), we quote the following fact: The integral
∫

γ

ta−cet(t − z)−adt (1.4)

is a solution of the 1F1 equation provided that the values of the function

t �→ ta−c+1et(t − z)−a−1 (1.5)

at the endpoints of the curve γ are equal to one another.
Note that the integrand of (1.4) is an elementary function. The condition

on the curve γ can often be satisfied in a number of non-equivalent ways, giving
rise to distinct natural solutions.

An example of (iii) is the following identity:

w∂2
w + (c − w)∂w − a

= −e−z
(
z∂2

z + (c − z)∂z − c + a
)

ez, w = −z. (1.6)

Thus, the 1F1 operator is transformed into a 1F1 operator with different
parameters.

Here is a pair of examples of (iv):

z(z∂2
z + (c − z)∂z − a)

=
(
z∂z + a − 1

)(
z∂z + c − a − z

)
+ (a − 1)(a − c) (1.7)

=
(
z∂z + c − a − 1 − z

)(
z∂z + a

)
+ a(a + 1 − c). (1.8)

An example of (v) is

(z∂z + a) z
(
z∂2

z + (c − z)∂z − a
)

= z
(
z∂2

z + (c − z)∂z − a − 1
)

(z∂z + a) .

(1.9)

On both sides of the identity, we see the 1F1 operators whose parameters are
contiguous.
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The commutation properties can be derived from the factorizations. Let
us show, for example, how (1.7) and (1.8) imply (1.9). First, we rewrite (1.7)
as

z(z∂2
z + (c − z)∂z − a − 1) =

(
z∂z + a

)(
z∂z + c − a − 1 − z

)
+ a(a + 1 − c).

(1.10)

Then, we multiply (1.8) from the left and (1.10) from the right by (z∂z + a),
obtaining identical right hand sides. This yields (1.9).

1.3. Hypergeometric Type Functions

After the analysis of hypergeometric type operators, we discuss hypergeometric
type functions, that is, functions annihilated by hypergeometric type opera-
tors. In particular, we will distinguish the so-called standard solutions which
have a simple behavior around a singular point of the equation. In particular,
if z0 is a regular singular point, the Frobenius method gives us two solutions
behaving as (z − z0)λi , where λ1, λ2 are the indices of z0. One can often find
solutions with a simple behavior also around irregular singular points.

For reflection invariant classes (5) and (6), one can also define another
pair of natural solutions: the even solution S+, which we normalize by S+(0)
= 1, and the odd solution S−, which we normalize by (S−)′(0) = 2.

Discrete symmetries can be used to derive properties of hypergeometric
type functions. For instance, (1.6) implies that if f(z) solves the confluent
equation for parameters c − a, c, then so does ezf(−z) for the parameters a, c.
In particular, both functions F (a; c; z) and ezF (c−a; c; −z) solve the confluent
equation for the parameters a, c. Both are analytic around z = 0 and equal
1 at z = 0. By the uniqueness of the solution to the Frobenius method, they
should coincide. Hence, we obtain the identity

F (a; c; z) = ezF (c − a; c; −z). (1.11)

Commutation relations are also useful. For example, it follows immedi-
ately from (1.9) that (z∂z + a)F (a; c; z) is a solution of the confluent equation
for the parameters a + 1, c. At zero, it is analytic and its value is a. Hence we
obtain the recurrence relation

(z∂z + a)F (a; c; z) = aF (a + 1; c; z). (1.12)

For each class of equations, we describe a whole family of recurrence
relations. Every such recurrence relation involves an operator of the following
form: a 1st order differential operator with no dependence on the parameters
+ a multiplication operator depending linearly on the parameters. We will call
them basic recurrence relations.

Sometimes, there also exist more complicated recurrence relations. We
do not give their complete list, we only mention some of their examples. We
call them additional recurrence relations.

Each of the standard solutions has simple integral representations of the
form analogous to (1.4). Each of these integral representations is associated
with a pair of (possibly infinite and possibly coinciding) points where the
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integrand has a singularity. We will use two basic kinds of contours for standard
solutions:
(a) The contour starts at one singularity and ends at the other singularity;

we assume that at both singularities the analog of (1.5) is zero (hence,
trivially, has equal values).

(b) The contour starts at the first singularity, goes around the second singu-
larity and returns to the first singularity; we assume that the analog of
(1.5) is zero at the first singularity.

If available, we will always treat the type (a) contour as the basic one.
For instance, under appropriate conditions on the parameters, the 1F1

function has the following two integral representations:

type (a):
∫

[1,+∞[

e
z
t t−c(t − 1)c−a−1dt =

Γ(a)Γ(c − a)
Γ(c)

F (a; c; z),

type (b):
1

2πi

∫

[1,0+,1]

e
z
t (−t)−c(−t + 1)c−a−1dt =

Γ(c − a)
Γ(1 − a)Γ(c)

F (a; c; z).

(0+ means that we bypass 0 in the counterclockwise direction; in this case, it
is equivalent to bypassing ∞ in the clockwise direction).

There are various natural ways to normalize hypergeometric type func-
tions. The most obvious normalization for a solution analytic at a given regular
singular point is to demand that its value there is 1. (For the 2F0 equation,
the point 0 is not regular singular; however, there is a natural generalization
of this normalization condition). For equations (1)–(4), this function will be
denoted by the letter F , consistently with the conventional usage. (Note the
use of the italic font). In the case of reflection symmetric equations (5) and
(6), we will use the letter S.

However, it is often preferable to use different normalizations, which in-
volve appropriate values of the Gamma function or its products. Such normal-
izations arise naturally when we consider integral representations. They will
be denoted by F for equations (1)–(4) (a similar notation can be found in [12]),
and S for (5) and (6). (Note the use of the boldface roman font). Sometimes,
there will be several varieties of these normalizations denoted by an appropri-
ate superscript, related to various integral representations. The functions with
these normalizations have often better properties than the F and S functions.
This is especially visible in recurrence relations, where the coefficient on the
right (such as a in (1.12)) depends on the normalization.

For example, for the 1F1 function, we introduce the following normaliza-
tions:

F(a; c; z) :=
1

Γ(c)
F (a; c; z),

FI(a; c; z) :=
Γ(a)Γ(c − a)

Γ(c)
F (a; c; z),

the latter suggested by the type (a) integral representation given above.



Hypergeometric Type Functions and Their Symmetries

1.4. Degenerate Case

For some values of parameters, hypergeometric type functions have special
properties. This happens, in particular, when the difference of the indices at
a given regular singular point is an integer. Then, the two standard solutions
related to this point are proportional to one another. We call them degenerate
solutions. (The best known example of such a situation is the Bessel functions
of integer parameters). In this case, we have a simple generating function and
an additional integral representation, which involves integrating over a closed
loop.

1.5. Canonical Forms

Obviously, hypergeometric type operators coincide with differential operators
of the form

σ(z)∂2
z + (σ′(z) + κ(z))∂z +

1
2
κ′ + λ

= ∂zσ(z)∂z +
1
2

(∂zκ(z) + κ(z)∂z) + λ, (1.13)

where σ is a polynomial of degree ≤ 2, κ is a polynomial of degree ≤ 1, and λ
is a number.

One can argue that it is natural to use σ, κ, λ to parametrize the hyper-
geometric type operators (more natural than σ, τ, η). Equation (1.13) will be
denoted C(σ, κ, λ; z, ∂z), or, for brevity, C(σ, κ, λ). Let ρ(z) be a solution of the
equation

(σ(z)∂z − κ(z))ρ(z) = 0. (1.14)

(Note that Eq. (1.14) is solvable in elementary functions). We have the identity

C(σ, κ, λ) = ρ−1(z)∂zσ(z)ρ(z)∂z +
1
2
κ′ + λ, (1.15)

We will call ρ the natural weight. To justify this name note that if λ is real, σ, κ
are real and ρ is positive and nonsingular on ]a, b[⊂R, then C(σ, κ, λ) is Hermit-
ian on the weighted space L2(]a, b[, ρ), when as the domain we take C∞

c (]a, b[).
It is sometimes useful to replace the operator C(σ, κ, λ) with

ρ(z)
1
2 C(σ, κ, λ)ρ(z)− 1

2 = ∂zσ(z)∂z − κ(z)2

4σ(z)
+ λ. (1.16)

We will call (1.16) the balanced form of C(σ, κ, λ).
Sometimes, one replaces (1.1) by the 1-dimensional Schrödinger equation

(
∂2

z − V (z)
)
f = 0, (1.17)

where

V (z) :=
1
2
(
σ(z)−1σ′(z)

)′ +
1
4
(
σ(z)−1σ′(z)

)2 +
κ(z)2

4σ(z)2
− λ

σ(z)
.

(1.17) is equivalent to (1.1), because

σ(z)− 1
2 ρ(z)

1
2 C(σ, κ, λ)ρ(z)− 1

2 σ(z)− 1
2 = ∂2

z − V (z), (1.18)

It will be called the Schrödinger-type form of the equation C(σ, κ, λ)f = 0.
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Some of the symmetries of hypergeometric type equations are obvious in
the balanced and Schrödinger-type forms. This is partly due to the fact that
they do not change when we switch the sign in front of κ. This is a serious
advantage of these forms.

In the literature, various forms of hypergeometric type equations are used.
Instead of the Gegenbauer equation, one usually finds its balanced form, called
the associated Legendre equation. The modified Bessel equation and the Bessel
equation, equivalent to the rarely used 0F1 equation, are the balanced form of
a special case of the 1F1 equation. Instead of the 1F1 equation, one often finds
its Schrödinger-type form, the Whittaker equation. This usage, due mostly to
historical traditions, makes the subject more complicated than necessary.

We will always use (1.1) as the basic form. Its main advantage is that in
almost all cases the equation in the form (1.1) has at least one solution analytic
around a given finite singular point. Even in the case of the 2F0 equation, whose
all solutions have a branch point at 0, there exists a distinguished solution
particularly well behaved at zero.

1.6. Hypergeometric Type Polynomials

Hypergeometric type polynomials, that is, polynomial solutions of hypergeomet-
ric type equations deserve a separate analysis. They have traditional names
involving various nineteenth century mathematicians. Note, in particular, that
the (rarely used) polynomial cases of the 2F0 function are called Bessel polyno-
mials; however, they do not have a direct relation to the better-known Bessel
functions.

There exists a well-known elegant approach to their theory that allows
us to derive most of their basic properties in a unified way, see e.g. [10,13]. Let
us sketch this approach.

Fix σ, κ, ρ, as in Sect. 1.5. For any n = 0, 1, 2, . . . , we define

Pn(σ, ρ; z) :=
1
n!

ρ−1(z)∂n
z ρ(z)σn(z). (1.19)

We will call (1.19) a Rodriguez-type formula, since it is a generalization of the
Rodriguez formula for Legendre polynomials.

One can show that Pn solves the equation
(
σ(z)∂2

z + (σ′(z) + κ(z))∂z − n(n + 1)
σ′′

2
− nκ′

)
Pn(σ, ρ; z) = 0. (1.20)

Pn is a polynomial, typically of degree n, more precisely its degree is given as
follows:

1. If σ′′ = κ′ = 0, then deg Pn = 0.
2. If σ′′ �= 0 and − 2κ′

σ′′ − 1 = m is a positive integer, then

deg Pn =
{

n, n = 0, 1, . . . ,m;
n − m − 1, n = m + 1,m + 2, . . . .

3. Otherwise, deg Pn = n.
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We have a generating function

ρ(z + tσ(z))
ρ(z)

=
∞∑

n=0

tnPn(σ, ρσ−n; z),

an integral representation

Pn(σ, ρ; z) =
1

2πi
ρ−1(z)

∫

[z+]

σn(z + t)ρ(z + t)t−n−1dt (1.21)

and recurrence relations
(
σ(z)∂z + (κ(z) − nσ′(z)

)
Pn(σ, ρσ−n; z) = Pn+1(σ, ρσ−n−1; z),

∂zPn+1(σ, ρσ−n−1; z) =
(

− n
σ′′

2
+ κ′

)
Pn(σ, ρσ−n; z).

In almost all sections, we devote a separate subsection to the correspond-
ing class of polynomials. Beside the properties that follow immediately from
the unified theory presented above, we describe additional properties valid in
a given class.

The 0F1 equation does not have polynomial solutions, hence the corre-
sponding section is the only one without a subsection about polynomials.

Another special situation arises in the case of the Gegenbauer equation.
The standard Gegenbauer polynomials found in the literature do not have
the normalization given by the Rodriguez-type formula. The Rodriguez-type
formula yields the Jacobi polynomials, which for α = β coincide with the
Gegenbauer polynomials up to a nontrivial coefficient. Thus, for the Gegen-
bauer equation, it is natural to consider two classes of polynomials differing by
normalization. This is related to an interesting symmetry called the Whipple
transformation, which is responsible for two kinds of integral representations.

1.7. Parametrization

Each class (1)–(6) depends on a number of complex parameters, denoted by
Latin letters belonging to the set {a, b, c}. They will be called the classical
parameters. They are convenient when we discuss power series expansions of
standard solutions.

Unfortunately, the classical parameters are not convenient to describe dis-
crete symmetries. Therefore, for each class (1)–(6), we introduce an alternative
set of parameters, which we will call the Lie-algebraic parameters. They will be
denoted by Greek letters such as α, β, μ, θ, λ, and will be given by certain linear
(possibly, inhomogeneous) combinations of the classical parameters. Discrete
symmetries of hypergeometric type equations will simply involve signed per-
mutations of the Lie algebraic parameters—in the classical parameters, they
look much more complicated. Recurrence relations also become simpler in the
Lie-algebraic parameters.

For polynomials of hypergeometric type a third kind of parametrization
is traditionally used. They are characterized by their degree n, which coin-
cides with −a, where a is one of the classical parameters. The Lie-algebraic



J. Dereziński Ann. Henri Poincaré

parameters appearing inside the 1st order part of the equation are used as the
remaining parameters.

Let us stress that all these parametrizations are natural and useful. There-
fore, we sometimes face the dilemma which parametrization to use for a given
set of identities. We usually try to choose the one that gives the simplest
formulas.

We sum up the information about various parametrizations in the follow-
ing table:
Equation classical

parameters
Lie-algebraic
parameters

Polynomial parameters for
polynomials

α = c − 1 α = c − 1

2F1 a, b, c β = a + b − c Jacobi β = a + b − c
γ = b − a n = −a

2F0 a, b θ = −1 + a + b Bessel θ = −1 + a + b
α = a − b n = −a

1F1 a, c θ = −c + 2a Laguerre α = c − 1
α = c − 1 n = −a

0F1 c α = c − 1 − − − − − − − − − −
Gegenbauer a, b α = a+b−1

2
α = β Jacobi α = a+b−1

2

λ = b−a
2

or Gegenbauer n = −a
Hermite a λ = a − 1

2
Hermite n = −a

1.8. Group-Theoretical Background

Identities for hypergeometric type operators and functions have a high degree
of symmetry. Therefore, it is natural to expect that a certain group-theoretical
structure is responsible for these identities.

There exists a large literature about the relations between special func-
tions and the group theory [6,8,15,16]. Nevertheless, as far as we know, the
arguments found in the literature give a rather incomplete explanation of the
properties that we describe. In a separate publication [2], we would like to
present a group-theoretical approach to hypergeometric type functions with,
we believe, a more satisfactory justification of their high symmetry. Below, we
would like to briefly sketch the main ideas of [2].

Each hypergeometric type equation can be obtained by separating the
variables of a certain 2nd order PDE of the complex variable with constant
coefficients. One can introduce the Lie algebra of generalized symmetries of this
PDE. In this Lie algebra, we fix a certain maximal commutative algebra, which
we will call the “Cartan algebra”. Operators whose adjoint action is diagonal
in the “Cartan algebra” will be called “root operators”. Automorphisms of
the Lie algebra leaving invariant the “Cartan algebra” will be called “Weyl
symmetries”.

(Note that in some cases, the Lie algebra of symmetries is simple, and
then the names Cartan algebra, root operators and Weyl symmetries corre-
spond to the standard names. In other cases the Lie algebra is non-semisimple,
and then the names are less standard—this is the reason for the quotation
marks that we use).
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Now the parameters of hypergeometric type equation can be interpreted
as the eigenvalues of elements of the “Cartan algebra”. In particular, the Lie
algebraic parameters correspond to a certain natural choice of the “Cartan
algebra”. Each recurrence relation is related to a “root operator”. Finally, each
symmetry of a hypergeometric type operator corresponds to a Weyl symmetry
of the Lie algebra.

We can distinguish three kinds of PDE’s with constant coefficients:

1. The Helmholtz equation on C
n given by Δn + 1, whose Lie algebra of

symmetries is C
n

� so(n, C);
2. The Laplace equation on C

n given by Δn, whose Lie algebra of generalized
symmetries is so(n + 2, C)

3. The heat equation on C
n ⊕ C given by Δn + ∂s, whose Lie algebra of

generalized symmetries is sch(n, C) (the so-called (complex) Schrödinger
Lie algebra.

Separating the variables in these equations usually leads to differential equa-
tions with many variables. Only in a few cases, it leads to ordinary differential
equations, which turn out to be of hypergeometric type. Here is a table of
these cases:

PDE Lie algebra dimension of
Cartan algebra

discrete
symmetries

equation

Δ2 + 1 C
2

� so(2, C) 1 Z2 0F1;
Δ4 so(6, C) 3 cube 2F1;
Δ3 so(5, C) 2 square Gegenbauer;
Δ2 + ∂s sch(2, C) 2 Z2 × Z2 1F1 or 2F0;
Δ1 + ∂s sch(1, C) 1 Z4 Hermite.

1.9. Comparison with the Literature

There exist many works that discuss hypergeometric type functions, e.g. [1,4,7,
11–14,17]. Some of them are meant to be encyclopedic collections of formulas,
others try to show mathematical structure that underlies their properties.

In our opinion, this work differs substantially from the existing literature.
In our presentation, we try to follow the intrinsic logic of the subject, without
too much regard for the traditions. If possible, we apply the same pattern
to each class of hypergeometric type equations. This sometimes forces us to
introduce unconventional notation.

We believe that the intricacy of usual presentations of hypergeometric
type functions can be partly explained by historical reasons. In the literature,
various classes of these functions are often described with help of different
conventions. Sometimes, we will give short remarks devoted to the conventions
found in the literature. These remarks will always be clearly separated from
the main text.

Of course, our presentation does not contain all useful identities and
properties of hypergeometric functions. Some of them are on purpose left out,
e.g. the so-called addition formulas. We restrict ourselves to what we view as
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the most basic theory. On the other hand, we try to be complete for each type
of properties that we consider.

Our work is strongly inspired by the book by Nikiforov and Uvarov [10],
who tried to develop a unified approach to hypergeometric type functions.
They stressed, in particular, the role of integral representations and of recur-
rence relations.

Another important influence is the works of Miller [8,9] who stressed the
Lie-algebraic structure behind the recurrence relations.

The method of factorization can be traced back at least to [5].

2. Preliminaries

In this section, we fix basic terminology, notation and collect a number of well
known useful facts, mostly from complex analysis. It is supposed to serve as a
reference and can be skipped at the first reading.

2.1. Differential Equations

The main objectives of our paper are ordinary homogeneous 2nd order linear
differential equations in the complex domain, that is equations of the form

(
a(z)∂2

z + b(z)∂z + c(z)
)
φ(z) = 0. (2.1)

It will be convenient to treat (2.1) as the problem of finding the kernel of the
operator

A(z, ∂z) := a(z)∂2
z + b(z)∂z + c(z). (2.2)

We will then say that the Eq. (2.1) is given by the operator (2.2). When we do
not consider the change of the variable, we will often write A for A(z, ∂z).

2.2. The Principal Branch of the Logarithm and the Power Function

The function

{z ∈ C : −π < Imz < π} � z �→ ez ∈ C\] − ∞, 0]

is bijective. Its inverse will be called the principal branch of the logarithm and
will be denoted simply log z.

If μ ∈ C then the principal branch of the power function is defined as

C\] − ∞, 0] � z �→ zμ := eμ log z.

Consequently, if α ∈ C\{0}, then the functions log(α(z − z0)) and
(α(z − z0))μ have the domain C\(z0 + α−1] − ∞, 0]).

Of course, if needed we will use the analytic continuation to extend the
definition of the logarithm and the power function beyond C\] − ∞, 0] onto
the appropriate covering of C\{0}.
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2.3. Contours

We will write

f(z)
∣
∣
∣
z1

z0

:= f(z1) − f(z0).

In particular, if ]0, 1[� t �→ γ(t) ∈ C is a curve, then

f(z)
∣
∣
∣
γ(1)

γ(0)
=

∫

γ

f ′(z)dz. (2.3)

To avoid making pictures, we will use special notation for contours of
integration.

Broken lines will be denoted as in the following example:

[w0, u, w1] := [w0, u] ∪ [u,w1].

This contour may be inappropriate if the function has a nonintegrable
singularity at u. Then, we might want to bypass u with a small arc counter-
clockwise or clockwise. In such a case, we can use the curves

[w0, u
+, w1]. (2.4)

[w0, u
−, w1]. (2.5)

We may want to bypass a group of points, say u1, u2. Such contours are
denoted by

[w0, (u0, u1)+, w1],
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[w0, (u0, u1)−, w1].

A small counterclockwise/clockwise loop around u is denoted

[u+], [u−]

A counterclockwise/clockwise loop around a group of points, say, u1, u2

is denoted

[(u1, u2)+], [(u1, u2)−].

A half-line starting at u and inclined at the angle φ is denoted

[u, eiφ∞[:= {u + eiφt : t > 0} : (2.6)

We will also need slightly more complicated contours:

[(u + eiφ · 0)+, w]

Here, the contour departs from u at the angle φ, then it bypasses u with a
small arc counterclockwise and then it goes in the direction of w.

The following contour has the shape of a kidney:

[(u + eiφ · 0)+]
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This contour departs from u at the angle φ, then it goes around u and returns
to u again at the angle φ.

Instead of u + ei0 · 0, we will write u + 0. Likewise, instead of u + eiπ · 0,
we will write u − 0.

2.4. Reflection Invariant Differential Equations

Consider a 2nd order differential operator

∂2
z + b(z)∂z + c(z). (2.7)

Assume that (2.7) is invariant w.r.t. the reflection z �→ −z. This means that
for some functions π, ρ, we have

b(z) = zπ(z2), c(z) = ρ(z2).

Then it is natural to make a quadratic change of coordinates:

∂2
z + b(z)∂z + c(z) = 4u

(
∂2

u +
( 1

2u
+

π(u)
2

)
∂u +

ρ(u)
4u

)
, (2.8)

z−1(∂2
z + b(z)∂z + c(z))z = 4u

(
∂2

u +
( 3

2u
+

π(u)
2

)
∂u + +

π(u) + ρ(u)
4u

)
,

(2.9)

where

u = z2, z =
√

u.

Thus, if g+(u), resp. g−(u) satisfy
(

∂2
u +

( 1
2u

+
π(u)

2

)
∂u +

ρ(u)
4u

)
g+(u) = 0,

(
∂2

u +
( 3

2u
+

π(u)
2

)
∂u +

π(u) + ρ(u)
4u

)
g−(u) = 0,

then g+(z2) is an even solution, resp. zg−(z2) is an odd solution of the equation
given by (2.7).

Note that if π, ρ are holomorphic, then 0 is a regular singular point of
(2.8) with indices 0, 1

2 and of (2.9) with indices 0,− 1
2 .

2.5. Regular Singular Points

In this subsection, we recall well-known facts about regular singular points of
differential equations

We will write

f(z) ∼ (z − z0)λ at z0

if f(z)(z−z0)−λ is analytic at z0 and limz→z0 f(z)(z−z0)−λ = 1. In particular,
we write

f(z) ∼ 1 at z0

if f is analytic in a neighborhood of z0 and f(z0) = 1.
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An equation given by the operator

∂2
z + b(z)∂z + c(z) (2.10)

with meromorphic coefficients a(z), c(z) has a regular singular point at z0 if

b0 := lim
z→z0

b(z)(z − z0), c0 := lim
z→z0

c(z)(z − z0)2

exist. The indices λ1, λ2 of z0 are the solutions of the indicial equation

λ(λ − 1) + b0λ + c0 = 0.

Theorem 2.1 (The Frobenius method). If λ1 − λ2 �= −1,−2, . . ., then there
exists a unique solution f(z) of the equation given by (2.10) such that f(z) ∼
(z − z0)λ1 at z0.

The case λ1 − λ2 ∈ Z is called the degenerate case. In this case, the
Frobenius method gives one solution corresponding to the point z0.

Likewise, (2.10) has a regular singular point at ∞ if

b̃0 := lim
z→∞ b(z)z, c̃0 := lim

z→∞ c(z)z2

exist. The indices λ̃1, λ̃2 of ∞ are the solutions of the indicial equation

λ̃(λ̃ + 1) − b̃0λ̃ + c̃0 = 0.

Theorem 2.2 (The Frobenius method at infinity). If −λ̃1 + λ̃2 �= −1,−2, . . .,
then there exists a unique solution f̃1(z) of (2.10) such that f̃1(z) ∼ z−λ̃1

at ∞.

Note the identity

(z − z0)−θ
(
∂2

z + b(z)∂z + c(z)
)

(z − z0)θ

= ∂2
z +

(
2θ(z − z0)−1+b(z)

)
∂z +(θ2 − θ)(z − z0)−2+θb(z)(z − z0)−1+c(z).

(2.11)

If z0 is a regular singular point, then the corresponding indices of (2.11) equal
those of (2.10) +θ. Likewise, if ∞ is a regular singular point, then the corre-
sponding indices are shifted by −θ. The indices corresponding to other points
are left unchanged.

2.6. The Gamma Function

In this section, we collect basic identities related to Euler’s Gamma function
that we will use.

Relationship to factorial Γ(n + 1) = n!, n = 0, 1, 2, . . . , (2.12)

Recurrence relation Γ(z + 1) = zΓ(z), (2.13)
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Reflection formula Γ(z)Γ(1 − z) =
π

sin πz
, (2.14)

II Euler’s integral. Γ(z) :=

∞∫

0

e−ttz−1dt, Rez > 0 (2.15)

Hankel’s formula.
1

Γ(−z + 1)
=

1
2πi

∫

[−∞,0+,−∞[

ettz−1dt, (2.16)

Legendre’s formula 22z−1Γ(z)Γ (z + 1/2) =
√

πΓ(2z). (2.17)

I Euler’s integral and its consequences.

Γ(u)Γ(v)
Γ(u + v)

=

1∫

0

tu−1(1 − t)v−1dt Reu > 0, Rev > 0, (2.18)

Γ(u)Γ(v)
Γ(u + v)

sin πu

sin π(u + v)
=

Γ(1 − u − v)Γ(v)
Γ(1 − u)

=

∞∫

1

tu−1(t − 1)v−1dt Rev > 0, Re(1 − u − v) > 0, (2.19)

Γ(−u)Γ(−v)
Γ(−u − v)

sin πu

sin π(u + v)
=

Γ(−u − v + 1)
Γ(−u + 1)Γ(−v + 1)

=
1

2πi

∫

]−∞,0+,−∞[

tu−1(1 − t)v−1dt

=
1

2πi

∫

]∞,1−,∞[

tu−1(1−t)v−1dt, Re(−u−v+1)>0. (2.20)

Γ(u)Γ(v)
Γ(u + v)

sin πu =
Γ(v)

Γ(1 − u)Γ(u + v)

=
1

2πi

∫

]1,0+,1]

tu−1(1 − t)v−1dt, Rev > 0. (2.21)

Γ(u)
√

π

Γ(u + 1
2 )

=

1∫

−1

(1 − s2)u−1ds, (2.22)

Γ(u)
√

π

2 cos πuΓ(u + 1
2 )

=

∞∫

1

(s2 − 1)u−1ds. (2.23)
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2.7. The Pochhammer Symbol

If a ∈ C and n ∈ Z, then the so-called Pochhammer symbol is defined as
follows:

(a)0 = 1,
(a)n := a(a + 1) . . . (a + n − 1), n = 1, 2, . . .

(a)n :=
1

(a − n) . . . (a − 1)
, n = . . . ,−2,−1.

Note the identities

(a)n =
Γ(a + n)

Γ(a)
= (−1)n Γ(1 − a)

Γ(1 − a − n)
= (−1)n(1 − n − a)n,

(1 − z)−a =
∞∑

n=0

(a)n

n!
zn, |z| < 1, (2.24)

(1/2)nn! =
(2n)!
22n

, (3/2)nn! =
(2n + 1)!

22n
. (2.25)

3. The 2F1 or the Hypergeometric Equation

3.1. Introduction

Let a, b, c ∈ C. Traditionally, the hypergeometric equation is given by the op-
erator

F(a, b; c; z, ∂z) := z(1 − z)∂2
z +

(
c − (a + b + 1)z

)
∂z − ab. (3.1)

The classical parameters a, b, c will be often replaced by another set of
parameters α, β, μ ∈ C, called Lie-algebraic. They are related to one another
by

α := c − 1, β := a + b − c, μ := b − a;

a =
1 + α + β − μ

2
, b =

1 + α + β + μ

2
, c = 1 + α.

In the Lie-algebraic parameters, the hypergeometric operator (3.1) becomes

Fα,β,μ(z, ∂z)

= z(1 − z)∂2
z +

(
(1 + α)(1 − z) − (1 + β)z

)
∂z +

1
4
μ2 − 1

4
(α + β + 1)2.

(3.2)

The Lie-algebraic parameters have an interesting interpretation in terms of
the natural basis of the Cartan algebra of the Lie algebra so(6) [2].

The singular points of the hypergeometric operator are located at
0, 1,∞. All of them are regular singular. The indices of these points are
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z = 0 z = 1 z = ∞
1 − c = −α c − a − b = −β a = 1+α+β−μ

2

0 0 b = 1+α+β+μ
2

Thus, the Lie-algebraic parameters are the differences of the indices.
The hypergeometric operator remains the same if we interchange a and

b (replace μ with −μ).

3.2. Integral Representations

Theorem 3.1. Let [0, 1] � t �→ γ(t) satisfy

tb−c+1(1 − t)c−a(t − z)−b−1
∣
∣
∣
γ(1)

γ(0)
= 0.

Then

F(a, b; c; z, ∂z)
∫

γ

tb−c(1 − t)c−a−1(t − z)−bdt = 0. (3.3)

Proof. We check that for any contour γ (3.3) equals

−b

∫

γ

(
∂tt

b−c+1(1 − t)c−a(t − z)−b−1
)

dt.

�

Analogous (and nonequivalent) integral representations can be obtained
by interchanging a and b in Theorem 3.1.

3.3. Symmetries

To every permutation of the set of singularities {0, 1,∞}, we can associate
exactly one homography z �→ w(z). Using the method described at the end
of Sect. 2.5, with every such homography we can associate 4 substitutions
that preserve the form of the hypergeometric equation. Altogether there are
6×4 = 24 substitutions. They form a group isomorphic to the group of proper
symmetries of the cube. If we take into account the fact that replacing μ
with −μ is also an obvious symmetry of the hypergeometric equation, then we
obtain a group of 2 × 24 = 48 elements, isomorphic to the group of all (proper
and improper) symmetries of a cube, which is the Weyl group of so(6).

Below, we describe the table of symmetries of the hypergeometric oper-
ator except for those obtained by switching the sign of the last parameter.
We fix the sign of the last parameter by demanding that the number of minus
signs is even.

Note that the table looks much simpler in the Lie-algebraic parameters
than in the classical parameters.
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All the operators below equal Fα,β,μ(w, ∂w) for the corresponding w:

3.4. Factorization and Commutation Relations

The hypergeometric operator can be factorized in several ways:

Fα,β,μ =
(
z(1 − z)∂z +

(
(1 + α)(1 − z) − (1 + β)z

))
∂z

− 1
4

(α + β + μ + 1)(α + β − μ + 1),

= ∂z

(
z(1 − z)∂z +

(
α(1 − z) − βz

))

− 1
4

(α + β + μ − 1)(α + β − μ − 1),
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=
(

(1 − z)∂z − β − 1
)(

z∂z + α
)

− 1
4

(α + β + μ + 1)(α + β − μ + 1),

=
(
z∂z + α + 1

)(
(1 − z)∂z − β

)

− 1
4

(α + β + μ + 1)(α + β − μ + 1);

zFα,β,μ

=
(
z∂z +

1
2

(α + β + μ − 1)
)(

z(1 − z)∂z +
1
2

(1 − z)(α + β − μ + 1) − β
)

− 1
4

(α + β + μ − 1)(α − β − μ + 1),

=
(
z(1 − z)∂z +

1
2

(1 − z)(α + β − μ + 1) − β − 1
)

×
(
z∂z +

1
2

(α + β + μ + 1)
)

− 1
4

(α + β + μ + 1)(α − β − μ − 1),

=
(
z∂z +

1
2

(α + β − μ − 1)
)(

z(1 − z)∂z +
1
2

(1 − z)(α + β + μ + 1) − β
)

− 1
4

(α + β − μ − 1)(α − β + μ + 1),

=
(
z(1 − z)∂z +

1
2

(1 − z)(α + β + μ + 1) − β − 1
)

×
(
z∂z +

1
2

(α + β − μ + 1)
)

− 1
4

(α + β − μ + 1)(α − β + μ − 1);

(z − 1)Fα,β,μ

=
(

(z − 1)∂z +
1
2

(α + β + μ − 1)
)(

z(1 − z)∂z +
1
2
z(−α − β + μ − 1) + α

)

− 1
4

(α + β + μ − 1)(α − β + μ − 1),

=
(
z(1 − z)∂z +

1
2
z(−α − β + μ − 1) + α + 1

)

×
(

(z − 1)∂z +
1
2

(α + β + μ + 1)
)

− 1
4

(α + β + μ + 1)(α − β + μ + 1),

=
(

(z − 1)∂z +
1
2

(α + β − μ − 1)
)(

z(1 − z)∂z +
1
2
z(−α − β − μ − 1) + α

)

− 1
4

(α + β − μ − 1)(α − β − μ − 1),
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=
(
z(1 − z)∂z +

1
2
z(−α − β − μ − 1) + α + 1

)

×
(

(z − 1)∂z +
1
2

(α + β − μ + 1)
)

− 1
4

(α + β − μ + 1)(α − β − μ + 1).

One way of showing the above factorizations is as follows: We start with de-
riving the first one, and then we apply the symmetries of Sect. 3.3.

The factorizations can be used to derive the following commutation rela-
tions:

∂z Fα,β,μ

= Fα+1,β+1,μ ∂z,

(z(1 − z)∂z + (1 − z)α − zβ) Fα,β,μ

= Fα−1,β−1,μ (z(1 − z)∂z + (1 − z)α − zβ),

((1 − z)∂z − β) Fα,β,μ

= Fα+1,β−1,μ ((1 − z)∂z − β),

(z∂z + α) Fα,β,μ

= Fα−1,β+1,μ (z∂z + α);

(z∂z + 1
2
(α + β + μ + 1)) zFα,β,μ

= zFα,β+1,μ+1 (z∂z + 1
2
(α + β + μ + 1)),

(z(1−z)∂z+ 1
2
(1−z)(α+β−μ+1)−β) zFα,β,μ

= zFα,β−1,μ−1 (z(1−z)∂z+ 1
2
(1−z)(α+β−μ+1)−β),

(z∂z+ 1
2
(α+β−μ+1)) zFα,β,μ

= zFα,β+1,μ−1 (z∂z+ 1
2
(α+β−μ+1),

(z(z−1)∂z− 1
2
(1−z)(α+β+μ+1)+β) zFα,β,μ

= zFα,β−1,μ+1 (z(z−1)∂z− 1
2
(1−z)(α+β+μ+1)+β);

((z − 1)∂z + 1
2
(α + β + μ + 1)) (1 − z)Fα,β,μ

= (1 − z)Fα+1,β,μ+1 ((z − 1)∂z + 1
2
(α + β + μ + 1),

(z(1−z)∂z− 1
2
z(α+β−μ+1)+α) (1 − z)Fα,β,μ

= (1 − z)Fα−1,β,μ−1 (z(1−z)∂z− 1
2
z(α+β−μ+1)+α),

((z − 1)∂z + 1
2
(α + β − μ + 1)) (1 − z)Fα,β,μ

= (1 − z)Fα+1,β,μ−1 ((z − 1)∂z + 1
2
(α + β − μ + 1)),

(z(z−1)∂z+ 1
2
z(α+β+μ+1) − α) (1 − z)Fα,β,μ

= (1 − z)Fα−1,β,μ+1 (z(z−1)∂z+ 1
2
z(α+β+μ+1)−α).

Each of these commutation relations corresponds to a root of the Lie algebra
so(6).

3.5. Canonical Forms

The natural weight of the hypergeometric operator is zα(1 − z)β , so that

Fα,β,μ = z−α(1 − z)−β∂zz
α+1(1 − z)β+1∂z +

μ2

4
− (α + β + 1)2

4
.
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The balanced form of the hypergeometric operator is

z
α
2 (1 − z)

β
2 Fα,β,μz− α

2 (1 − z)− β
2 = ∂zz(1 − z)∂z − α2

4z
− β2

4(1 − z)
+

μ2 − 1
4

.

Note that the symmetries α → −α, β → −β and μ → −μ are obvious in the
balanced form.

Remark 3.2. In the literature, the balanced form of the hypergeometric equa-
tion is sometimes called the generalized associated Legendre equation. Its stan-
dard form according to [12] is

(1 − w2)∂2
w − 2w∂w + ν(ν + 1) − μ2

1

2(1 − w)
− μ2

1

2(1 + w)
. (3.4)

Thus, z = w+1
2 , moreover, μ1, μ2 and ν correspond to β, α and μ

2 − 1
2 .

3.6. The Hypergeometric Function

0 is a regular singular point of the hypergeometric equation. Its indices are
0 and 1 − c. The Frobenius method implies that, for c �= 0,−1,−2, . . . , the
unique solution of the hypergeometric equation equal to 1 at 0 is given by the
series

F (a, b; c; z) =
∞∑

j=0

(a)j(b)j

(c)j

zj

j!
,

convergent for |z| < 1. The function extends to the whole complex plane
cut at [1,∞[ and is called the hypergeometric function. Sometimes, it is more
convenient to consider the function

F(a, b; c; z) :=
F (a, b, c, z)

Γ(c)
=

∞∑

j=0

(a)j(b)j

Γ(c + j)
zj

j!

defined for all a, b, c ∈ C. Another useful function proportional to 2F1 is

FI(a, b; c; z) :=
Γ(a)Γ(c − a)

Γ(c)
F (a, b; c; z) =

∞∑

j=0

Γ(a + j)Γ(c − a)(b)j

Γ(c + j)
zj

j!
.

It has the integral representation
∞∫

1

tb−c(t − 1)c−a−1(t − z)−bdt

= FI(a, b; c; z), Re(c − a) > 0, Rea > 0, z �∈ [1,∞[. (3.5)

Indeed, by Theorem 3.1, the left hand side of (3.5) is annihilated by the
hypergeometric operator (3.1). Besides, by (2.19) it equals Γ(a)Γ(c−a)

Γ(c) at 0. So
does the right hand side. Therefore, Equation (3.5) follows by the uniqueness
of the solution by the Frobenius method.

Another, closely related integral representation is
sin πa

π
FI(a, b; c; z) =

1
2πi

∫

[1,(z,0)+,1]

(−t)b−c(1 − t)c−a−1(z − t)−bdt. (3.6)
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It is proven essentially in the same way as (3.5), except that instead of (2.19)
we use (2.21). We have the identities

F (a, b; c; z) = (1 − z)c−a−bF (c − a, c − b; c; z)

= (1 − z)−aF

(
a, c − b; c;

z

z − 1

)

= (1 − z)−bF

(
c − a, b; c;

z

z − 1

)
. (3.7)

In fact, by the 3rd, 9th and 11th symmetry of Sect. 3.3, all these functions
are annihilated by the hypergeometric operator. All of them are ∼ 1 at 1.
Hence, by the uniqueness of the Frobenius method they coincide, at least for
c �= 0,−1, . . . . By continuity, the identities hold for all c ∈ C.

Let us introduce new notation for various varieties of the hypergeometric
function involving the Lie-algebraic parameters instead of the classical para-
meters.

Fα,β,μ(z) = F
(1 + α + β − μ

2
,

1 + α + β + μ

2
; 1 + α; z

)
,

Fα,β,μ(z) = F
(1 + α + β − μ

2
,

1 + α + β + μ

2
; 1 + α; z

)

=
1

Γ(α + 1)
Fα,β,μ(z),

FI
α,β,μ(z) = FI

(1 + α + β − μ

2
,

1 + α + β + μ

2
; 1 + α; z

)

=
Γ
(

1+α+β−μ
2

)
Γ
(

1+α−β+μ
2

)

Γ(α + 1)
Fα,β,μ(z).

3.7. Standard Solutions: Kummer’s Table

To each of the singular points 0, 1,∞, we can associate two solutions corre-
sponding to its indices. Thus, we obtain 3× 2 = 6 solutions, which we will call
standard solutions. Using the identities (3.7), each solution can be written in
4 distinct ways (not counting the trivial change of the sign in front of the last
parameter). Thus, we obtain a list of 6 × 4 = 24 expressions for solutions of
the hypergeometric equation, called sometimes Kummer’s table.

We describe the standard solutions to the hypergeometric equation in
this section. We will use consistently the Lie-algebraic parameters, which give
much simpler expressions.

It follows from Theorem 3.1 that for appropriate contours γ integrals of
the form

∫

γ

t
−1−α+β+μ

2 (t − 1)
−1+α−β+μ

2 (t − z)
−1−α−β−μ

2 dt (3.8)

are solutions of the hypergeometric equation. The integrand has four singu-
larities: {0, 1,∞, z}. It is natural to chose γ as the interval joining a pair of
singularities. This choice leads to 6 standard solutions with the I-type normal-
ization.
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3.7.1. Solution ∼ 1 at 0. If α �= −1,−2, . . . , then the following function is
the unique solution ∼ 1 at 0:

Fα,β,μ(z) = (1 − z)−βFα,−β,−μ(z)

= (1 − z)
−1−α−β+μ

2 Fα,−μ,−β

(
z

z − 1

)

= (1 − z)
−1−α−β−μ

2 Fα,μ,β

(
z

z − 1

)
.

An integral representation for Re(1 + α) > |Re(β − μ)|:
∞∫

1

t
−1−α+β+μ

2 (t − 1)
−1+α−β+μ

2 (t − z)
−1−α−β−μ

2 dt = FI
α,β,μ(z), z �∈ [1,∞[.

Note that all the identities of this subsubsection are the transcriptions of
identities of Sect. 3.6 to the Lie-algebraic parameters.

3.7.2. Solution ∼ z−α at 0. If α �= 1, 2, . . . , then the following function is
the unique solution behaving as z−α at 0:

z−αF−α,β,−μ(z) = z−α(1 − z)−βF−α,−β,μ(z)

= z−α(1 − z)
−1+α−β+μ

2 F−α,−μ,β

(
z

z − 1

)

= z−α(1 − z)
−1+α−β−μ

2 F−α,μ,−β

(
z

z − 1

)
.

Integral representations for Re(1 − α) > |Re(β − μ)|:
z∫

0

t
−1−α+β+μ

2 (1 − t)
−1+α−β+μ

2 (z − t)
−1−α−β−μ

2 dt = z−αFI
−α,β,−μ(z),

z �∈]−∞, 0]∪[1,∞[;
0∫

z

(−t)
−1−α+β+μ

2 (1 − t)
−1+α−β+μ

2 (t − z)
−1−α−β−μ

2 dt = (−z)−αFI
−α,β,−μ(z),

z �∈ [0,∞[.

To check these identities, we note first that the integrals are solutions of the
hypergeometric equation. By substituting t = zs, we easily check that they
have the correct behavior at zero.

Of course, it is elementary to pass from the first identity, which is adapted
to the region on the right of the singularity z = 0 to the second, adapted to the
region on the left of the singularity. For convenience, we give both identities.

3.7.3. Solution ∼ 1 at 1. If β �= −1,−2, . . . , then the following function is
the unique solution ∼ 1 at 1:
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Fβ,α,μ(1 − z) = z−αFβ,−α,−μ(1 − z)

= z
−1−α−β+μ

2 Fβ,−μ,−α(1 − z−1)

= z
−1−α−β−μ

2 Fβ,μ,α(1 − z−1)

Integral representation for Re(1 + β) > |Re(α − μ)|:
0∫

−∞
(−t)

−1−α+β+μ
2 (1 − t)

−1+α−β+μ
2 (z − t)

−1−α−β−μ
2 dt = FI

β,α,μ(1 − z),

z �∈] − ∞, 0].

3.7.4. Solution ∼ (1−z)−β at 1. If β �= 1, 2, . . . , then the following function
is the unique solution of the hypergeometric equation ∼ (1 − z)−β at 1:

(1 − z)−βF−β,α,−μ(1 − z)

= z−α(1 − z)−βF−β,−α,μ(1 − z)

= z
−1−α+β−μ

2 (1 − z)−βF−β,μ,−α(1 − z−1)

= z
−1−α+β+μ

2 (1 − z)−βF−β,−μ,α(1 − z−1).

Integral representations for Re(1 − β) > |Re(α + μ)|:
1∫

z

t
−1−α+β+μ

2 (1 − t)
−1+α−β+μ

2 (t − z)
−1−α−β−μ

2 dt

= (1 − z)−βFI
−β,α,−μ(1 − z), z �∈] − ∞, 0] ∪ [1,∞[;

z∫

1

t
−1−α+β+μ

2 (t − 1)
−1+α−β+μ

2 (z − t)
−1−α−β−μ

2 dt

= (z − 1)−βFI
−β,α,−μ(1 − z), z �∈] − ∞, 1].

3.7.5. Solution ∼ z−a at ∞. If μ �= 1, 2 . . . , then the following function is the
unique solution of the hypergeometric equation ∼ (−z)−a = (−z)

−1−α−β+μ
2 at

∞:

(−z)
−1−α−β+μ

2 F−μ,β,−α(z−1)

= (−z)
−1−α+β+μ

2 (1 − z)−βF−μ,−β,α(z−1)

= (1 − z)
−1−α−β+μ

2 F−μ,α,−β((1 − z)−1)

= (−z)−α(1 − z)
−1+α−β+μ

2 F−μ,−α,β((1 − z)−1).

Integral representations for Re(1 − μ) > |Re(α + β)|:
∞∫

z

t
−1−α+β+μ

2 (t − 1)
−1+α−β+μ

2 (t − z)
−1−α−β−μ

2 dt

= z
−1−α−β−μ

2 FI
−μ,β,−α(z−1), z �∈] − ∞, 1];
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z∫

−∞
(−t)

−1−α+β+μ
2 (1 − t)

−1+α−β+μ
2 (z − t)

−1−α−β−μ
2 dt

= (−z)
−1−α−β−μ

2 FI
−μ,β,−α(z−1), z �∈]0,∞].

3.7.6. Solution ∼ z−b at ∞. If μ �= −1,−2, . . . , then the following function is
the unique solution of the hypergeometric equation ∼ (−z)−b = (−z)

−1−α−β−μ
2

at ∞:

(−z)
−1−α−β−μ

2 Fμ,β,α(z−1)

= (−z)
−1−α+β−μ

2 (1 − z)−βFμ,−β,−α(z−1)

= (1 − z)
−1−α−β−μ

2 Fμ,α,β((1 − z)−1)

= (−z)−α(1 − z)
−1+α−β−μ

2 Fμ,−α,−β((1 − z)−1)

Integral representations for Re(1 + μ) > |Re(α − β)|:

1∫

0

t
−1−α+β−μ

2 (1 − t)
−1+α−β+μ

2 (t − z)
−1−α−β−μ

2 dt

= (−z)
−1−α−β+μ

2 FI
μ,β,α(z−1), z �∈ [0,∞[;

1∫

0

t
−1−α+β−μ

2 (1 − t)
−1+α−β+μ

2 (z − t)
−1−α−β−μ

2 dt

= z
−1−α−β+μ

2 FI
μ,β,α(z−1), z �∈ [−∞, 1[.

3.8. Connection Formulas

We use the solutions ∼ 1 and ∼ z−α at 0 as the basis. We show how the other
solutions decompose in this basis.

For the first pair of relations, we assume that z �∈] − ∞, 0]∪[1,∞[:

Fβ,α,μ(1 − z) =
π

sin π(−α)Γ
(

1−α+β−μ
2

)
Γ

(
1−α+β+μ

2

)Fα,β,μ(z)

+
π

sin παΓ
(

1+α+β−μ
2

)
Γ

(
1+α+β+μ

2

)z−αF−α,β,−μ(z),

(1 − z)−βF−β,α,−μ(1 − z) =
π

sin π(−α)Γ
(

1−α−β+μ
2

)
Γ

(
1−α−β−μ

2

)Fα,β,μ(z)

+
π

sin παΓ
(

1+α−β+μ
2

)
Γ

(
1+α−β−μ

2

)z−αF−α,β,−μ(z).
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For the second pair, we assume that z �∈ [0,∞[

(−z)
−1−α−β+μ

2 F−μ,β,−α(z−1)=
π

sin π(−α)Γ
(

1−α−β−μ
2

)
Γ

(
1−α+β−μ

2

)Fα,β,μ(z)

+
π

sin παΓ
(

1+α+β−μ
2

)
Γ

(
1+α−β−μ

2

) (−z)−αF−α,β,−μ(z),

(−z)
−1−α−β−μ

2 Fμ,β,α(z−1) =
π

sin π(−α)Γ
(

1−α−β+μ
2

)
Γ

(
1−α+β+μ

2

)Fα,β,μ(z)

+
π

sin παΓ
(

1+α+β+μ
2

)
Γ

(
1+α−β+μ

2

) (−z)−αF−α,β,−μ(z).

The connection formulas are easily derived from the integral representations
by looking at the behavior around 0.

3.9. Recurrence Relations

The following recurrence relations follow easily from the commutation relations
of Sect. 3.4:

∂zFI
α,β,μ(z) =

1+α+β+μ

2
FI

α+1,β+1,μ(z),

(z(1−z)∂z+α(1−z)−βz)FI
α,β,μ(z) =

−1+α+β+μ

2
FI

α−1,β−1,μ(z),

((1 − z)∂z − β)FI
α,β,μ(z) =

1+α−β−μ

2
FI

α+1,β−1,μ(z),

(z∂z + α)FI
α,β,μ(z) =

1+α−β+μ

2
FI

α−1,β+1,μ(z),

(
z∂z +

1 + α + β + μ

2

)
FI

α,β,μ(z) =
1 + α + β + μ

2
FI

α,β+1,μ+1(z),

(
z(1−z)∂z−β+

1+α+β−μ

2
(1−z)

)
FI

α,β,μ(z) =
1 + α − β − μ

2
FI

α,β−1,μ−1(z),

(
z∂z +

1 + α + β − μ

2

)
FI

α,β,μ(z) =
1 + α + β − μ

2
FI

α,β+1,μ−1(z),

(
z(1−z)∂z−β+

1+α+β+μ

2
(1−z)

)
FI

α,β,μ(z) =
1 + α − β + μ

2
FI

α,β−1,μ+1(z),

(
(z − 1)∂z +

1 + α + β + μ

2

)
FI

α,β,μ(z) =
1+α+β+μ

2
FI

α+1,β,μ+1(z),
(

z(1−z)∂z+α−1+α+β−μ

2
z

)
FI

α,β,μ(z) =
−1+α−β+μ

2
FI

α−1,β,μ−1(z),
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(
(z − 1)∂z +

1 + α + β − μ

2

)
FI

α,β,μ(z) =
1+α−β−μ

2
FI

α+1,β,μ−1(z),

(
z(1−z)∂z+α−1+α+β+μ

2
z

)
FI

α,β,μ(z) =
−1+α+β−μ

2
FI

α−1,β,μ+1(z).

3.10. Additional Recurrence Relations

There exist other, more complicated recurrence relations for hypergeometric
functions, for example

( (1+α+β+μ)(−1−α+β−μ)
4

+
(1+α+β+μ)(μ+1)

2
z − (1+μ)z(1−z)∂z

)
Fα,β,μ

=
(1+α+β+μ)(−1−α+β−μ)

4
Fα,β,μ+2(z), (3.9)

( (1+α+β−μ)(−1−α+β+μ)
4

+
(1+α+β−μ)(−μ+1)

2
z − (1−μ)z(1−z)∂z

)
Fα,β,μ

=
(1+α+β−μ)(−1−α+β+μ)

4
Fα,β,μ−2(z). (3.10)

Note that (3.9) follows from the 6th and 7th recurrence relation, and (3.10)
follows from the 5th and 8th of Sect. 3.9.

3.11. Degenerate Case

α = m ∈ Z is the degenerate case of the hypergeometric equation at 0. We
have then

F(a, b; 1 + m; z) =
∑

n=max(0,−m)

(a)n(b)n

n!(m + n)!
zn.

This easily implies the identity

(a − m)m(b − m)mF(a, b; 1 + m; z) = z−mF(a − m, b − m; 1 − m; z). (3.11)

Thus, the two standard solutions determined by the behavior at zero are pro-
portional to one another.

One can also see the degenerate case in the integral representation (3.3).
If we go around 0, z, the phase of the integrand changes by ei2πc = ei2πα.
Therefore, if α = m ∈ Z, then the loop around 0, z is closed on the Riemann
surface of the integrand.
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We have an additional integral representation and a generating function:

1
2πi

∫

[(0,z)+]

(1 − t)−a(1 − z/t)−bt−m−1dt = (a)mFm,a+b−1,−a+b−m(z)

= z−m(b)−mF−m,a+b−1,a−b+m(z),

(1 − t)−a(1 − z/t)−b =
∑

m∈Z

tm(a)mFm,a+b−1,b−a−m(z).

To see the integral representation, we note that the integral on the l.h.s. is
annihilated by the hypergeometric operator. Then, we check that its value at
zero equals

1
2πi

∫

[0+]

(1 − t)−at−m−1dt =
(a)m

m!
,

see (2.24).
The second identity follows from (3.11). Another way to see it is to make

the substitution t = z
s . Note that [(0, z)+] becomes [(∞, 1)+], which coin-

cides with [(0, z)−]. Then, we change the sign in front of the integral and the
orientation of the contour of integration, obtaining

z−m

2πi

∫

[(0,z)+]

(1 − s)−b(1 − z/s)−as−m−1ds.

Finally, we apply the first integral representation again.
The generating function follows from the integral representation.

3.12. Jacobi Polynomials

If −a = n = 0, 1, . . . , then hypergeometric functions are polynomials. We will
call them the Jacobi polynomials.

Following Sect. 1.6, the Jacobi polynomials are defined by the
Rodriguez-type formula

Rα,β
n (z) :=

(−1)n

n!
z−α(z − 1)−β∂n

z zα+n(z − 1)β+n.

Remark 3.3. In most of the literature, the Jacobi polynomials are slightly
different:

Pα,β
n (z) := Rα,β

n

(1 − z

2

)
= (−1)nRβ,α

n

(1 + z

2

)
.

The equation:

0 = F(−n, 1 + α + β + n; β + 1; z, ∂z)Pα,β
n (z)

=
(
z(1 − z)∂2

z +
(
(1 + α)(1 − z) − (1 + β)z

)
∂z + n(n + α + β + 1)

)
Pα,β

n (z).
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Generating functions:

(1 + t(1 − z))α(1 − tz)β =
∞∑

n=0

tnRα−n,β−n
n (z),

(1 + zt)−1−α−β(1 + t)α =
∞∑

n=0

tnRα−n,β
n (z),

(1 + (z − 1)t)−1−α−β(1 − t)β =
∞∑

n=0

tnRα,β−n
n (z).

Integral representations:

Rα,β
n (z) =

1
2πi

∫

[0+]

(1 + (1 − z)t)α+n(1 − zt)β+nt−n−1dt

=
1

2πi

∫

[0+]

(1 + zt)−α−β−n−1(1 + t)α+nt−n−1dt

=
1

2πi

∫

[0+]

(1 + (z − 1)t)−α−β−n−1(1 − t)β+nt−n−1dt.

Discrete symmetries:

Rα,β
n (z) = (1 − z)nRα,−1−α−β−2n

n

( z

z − 1

)

= (−1)nRβ,α
n (1 − z) = (−z)nRβ,−1−α−β−2n

n

(z − 1
z

)

= znR−1−α−β−2n,β
n

(1
z

)
= (z − 1)nR−1−α−β−2n,α

n

( 1
1 − z

)
.

Recurrence relations:

∂zR
α,β
n (z) = −(α + β + n + 1)Rα+1,β+1

n−1 (z),

(z(1 − z)∂z − α(z − 1) − βz)Rα,β
n (z) = (n + 1)Rα−1,β−1

n+1 (z),

((1 − z)∂z − β)Rα,β
n (z) = −(β + n)Rα−1,β+1

n (z),

(z∂z + α)Rα,β
n (z) = (β + n)Rα−1,β+1

n (z),

(z∂z − n) Rα,β
n (z) = −(α + n)Rα,β+1

n−1 (z),

(z(1 − z)∂z + 1 + α + n − (1 + α + β + n)z) Rα,β
n (z) = (n + 1)Rα,β−1

n+1 (z),

(z∂z + 1 + α + β + n) Rα,β
n (z) = (1 + α + β + n)Rα,β+1

n (z),

(z(1 − z)∂z − n − β + nz) Rα,β
n (z) = −(β + n)Rα,β−1

n (z),

((z − 1)∂z − n) Rα,β
n (z) = (β + n)Rα+1,β

n−1 (z),

(z(1 − z)∂z + α − (1 + α + β + n)z) Rα,β
n (z) = (n + 1)Rα−1,β

n+1 (z),
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((z − 1)∂z + 1 + n + α + β) Rα,β
n (z) = (1 + n + α + β)Rα+1,β

n (z),

(z(1 − z)∂z + α + nz) Rα,β
n (z) = (n + α)Rα−1,β

n (z).

The first, second, resp. third integral representation is easily seen to be
equivalent to the first, second, resp. third generating function. The first follows
immediately from the Rodriguez-type formula.

The symmetries can be interpreted as a subset of Kummer’s table. The
first line corresponds to the symmetries of the solution regular at 0, see (3.7)
(or Sect. 3.7.1). Note that from 4 expressions in (3.7) only the first and the
third survive, since n = −a should not change. The second line corresponds
to the solution regular at 1 (Sect. 3.7.3), finally the third line to the solution
∼ z−a = zn (Sect. 3.7.5).

The differential equation, the Rodriguez-type formula, the first generat-
ing function, the first integral representation and the first pair of recurrence
relations are special cases of the corresponding formulas of Sect. 1.6.

Note that Jacobi polynomials are regular at 0, 1, and behave as zn in
infinity. Thus (up to coefficients), they coincide with the 3 standard solutions.
They have the following values at 0, 1 and the behavior at ∞:

Rα,β
n (0) =

(α + 1)n

n!
, Rα,β

n (1) = (−1)n (β + 1)n

n!
,

lim
z→∞

Rα,β
n (z)
zn

= (−1)n (α + β + n + 1)n

n!
.

We have several alternative expressions for Jacobi polynomials:

Rα,β
n (z) := lim

ν→n
(−1)n(ν − n)FI

α,β,2ν+α+β+1(z) =
(α + 1)n

n!
Fα,β,2n+α+β+1(z)

=
Γ(α + 1 + n)

Γ(α + 1)Γ(n + 1)
F (−n, n + α + β + 1; α + 1; z)

=
n∑

j=0

(1 + α + j)n−j(1 + α + β + n)j

j!(n − j)!
(−z)j .

One way to derive the first of the above identities is to use integral rep-
resentation (3.6). Using that a is an integer we can replace the open curve
[1, (0, z)+, 1] with a closed loop [∞−]:

lim
ν→n

(−1)n(ν − n)FI
α,β,2ν+α+β+1(z)

= lim
ν→n

sin νπ

π
FI

α,β,2ν+α+β+1(z)

=
1

2πi

∫

[∞−]

(−s)β+n(1 − s)α+n(z − s)−1−α−β−nds.
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Then, making the substitutions s = z − 1
t , s = zt, resp. s = (z − 1)t, we obtain

the 1st, 2nd, resp. 3rd integral representation.
Additional identities valid in the degenerate case:

Rα,β
n (z) =

(n + 1)α

(β + n + 1)α
(−z)−αR−α,β

n+α (z), α ∈ Z;

Rα,β
n (z) =

(n + 1)β

(α + n + 1)β
(1 − z)−βRα,−β

n+β (z), β ∈ Z;

Rα,β
n (z) = (−z)−α(1 − z)−βR−α,−β

n+α+β(z), α, β ∈ Z.

There is a region where Jacobi polynomials are zero. This happens iff
α, β ∈ Z and α, β are in the triangle

0 ≤ α + n,

0 ≤ β + n,

0 ≤ −α − β − n − 1.

(3.12)

In the analysis of symmetries of Jacobi polynomials, it is useful to go back
to the Lie-algebraic parameters, more precisely, to set μ := −α − β − 2n − 1.
Then (3.12) acquires a more symmetric form, since we can replace its last
condition by

0 ≤ μ + n.

One can distinguish three strips where Jacobi polynomials have special
properties. Note that the intersection of the strips below is precisely the tri-
angle described in (3.12).

1. μ ∈ Z and −n ≤ μ ≤ −1 or, equivalently, α + β ∈ Z and −2n ≤ α + β ≤
−n − 1. Then Rα,β

n = 0 or

deg Rα,β
n = μ + n = −α − β − n − 1.

2. α ∈ Z and −n ≤ α ≤ −1. Then Rα,β
n = 0 or

Rα,β
n = z−αW, W not divisible by z.

3. β ∈ Z and −n ≤ β ≤ −1. Then Rα,β
n = 0 or

Rα,β
n = (z − 1)−βV, V not divisible by z − 1.

These regions are presented in the following picture:
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Finally, Jacobi polynomials satisfy some identities related to Sect. 3.10.
An additional generating function:

2α+βr−1(1 − t + r)−α(1 + t + r)−β =
∞∑

n=0

tnRα,β
n (z),

where r =
√

(1 − t)2 + 4zt. (3.13)

Additional recurrence relations:
(

(n + α + β + 1)
(
(n + β + 1) − (2n + α + β + 2)z

)

+(2n + α + β + 2)z(1 − z)∂z

)
Rα,β

n (z) = (n + α + β + 1)(n + 1)Rα,β
n+1(z),

(
n
(
(n + α) − (2n + α + β)z

) − (2n + α + β)z(1 − z)∂z

)
Rα,β

n (z)

= (n + α)(n + β)Rα,β
n−1(z).

3.13. Special Cases

Beside the polynomial and degenerate cases, the hypergeometric equation has
a number of other special cases. In their description most of the time, we will
use the Lie-algebraic parameters, which are here more convenient than the
classical parameters.

3.13.1. Gegenbauer Equation Through an Affine Transformation. Consider a
hypergeometric equation whose two parameters coincide up to a sign. After
applying an appropriate symmetry, we can assume that they are at the first
and second place, and that they are equal to one another. In other words,
α = β. A simple affine transformation (6.2) can be then applied to obtain
a reflection invariant equation called the Gegenbauer equation. We study it
separately in Sect. 6.
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3.13.2. Gegenbauer Equation Through a Quadratic Transformation. Hyper-
geometric equations with one of the parameters equal to 1

2 or − 1
2 also enjoy

special properties. After applying, if needed, one of the symmetries, we can
assume that μ = ± 1

2 . Then identity (6.4) or (6.5) leads to the Gegenbauer
equation.

3.13.3. Chebyshev Equation. Even more special properties have equations
with a pair of parameters ± 1

2 . After applying one of the symmetries, we can
assume that α = β = 1

2 . Thus, we are reduced to the Chebyshev equation
of the first kind; see (6.15). Another option is to reduce it to the Chebyshev
equation of the second kind, which corresponds to α = β = − 1

2 ; see (6.16).

3.13.4. Legendre Equation. Let L be the sublattice of Z
3 consisting of points

whose sum of coordinates is even. It is a sublattice of Z
3 of degree 2. Using

recurrence relations of Sect. 3.9, we can pass from hypergeometric functions
with given Lie-algebraic parameters (α, β, μ) to parameters from (α, β, μ) +L.

This is especially useful in the degenerate case, when some of the pa-
rameters are integers. In particular, if two of the parameters are integers, by
applying recurrence relations we can make both of them zero. By applying an
appropriate symmetry, we can assume that α = β = 0. Thus, we obtain the
Legendre equation, see (6.14).

3.13.5. Elementary Solutions. One can easily check that

F (a, b; b; ; z) = Fb−1,a,b−a(z) = (1 − z)−a.

Therefore, using Kummer’s table and recurrence relations, we see that if

ε1α + ε2β + ε3μ is an odd integer for some ε1, ε2, ε3 ∈ {−1, 1} (3.14)

then Fα,β,μ is an elementary function involving power functions, but not log-
arithms.

3.13.6. Fully Degenerate Case. An interesting situation arises if α, β, μ ∈ Z,
that is, we have the degenerate case at all singular points. We can distinguish
two situations:

1. If α + β + μ is even, by walking on the lattice L we can reduce ourselves
to the equation for the complete elliptic integral, which corresponds to
α = β = μ = 0.

2. If α+β +μ is odd, by walking on the lattice L we can reduce ourselves to
the equation for the Legendre polynomial of degree 0, which corresponds
to α = β = 0, μ = 1. This equation is solved by

F0,0,1(z) = F (0, 1; 1; z) = 1,

z−1F1,0,0(1 − z−1) = z−1F (1, 1; 2; 1 − z−1) = log(z − 1) − log z,

where we used Kummer’s table and

F (1, 1; 2; w) = −w−1 log(1 − w).
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4. The 1F1 and 2F0 Equation

4.1. The 1F1 Equation

Let a, c ∈ C. The confluent or the 1F1 equation is given by the operator

F(a; c; z, ∂z) := z∂2
z + (c − z)∂z − a. (4.1)

This equation is a limiting case of the hypergeometric equation:

lim
b→∞

1
b
F(a, b; c; z/b, ∂z/b) = F(a; c; z, ∂z).

4.2. The 2F0 Equation

Parallel to the 1F1 equation, we will consider the 2F0 equation, given by the
operator

F(a, b; −; z, ∂z) := z2∂2
z + (−1 + (1 + a + b)z)∂z + ab, (4.2)

where a, b ∈ C. This equation is another limiting case of the hypergeometric
equation:

lim
c→∞ F(a, b; c; cz, ∂(cz)) = −F(a, b; −; z, ∂z).

4.3. Equivalence of the 1F1 and 2F0 Equation

Note that

F(a, b; −; z, ∂z) = w2∂2
w + (−w2 + (1 − a − b)w)∂w + ab

where w = −z−1, z = −w−1. Moreover,

(−z)a+1F(a, b; −; z, ∂z)(−z)−a = F(a; 1 + a − b; w, ∂w). (4.3)

Hence the 2F0 equation is equivalent to the 1F1 equation. We will treat the
1F1 equation as the principal one.

The relationship between the parameters is

c = 1 + a − b, b = 1 + a − c.

4.4. Lie-Algebraic Parameters

Instead of the classical parameters, we usually prefer the Lie-algebraic para-
meters α, θ:

α := c − 1 = a − b, θ := −c + 2a = −1 + a + b;

a =
1 + α + θ

2
, b =

1 − α + θ

2
, c = 1 + α.

In these parameters, the 1F1 operator (4.1) becomes

Fθ,α(z, ∂z) = z∂2
z + (1 + α − z)∂z − 1

2
(1 + θ + α),

and the 2F0 operator (4.2) becomes

F̃θ,α(z, ∂z) = z2∂2
z + (−1 + (2 + θ)z)∂z +

1
4

(1 + θ)2 − 1
4
α2.

The Lie-algebraic parameters have an interesting interpretation in terms
of a natural basis of a “Cartan algebra” of the Lie algebra sch(2) [2].
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4.5. Integral Representations

Two kinds of integral representations of solutions to the 1F1 equation are
described below:

Theorem 4.1. 1. Let [0, 1] � t �→ γ(t) satisfy

ta−c+1et(t − z)−a−1
∣
∣
∣
γ(1)

γ(0)
= 0.

Then

F(a; c; z, ∂z)
∫

γ

ta−cet(t − z)−adt = 0. (4.4)

2. Let [0, 1] � t �→ γ(t) satisfy

e
z
t t−c(1 − t)c−a

∣
∣
∣
γ(1)

γ(0)
= 0.

Then

F(a; c; z, ∂z)
∫

γ

e
z
t t−c(1 − t)c−a−1dt = 0. (4.5)

Proof. We check that for any contour γ the l.h.s of (4.4) and (4.5) equal

− a

∫

γ

(
∂tt

a−c+1et(t − z)−a−1
)

dt,

−
∫

γ

(
∂te

z
t t−c(1 − t)c−a

)
dt

respectively. �

For solutions of the 2F0 equation, we also have two kinds of integral
representations:

Theorem 4.2. Let [0, 1] � t �→ γ(t) satisfy

e− 1
t tb−a−1(t − z)−b−1

∣
∣
∣
γ(1)

γ(0)
= 0.

Then

F(a, b; −; z, ∂z)
∫

γ

e− 1
t tb−a−1(t − z)−bdt (4.6)

Proof. We check that for any contour γ (4.6) equals

−b

∫

γ

(
∂te− 1

t tb−a−1(t − z)−b−1
)

dt.

�

The second integral representation is obtained if we interchange a and b.
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4.6. Symmetries

The following operators equal Fθ,α(w, ∂w) for the appropriate w:

w = z :
Fθ,α(z, ∂z),

z−α Fθ,−α(z, ∂z) zα,
w = −z :

−e−z F−θ,α(z, ∂z) ez,
−e−zz−α F−θ,−α(z, ∂z) ezzα.

The third symmetry is sometimes called the 1st Kummer transformation.
Symmetries of the 1F1 operators can be interpreted as the “Weyl group”

of the Lie algebra sch(2).

4.7. Factorizations and Commutation Relations

There are several ways of factorizing the 1F1 operator.

Fθ,α =
(
z∂z + 1 + α − z

)
∂z − 1

2
(θ + α + 1),

= ∂z

(
z∂z + α − z

)
− 1

2
(θ + α − 1),

=
(
z∂z + 1 + α

)(
∂z − 1

)
+

1
2

(−θ + α + 1),

=
(
∂z − 1

)(
z∂z + α

)
+

1
2

(−θ + α − 1);

zFθ,α =
(
z∂z +

1
2

(θ + α − 1)
)(

z∂z +
1
2

(−θ + α + 1) − z
)

− 1
4

(−θ + α + 1)(θ + α − 1),

=
(
z∂z +

1
2

(−θ + α − 1) − z
)(

z∂z +
1
2

(θ + α + 1)
)

− 1
4

(−θ + α − 1)(θ + α + 1).

One can use the factorizations to derive the following commutation relations:

∂z Fθ,α

= Fθ+1,α+1 ∂z,

(z∂z + α − z) Fθ,α

= Fθ−1,α−1 (z∂z + α − z),
(z∂z + α) Fθ,α

= Fθ+1,α−1 (z∂z + α),
(∂z − 1) Fθ,α,

= Fθ−1,α+1 (∂z − 1);
(
z∂z + 1

2 (θ + α + 1)
)

zFθ,α

= zFθ+2,α

(
z∂z + 1

2 (θ + α + 1)
)
,

(
z∂z + 1

2 (−θ + α + 1) − z) zFθ,α

= zFθ−2,α

(
z∂z + 1

2 (−θ + α + 1) − z
)
.
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Each of these commutation relations can be associated with a “root” of the
Lie algebra sch(2).

4.8. Canonical Forms

The natural weight of the 1F1 operator equals zαe−z, so that

Fθ,α = z−αez∂zz
α+1e−z∂z − 1

2
(1 + α + θ).

The balanced form of the 1F1 operator is

z
α
2 e− z

2 Fθ,αz− α
2 e

z
2 = ∂zz∂z − z

4
− θ

2
− α2

4z
.

Remark 4.3. We have

2z
α
2 −1e− z

2 F0,α(z, ∂z)z− α
2 e

z
2 = ∂2

w +
1
w

∂w − 1 − α2

w2
, z = 2w;

2iz
α
2 −1e− z

2 F0,α(z, ∂z)z− α
2 e

z
2 = ∂2

u +
1
u

∂u + 1 − α2

u2
, z = 2iu.

which are the operators for the modified Bessel and Bessel equations. Thus,
both these equations essentially coincide with the balanced form of the 1F1

equation with θ = 0. We will discuss them further in Remark 5.3.

The Schrödinger form of the 1F1 equation is

z
α
2 − 1

2 e− z
2 Fθ,αz− α

2 − 1
2 e

z
2 = ∂2

z − 1
4

− θ

2z
+

(1
4

− α2

4

) 1
z2

. (4.7)

Remark 4.4. In the literature, the equation given by (4.7) is often called the
Whittaker equation. Its standard form is

∂2
z − 1

4
+

κ

z
+

(1
4

− μ2
) 1

z2
.

Thus, κ, μ correspond to − θ
2 , α

2 .

The natural weight of the 2F0 operator equals zθe
1
z , so that

F̃θ,α = z−θe− 1
z ∂zz

θ+2e
1
z ∂z +

(1 + θ)2

4
− α2

4
.

The balanced form of the 2F0 operator is

z
θ
2 e

1
2z F̃θ,αz− θ

2 e− 1
2z = ∂zz

2∂z − 1
4z2

+
θ

2z
+

1 − α2

4
. (4.8)

The symmetries α �→ −α, as well as (z, θ) �→ (−z,−θ), are obvious in
both balanced forms and in the Whittaker equation.
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4.9. The 1F1 Function

Equation (4.1) has a regular singular point at 0. Its indices at 0 are equal to
0, 1 − c. For c �= 0,−1,−2, . . . , the unique solution of the confluent equation
analytic at 0 and equal to 1 at 0 is called the 1F1 hypergeometric function or
the confluent function. It is equal to

F (a; c; z) :=
∞∑

n=0

(a)n

(c)n

zn

n!
.

It is defined for c �= 0,−1,−2, . . . . Sometimes, it is more convenient to consider
the function

F(a; c; z) :=
F (a; c; z)

Γ(c)
=

∞∑

n=0

(a)n

Γ(c + n)
zn

n!
.

Another useful function proportional to 1F1 is

FI(a; c; z) :=
Γ(a)Γ(c − a)

Γ(c)
F (a; c; z).

The confluent function can be obtained as the limit of the hypergeometric
function:

F (a; c; z) = lim
b→∞

F (a, b; c; z/b).

It satisfies the so-called Kummer’s identity:

F (a; c; z) = ezF (c − a; c; −z) . (4.9)

Integral representations for all parameters

1
2πi

∫

]−∞,(0,z)+,−∞[

ta−cet(t − z)−adt = F(a; c; z),

for Rea > 0, Re(c − a) > 0
∫

[1,+∞[

e
z
t t−c(t − 1)c−a−1dt = FI(a; c; z),

and for Re(c − a) > 0

1
2πi

∫

[1,0+,1]

e
z
t (−t)−c(−t + 1)c−a−1dt =

sin πa

π
FI(a; c; z). (4.10)

In the Lie-algebraic parameters:

Fθ,α(z) := F
(1 + α + θ

2
; 1 + α; z

)
,

Fθ,α(z) := F
(1 + α + θ

2
; 1 + α; z

)

=
1

Γ(α + 1)
Fθ,α(z),
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FI
θ,α(z) := FI

(1 + α + θ

2
; 1 + α; z

)

=
Γ( 1+α+θ

2 )Γ( 1+α−θ
2 )

Γ(α + 1)
Fθ,α(z).

Remark 4.5. In the literature, the 1F1 function is often called Kummer’s func-
tion and denoted

M(a, c, z) := F (a; c; z).

One also uses the Whittaker function of the 1st kind

Mκ,μ(z) := exp(−z/2)zμ+1/2M
(
μ − κ +

1
2
, 1 + 2μ, z

)
,

which solves the Whittaker equation.

4.10. The 2F0 Function

We define, for z ∈ C\[0, +∞[,

F (a, b; −; z) := lim
c→∞ F (a, b; c; cz),

where | arg c − π| < π − ε, ε > 0. It extends to an analytic function on the
universal cover of C\{0} with a branch point of an infinite order at 0. It has
the following asymptotic expansion:

F (a, b; −; z) ∼
∞∑

n=0

(a)n(b)n

n!
zn, | arg z − π| < π − ε.

Sometimes instead of 2F0, it is useful to consider the function

FI(a, b; −; z) := Γ(a)F (a, b; −; z).

We have an integral representation for Rea > 0
∞∫

0

e− 1
t tb−a−1(t − z)−bdt = FI(a, b; −; z), z �∈ [0,∞[,

and without a restriction on parameters

1
2πi

∫

[0,z+,0]

e− 1
t tb−a−1(t − z)−bdt =

sin πa

π
FI(a, b; −; z), z �∈ [0,∞[.

When we use the Lie-algebraic parameters, we denote the 2F0 function
by F̃ and F̃. The tilde is needed to avoid the confusion with the 1F1 function:

F̃θ,α(z) := F
(1 + α + θ

2
,

1 − α + θ

2
; −; z

)
,

F̃I
θ,α(z) := FI

(1 + α + θ

2
,

1 − α + θ

2
; −; z

)

= Γ
(1 − α + θ

2

)
F̃θ,α(z).
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Remark 4.6. In the literature, the 2F0 function is seldom used. Instead one
uses Tricomi’s function

U(a, c, z) := z−aF (a; a − b − 1; −; z−1).

It is one of solutions of the 1F1 equation, which we will discuss in Sect. 4.11.3.
One also uses the Whittaker function of the 2nd kind

Wκ,μ(z) := exp(−z/2)zμ+1/2U
(
μ − κ +

1
2

; 1 + 2μ; z
)
,

which solves the Whittaker equation.

4.11. Standard Solutions

The 1F1 equation has two singular points. 0 is a regular singular point and
with each of its two indices, we can associate the corresponding solution. ∞
is not a regular singular point. However, we can define two solutions with a
simple behavior around ∞. Altogether we obtain 4 standard solutions, which
we will describe in this subsection.

It follows by Theorem 4.1 that, for appropriate contours γ1, γ2, the inte-
grals

∫

γ1

t
−1+θ−α

2 et(t − z)
−1−θ−α

2 dt,

∫

γ2

e
z
t t−1−α(t − 1)

−1−θ+α
2 dt

solve the 1F1 equation.
In the first integral, the natural candidates for the endpoints of the in-

tervals of integration are {−∞, 0, z}. We will see that all 4 standard solutions
can be obtained as such integrals.

In the second integral the natural candidates for endpoints are {1, 0 −
0,∞}. (Recall from Sect. 2.3 that 0 − 0 denotes 0 approached from the left).
The 4 standard solutions can be obtained also from the integrals with these
endpoints.

4.11.1. Solution ∼ 1 at 0. For α �= −1,−2, . . . , the only solution ∼ 1 around
0 is

Fθ,α(z) = ezF−θ,α(−z).

The first integral representation is valid for all parameters:

1
2πi

∫

]−∞,(0,z)+−∞[

t
−1+θ−α

2 et(t − z)
−1−θ−α

2 dt = Fθ,α(z).

The second is valid for Re(1 + α) > |Reθ|:
∫

[1,+∞[

e
z
t t−1−α(t − 1)

−1−θ+α
2 dt = FI

θ,α(z).
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4.11.2. Solution ∼ z−α at 0. If α �= 1, 2, . . . , then the only solution of the
confluent equation behaving as z−α at 0 is equal to

z−αFθ,−α(z) = z−αezF−θ,−α(−z).

Integral representation for Re(1 − α) > |Reθ|:
z∫

0

t
−1+θ−α

2 et(z − t)
−1−θ−α

2 dt = z−αFI
θ,−α(z), z �∈] − ∞, 0];

0∫

z

(−t)
−1+θ−α

2 et(t − z)
−1−θ−α

2 dt = (−z)−αFI
θ,−α(z), z �∈ [0,∞[;

and without a restriction on parameters:

1
2πi

∫

(0−0)+

e
z
t t−1−α(1 − t)

−1−θ+α
2 dt = z−αFθ,−α(z), Rez > 0.

4.11.3. Solution ∼ z−a at +∞. The following solution to the confluent equa-
tion behaves as ∼ z−a = z− 1+θ+α

2 at +∞ for | arg z| < π − ε:

z
−1−θ−α

2 F̃θ,±α(−z−1).

Integral representations for Re(1 + θ − α) > 0:
0∫

−∞
(−t)

−1+θ−α
2 et(z − t)

−1−θ−α
2 dt = z

−1−θ−α
2 F̃I

θ,α(−z−1), z �∈] − ∞, 0];

and, for Re(1 + θ + α) > 0:
0∫

−∞
e

z
t (−t)−1−α(1 − t)

−1+θ+α
2 dt = z

−1−θ−α
2 F̃I

θ,−α(−z−1), Rez > 0.

4.11.4. Solution ∼ (−z)−bez at −∞. The following solution to the confluent
equation behaves as ∼ (−z)−bez = (−z)

1+θ−α
2 ez at ∞ for | arg z − π| < π − ε:

ez(−z)
−1−θ−α

2 F̃−θ,±α(z−1).

Integral representation for Re(1 + θ + α) > 0:
z∫

−∞
(−t)

−1+θ−α
2 et(z − t)

1−θ−α
2 dt = ez(−z)

−1−θ−α
2 F̃I

−θ,−α(z−1), z �∈ [0,∞[;

and for Re(1 + θ − α) > 0:
1∫

0

e
z
t t−1−α(1 − t)

−1+θ+α
2 dt = ez(−z)

−1−θ−α
2 F̃I

−θ,α(z−1), Rez < 0.
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4.12. Connection Formulas

We decompose standard solutions in pair of solutions with a simple behavior
around zero.

z
−1−θ−α

2 F̃θ,±α(−z−1) =
π

sin π(−α)Γ
(

1+θ−α
2

)Fθ,α(z)

+
π

sin παΓ
(

1+θ+α
2

)z−αFθ,−α(z),

ez(−z)
−1−θ−α

2 F̃−θ,±α(z−1) =
π

sin π(−α)Γ
(

1−θ−α
2

)Fθ,α(z)

+
π

sin παΓ
(

1−θ+α
2

) (−z)−αFθ,−α(z).

4.13. Recurrence Relations

The following recurrence relations follow easily from the commutation relations
of Sect. 4.7:

∂zFθ,α(z) =
1 + θ + α

2
Fθ+1,α+1(z),

(z∂z + α − z) Fθ,α(z) = Fθ−1,α−1(z),

(z∂z + α) Fθ,α(z) = Fθ+1,α−1(z),

(∂z − 1) Fθ,α(z) =
−1 + θ − α

2
Fθ−1,α+1(z),

(
z∂z +

1 + θ + α

2

)
Fθ,α(z) =

1 + θ + α

2
Fθ+2,α(z),

(
z∂z +

1 − θ + α

2
− z

)
Fθ,α(z) =

1 − θ + α

2
Fθ−2,α(z).

The recurrence relations for the 2F0 functions are similar:

(
z∂z +

1 + θ + α

2

)
F̃I

θ,α(z) =
1 + θ + α

2
F̃I

θ+1,α+1(z),
(

z2∂z − 1 +
1 + θ − α

2
z

)
F̃I

θ,α(z) = −F̃I
θ−1,α−1(z),

(
z∂z +

1 + θ − α

2

)
F̃I

θ,α(z) = F̃I
θ+1,α−1(z),

(
z2∂z − 1 +

1 + θ + α

2
z

)
F̃I

θ,α(z) =
1 − θ + α

2
F̃I

θ−1,α+1(z),

∂zF̃I
θ,α(z) =

1+θ+α

2
F̃I

θ+2,α(z),

(z2∂z − 1 − θz)F̃I
θ,α(z) =

1 − θ + α

2
F̃I

θ−2,α(z).
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4.14. Additional Recurrence Relations

There exists an additional pair of recurrence relations:
(

(1−α)z2∂z+
(1−α)(1 − α + θ)

2
z+

−1−θ+α

2

)
F̃θ,α(z) =

−1−θ+α

2
F̃θ,α−2(z),

(
(1+α)z2∂z+

(1+α)(1 + α + θ)
2

z+
−1−θ−α

2

)
F̃θ,α(z) =

−1−θ−α

2
F̃θ,α+2(z).

4.15. Degenerate Case

α = m ∈ Z is the degenerate case of the confluent equation at 0. We have then

F(a; 1 + m; z) =
∑

n=max(0,−m)

(a)n

n!(m + n)!
zn.

This easily implies the identity

(a − m)mF(a; 1 + m; z) = z−mF(a − m; 1 − m; z).

Thus, the two standard solutions determined by the behavior at zero are pro-
portional to one another.

One can also see the degenerate case in the integral representations:

1
2πi

∫

[(z,0)+]

et(1 − z/t)−at−m−1dt = F−1+2a−m,m(z)

= (a)−m z−mF−1+2a−m,−m(z),
1

2πi

∫

[(0,1)+]

ez/t(1 − t)−at−m−1dt = (a)m F−1+2a+m,m(z)

= z−mF−1+2a+m,−m(z).

The corresponding generating functions are

et(1 − z/t)−a =
∑

m∈Z

tmF−1+2a−m,m(z),

ez/t(1 − t)−a =
∑

m∈Z

tm(a)mF−1+2a+m,m(z).

4.16. Laguerre Polynomials

1F1 functions for −a = n = 0, 1, 2, . . . are polynomials. They are known as
Laguerre polynomials.

Following Sect. 1.6, they can be defined by the following version of the
Rodriguez-type formula:

Lα
n(z) :=

1
n!

ezz−α∂n
z e−zzn+α.
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The differential equation:

F(−n; α + 1; z, ∂z)Lα
n(z) =

(
z∂2

z + (1 + α − z)∂z + n
)
Lα

n(z) = 0.

Generating functions:

e−tz(1 + t)α =
∞∑

n=0

tnLα−n
n (z),

(1 − t)−α−1 exp
tz

t − 1
=

∞∑

n=0

tnLα
n(z).

Integral representations:

Lα
n(z) =

1
2πi

∫

[0+]

e−tz(1 + t)α+nt−n−1dt

=
1

2πi

∫

[0+]

(1 − t)−α−1 exp(
tz

t − 1
)t−n−1dt.

Expression in terms of the Bessel polynomials (to be defined in the next sub-
section):

Lα
n(z) = znB−2n−α−1

n (−z−1).

Recurrence relations:

∂zL
α
n(z) = −Lα+1

n−1(z),

(z∂z + α − z) Lα
n(z) = (n + 1)Lα−1

n+1(z),

(z∂z + α) Lα
n(z) = (α + n)Lα−1

n (z),

(∂z − 1) Lα
n(z) = −Lα+1

n (z),

(z∂z − n) Lα
n(z) = −(n + α)Lα

n−1(z),

(z∂z + n + α + 1 − z) Lα
n(z) = (n + 1)Lα

n+1(z).

The first, resp. second integral representation is easily seen to be equiv-
alent to the first, resp. second generating function.

The differential equation, the Rodriguez-type formula, the first generat-
ing function, the first integral representation and the first pair of recurrence
relations are special cases of the corresponding formulas of Sect. 1.6.

We have several alternative expressions for Laguerre polynomials:

Lα
n(z) = lim

ν→n
(−1)n(ν − n)FI

1+α−2ν,α(z) =
(1 + α)n

n!
F (−n; 1 + α; z)

= zn lim
ν→n

(ν − n)F̃I
1+α−2ν,α(z) =

1
n!

(−z)nF (−n,−α − n; −; −z−1)

=
n∑

j=0

(1 + α + j)n−j

j!(n − j)!
(−z)j .
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Let us derive the above identity using the integral representation (4.10).
Using that a is an integer, we can replace the open curve [1, 0+, 1] with a closed
loop [∞−]:

lim
ν→n

(−1)n(ν − n)FI
1+α−2ν,α(z)

= lim
ν→n

sin νπ

π
FI

1+α−2ν,α(z)

=
1

2πi

∫

[∞−]

e
z
s (−s)−1−α(1 − s)α+nds.

Then, we set s = − 1
t , resp. s = 1 − 1

t to obtain the integral representations.
The value at 0 and behavior at ∞:

Lα
n(0) =

(α + 1)n

n!
, lim

z→∞
Lα

n(z)
zn

=
(−1)n

n!
.

An additional identity valid in the degenerate case:

Lα
n(z) = (n + 1)α(−z)−αL−α

n+α(z), α ∈ Z.

4.17. Bessel Polynomials

The 2F0 functions for −a = n = 0, 1, 2, . . . are polynomials. Appropriately
normalized they are called Bessel polynomials. They are seldom used in the
literature, because they do not form an orthonormal basis in any weighted
space and they are easily expressed in terms of Laguerre polynomials.

Following Sect. 1.6, they can be defined by the following version of the
Rodriguez-type formula:

Bθ
n(z) :=

1
n!

z−θez−1
∂n

z e−z−1
zθ+2n.

Differential equation:

F(−n, n + θ + 1; −; ∂z, z)Bθ
n(z)

=
(
z2∂2

z + (−1 + (2 + θ)z)∂z − 1
2
n(1 + θ − α)

)
Bθ

n(z) = 0.

Generating functions:

e−t(1 − tz)−θ−1 =
∞∑

n=0

tnBθ−n
n (z),

(1 + tz)θ exp
( −t

1 + tz

)
=

∞∑

n=0

tnBθ−2n
n (z).

Integral representations:

Bθ
n(z) =

1
2πi

∫

[0+]

et(1 − tz)−θ−n−1t−n−1dt

=
1

2πi

∫

[0+]

(1 + tz)θ+2n exp
( −t

1 + tz

)
t−n−1dt.
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Expression in terms of the Laguerre polynomials:

Bθ
n(z) = (−z)nL−θ−2n−1

n (−z−1).

Recurrence relations:

(z∂z + n + θ + 1) Bθ
n(z) = (n + θ + 1)Bθ+1

n (z),
(
z2∂z − 1 − nz

)
Bθ

n(z) = −Bθ−1
n (z),

(z∂z − n) Bθ
n(z) = −Bθ+1

n−1(z),
(
z2∂z − 1 + (n + θ + 1)z

)
Bθ

n(z) = −(n + 1)Bθ−1
n+1(z),

∂zB
θ
n(z) = −(n + θ + 1)Bθ+2

n−1(z),
(
z2∂z − 1 − θz

)
Bθ

n(z) = −(n + 1)Bθ−2
n+1(z).

Most of the above identities can be directly obtained from the corre-
sponding identities about Laguerre polynomials.

The differential equation, the Rodriguez-type formula, the second gener-
ating function, the second integral representation and the last pair of recur-
rence relations are special cases of the corresponding formulas of Sect. 1.6.

We have several alternative expressions for Bessel polynomials:

Bθ
n(z) = lim

ν→n
(−1)n(ν − n)F̃I

θ,−1−θ−2n(z) =
1
n!

F (−n, n + θ + 1; −; z)

= zn lim
ν→n

(ν − n)FI
θ,−1−θ−2ν(−z−1)

=
(1 + θ + n)n

n!
(−z)nF (−n; −θ − 2n; −z−1).

The value at zero and behavior at ∞:

Bθ
n(0) =

1
n!

, lim
z→∞

Bθ
n(z)
zn

=
(−1)n(n + θ + 1)n

n!
.

Both for Laguerre and Bessel polynomials, there exist additional recur-
rence relations and a generating function. Below, we give a pair of such recur-
rence relations for Bessel polynomials.

(
(2 + 2n + θ)z2∂z + (2 + 2n + θ)(n + θ + 1)z

−(n + θ + 1)
)
Bθ

n(z) = −(n + 1)(n + θ + 1)Bθ
n+1(z),

(
− (2n + θ)z2∂z + (2n + θ)nz + n

)
Bθ

n(z) = Bθ
n−1(z).

They correspond to an additional generating function

2θr−1(1 + r)−θ exp
(

2t

1 + r

)
=

∞∑

n=0

tnBθ
n(z),

where r :=
√

1 + 4zt.

4.18. Special Cases

Apart from the polynomial case and the degenerate case, the confluent equa-
tion has some other cases with special properties.



Hypergeometric Type Functions and Their Symmetries

4.18.1. Bessel Equation. If θ = 0, the confluent equation is equivalent to the
(modified) Bessel equation, which we already remarked in Remark 4.3. By a
square root substitution, it is also equivalent to the 0F1 equation; see (5.2).

4.18.2. Hermite Equation. If α = ± 1
2 , the confluent equation is equivalent to

the Hermite equation by the quadratic substitutions (7.3) and (7.2).

5. The 0F1 Equation

5.1. Introduction

Let c ∈ C. In this section, we will consider the 0F1 equation given by the
operator

F(c; z, ∂z) := z∂2
z + c∂z − 1.

It is a limiting case of the 1F1 and 2F1 operator:

lim
a,b→∞

1
ab

F(a, b; c; z/ab, ∂(z/ab)) = lim
a→∞

1
a
F(a; c; z/a, ∂(z/a)) = F(c; z, ∂z).

Instead of c, it is often more natural to use its Lie-algebraic parameter

α := c − 1, c = α + 1. (5.1)

Thus, we obtain the operator

Fα(z, ∂z) := z∂2
z + (α + 1)∂z − 1.

The Lie-algebraic parameter has well-known interpretation in terms of
the “Cartan element” of the Lie algebra aso(2), [2,15,16].

5.2. Equivalence with a Subclass of the Confluent Equation

The 0F1 equation can be reduced to a special class of the confluent equation
by the so-called Kummer’s 2nd transformation:

F(c; z, ∂z) =
4
w

e−w/2F
(
c − 1

2
; 2c − 1; w, ∂w

)
ew/2, (5.2)

where w = ±4
√

z, z = 1
16w2. Using the Lie-algebraic parameters, this can be

rewritten as

Fα(z, ∂z) =
4
w

e−w/2F0,2α(w, ∂w)ew/2. (5.3)

5.3. Integral Representations

There are two kinds of integral representations of solutions to the 0F1 equation.
Theorem 5.1 describes representations of the first kind, which will be called
Bessel–Schläfli representations. They will be treated as the main ones.

Theorem 5.1. Suppose that [0, 1] � t �→ γ(t) satisfies

ete
z
t t−c

∣
∣
∣
γ(1)

γ(0)
= 0.
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Then

F(c; z, ∂z)
∫

γ

ete
z
t t−cdt = 0. (5.4)

Proof. We check that for any contour γ (5.4) equals

−
∫

γ

(
∂tete

z
t t−c

)
dt.

�

Integral representations that can be derived from the representations for
the confluent equation by 2nd Kummer’s identity will be called Poisson-type
representations. They will be treated as secondary ones. They are described in
the following theorem.

Theorem 5.2. 1. Let the contour γ satisfy

(t2 − z)−c+3/2e2t
∣
∣
∣
γ(1)

γ(0)
= 0.

Then

F(c; z, ∂z)
∫

γ

(t2 − z)−c+1/2e2tdt = 0.

2. Let the contour γ satisfy

(t2 − 1)c−1/2e2t
√

z
∣
∣
∣
γ(1)

γ(0)
= 0.

Then

F(c; z, ∂z)
∫

γ

(t2 − 1)c−3/2e2t
√

zdt = 0.

Proof. By (5.2) and (4.4), for appropriate contours γ and γ′,

e−2
√

z

∫

γ

ess−c+ 1
2 (s − 4

√
z)−c+ 1

2 ds

= 2−2c+2

∫

γ′

e2t(t2 − z)−c+ 1
2 dt

is annihilated by F(c), where we set t = s
2 − √

z. This proves 1.
By (5.2) and (4.5), for appropriate contours γ and γ′,

e−2
√

z

∫

γ

e
4

√
z

s s−2c+1(1 − s)c− 3
2 ds

= −2−2c+2

∫

γ′

e2t
√

z(1 − t2)c− 3
2 dt

is annihilated by F(c), where we set t = 2
s − 1. This proves 2. �
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5.4. Symmetries

The only nontrivial symmetry is

z−α F−α zα = Fα.

It can be interpreted as a “Weyl symmetry” of aso(2).

5.5. Factorizations and Commutation Relations

There are two ways to factorize the 0F1 operator:

Fα =
(
z∂z + α + 1

)
∂z − 1

= ∂z

(
z∂z + α

) − 1.

The factorizations can be used to derive the following commutation rela-
tions:

∂z Fα

= Fα+1 ∂z,

(z∂z + α) Fα

= Fα−1 (z∂z + α).

Each commutation relation can be associated with a “root” of the Lie algebra
aso(2).

5.6. Canonical Forms

The natural weight of the 0F1 operator is zα, so that

Fα = z−α∂zz
α+1∂z − 1.

The balanced form of the 0F1 operator is

z
α
2 Fαz− α

2 = ∂zz∂z − 1 − α2

4z
.

The symmetry α → −α is obvious in the balanced form.

Remark 5.3. In the literature, the 0F1 equation is seldom used. Much more
frequent is the modified Bessel equation, which is equivalent to the 0F1 equa-
tion:

z
α
2 Fα(z, ∂z)z− α

2 = ∂2
w +

1
w

∂w − 1 − α2

w2
,

where z = w2

4 , w = ±2
√

z.
Even more frequent is the Bessel equation:

−z
α
2 Fα(z, ∂z)z− α

2 = ∂2
u +

1
u

∂u + 1 − α2

u2
,

where z = −u2

4 , u = ±2i
√

z. Clearly, we can pass from the modified Bessel to
the Bessel equation by w = ±iu.
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5.7. The 0F1 Function

The 0F1 equation has a regular singular point at 0. Its indices at 0 are equal
to 0, 1 − c.

If c �= 0,−1,−2, . . . , then the only solution of the 0F1 equation ∼ 1 at 0
is called the 0F1 hypergeometric function. It is

F (c; z) :=
∞∑

j=0

1
(c)j

zj

j!
.

It is defined for c �= 0,−1,−2, . . . . Sometimes, it is more convenient to consider
the function

F(c; z) :=
F (c; z)

Γ(c)
=

∞∑

j=0

1
Γ(c + j)

zj

j!

defined for all c.
We can express the 0F1 function in terms of the confluent function

F (c; z) = e−2
√

zF
(2c − 1

2
; 2c − 1; 4

√
z
)

= e2
√

zF
(2c − 1

2
; 2c − 1; −4

√
z
)
.

It is also a limit of the confluent function.

F (c; z) = lim
a→∞ F (a; c; z/a).

For all parameters, we have an integral representation called the Schläfli
formula:

1
2πi

∫

]−∞,0+,−∞[

ete
z
t t−cdt = F(c, z), Rez > 0.

For Rec > 1
2 , we have a representation called the Poisson formula:

1∫

−1

(1 − t2)c− 3
2 e2t

√
z = Γ(c − 1

2
)
√

πF(c, z).

We will usually prefer to use the Lie-algebraic parameters:

Fα(z) := F (α + 1; z),

Fα(z) := F(α + 1; z).

Remark 5.4. In the literature, the 0F1 function is seldom used. Instead, one
uses the modified Bessel function and, even more frequently, the Bessel func-
tion:

Iα(w) =
(w

2

)α

Fα

(w2

4

)
,

Jα(w) =
(w

2

)α

Fα

(
− w2

4

)
.

They solve the modified Bessel, resp. the Bessel equation.
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5.8. Standard Solutions

z = 0 is a regular singular point. We have two standard solutions correspond-
ing to its two indices. Besides, we have an additional solution with a special
behavior at ∞.

We know from Theorem 5.1 that for appropriate contours γ the integrals
∫

γ

ete
z
t t−α−1dt

solve the 0F1 equation. The integrand goes to zero as t → −∞ and t →
0 − 0 (the latter for Rez > 0). Therefore, contours ending at these points
yield solutions. We will see that in this way, we can obtain all three standard
solutions.

Besides, we can use Theorem 5.2 to obtain other integral representations,
which are essentially special cases of representations for the 1F1 and 2F0 func-
tions.

5.8.1. Solution ∼ 1 at 0. If α �= −1,−2, . . . , then the only solution of the 0F1

equation ∼ 1 at 0 is

Fα(z) = e−2
√

zF0,2α

(
4
√

z
)

= e2
√

zF0,2α

( − 4
√

z
)
.

For all parameters, we have an integral representation
1

2πi

∫

]−∞,0+,−∞[

ete
z
t t−α−1dt = Fα(z), Rez > 0;

and for Reα > − 1
2 , we have another integral representation

1∫

−1

(1 − t2)α− 1
2 e2t

√
zdt = Γ(α +

1
2

)
√

πFα(z), z �∈] − ∞, 0].

5.8.2. Solution ∼ z−α at 0. If α �= 1, 2, . . . , then the only solution to the 0F1

equation ∼ z−α at 0 is

z−αF−α(z) = z−αe−2
√

zF0,−2α

(
4
√

z
)

= z−αe2
√

zF0,−2α

( − 4
√

z
)
.

For all parameters, we have
1

2πi

∫

[(0−0)+]

ete
z
t t−α−1dt = z−αF−α(z), Rez > 0;

and for 1
2 > α, we have

√
z∫

−√
z

(z − t2)−α− 1
2 e2tdt = Γ

(
−α +

1
2

)√
πz−αF−α(z), z �∈] − ∞, 0].
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5.8.3. Solution ∼ exp(−2z
1
2 )z− α

2 − 1
4 for z → +∞. The following function

is also a solution of the 0F1 equation:

F̃α(z) := e−2
√

zz− α
2 − 1

4 F̃0,2α

(
− 1

4
√

z

)
.

We have the identity

F̃α(z) = z−αF̃−α(z).

Integral representations for all parameters:
0∫

−∞
ete

z
t (−t)−α−1dt = π

1
2 F̃α(z), Rez > 0;

for Reα > − 1
2 :

−1∫

−∞
(t2 − 1)α− 1

2 e2t
√

zdt =
1
2

Γ
(
α +

1
2

)
F̃α(z), z �∈] − ∞, 0];

for Reα < 1
2 :

−√
z∫

−∞
(t2 − z)−α− 1

2 e2tdt =
1
2

Γ
(

− α +
1
2

)
F̃α(z), z �∈] − ∞, 0].

As |z| → ∞ and | arg z| < π/2 − ε, we have

F̃α(z) ∼ exp(−2z
1
2 )z− α

2 − 1
4 . (5.5)

Fα is a unique solution with this property.
To prove (5.5), we can use the saddle point method. We write the left

hand side as
∞∫

0

eφ(s)s−α−1ds

with φ(s) = −s − z
s . We compute:

φ′(s) = −1 +
z

s2
, φ′′(s) = −2

z

s3
.

We find the stationary point at s0 =
√

z with φ′′(s0) = −2z− 1
2 and φ(s0) =

−2
√

z. Hence, the left hand side of (5.5) can be approximated by
∞∫

−∞
eφ(s0)+

1
2 (s−s0)

2φ′′(s0)s−α−1
0 ds = π

1
2 z− α

2 − 1
4 e−2

√
z.

Remark 5.5. In the literature, instead of the F̃ function one uses the Mac-
Donald function, solving the modified Bessel equation:

Kα(w) =
√

π
(w

2

)α

F̃α

(w2

4

)
,
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and the Hankel functions of the 1st and 2nd kind, solving the Bessel equation:

H(1)
α (w) =

i√
π

(e−iπ/2w

2

)α

F̃α

(
e−iπ w2

4

)
,

H(2)
α (w) = − i√

π

(eiπ/2w

2

)α

F̃α

(
eiπ w2

4

)
.

5.9. Connection Formulas

We can use the solutions with a simple behavior at zero as the basis:

F̃α(z) =
√

π

sin π(−α)
Fα(z) +

√
π

sin πα
z−αF−α(z).

Alternatively, we can use the F̃ function and its analytic continuation around
0 in the clockwise or anti-clockwise direction as the basis:

Fα(z) =
1

2π
3
2

(
e−iπ(α− 1

2 )F̃α(z) − eiπ(α− 1
2 )F̃α(e−i2πz)

)

=
1

2π
3
2

(
e−iπ(α− 1

2 )F̃α(ei2πz) − eiπ(α− 1
2 )F̃α(z)

)
,

z−αF−α(z) =
1

2π
3
2

(
eiπ(α+ 1

2 )F̃α(z) − e−iπ(α+ 1
2 )F̃α(e−i2πz)

)

=
1

2π
3
2

(
eiπ(α+ 1

2 )F̃α(ei2πz) − e−iπ(α+ 1
2 )F̃α(z)

)
.

5.10. Recurrence Relations

The following recurrence relations easily follow from the commutation relations
of Sect. 5.5:

∂zFα(z) = Fα+1(z),

(z∂z + α) Fα(z) = Fα−1(z).

5.11. Degenerate Case

α = m ∈ Z is the degenerate case of the 0F1 equation at 0. We have then

F(1 + m; z) =
∑

n=max(0,−m)

1
n!(m + n)!

zn.

This easily implies the identity

F(1 + m; z) = z−mF(1 − m; z).

Thus, the two standard solutions determined by the behavior at zero are pro-
portional to one another.

We have an integral representation, called the Bessel formula, and a gen-
erating function:

1
2πi

∫

[0+]

et+z/tt−m−1dt = Fm(z) = z−mF−m(z),

etez/t =
∑

m∈Z

tmFm(z).
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5.12. Special Cases

If α = ± 1
2 , then the 0F1 equation can be reduced to an equation easily solvable

in terms of elementary functions:

F− 1
2
(z, ∂z) = ∂2

u − 1,

F 1
2
(z, ∂z) = u−1(∂2

u − 1)u,

where u = 2
√

z. They have solutions

F− 1
2
(z) = cosh 2

√
z, F̃− 1

2
(z) = exp(−2

√
z),

F 1
2
(z) =

sinh 2
√

z

2
√

z
, F̃ 1

2
(z) =

exp(−2
√

z)√
z

.

6. The Gegenbauer Equation

6.1. Introduction

The hypergeometric equation can be moved by an affine transformation so that
its finite singular points are placed at −1 and 1. If in addition the equation is
reflection invariant, then it will be called the Gegenbauer equation.

Because of the reflection invariance, the third classical parameter can be
obtained from the first two: c = a+b+1

2 . Therefore, we will use only a, b ∈ C as
the (classical) parameters of the Gegenbauer equation. It will be given by the
operator

S(a, b; z, ∂z) := (1 − z2)∂2
z − (a + b + 1)z∂z − ab. (6.1)

To describe the symmetries of the Gegenbauer operator, it is convenient
to use its Lie-algebraic parameters

α :=
a + b − 1

2
, λ :=

b − a

2
,

a =
1
2

+ α − λ, b =
1
2

+ α + λ.

Thus, (6.1) becomes

Sα,λ(z, ∂z) := (1 − z2)∂2
z − 2(1 + α)z∂z + λ2 −

(
α +

1
2

)2

.

The Lie-algebraic parameters have an interesting interpretation in terms of
the natural basis of the Cartan algebra of the Lie algebra so(5) [2].

6.2. Equivalence with the Hypergeometric Equation

The Gegenbauer equation is equivalent to certain subclasses of the hypergeo-
metric equation by a number of different substitutions.

First of all, we can reduce the Gegenbauer equation to the hypergeometric
equation by two affine transformations. They move the singular points from
−1, 1 to 0, 1 or 1, 0:

S(a, b; z, ∂z) = F
(

a, b;
a + b + 1

2
; u, ∂u

)
, (6.2)
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where

u =
1 − z

2
, z = 1 − 2u,

or u =
1 + z

2
, z = −1 + 2u.

In the Lie-algebraic parameters

Sα,λ(z, ∂z) = Fα,α,2λ(u, ∂u).

Another pair of substitutions is a consequence of the reflection invariance
of the Gegenbauer equation (see Sect. 2.4):

S(a, b; z, ∂z) = 4F
(

a

2
,
b

2
;

1
2

; w, ∂w

)
,

z−1S(a, b; z, ∂z)z = 4F
(

a + 1
2

,
b + 1

2
;

3
2

; w, ∂w

)
,

(6.3)

where

w = z2, z =
√

w.

In the Lie-algebraic parameters

Sα,λ(z, ∂z) = F− 1
2 ,α,λ(w, ∂w), (6.4)

z−1Sα,λ(z, ∂z)z = F 1
2 ,α,λ(w, ∂w). (6.5)

6.3. Symmetries

All the operators below equal Sα,λ(w, ∂w) for an appropriate w:

w = ±z :
Sα,±λ,

w = ±z :
(z2 − 1)−α S−α,±λ (z2 − 1)α,

w = ±z

(z2−1)
1
2

:

(z2 − 1)
1
2 (α+λ+ 5

2 ) Sλ,±α (z2 − 1)
1
2 (−α−λ− 1

2 ),
w = ±z

(z2−1)
1
2

:

(z2 − 1)
1
2 (α−λ+ 5

2 ) S−λ,±α (z2 − 1)
1
2 (−α+λ− 1

2 ).

The symmetries of the Gegenbauer operator have an interpretation in
terms of the Weyl group of the Lie algebra so(5).

Note that the first two symmetries from the above table are inherited
from the hypergeometric equation through the substitution (6.2).

The symmetries involving w = ±z

(z2−1)
1
2

go under the name of the Whipple

transformation. To obtain them, we first use the substitution (6.3) z → z2,
then z2 → z2

1−z2 , which is one of the symmetries from the Kummer’s table,

finally the substitution (6.3) in the opposite direction z2

1−z2 →
√

z2

1−z2 . We will
continue our discussion of the Whipple transformation in Sect. 6.5.
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6.4. Factorizations and Commutation Relations

There are several ways of factorizing the Gegenbauer operator:

Sα,λ =
(

(1 − z2)∂z − 2(1 + α)z
)
∂z

+
(
α + λ +

1
2

)(
− α + λ − 1

2

)

= ∂z

(
(1 − z2)∂z − 2αz

)

+
(
α + λ − 1

2

)(
− α + λ +

1
2

)
,

(1 − z2)Sα,λ =
(

(1 − z2)∂z +
(
α − λ +

3
2
)
z
)(

(1 − z2)∂z +
(
α + λ +

1
2
)
z
)

−
(
α + λ +

1
2

)(
α − λ +

3
2

)

=
(

(1 − z2)∂z +
(
α + λ +

3
2
)
z
)(

(1 − z2)∂z +
(
α − λ +

1
2
)
z
)

−
(
α − λ +

1
2

)(
α + λ +

3
2

)
;

z2Sα,λ =
(
z(1 − z2)∂z − α − λ − 3

2
+

( − α + λ − 1
2
)
z2

)(
z∂z + α + λ +

1
2

)

+
(
α + λ +

1
2

)(
α + λ +

3
2

)

=
(
z∂z + α + λ − 3

2

)(
z(1 − z2)∂z − α − λ +

1
2

+
( − α + λ − 1

2
)
z2

)

+
(
α + λ − 1

2

)(
α + λ − 3

2

)

=
(
z(1 − z2)∂z − α + λ − 3

2
+

( − α − λ − 1
2
)
z2

)(
z∂z + α − λ +

1
2

)

+
(
α − λ +

1
2

)(
α − λ +

3
2

)

=
(
z∂z + α − λ − 3

2

)(
z(1 − z2)∂z − α + λ +

1
2

+
( − α − λ − 1

2
)
z2

)

+
(
α − λ − 1

2

)(
α − λ − 3

2

)
.

The following commutation relations can be derived from the factoriza-
tions:

∂z Sα,λ

= Sα+1,λ ∂z ,

((1 − z2)∂z − 2αz) Sα,λ

= Sα−1,λ ((1 − z2)∂z − 2αz),

((1 − z2)∂z − (α + λ + 1
2
)z) (1 − z2)Sα,λ

= (1 − z2)Sα,λ+1 ((1 − z2)∂z − (α + λ + 1
2
)z),

((1 − z2)∂z − (α − λ + 1
2
)z) (1 − z2)Sα,λ

= (1 − z2)Sα,λ−1 ((1 − z2)∂z − (α − λ + 1
2
)z);

(z∂z + α − λ + 1
2
) z2Sα,λ

= z2Sα+1,λ−1 (z∂z + α − λ + 1
2
),
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(z(1−z2)∂z−α+λ+ 1
2
−(α+λ+ 1

2
)z2) z2Sα,λ

= z2Sα−1,λ+1 (z(1−z2)∂z−α+λ+ 1
2
−(α+λ+ 1

2
)z2),

(z∂z + α + λ + 1
2
) z2Sα,λ

= z2Sα+1,λ+1 (z∂z + α + λ + 1
2
),

(z(1−z2)∂z−α−λ+ 1
2
−(α−λ+ 1

2
)z2) z2Sα,λ

= z2Sα−1,λ−1 (z(1−z2)∂z−α−λ+ 1
2
−(α−λ+ 1

2
)z2).

Each of these commutation relations is associated with a root of the Lie algebra
so(5).

Note that only the first pair of commutation relations is directly inher-
ited from the basic commutation relations of the hypergeometric equation of
Sect. 3.4. The next pair comes from what we called additional commutation
relations (see Sect. 3.10), which in the reflection invariant case simplify, so
that they can be counted as basic commutation relations (see a discussion in
Sect. 1.2). Note that the Whipple transformation transforms the first pair of
the commutation relations into the second, and the other way around.

The last four commutation relations form a separate class—they can be
obtained by applying consecutively an appropriate pair from the first four
commutation relations.

6.5. The Riemann Surface of the Gegenbauer Equation

Let us analyze more closely the Whipple symmetry.
First let us precise the meaning of the holomorphic function involved in

this symmetry. If z ∈ Ω+ := C\[−1, 1], then 1 − z−2 ∈ C\] − ∞, 0]. Therefore,

z

(z2 − 1)
1
2

:=
1

(1 − z−2)
1
2

(6.6)

defines a unique analytic function on z ∈ Ω+ (where on the right we have the
principal branch of the square root). Note that, for z → ∞, (6.6) converges to 1.

Consider a second copy of Ω+, denoted Ω−. Glue them together along
] − 1, 1[, so that crossing ] − 1, 1[ we go from Ω± to Ω∓. The resulting complex
manifold will be called Ω. The elements of Ω± corresponding to z ∈ C\]− 1, 1[
will be denoted z±. Ω is biholomorphic to the sphere with 4 punctures, which
correspond to the points −1, 1,∞+,∞−.

It is easy to see that Ω is the Riemann surface of the maximal holomorphic
function extending (6.6). On Ω− it equals − z

(z2−1)
1
2

.

It is useful to reinterpret this holomorphic function as a biholomorphic
function from Ω into itself:

τ(z+) :=

⎧
⎨

⎩

(
z√

z2−1

)

+
, Rez > 0,

(
z√

z2−1

)

−
, Rez < 0,

τ(z−) :=

⎧
⎨

⎩

(
− z√

z2−1

)

−
, Rez > 0,

(
− z√

z2−1

)

+
, Rez < 0.
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We also introduce

ε(z±) := z∓,

(−1)z± := (−z)±.

Note that τ2 = id, ε2 = id, (−1)2 = id, τε = (−1)ετ . τ and ε generate a group
isomorphic to the group of the symmetries of the square. The vertices of this
square can be identified with (1,∞+,−1,∞−). They are permuted by these
transformations as follows:

ε(1,∞+,−1,∞−) = (1,∞−,−1,∞+),
(−1)(1,∞+,−1,∞−) = (−1,∞+, 1,∞−),

τ(1,∞+,−1,∞−) = (∞+, 1,∞−,−1).

It is useful to view the Gegenbauer equation as defined on Ω.

6.6. Integral Representations

Theorem 6.1. 1. Let [0, 1] � t �→ γ(t) satisfy

(t2 − 1)
b−a+1

2 (t − z)−b−1
∣
∣
∣
γ(1)

γ(0)
= 0.

Then

S(a, b; z, ∂z)
∫

γ

(t2 − 1)
b−a−1

2 (t − z)−bdt = 0. (6.7)

2. Let [0, 1] � t �→ γ(t) satisfy

(t2 + 2tz + 1)
−b−a

2 +1tb−2
∣
∣
∣
γ(1)

γ(0)
= 0.

Then

S(a, b; z, ∂z)
∫

γ

(t2 + 2tz + 1)
−b−a

2 tb−1dt = 0. (6.8)

Proof. We compute that (6.7) and (6.8) equal

a

∫

γ

(
∂t(t2 − 1)

b−a+1
2 (t − z)−b−1

)
dt,

∫

γ

(
∂t(t2 + 2tz + 1)

−b−a
2 +1tb−2

)
dt

respectively.
Note that (6.7) is essentially a special case of Theorem 3.1.
(6.8) can be derived from (6.7). In fact, using the Whipple symmetry we

see that, for an appropriate contour γ̃,

(z2 − 1)− a
2

∫

γ̃

(s2 − 1)
−b−a

2

(
s − z√

z2 − 1

)b−1

ds (6.9)
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solves the Gegenbauer equation. Then, we change the variables

t = s
√

z2 − 1 − z, s =
t + z√
z2 − 1

,

and we obtain that (6.9) equals
∫

γ

(t2 + 2tz + 1)
−b−a

2 tb−1dt,

with an appropriate contour γ. �

Note that in the above theorem, we can interchange a and b. Thus, we
obtain four kinds of integral representations.

6.7. Canonical Forms

The natural weight of the Gegenbauer operator equals (z2 − 1)α, so that

Sα,λ = −(z2 − 1)−α∂z(z2 − 1)α+1∂z + λ2 −
(
α +

1
2

)2

.

The balanced form of the Gegenbauer operator is

(z2 − 1)
α
2 Sα,λ(z2 − 1)− α

2

= ∂z(1 − z2)∂z − α2

1 − z2
+ λ2 − 1

4
.

Note that the symmetries α → −α and λ → −λ are obvious in the balanced
form.

Remark 6.2. In the literature, the Gegenbauer equation is used mostly in
the context of Gegenbauer polynomials, that is for −a = 0, 1, 2, . . . . In the
general case, instead of the Gegenauer equation one usually considers the so-
called associated Legendre equation. It coincides with the balanced form of the
Gegenbauer equation, except that one of its parameters is shifted by 1

2 . In the
standard form it is

(1 − z2)∂2
z − 2z∂z − m2

1 − z2
+ l(l + 1),

so that m, l correspond to α, λ − 1
2 according to our convention.

6.8. Even Solution

Inserting a power series into equation, we see that the Gegenbauer equation
possesses an even solution equal to

S+
α,λ(z) :=

∞∑

j=0

(a
2 )j( b

2 )j

(2j)!
(2z)2j

= F
(a

2
,
b

2
;

1
2

; z2
)

= F− 1
2 ,α,λ(z2).

It is the unique solution of the Gegenbauer equation satisfying

S+
α,λ(0) = 1,

d
dz

S+
α,λ(0) = 0. (6.10)
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One way to derive the expression in terms of the hypergeometric function is
to use the transformation (6.3).

We have the identities

S+
α,λ(z) = (1 − z2)

−1−2α±2λ
4 S+

∓λ,α

( iz√
1 − z2

)

= (1 − z2)−αS+
−α,λ(z),

beside the obvious ones

S+
α,λ(z) = S+

α,−λ(z) = S+
α,λ(−z) = S+

α,−λ(−z),

6.9. Odd Solution

Similarly, the Gegenbauer equation possesses an odd solution equal to

S−
α,λ(z) :=

∞∑

j=0

(a+1
2 )j( b+1

2 )j

(2j + 1)!
(2z)2j+1

= 2zF
(a + 1

2
,
b + 1

2
;

3
2

; z2
)

= 2zF 1
2 ,α,λ(z2).

It is the unique solution of the Gegenbauer equation satisfying

S−
α,λ(0) = 0,

d
dz

S−
α,λ(0) = 2. (6.11)

We have the identities

S−
α,λ(z) = −i(1 − z2)

−1−2α±2λ
4 S−

∓λ,α

( iz√
1 − z2

)

= (1 − z2)−αS−
−α,λ(z),

beside the obvious ones:

S+
α,λ(z) = S+

α,−λ(z) = −S+
α,λ(−z) = −S+

α,−λ(−z),

6.10. Standard Solutions

As usual, by standard solutions, we mean solutions with a simple behavior
around singular points. The singular points of the Gegenbauer equation are at
{1,−1,∞}. The discussion of the point −1 can be easily reduced to that of 1.
Therefore, it is enough to discuss 2 × 2 solutions corresponding to two indices
at 1 and ∞.

By Theorem 6.1, for appropriate γ1, γ2 the integrals
∫

γ1

(t2 − 1)− 1
2+λ(t − z)− 1

2 −α−λdt, (6.12)

∫

γ2

(t2 + 2tz + 1)−α− 1
2 (−t)− 1

2+α+λdt (6.13)

are solutions.
The natural endpoints of γ1 are −1, 1, z,∞. We will see that all standard

solutions can be obtained from such integrals.
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The natural endpoints of γ2 are z +
√

z2 − 1, z −√
z2 − 1, 0,∞. Similarly,

all standard solutions can be obtained from the integrals over contours with
these endpoints.

It is interesting to note that in some aspects the theory of the Gegenbauer
equation is more complicated than that of the hypergeometric equation. One
of its manifestations is a relatively big number of natural normalizations of so-
lutions. Indeed, let us consider, e.g., integral representations of the type (6.12).
The natural endpoints fall into two categories: {1,−1} and {0,∞}. Therefore,
we have three kinds of contours joining two of these endpoint: [−1, 1], [0,∞[
and the contours joining two distinct categories. This corresponds two three
distinct natural normalizations, which we describe in what follows.

6.10.1. Solution ∼ 1 at 1. If α �= −1,−2, . . . , then the unique solution of the
Gegenbauer equation equal to 1 at 1 is the following function:

Sα,λ(z) := Fα,α,2λ

(1 − z

2

)
= F

(
a, b;

a + b + 1
2

;
1 − z

2

)

= Fα,− 1
2 ,λ(1 − z2) = F

(a

2
,
b

2
;
a + b + 1

2
; 1 − z2

)
.

We will also introduce several alternatively normalized functions:

Sα,λ(z) :=
1

Γ(α + 1)
Sα,λ(z)

=
1

Γ(a+b+1
2 )

F
(
a, b;

a + b + 1
2

;
1 − z

2

)
= Fα,α,2λ

(1 − z

2

)
,

SI
α,λ(z) := 2− 1

2 −α+λ Γ( 1+2α−2λ
2 )Γ( 1+2λ

2 )
Γ(α + 1)

Sα,λ(z)

= 2−a Γ(a)Γ(−a+b+1
2 )

Γ(a+b+1
2 )

F
(
a, b;

a + b + 1
2

;
1 − z

2

)

= 2− 1
2 −α+λFI

α,α,2λ

(1 − z

2

)
,

SII
α,λ(z) :=

Γ( 1+2α−2λ
2 )Γ( 1+2α+2λ

2 )
Γ(2α + 1)

Sα,λ(z)

=
Γ(a)Γ(b)
Γ(a + b)

F
(
a, b;

a + b + 1
2

;
1 − z

2

)
,

S0
α,λ(z) := 22α Γ( 1+2α

2 )2

Γ(2α + 1)
Sα,λ(z) =

√
π

Γ( 1+2α
2 )

Γ(α + 1)
Sα,λ(z)

= 2a+b−1 Γ(a+b
2 )2

Γ(a + b)
F

(
a, b;

a + b + 1
2

;
1 − z

2

)
.

Assuming that z �∈] − ∞,−1], we have the following integral representa-
tions: for Reα + 1

2 > Reλ > − 1
2

−1∫

−∞
(t2 − 1)− 1

2+λ(z − t)− 1
2 −α−λdt = SI

α,λ(z),
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and for Reα + 1
2 > |Reλ|

∞∫

0

(t2 + 2tz + 1)−α− 1
2 t−

1
2+α+λdt = SII

α,λ(z).

6.10.2. Solution ∼ 2−α(1 − z)−α at 1. If α �= 1, 2, . . . , then the unique
solution of the Gegenbauer equation behaving as (1−z)−α at 1 is the following
function:

(1 − z2)−αS−α,−λ(z) = 2−α(1 − z)−αF−α,α,−2λ

(1 − z

2

)

= (1 − z2)−αF−α,− 1
2 ,−λ(1 − z2).

Assuming that z �∈] − ∞,−1] ∪ [1,∞[, we have the following integral
representations: for −Reα + 1

2 > Reλ > − 1
2

z∫

−1

(1 − t2)− 1
2+λ(z − t)− 1

2 −α−λdt = (1 − z2)−αSI
−α,λ(z),

and for 1
2 > Reα

i
√

1−z2−z∫

−i
√

1−z2−z

(t2 + 2tz + 1)−α− 1
2 (−t)− 1

2+α+λdt = (1 − z2)−αS0
α,λ(z).

6.10.3. Solution ∼ z−a at ∞. If 2λ �= −1,−2, . . . , then the unique solution
of the Gegenbauer equation behaving as z−a = z− 1

2 −α+λ at ∞ is the following
function:

(z2 − 1)
−1−2α+2λ

4 S−λ,−α

( z√
z2 − 1

)
= (1 + z)− 1

2 −α+λF−2λ,α,−α

( 2
1 + z

)

= z− 1
2 −α+λF−λ,α, 1

2
(z−2).

Assuming that z �∈]−∞, 1], we have the following integral representations:
for 1

2 > Reλ

1∫

−1

(t2 − 1)− 1
2 −λ(z − t)− 1

2 −α+λdt = (z2 − 1)
−1−2α+2λ

4 S0
−λ,α

( z√
z2 − 1

)
,

and for −λ + 1
2 > −Reα > − 1

2

0∫

√
z2−1−z

(t2 + 2tz + 1)−α− 1
2 (−t)− 1

2+α−λdt=(z2−1)
−1−2α+2λ

4 SI
−λ,α

( z√
z2 − 1

)
.
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6.10.4. Solution ∼ z−b at ∞. If 2λ �= 1, 2, . . . , then the unique solution of
the Gegenbauer equation behaving as z−b = z− 1

2 −α−λ at ∞ is the following
function:

(z2 − 1)
−1−2α−2λ

4 Sλ,α

( z√
z2 − 1

)
= (1 + z)− 1

2 −α−λF2λ,α,α

( 2
1 + z

)

= z− 1
2 −α−λFλ,α, 1

2
(z−2).

Assuming that z �∈]−∞, 1], we have the following integral representations:
for Reλ + 1

2 > |Reα|
∞∫

z

(t2 − 1)− 1
2 −λ(t − z)− 1

2 −α+λdt = (z2 − 1)
−1−2α−2λ

4 SII
λ,α

( z√
z2 − 1

)
,

and for λ + 1
2 > −Reα > − 1

2

−√
z2−1−z∫

∞
(t2 + 2tz + 1)−α− 1

2 t−
1
2+α−λdt = (z2 − 1)− 1

4 − α
2 − λ

2 SI
λ,α

( z√
z2 − 1

)
.

Remark 6.3. As mentioned in Remark 6.2, in the literature instead of the
Gegenbauer equation the associated Legendre equation usually appears. One
class of its standard solutions is the associated Legendre function of the 1st kind

Pm
l (z) =

(
z + 1
z − 1

)m
2

F
(

− l, l + 1; 1 − m;
1 − z

2

)

=
2m

(z2 − 1)
m
2

F
(

1 − m + l,−m − l; 1 − m;
1 − z

2

)

=
2m

(z2 − 1)
m
2

S−m,l+ 1
2
(z),

which up to a constant are (z2 − 1)
m
2 times the solutions of Sect. 6.10.2. An-

other class of solutions is the associated Legendre function of the 2nd kind

Qm
l (z) =

(z2 − 1)
m
2

2l+1zl+m+1
F

( l + m + 2
2

,
l + m + 1

2
; l +

3
2

; z−2
)

= 2−l−1(z2 − 1)− l+1
2 Sl+ 1

2 ,m

( z√
z2 − 1

)
,

which up to a constant are (z2 − 1)
m
2 times the solutions of Sect. 6.10.4. (In

the literature, one can find a couple of other varieties of associated Legendre
functions of the 1st and 2nd kind, differing by their normalization, see e.g. [12]).

6.11. Connection Formulas

We can express the standard solutions in terms of the even and odd solutions

Sα,λ(z) =
√

π

Γ( 3
4 + α

2 − λ
2 )Γ( 3

4 + α
2 + λ

2 )
S+

α,λ(z)

+
√

π

Γ( 1
4 + α

2 − λ
2 )Γ( 1

2 + α
2 + λ

2 )
S−

α,λ(z),
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(1 − z2)−αS−α,−λ(z) =
√

π

Γ( 3
4 − α

2 + λ
2 )Γ( 3

4 − α
2 − λ

2 )
S+

α,λ(z)

+
√

π

Γ( 1
4 − α

2 + λ
2 )Γ( 1

4 − α
2 − λ

2 )
S−

α,λ(z),

(1 − z2)− 1
4 − α

2 + λ
2 S−λ,−α(

z√
z2 − 1

) =
√

π

Γ( 3
4 − α

2 − λ
2 )Γ( 3

4 + α
2 − λ

2 )
S+

α,λ(z)

+
i
√

π

Γ( 1
4 − α

2 − λ
2 )Γ( 1

4 + α
2 − λ

2 )
S−

α,λ(z),

(1 − z2)− 1
4 − α

2 − λ
2 Sλ,α

( z√
z2 − 1

)
=

√
π

Γ( 3
4 − α

2 + λ
2 )Γ( 3

4 + α
2 + λ

2 )
S+

α,λ(z)

+
i
√

π

Γ( 1
4 − α

2 + λ
2 )Γ( 1

4 + α
2 + λ

2 )
S−

α,λ(z).

6.12. Recurrence Relations

The following recurrence relations can be easily derived from the commutation
properties of Sect. 6.4

∂zSα,λ(z) = −1
2

(1
2

+ α − λ
)(1

2
+ α + λ

)
Sα+1,λ(z),

(
(1 − z2)∂z − 2αz

)
Sα,λ(z) = −2Sα−1,λ(z),

(
(1 − z2)∂z −

(1
2

+ α + λ
)
z

)
Sα,λ(z) = −

(1
2

+ α + λ
)
Sα,λ+1(z),

(
(1 − z2)∂z −

(1
2

+ α − λ
)
z

)
Sα,λ(z) = −

(1
2

+ α − λ
)
Sα,λ−1(z),

(
z∂z +

1
2

+ α − λ

)
Sα,λ(z) =

1
2

(1
2

+ α − λ
)(3

2
+ α − λ

)
Sα+1,λ−1(z),

(
z(1−z2)∂z+

(1
2
−α+λ

)
(1−z2)−2αz2

)
Sα,λ(z) = −2Sα−1,λ+1(z),

(
z∂z +

1
2

+ α + λ

)
Sα,λ(z) =

(1
2

+ α + λ
)

(α + 1)Sα+1,λ+1(z),
(

z(1−z2)∂z+
(1

2
−α−λ

)
(1−z2)−2αz2

)
Sα,λ(z) = −2Sα−1,λ−1(z).

6.13. Gegenbauer Polynomials

If −a = n = 0, 1, 2, . . . , then Gegenbauer functions are polynomials.
We will use two distinct normalizations of these polynomials. The CI

n

polynomials have a natural Rodriguez-type definition:

CI,α
n (z) :=

1
2nn!

(z2 − 1)−α∂n
z (z2 − 1)n+α.

The CII
n polynomials are defined as

CII,α
n (z) :=

(2α + 1)n

(α + 1)n
CI,α

n (z).
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Remark 6.4. The first kind polynomials is just the special case of the conven-
tional Jacobi polynomials (see Remark 3.3) with α = β:

CI,α
n (z) = Pα,α

n (z).

The second kind of polynomials is called in the literature the Gegenbauer
polynomials. In the standard notation, its parameter is shifted by 1

2 :

CII,α
n (z) = C

α+ 1
2

n (z).

When describing the properties of Gegenbauer polynomials, we can
choose between CI

n and CII
n . We either give properties of both kinds of poly-

nomials or choose those that give simpler formulas.
Both kinds of polynomials solve the Gegenbauer equation:

(
(1 − z2)∂2

z − 2(1 + α)z∂z + n(n + 2α + 1)
)
CI/II

n (z)

= S(−n, n + 2α + 1; z, ∂z)CI/II
n (z) = 0.

Generating functions:

(1 − 2tz + t2(z2 − 1))−α =
∞∑

n=0

(2t)nCI,−α−n
n (z),

(1 − 2zt + t2)−α− 1
2 =

∞∑

n=0

CII,α
n (z)tn.

Integral representations:

CI,α
n (z) =

1
2πi

∫

[0+]

(
1 − 2tz + t2(z2 − 1)

)α+n

t−n−1dt,

CII,α
n (z) =

1
2πi

∫

[0+]

(1 − 2zt + t2)−α− 1
2 t−n−1dt.

We give symmetries for both kinds of polynomials:

CI,α
n (z) = (−1)nCI,α

n (−z)

=
(2α + 1 + n)n

(∓2)n(α + 1
2 )n

(z2 − 1)
n
2 C

I,− 1
2 −α−n

n

( ±z√
z2 − 1

)
.

CII,α
n (z) = (−1)nCII,α

n (−z)

=
(∓2)n(α + 1

2 )n

(2α + 1 + n)n
(z2 − 1)

n
2 C

II,− 1
2 −α−n

n

( ±z√
z2 − 1

)
.

We give recurrence relations only for CII,α
n , those for CI,α

n differ by coefficients
on the right, but have a comparable level of complexity:

∂zC
II,α
n (z) = (2α + 1)CII,α+1

n−1 (z),

(
(1 − z2)∂z − 2αz

)
CII,α

n (z) =
−(n + 1)(n + 2α)

2α
CII,α−1

n+1 (z),
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(
(1 − z2)∂z − (n + 2α + 1)z

)
CII,α

n (z) = −(n + 1)CII,α
n+1(z),

(
(1 − z2)∂z + nz

)
CII,α

n (z) = (n + 2α)CII,α
n−1(z),

(z∂z − n)CII,α
n (z) = (2α + 1)CII,α+1

n−2 (z),

(
z(1 − z2)∂z +1 + n − (n + 2α + 1)z2

)
CII,α

n (z)=− (n + 1)(n + 2)
2α − 1

CII,α−1
n+2 (z),

(z∂z + n + 2α + 1) CII,α
n (z) = (2α + 1)CII,α+1

n (z),

(
z(1 − z2)∂z − n − 2α + nz2

)
CII,α

n (z) = − (2α + n − 1)(2α + n)
2α − 1

CII,α−1
n (z).

The differential equation, the Rodriguez-type formula, the first gener-
ating function and the first integral representation are special cases of the
corresponding formulas of Sect. 1.6. Thus, the polynomials CI belong to the
scheme of Sect. 1.6. CII do not have a natural Rodriguez-type formula, and do
not belong to the scheme of Sect. 1.6.

The CI polynomials have simple expressions in terms of the Jacobi poly-
nomials:

CI,α
n (z) = (±1)nRα,α

n

(1 ∓ z

2

)

=
(±1 − z

2

)n

Rα,−2α−2n−1
n

( 2
1 ∓ z

)

=
(z ∓ 1

2

)n

R−2α−2n−1,α
n

(±1 + z

∓1 + z

)
.

We have several alternative expressions for CI and CII polynomials:

CI,α
n (z) := lim

ν→n
(−1)n(ν−n)SI

α,ν+α+ 1
2
(z) = lim

ν→n
(ν−n)FI

α,α,2ν+2α+1

(1 ∓ z

2

)

= (±1)n (α + 1)n

n!
F

(
− n, n + 2α + 1; α + 1;

1 ∓ z

2

)
,

CII,α
n (z) := lim

ν→n
(−1)n(ν−n)SII

α,ν+α+ 1
2
(z)

= (±1)n (2α + 1)n

n!
F

(
− n, n + 2α + 1; α + 1;

1 ∓ z

2

)

=
[ n
2 ]∑

k=0

(−1)k(α + 1
2 )n−k

k!(n − 2k)!
(2z)n−2k.

Values at ±1, for behavior at infinity, we give for both kinds of polyno-
mials:

CI,α
n (±1) = (±1)n (α + 1)n

n!
, lim

z→∞
CI,α

n (z)
zn

=
2−n(2α + n + 1)n

n!
,

CII,α
n (±1) = (±1)n (2α + 1)n

n!
, lim

z→∞
CII,α

n (z)
zn

=
2n(α + 1

2 )n

n!
.
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The degenerate case has a simple expression in terms of CI polynomials:

CI,α
n =

( 2
z2 − 1

)α

CI,−α
n+2α(z), α ∈ Z.

The initial conditions at 0 and the identities for the even and odd case
are given only for CII,α

n , since those for CI,α
n are more complicated:

CII,α
2m (0) =

(−1)m(α + 1
2 )m

m!
, ∂zC

II,α
2m (0) = 0;

CII,α
2m+1(0) = 0, ∂zC

II,α
2m+1(0) =

(−1)m2(α + 1
2 )m

m!
.

CII,α
2m (z) = (−1)m (α + 1

2 )m

(α + 1)m
R

α,− 1
2

m (z2)

= (−1)m (α + 1
2 )m

m!
S+

α,2m+ 1
2+α

(z)

= (−1)m (α + 1
2 )m

m!
F

(
− m,m +

1
2

+ α;
1
2

; z2
)
,

CII,α
2m+1(z) = (−1)m (α + 1

2 )m

(α + 1)m
2zR

α, 1
2

m (z2)

= (−1)m (α + 1
2 )m

m!
S−

α,2m+ 3
2+α

(z)

= (−1)m (α + 1
2 )m

m!
2zF

(
− m,m +

3
2

+ α;
3
2

; z2
)
.

We have the following special cases:
1. If α ∈ Z,−n ≤ α ≤ −n−1

2 , then CI,α
n = 0.

2. If α ∈ Z + 1
2 , −n−1

2 ≤ α ≤ − 1
2 , then CII,α

n = 0.
3. If α ∈ Z, −n+1

2 ≤ α ≤ −1, then C
I/II,α
n = (1 − z2)−αW , where W is a

polynomial not divisible by 1 − z2.

6.14. Special Cases

When describing special cases of the Gegenbauer equation, we will primarily
use the Lie-algebraic parameters.

6.14.1. The Legendre Equation. Suppose that one of the parameters is an
integer. Using, if necessary, recurrence relations, we can assume that it is zero.
After applying an appropriate symmetry, we can assume that α = 0. We obtain
then the Legendre operator:

S0,λ(z, ∂z) = (1 − z2)∂2
z − 2z∂z + λ2 − 1

4
. (6.14)

For the particular case λ = 0, its solutions can be expressed by the so-called
complete elliptic functions.

The Legendre operator for polynomials of degree n has the form

(1 − z2)∂2
z − 2z∂z + n(n + 1).
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The Legendre polynomials are special cases of both CI and CII:

Pn(z) = CI,0
n (z) = CII,0

n (z)

=
1

2nn!
∂n

z (z2 − 1)n.

Their generating function is a special case of the generating function for CII:

(1 − 2zt + t2)− 1
2 =

∞∑

n=0

Pn(z)tn.

6.14.2. Chebyshev Equation of the 1st Kind. Suppose that one of the para-
meters belongs to Z+ 1

2 . Using, if necessary, recurrence relation, we can assume
that it equals − 1

2 . After applying an appropriate symmetry, we can assume
that α = − 1

2 . We obtain then the Chebyshev operator of the 1st kind:

S0,λ(z, ∂z) = (1 − z2)∂2
z − 2z∂z + λ2. (6.15)

After substitution z = cos φ, it becomes

∂2
φ + λ2.

Thus, the corresponding equation can be solved in terms of elementary func-
tions.

To obtain an operator that annihilates a polynomial of degree n, we
simply set λ = n:

(1 − z2)∂2
z − 2z∂z + n2.

The Chebyshev polynomials of the 1st kind are

Tn(z) =
n!

(1/2)n
C

I,− 1
2

n (z) =
d

dα
C

II,− 1
2

n (z)

=
1
2

(
(z + i

√
1 − z2)n + (z − i

√
1 − z2)n

)
.

Note that C
II,− 1

2
n = 0, therefore, the usual generating function for CII cannot

be applied for the Chebyshev polynomials of the 1st kind. Instead, we have
generating functions

− log(1 − 2zt + t2) =
∞∑

n=0

Tn(z)
tn

n
,

1 − zt

1 − 2zt + t2
=

∞∑

n=0

Tn(z)tn.

6.14.3. Chebyshev Equation of the 2nd Kind. If one of the parameters belongs
to Z + 1

2 , instead of α = − 1
2 we can reduce ourselves to the case α = 1

2 . We
obtain then the Chebyshev operator of the 2nd kind:

S0,λ(z, ∂z) = (1 − z2)∂2
z − 2z∂z + λ2 − 1. (6.16)

After substitution z = cos φ it becomes

sin φ(∂2
φ + λ2)(sin φ)−1.
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Clearly, the corresponding equation can also be solved in elementary functions.
To obtain an operator that annihilates a polynomial of degree n, we set

λ = n + 1:

(1 − z2)∂2
z − 2z∂z + n(n + 2).

The Chebyshev polynomials of the 2nd kind are

Un(z) =
n!

(3/2)n
C

I, 1
2

n (z) = C
II, 1

2
n (z)

=
(z + i

√
1 − z2)n+1 − (z − i

√
1 − z2)n+1

2i
√

1 − z2
.

Their generating function is a special case of the generating function for CII:

(1 − 2zt + t2)−1 =
∞∑

n=0

Un(z)tn.

7. The Hermite Equation

7.1. Introduction

Let a ∈ C. In this section, we study the Hermite equation, which is given by
the operator

S(a, z, ∂z) := ∂2
z − 2z∂z − 2a.

The choice of the parameter a is dictated by the analogy with the parameters
of the Gegenbauer. It will be called a classical parameter, even though it is not
the usual one in the literature.

The Hermite operator can be obtained as the limit of the Gegenbauer
operator:

lim
b→∞

2
b
S

(
a, b; z

√
2/b, ∂(

z
√

2/b
)
)

= S(a; z, ∂z). (7.1)

To describe the symmetries it is convenient to use its Lie-algebraic para-
meter:

λ = a − 1
2
, a = λ +

1
2
.

In the new parameter the Hermite operator equals

Sλ(z, ∂z) = ∂2
z − 2z∂z − 2λ − 1.

The Lie-algebraic parameter has an interesting interpretation in terms of a
“Cartan element” of the Lie algebra sch(1) [2].
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7.2. Equivalence with a Subclass of the Confluent Equation

The Hermite equation is reflection invariant. Using the quadratic transforma-
tion, we can reduce it to a special case of the confluent equation:

S(a; z, ∂z) = 4F
(

a

2
;

1
2

; w, ∂w

)
, (7.2)

z−1S(a; z, ∂z)z = 4F
(

a + 1
2

;
3
2

; w, ∂w

)
, (7.3)

where

w = z2, z =
√

w.

In the Lie-algebraic parameters

Sλ(z, ∂z) = 4Fλ,− 1
2
(w, ∂w),

z−1Sλ(z, ∂z)z = 4Fλ, 1
2
(w, ∂w).

7.3. Symmetries

The following operators equal Sλ(w, ∂w) for an appropriate w:

w = ±z :
Sλ(z, ∂z),

w = ±iz :
− exp(−z2) S−λ(z, ∂z) exp(z2).

The group of symmetries of the Hermite equation is isomorphic to Z4 and can
be interpreted as the “Weyl group” of sch(1).

7.4. Factorizations and Commutation Properties

There are several ways to factorize the Hermite operator:

Sλ =
(
∂z − 2z

)
∂z − 2λ − 1

= ∂z

(
∂z − 2z

) − 2λ + 1,

z2Sλ =
(
z∂z + λ − 3

2

)(
z∂z − λ +

1
2

− 2z2
)

+
(
λ − 3

2

)(
λ − 1

2

)

=
(
z∂z − λ − 3

2
− 2z2

)(
z∂z + λ +

1
2

)

+
(
λ +

3
2

)(
λ +

1
2

)
.



Hypergeometric Type Functions and Their Symmetries

The factorizations can be used to derive the following commutation relations:

∂z Sλ

= Sλ+1 ∂z,
(∂z − 2z) Sλ

= Sλ−1 (∂z − 2z),
(z∂z + λ + 1

2 ) z2Sλ

= z2Sλ+2 (z∂z + λ + 1
2 ),

(z∂z − λ + 1
2 − 2z2) z2Sλ

= z2Sλ−2 (z∂z − λ + 1
2 − 2z2).

Each of these commutations relations is associated with a “root” of the Lie
algebra sch(1).

7.5. Convergence of the Gegenbauer Equation to the Hermite Equation

It is interesting to describe the transition from the symmetries of the Gegen-
bauer equation to the symmetries of the Hermite equation. We consider the
limit (7.1). We also consider the surface Ω described in Sect. 6.5.

Let us look only at the part of Ω given by the union of Ω+ ∩{Imz > 0}+

and Ω− ∩ {Imz > 0}− glued along ] − 1, 1[. The scaling involved in the limit
(7.1) transforms this part of Ω into C.

τ(Ω+ ∩ {Imz > 0}) is equal to the union of Ω− ∩ {Imz > 0, Rez > 0}
and Ω− ∩ {Imz < 0, Rez > 0} glued along ]0, 1[. Thus, the limit of τ on
Ω+ ∩ {Imz > 0} equals the multiplication by −i.

−τ(Ω− ∩ {Imz < 0}) is equal to the union of Ω+ ∩ {Imz > 0, Rez < 0}
and Ω− ∩ {Imz < 0, Rez < 0} glued along ] − 1, 0[. Thus, the limit of −τ on
Ω− ∩ {Imz > 0} also equals the multiplication by −i.

Thus, the multiplication by −i is not the limit of a single element of the
group of the symmetries of the Gegenbauer equation, but a combination of the
limits of two symmetries.

7.6. Integral Representations

Below, we describe two kinds of integral representations of the Hermite equa-
tion.

Theorem 7.1. 1. Let [0, 1] � t �→ γ(t) satisfy

et2(t − z)−a−1
∣
∣
∣
γ(1)

γ(0)
= 0.

Then

S(a; z, ∂z)
∫

γ

et2(t − z)−adt. (7.4)

2. Let [0, 1] � t �→ γ(t) satisfy

e−t2−2ztta
∣
∣
∣
γ(1)

γ(0)
= 0.
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Then

S(a; z, ∂z)
∫

γ

e−t2−2ztta−1dt = 0. (7.5)

Proof. We check that for any contour γ, (7.4) and (7.5) equal

− a

∫

γ

(
∂tet2(t − z)−a−1

)
dt,

− 2
∫

γ

(
∂te−t2−2ztta

)
dt

respectively.
We can also deduce the second representation from the first by the

symmetry involving the multiplication by ez2
and the change of variables

z �→ iz. �

7.7. Canonical Forms

The natural weight of the Hermite operator equals e−z2
, so that

Sλ = ez2
∂ze−z2

∂z − 2λ − 1.

The balanced (as well as Schrödinger-type) form of the Hermite operator is

e− z2
2 Sλe

z2
2 = ∂2

z − z2 − 2λ.

Note that the symmetry (z, λ) �→ (iz,−λ) is obvious in the balanced form.

Remark 7.2. The balanced form of the Hermite equation is known in the
literature as the Weber or parabolic cylinder equation. It is usually written in
one of two forms

∂2
z − 1

4
z2 − k, ∂2

z +
1
4
z2 − k.

7.8. Even Solution

Inserting a power series in the equation, we see that the Hermite equation has
an even solution

S+
λ (z) :=

∞∑

j=0

(a
2 )j

(2j)!
(2z)2j

= F
(a

2
;

1
2

; z2
)

= F− 1
2 ,λ(z2).

It is the unique solution satisfying

S+
λ (0) = 1,

d
dz

S+
λ (0) = 0. (7.6)

It has the properties

S+
λ (z) = S+

λ (−z) = ez2
S+

−λ(iz).
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7.9. Odd Solution

The Hermite equation has an odd solution

S−
λ (z) :=

∞∑

j=0

(a+1
2 )j

(2j + 1)!
(2z)2j+1,

= 2zF
(a + 1

2
;

3
2

; z2
)

= 2zF 1
2 ,λ(z2).

It is the unique solution of the Hermite equation satisfying

S−
λ (0) = 0,

d
dz

S−
λ (0) = 2. (7.7)

It has the properties

S−
λ (z) = −S−

λ (−z) = −iez2
S−

−λ(iz).

7.10. Standard Solutions

The Hermite equation has only one singular point, ∞. We will see that one
can define two kinds of solutions with a simple asymptotics at ∞.

By Theorem 7.1, for appropriate γ1 and γ2, the following integrals are
solutions:

∫

γ1

e−t2−2tztλ− 1
2 dt,

∫

γ2

et2(z − t)−λ− 1
2 dt.

In the first case the integrand has a singular point at 0 and goes to zero as
t → ±∞. We can thus use γ1 with such endpoints. We will see that they give
all standard solutions.

In the second case the integrand has a singular point at z and goes to zero
as t → ±i∞. Using γ2 with such endpoints, we will also obtain all standard
solutions.

7.10.1. Solution ∼ z−a for z → +∞. The following function is the solution
of the Hermite equation that behaves as z−a = z−λ− 1

2 for |z| → ∞, | arg z| <
π/2 − ε:

Sλ(z) := z−λ− 1
2 F̃− 1

2 ,λ(−z−2) = z−aF
(a

2
,
a + 1

2
; −; −z−2

)
.

We will also introduce alternatively normalized solutions:

SI
λ(z) := 2−λ− 1

2 Γ
(
λ +

1
2

)
Sλ(z)

= 2−az−a 1
Γ(a)

F
(a

2
,
a + 1

2
; −; −z−2

)
,

S0
λ(z) :=

√
πSλ(z).



J. Dereziński Ann. Henri Poincaré

(The normalization of S0
λ is somewhat trivial—we introduce it to preserve the

analogy with the Gegenbauer equation, which had a less trivially normalized
solution S0

α,λ.)
Assuming that z �∈] − ∞, 0], we have an integral representation valid for

− 1
2 < λ:

∞∫

0

e−t2−2tztλ− 1
2 dt = SI

λ(z),

and for all parameters:

−i
∫

]−i∞,z−,i∞[

et2(z − t)−λ− 1
2 dt = S0

λ(z).

7.10.2. Solution ∼ (−iz)a−1ez2

for z → +i∞. The following function is the
solution of the Hermite equation that behaves as (−iz)a−1ez2

= (−iz)λ− 1
2 ez2

for |z| → ∞, | arg z − π/2| < π/2 − ε:

ez2
S−λ(−iz) = (−iz)λ− 1

2 ez2
F̃− 1

2 ,−λ(z−2).

Assuming that z �∈ [0,∞[, we have an integral representation valid for all
parameters:

∫

]−∞,0+,∞[

e−t2−2tz(−it)λ− 1
2 dt = ez2

S0
−λ(−iz),

and for λ < 1
2 :

−i
∫

[z,i∞[

et2(−i(t − z))−λ− 1
2 dt = ez2

SI
−λ(−iz).

7.11. Connection Formulas

We can decompose the standard solutions into the even and odd solutions:

Sλ(z) =
√

π

Γ( 2λ+3
4 )

S+
λ (z) −

√
π

Γ( 2λ+1
4 )

S−
λ (z);

ez2
S−λ(−iz) =

√
π

Γ( 3−2λ
4 )

S+
λ (z) + i

√
π

Γ( 1−2λ
4 )

S−
λ (z).

7.12. Recurrence Relations

The following recurrence relations follow easily from the commutation proper-
ties of Sect. 7.4:

∂zSλ(z) = −
(1

2
+ λ

)
Sλ+1(z),

(∂z − 2z)Sλ(z) = −2Sλ−1(z),

(z∂z +
1
2

− λ − 2z2)Sλ(z) = −2Sλ−2(z),
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(z∂z +
1
2

+ λ)Sλ(z) = −1
2

(1
2

+ λ
)(3

2
+ λ

)
Sλ+2(z).

7.13. Hermite Polynomials

If −a = n = 0, 1, 2, . . . , then Hermite functions are polynomials.
Following Sect. 1.6, they can be defined by the following version of the

Rodriguez-type formula:

Hn(z) :=
(−1)n

n!
ez2

∂n
z e−z2

.

Remark 7.3. The Hermite polynomials found usually in the literature equal

n!Hn(z).

The advantage of our convention is that the Rodriguez-type formula has the
same form for all classes of hypergeometric type polynomials.

The differential equation:
(
∂2

z − 2z∂z + 2n
)
Hn(z) = (−n; z, ∂z)Hn(z) = 0.

The generating function:

exp(2tz − t2) =
∞∑

n=0

tnHn(z).

The integral representation:

Hn(z) =
1

2πi

∫

[0+]

exp(2tz − t2)t−n−1dt.

Recurrence relations:

∂zHn(z) = 2Hn−1(z),

(∂z − 2z) Hn(z) = −(n + 1)Hn+1(z),

(z∂z − n) Hn(z) = 2Hn−2(z),
(
z∂z + n + 1 − 2z2

)
Hn(z) = −(n + 1)(n + 2)Hn+2(z).

The differential equation, the Rodriguez-type formula, the generating
function, the integral representation and the first pair of recurrence relations
are special cases of the corresponding formulas of Sect. 1.6.

We have several alternative expressions for Hermite polynomials:

Hn(z) = − lim
ν→n

(−1)n(ν−n)SI
−n− 1

2
(z) =

2n

n!
S−n− 1

2
(z)

=
2n

n!
znF

(
− n

2
,
−n + 1

2
; −; z−2

)

=
[ n
2 ]∑

k=0

(−1)k(2z)n−2k

k!(n − 2k)!
.

Behavior at ∞.

lim
n→∞

Hn(z)
zn

=
2n

n!
.
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Initial conditions at 0.

H2m(0) =
(−1)m

m!
, H ′

2m(0) = 0,

H2m+1(0) = 0, H ′
2m+1(0) =

(−1)m2
m!

.

Identities for even and odd polynomials.

H2m(z) =
(−1)m22mm!

(2m)!
L−1/2

m (z2) =
(−1)m(2z)2mm!

(2m)!
B

−2m− 1
2

m (−z−2),

=
(−1)m

m!
S+

−2m− 1
2
(z) =

(−1)m

m!
F

(
− m;

1
2

; z2
)
,

H2m+1(z) =
(−1)m22m+1m!

(2m + 1)!
zL1/2

m (z2) =
(−1)m(2z)2m+1m!

(2m + 1)!
B

−2m− 3
2

m (−z−2)

=
(−1)m

m!
S−

−2m− 3
2
(z) =

(−1)m

m!
2zF

(
− m;

3
2

; z2
)
.
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Appendix A. Contours for Integral Representations

In this appendix, we collect contours used in various integral representations
of hypergeometric type functions.

For each basic type of integral representations considered in our text, we
give at least one contour for every standard representation. We give the priority
to type (a) contours. If they are unavailable, we show a type (b) contour. In
some cases, we present both a type (a) and type (b).

We also show contours that yield the degenerate solutions and the poly-
nomial solutions. They are given by closed loops.

Here is the explanation of basic elements of our figures:
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