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1 Unbounded self-adjoint operators

1.1 Unbounded operators

Let H be a Hilbert space. We say that H is a bounded operator on H if it is a
linear map H : H → H such that

‖H‖ := sup{‖Hu‖ : u ∈ H} <∞. (1.1)

We say that H is an unbounded operator on H if H : Dom(H) → H is a linear
map, where Dom(H) is a linear subspace of H (usually dense) called the domain
of H, and

sup{‖Hu‖ : u ∈ Dom(H)} =∞. (1.2)

Note that if Dom(H) = H and (1.2) holds, then H is pathological (not closed—
this follows from Banach’s Closed Graph Theorem).

Saying “an operator on H” we will usually mean either an “unbounded
operator on H” or a “bounded operator on H”. For bounded operators, as a
rule we assume that the domain is the whole H.

1.2 Spectrum

We say that z ∈ C belongs to the resolvent set of H, denoted rs(H), if

(z −H) : Dom(H)→ H (1.3)

is bijective and its inverse is bounded. The spectrum of H is sp(H) := C\rs(H).
We say that λ belongs to the point spectrum of H, denoted spp(H), if there

exists u ∈ Dom(H), u 6= 0, such that Hu = λu. Clearly, spp(H) ⊂ sp(H).
Let H1, H2 be two operators. We say that H1 ⊂ H2 (H2 is an extension of

H1) if Dom(H1) ⊂ Dom(H2) and

H2

∣∣∣
Dom(H1)

= H1. (1.4)

Proposition 1.1 If H1 ( H2, then rs(H1) ∩ rs(H2) = ∅.

Proof. If (z−H1) : Dom(H1)→ H is bijective, then (z−H2) : Dom(H2)→
H is not injective.

If (z −H2) : Dom(H2) → H is bijective, then (z −H1) : Dom(H1) → H is
not surjective. 2

1.3 Hermitian and self-adjoint operators

We say that an operator H is Hermitian (symmetric) if

(u|Hv) = (Hu|v), u, v ∈ Dom(H). (1.5)

Theorem 1.2 Let H be Hermitian. Then one of the following statements
holds:
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(i) sp(H) = C.

(ii) sp(H) = {Imz ≥ 0}.
(iii) sp(H) = {Imz ≤ 0}.
(iv) sp(H) ⊂ R.

We say that H is self-adjoint if it is Hermitian and sp(H) ⊂ R.

Proposition 1.3 If H is Hermitian H, and z 6∈ R, then (z−H) : Dom(H)→ H
is injective.

Proof. Let z = x+ iy and u ∈ Dom(H). Then

‖(z −H)u‖2 = y2‖u‖2 + ‖(x−H)u‖2 ≥ y2‖u‖2. (1.6)

Let z 6∈ R, so that y 6= 0, and u 6= 0. Then Hu 6= 0. 2

Proposition 1.4 Let H1 ( H2 be both Hermitian. Then H1 is not self-adjoint.

Proof. Suppose that H1 is self-adjoint. Then for z 6∈ R, (z − H1) :
Dom(H1) → H is bijective. Then (z − H2) : Dom(H2) → H is not injective.
But this contradicts Prop. 1.3 2

Thus to make a self-adjoint operator from a Hermitian operator H0 we need
to extend it, and not restrict it. We have 3 options:

(i) There exists a unique self-adjoint operator H such that H0 ⊂ H.

(ii) There exist many self-adjoint operators H such that H0 ⊂ H.

(iii) There exists no self-adjoint operator H such that H0 ⊂ H.

We say that H0 is essentially self-adjoint if (1) holds. Dom(H0) is then
called a core (essential domain) of H.

Self-adjoint operators have good functional calculus. If f is any Borel func-
tion on sp(H), we can define f(H).

Of particular importance are

• Resolvent at z 6∈ sp(H), (z −H)−1.

• Spectral projection onto a Borel set Ξ ⊂ sp(H), 1lΞ(H).

• The exponential function eitH .

R 3 t 7→ eitH ∈ U(H)

is the unitary group generated by H. Conversely, by the Stone Theorem, every
strongly continuous unitary group is of this form.
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1.4 Examples of operators

We give a few examples of unbounded operators. First we give an expression
defining formally the operator. Then we give a few possible domains.

Example 1.5 Consider the Hilbert space L2(Rd). Let Rd 3 k 7→ a(k) be a
continuous, possibly unbounded function. We set

Au(k) := a(k)u(k) (1.7)

on the following domains:

(i) C∞c (Rd).

(ii) Cc(Rd).
(iii) {u ∈ L2(Rd) : au ∈ L2(Rd)}.
(i), (ii), (iii) are Hermitian. (i) and (ii) are essentially self-adjoint but not
self-adjoint. (iii) is self-adjoint.

Example 1.6 Consider the Hilbert space L2(Rd) and the Laplacian −∆ with
the following domains:

(i) C∞c (Rd).

(ii) C2
c (Rd).

(iii) {u ∈ L2(Rd) : −∆u ∈ L2(Rd)}.
(i), (ii), (iii) are Hermitian. (i) and (ii) are essentially self-adjoint but not
self-adjoint. (iii) is self-adjoint. To see this we use the Fourier transformation

F(−∆u)(k) = k2Fu(k), (1.8)

which essentially reduces this example to a special case of the previous one.

Example 1.7 Consider now the space L2[0, π] and the Laplacian −∆ = −∂2
x

with the following domains:

(i) C∞c (]0, π[).

(ii) {u ∈ C∞([0, π]) : u(0) = u(π) = 0}.
(iii) {u ∈ L2[0, π] : u′′ ∈ L2[0, π], u(0) = u(π) = 0}.
(iv) {u ∈ C∞([0, π]) : u′(0) = u′(π) = 0}.
(v) {u ∈ L2[0, π] : u′′ ∈ L2[0, π], u′(0) = u′(π) = 0}.

(vi) C∞c ([0, π]).

(i)–(v) are Hermitian. (i) has many self-adoint extensions. (ii) is essentially
self-adjoint and its self-adjoint extension is (iii). (iv) is essentially self-adjoint
and its self-adjoint extension is (v). (vi) is not Hermitian.

We will denote by −∆D the Laplacian −∆ with domain (iii). We will denote
by −∆N the Laplacian −∆ with domain (v).
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Example 1.8 Consider the space L2[0,∞[ and the momentum operator p =
1
i ∂x on the following domains:

(i) C∞c (]0,∞[).

(ii) {u ∈ L2[0,∞[ : u′ ∈ L2[0,∞[, u(0) = 0}.
(iii) {u ∈ L2[0,∞[ : u′′ ∈ L2[0,∞[}.
(i), (ii) are Hermitian but not self-adjoint. They do not possess self-adjoint
extensions. (iii) is not.

We have sp(p(ii)) = {Imz < 0}, spp(p(ii)) = ∅,

R(ii)(z, x, y) = ieiz(x−y)θ(x− y), Imz > 0.

We have sp(p(iii)) = spp(p(iii)) = {Imz > 0},

R(iii)(z, x, y) = −ieiz(x−y)θ(y − x), Imz < 0.

Lemma 1.9 Let f, f ′ ∈ L2[a, b]. Then f ∈ C[a, b] and

|f(x)| ≤ C
(
‖f ′‖2 + ‖f‖2

)
. (1.9)

Proof. We use the Schwarz inequality, then we average over [a, b], then
again the Schwarz inequality.

|f(x)| =
∣∣∣ ∫ x

z

f ′(y)dy + f(z)
∣∣∣ ≤ (∫ x

z

dy
) 1

2
(∫ x

z

|f ′(y)|2dy
) 1

2

+ |f(z)| (1.10)

≤ |b− a| 12 ‖f ′‖2 + |b− a|−1

∫ b

a

|f(z)|dz (1.11)

≤ |b− a| 12 ‖f ′‖2 + |b− a|− 1
2 ‖f‖2. (1.12)

2

1.5 Operators bounded from below

We say that an operator H is positive if

0 ≤ (u|Hu), u ∈ Dom(H). (1.13)

If H is positive and self-adjoint, then sp(H) ⊂ [0,∞[. Therefore, we can define

H
1
2 . We can write

(u|Hu) = ‖H 1
2u‖2. (1.14)

If H is unbounded, then H
1
2 has a bigger domain than H. We define the

quadratic form associated with H as

h(u) := ‖H 1
2u‖2, u ∈ Dom(H

1
2 ). (1.15)
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We will usually abuse the notation and write (u|Hu) for h(u). DomH
1
2 is called

the form domain of H and sometimes denoted Q(H). Thus we will write

h(u) = (u|Hu), u ∈ Q(H). (1.16)

We say that H is bounded from below if there exists c such that

−c‖u‖2 ≤ (u|Hu), u ∈ Dom(H). (1.17)

We can repeat essentially everything above for bounded from below operators.
In particular, the form domain can be defined as Dom

(
(H + c)

1
2

)
, or what is

the same Dom|H| 12 . For u in the form domain we can write (u|Hu).
Let A, B be two operators bounded from below. We say that A ≤ B if

DomA ⊃ DomB and

(u|Au) ≤ (u|Bu), u ∈ DomB. (1.18)

The form domain of −∆D is

Q(−∆D) = {u ∈ L2[0, π] : u′ ∈ L2[0, π], u(0) = u(π) = 0}, (1.19)

(u|∆Du) =

∫ π

0

|u′(x)|2dx, u ∈ Q(−∆D). (1.20)

The form domain of −∆N is

Q(−∆N) = {u ∈ L2[0, π] : u′ ∈ L2[0, π]}, (1.21)

(u|∆Nu) =

∫ π

0

|u′(x)|2dx, u ∈ Q(−∆D). (1.22)

Thus Q(−∆D) ⊂ Q(−∆N) and for u ∈ Q(−∆D)

(u|∆Du) = (u|∆Nu). (1.23)

Hence,
−∆N ≤ −∆D. (1.24)

1.6 Discrete and essential spectrum

Let H be selfadjoint. We partition sp(H) into two disjoint subsets:

spd(H) := {λ ∈ sp(H) : ∃ε>0 dim 1l[λ−ε,λ+ε](H) <∞}, (1.25)

spess(H) := {λ ∈ sp(H) : ∀ε>0 dim 1l[λ−ε,λ+ε](H) =∞}. (1.26)

Proposition 1.10 Let vn be a sequence of vectors such that w− limn→∞ vn =
0, ‖vn‖ = 1 and limn→∞ ‖(H − λ)vn‖ = 0. Then λ ∈ spess(H).
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1.7 The mini-max and max-min principle

Let H be a bounded from below self-adjoint operator on a Hilbert space V. We
define

µn(H) := inf
{

sup{(v|Hv) : ‖v‖ = 1, v ∈ L} :

L is an n-dim. subspace of V
}
, n = 1, 2, . . . ;

Σ(H) := inf spess(H),

N(H) := dim 1l]−∞,Σ[(H)

Theorem 1.11 µn(H) for n ≤ N are the consecutive eigenvalues of H, count-
ing the multiplicity. For n > N we have µn(H) = Σ.

Proof. For any (n+ 1)-dimensional space L there exists an n-dimensional
space L′ contained in L. Clearly,

sup{(v|Hv) : ‖v‖ = 1, v ∈ L′} ≤ sup{(v|Hv) : ‖v‖ = 1, v ∈ L}.

Therefore, µn ≤ µn+1.
Let a, b ∈ sp(H), ]a, b[∩sp(H) = ∅ and dim 1l]−∞,a](H) = n. Let La :=

Ran1l]−∞,a](H). Then

sup{(v|Hv) : ‖v‖ = 1, v ∈ La} = a.

Thus µn ≤ a.
If L is (n+1)-dimensional, then L∩L⊥a 6= {0}. Thus we can find a normalized

w ∈ L ∩ L⊥a . Now w ∈ Ran1l[b,∞[(H), hence (w|Hw) ≥ b. Thus

sup{(v|Hv) : ‖v‖ = 1, v ∈ L} ≥ b.

Hence, b ≤ µn+1. 2

Theorem 1.12 (The Rayleigh-Ritz method) Let W be a linear subspace.
Set HW := PWHPW

∣∣
W , where PW denotes the projector onto W. Then HW is

a bounded self-adjoint operator and

µn(H) ≤ µn(HW).

Theorem 1.13 (i) Let H ≤ G. Then µn(H) ≤ µn(G).

(ii) |µn(H)− µn(G)| ≤ ‖H −G‖.

1.8 Weyl Theorem on essential spectrum

An operator on a Hilbert space is compact if it can be approximated in norm
by finite rank operators.

All operators on finite dimension spaces are compact. In infinite dimension,
a self-adjoint operator is compact iff its essential spectrum is {0}.
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Theorem 1.14 Suppose H0, H are self-adjoint and for all z ∈ C\R,

(z −H)−1 − (z −H0)−1

is compact. Then spess(H) = spess(H0).

Proof. We have for z0 ∈ C\R and r < Imz0,

(z0 −H)−n =
1

2πin!

∫
∂K(z0,r)

(z0 − z)−n(z −H)−1dz. (1.27)

Hence

(z0−H)−n−(z0−H0)−n =
1

2πin!

∫
∂K(z0,r)

(z0−z)−n
(

(z−H)−1−(z−H0)−1
)

dz

is compact as well. But every f ∈ Cc(R) can be approximated in the supremum
norm by linear combinations of (z0 − H)−n, (z0 − H)−n, n = 1, 2, . . . . Hence
f(H)− f(H0) is compact.

In particular, let λ 6∈ spess(H). Then there exists f ∈ Cc(R), f(λ) 6= 0 such
that f(H) is compact. But f(H)− f(H0) is compact. Hence f(H0) is compact.
Hence λ 6∈ spess(H0). Therefore, spess(H0) ⊂ spess(H). 2

2 Schrödinger operators

2.1 Stability of essential spectrum

Theorem 2.1 Suppose now that V is a bounded real function and

H0 = −∆, H = −∆ + V (x).

Obviously, H is self-adjoint on Dom(H0) and bounded from below.
Assume in addition that lim|x|→∞ V (x) = 0. Then

spess(H) = [0,∞[.

Proof.

(z −H)−1 − (z −H0)−1 = (z −H)−1V (x)(z −H0)−1

is compact, because V (x)(z−H0)−1 is compact. Besides, spess(H0) = sp(H0) =
[0,∞[. 2
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2.2 Confining potentials

Theorem 2.2 Let lim
|x|→∞

V (x) =∞ and H = −∆+V (x). Then spess(H) = ∅.

Proof. Let λ ∈ R. Set Vλ := min(V, λ). We have

H ≥ Hλ := −∆ + Vλ

and by Thm 2.1, spessHλ = [λ,∞[. Therefore, spessH ⊂ [λ,∞[. 2

Here is an alternative proof:
Proof. We can assume that V (x) ≥ 0.

1 +H ≥ 1−∆, (2.28)

1 +H ≥ 1 + V (x). (2.29)

Hence

1l ≥ (1 +H)−
1
2 (1−∆)(1 +H)−

1
2 , (2.30)

1l ≥ (1 +H)−
1
2 (1 + V (x))(1 +H)−

1
2 . (2.31)

Therefore,

1 ≥
∥∥(1−∆)

1
2 (1 +H)−

1
2

∥∥, (2.32)

1 ≥
∥∥(1 + V (x))

1
2 (1 +H)−

1
2

∥∥. (2.33)

Now

(1 +H)−1 (2.34)

=(1 +H)−
1
2 (1 + V (x))

1
2 (1 + V (x))−

1
2 (1−∆)−

1
2 (1−∆)

1
2 (1 +H)−

1
2

and (1 + V (x))−
1
2 (1−∆)−

1
2 is compact. Hence (1 +H)−1 is compact. 2

2.3 Weyl asymptotics

For a bounded from below self-adjoint operator H set

Nµ(H) := #{eigenvalues of H counted with multiplicity ≤ µ} (2.35)

= Tr1l]−∞,µ](H). (2.36)

We will show that if V is continuous potential with V − µ > 0 outside a
compact set then

Nµ(−~2∆ + V (x)) ' (2π~)−dcd

∫
V (x)≤µ

|V (x)− µ|
d
2
−dx+ o(~−d) (2.37)

= (2π~)−d
∫
h(x,p)≤µ

dxdp+ o(~−d). (2.38)
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Asymptotics of this form is called the Weyl asymptotics.
Here are the tools that we will use:

A ≤ B ⇒ Nµ(A) ≥ Nµ(B),

Nµ(A⊕B) = Nµ(A) +Nµ(B).

To simplify we will assume that d = 1.

Lemma 2.3 Let ∆[0,L],D, resp. ∆[0,L],N denote the Dirichlet, resp. Neumann
Laplacian on [0, L]. For α ∈ R let [α] denote the largest integer ≤ α, θ(α) the
Heavyside function and |µ|+ := µθ(µ). Then

Nµ
(
− ~2∆[0,L],D

)
= [L(π~)−1|µ|1/2+ ],

Nµ
(
− ~2∆[0,L],N

)
= [L(π~)−1|µ|1/2+ ] + θ(µ).

Proof. The eigenfunctions and the spectrum of ∆[0,L],D, resp. ∆[0,L],N are

sin
πnx

L
,

~2π2n2

L2
, n = 1, 2, . . . ;

cos
πnx

L
,

~2π2n2

L2
, n = 0, 1, 2, . . . .

Thus the last eigenvalue has the number n = [L(~π)−1|µ|1/2+ ]. 2

Divide R into intervals

Im,j :=
[
(j − 1/2)m−1, (j + 1/2)m−1

]
.

Put at the borders of the intervals the Neumann/Dirichlet boundary condi-
tions. The Neumann conditions lower the expectation value and the Dirichlet
conditions increase them. Set

V m,j = sup{V (x) : x ∈ Im,j},
V m,j = inf{V (x) : x ∈ Im,j}.

We have

⊕
j∈Z

(
− ~2∆Im,j ,N + V m,j

)
≤ −~2∆ + V (x) ≤ ⊕

j∈Z

(
− ~2∆Im,j ,D + V m,j

)
.

Hence, ∑
j∈Z

Nµ

(
− ~2∆Im,j ,N + V m,j

)
≥ Nµ

(
− ~2∆ + V (x)

)
≥

∑
j∈Z

Nµ

(
− ~2∆Im,j ,D + V m,j

)
.
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Therefore, ∑
j∈Z

m−1(~π)−1|V m,j − µ|
1/2
− +

∑
j∈Z

θ
(
µ− V m,j

)
≥ Nµ

(
− ~2∆ + V (x)

)
≥

∑
j∈Z

m−1(~π)−1|V m,j − µ|1/2− .

Using the fact that |V − µ|− has a compact support, we can estimate∑
j∈Z

θ
(
µ− V m,j

)
≤ mC.

By properties of Riemann sums we can find mε such that for m ≥ mε∣∣∣∑
j∈Z

m−1|V m,j − µ|
1/2
− −

∫
|V (x)− µ|1/2− dx

∣∣∣ < ε/3, (2.39)

∣∣∣∑
j∈Z

m−1|V m,j − µ|1/2− −
∫
|V (x)− µ|1/2− dx

∣∣∣ < ε/3. (2.40)

Therefore,∣∣∣Nµ(− ~2∆ + V (x)
)
− 1

~π

∫
|V (x)− µ|1/2− dx

∣∣∣ <
2ε

~π3
+
Cmε

π
. (2.41)

Hence the right hand side of (2.41) is o(~−1). This proves (2.37)
If we assume that V is differentiable, then mε can be assumed to be C0ε

−1.
Then we can optimize and set ε =

√
~. This allows us to replace o(~−1) by

O(~−1/2).

3 Many body Schrödinger operators

3.1 Two particle Schrödinger operators

Let Xi = Rd be the configuration space of the ith particle. Consider the Hilbert
space H := L2(X1 ⊕X2) and the Hamiltonian

H =
1

2m1
p2

1 +
1

2m2
p2

2 + V (x1 − x2).

Introduce

x12 :=
m1x1 +m2x2

m1 +m2
, m12 := m1 +m2, (3.42)

x12 := x1 − x2, m12 :=
1

1
m1

+ 1
m2

. (3.43)

12



Then H = L2(X12 ⊕X12) = L2(X12)⊗ L2(X12),

H =
1

m12
p2

12 +
1

m12
(p12)2 + V (x12) (3.44)

=
1

m12
p2

12 +H12. (3.45)

This can be interpreted as follows: in X1⊕X2 we introduce the scalar product,
such that

〈x1, x2|x1, x2〉 = m1x
2
1 +m2x

2
2.

The corresponding Laplacian is

1

m1
p2

1 +
1

m2
p2

2,

which is twice the kinetic energy.
In X1 ⊕X2 we have the collision plane

X12 := {(x1, x2) ∈ X1 ⊕X2 : x1 = x2}.

Define X12 to be the orthogonal complement of X12 wrt this product. X12 is
spanned by (x, x) and X12 by (m2x,−m1x). We check that

{x12 = 0} = X12, (3.46)

{x12 = 0} = X12. (3.47)

Moreover,

m12x
2
12 +m12(x12)2

=
1

m1 +m2
(m2

1x
2
1 + 2m1m2x1x2 +m2

2x
2
2) +

m1m2

m1 +m2
(x2

1 − 2x1x2 + x2
2)

=m1x
2
1 +m2x

2
2.

Therefore,

1

m12
p2

12 +
1

m12
(p12)2 =

1

m1
p2

1 +
1

m2
p2

2.

3.2 3-body Schrödinger Hamiltonian

Consider H := L2(X1 ⊕X2 ⊕X3) and the Hamiltonian

H =

3∑
i=1

1

2mi
p2
i +

∑
1≤i<j≤3

Vij(xi − xj).

13



Introduce the Jacobi coordinates:

x12 := x1 − x2, m12 :=
1

1
m1

+ 1
m2

,

x3 :=
m1x1 +m2x2

m1 +m2
− x3, m3 :=

1
1

m1+m2
+ 1

m3

,

x123 :=
m1x1 +m2x2 +m3x3

m1 +m2 +m3
, m123 := m1 +m2 +m3.

We have

x2 := m1x
2
1 +m2x

2
2 +m3x

2
3 = m123x

2
123 +m3(x3)2 +m12(x12)2, (3.48)

p2 :=
1

m1
p2

1 +
1

m2
p2

2 +
1

m3
p2

3 =
1

m123
p2

123 +
1

m3
(p3)2 +

1

m12
(p12)2. (3.49)

We have the 3-body collision plane

X123 := {(x1, x2, x3) : x1 = x2 = x3}.

and 3 2-body collision planes

Xij := {(x1, x2, x3) : xi = xj}.

Let us write X123 := X⊥123, Xij := X⊥ij . Clearly, X123 ⊂ Xij , hence X123 ⊥ Xij .

Set X3 := X123 ∩X12. Clearly, X = X123 ⊕X3 ⊕X12. We claim that this
notation is consistent with previous coordinates. Indeed,

X123 = {(x1, x2, x3) | x3 = x12 = 0}

is spanned by z123 :=
1

m123
(1, 1, 1), ‖z123‖2 =

1

m123
,

X3 = {(x1, x2, x3) | x123 = x12 = 0}

is spanned by z3 :=
( 1

m1 +m2
,

1

m1 +m2
,− 1

m3

)
, ‖z3‖2 =

1

m3
,

X12 = {(x1, x2, x3) | x123 = x3 = 0}

is spanned by z12 :=
( 1

m1
,− 1

m2
, 0
)
, ‖z12‖2 =

1

m12
.

Now (3.48) is simply

x2 =
(z12|x)2

‖z12‖2
+

(z3|x)2

‖z3‖2
+

(z123|x)2

‖z123‖2
. (3.50)

We can separate the center of mass motion:

H = L2(X123)⊗ L2(X3 ⊕X12) (3.51)

H =
1

2m123
p2

123 +
1

2m3
(p3)2 +

1

2m12
(p12)2 +

∑
1≤i<j≤3

Vij(xi − xj) (3.52)

=
1

2m123
p2

123 +H123. (3.53)

14



We can also introduce the Hamiltonian of the pair (ij) and separate its
center of mass motion:

H = L2(X123 ⊕X3)⊗ L2(X12) (3.54)

H12 =

3∑
i=1

1

2mi
p2
i + V12(x1 − x2), (3.55)

=
1

2m123
p2

123 +
1

2m3
(p3)2 +H12. (3.56)

3.3 N-body Schrödinger Hamiltonians

Consider H := L2(X1 ⊕ · · · ⊕Xn) = L2(X) and the Hamiltonian

H =

n∑
i=1

1

2mi
p2
i +

∑
1≤i<j≤n

Vij(xi − xj). (3.57)

The configuration space X1 ⊕ · · · ⊕Xn is equipped with the scalar product

〈x1, . . . , xn|x1, . . . , xn〉 =

n∑
i=1

mix
2
i .

The kinetic energy is half the Laplacian wrt this product:

−∆ :=

n∑
i=1

1

mi
p2
i .

We will say cluster for a subset of {1, . . . , n}. An example of a cluster is a
pair (ij). We define the collision plane corresponding to a cluster c:

Xc := {(x1, . . . , xn) : xi = xj , i, j ∈ c}.

We set Xc := X⊥c . For every cluster c ⊂ {1, . . . , n} we have the factorization of
the Hilbert space into internal and external degrees of freedom and we define
the full cluster Hamiltonian Hc and the internal cluster Hamiltonian Hc:

H = L2(Xc)⊗ L2(Xc), (3.58)

Hc := −1

2
∆ +

∑
i,j∈c

Vij(xi − xj) (3.59)

= −1

2
∆c −

1

2
∆c + Vc(x

c) = −1

2
∆c +Hc. (3.60)

For instance

H = H{1,...,n} = −1

2
∆{1,...,n} +H{1,...,n}

is the separation of the full center-of-mass motion.
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A cluster decomposition is a partition of {1, . . . , n} into clusters. Let a, b be
cluster decompositions. We say that b ⊂ a if b is finer than a. In particular,
{1}, . . . {n} is minimal and {1, . . . , n} is maximal.

For any cluster decomposition a = {c1, . . . , ck} we define the corresponding
collision plane

Xa :=

k⋂
i=1

Xci := {(x1, . . . , xn) : xi = xj , (i, j) ⊂ a}.

We set Xa := X⊥a .
We have the corresponding full Hamiltonian Ha and internal Hamiltonian

Ha:

H = L2(Xa)⊗ L2(Xa), (3.61)

Ha := −1

2
∆ +

∑
(i,j)⊂a

Vij(xi − xj) (3.62)

= −1

2
∆a −

1

2
∆a + Va(xa) = −1

2
∆a +Ha. (3.63)

Clearly,
Xc ⊂ {(x1, . . . , xn) | xi = 0, i 6∈ c}.

Therefore, if c1 ∩ c2 = ∅, then Xc1 ⊥ Xc2 . Therefore, if a = {c1, . . . , ck}, then

Xa = Xc1 ⊕ · · · ⊕Xck . (3.64)

L2(Xa) = L2(Xc1)⊗ · · · ⊗ L2(Xck).

We have

Ha =

k∑
i=1

Hci .

Note that Ha may have point spectrum.
Let b ⊂ a. Clearly, Xb ⊃ Xa, Xb ⊂ Xa. We can introduce Xa

b := Xb ∩Xa,
so that

Xb = Xa ⊕Xa
b , Xa = Xa

b ⊕Xb.

We have the corresponding Laplacian ∆a
b , so that

∆b = ∆a ⊕∆a
b , ∆a = ∆a

b ⊕∆b.

We can also decompose the internal Hamiltonian:

L2(Xa) = L2(Xa
b )⊗ L2(Xb), (3.65)

Ha
b = −1

2
∆a + Vb(x

b) = −1

2
∆a
b +Hb. (3.66)
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It is also useful to introduce the “interaction”

Iab = Va − Vb =
∑

(i,j)⊂a, (ij)6⊂b

Vij(xi − xj),

so that

Ha = Hb + Iab , (3.67)

Ha = −1

2
∆a
b +Hb + Iab . (3.68)

3.4 The HVZ Theorem

Theorem 3.1 Let Ea := inf spHa. Then

spessH
{1,...,n} =

[
inf

a 6={1,...,n}
Ea,∞

[
.

More generally

spessH
a =

[
inf
b(a

Eb,∞
[
. (3.69)

Proof. We will use the notation of (3.69), thinking of a = {1, . . . , n}.
⊃. Let b ( a and λ ∈ [Eb,∞[. Clearly, sp(− 1

2∆a
b + Hb) = [Eb,∞[. Hence,

there exist approximate eigenfunctions of − 1
2∆a

b + Hb for the eigenvalue λ.
− 1

2∆a
b +Hb is invariant in the direction of Xa

b . Therefore, these eigenfunctions
can be moved far away from the Xij with (ij) 6⊂ b. But there Iab is small. By
(3.68), they are approximate eigenfunctions of Ha.
⊂. First we claim that we can find a partition of unity {χb ∈ C∞(Xa) :

b ( a} such that χb outside a ball are homogeneous and are zero on Xij with
(ij) 6⊂ b.

There are many such partitions of unity. Indeed, consider a unit sphere Sa

in Xa. For any (x1, . . . , xn) ∈ Sa, there exists a pair (i, j) such that xi 6= xj .
If b is a 2-cluster decomposition b such that i and j belong to different clusters,
then (x1, . . . , xn) 6∈ Xb. Therefore,

{Sa\Xb | b is a 2-cluster decomposition }

is a covering of Sa with open sets. We can choose a smooth partition of unity
subordinated to this covering, then extend it by homogeneity in the outside of
the ball, and by smoothness in the inside. Note that 2-cluster decompositions b
satisfy b ( a = {1, . . . , n}

Now

(z −Ha)−1 =
∑
b(a

(z −Ha)−1χb

=
∑
b(a

(z −Ha
b )−1χb +

∑
b(a

(
(z −Ha)−1 − (z −Ha

b )−1
)
χb.
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Moreover,(
(z −Ha)−1 − (z −Ha

b )−1
)
χb =(z −Ha)−1Iab (z −Ha

b )−1χb

=(z −Ha)−1Iab χb(z −Ha
b )−1

+ (z −Ha)−1Iab [(z −Ha
b )−1, χb]

=(z −Ha)−1Iab χb(z −Ha
b )−1

+ (z −Ha)−1Iab (z −Ha
b )−1 1

i2
(pa∇χb +∇χbpa)(z −Ha

b )−1.

But Iab χb and ∇χb decay at infinity and pa(z −Ha
b )−1 is bounded. Hence both

terms on the rhs are compact.
Hence,

(z −Ha)−1 =
∑
b(a

(z −Ha
b )−1χb + compact.

Repeating the argument from the proof of Thm 1.14, for f ∈ Cc(R) we obtain

f(Ha) =
∑
b(a

f(Ha
b )χb + compact. (3.70)

Now let suppf ∩
[

inf
b(a

Eb,∞
[

= ∅. Then f(Ha
b ) = 0. Hence f(Ha) is

compact. Therefore, spess(H
a) ⊂

[
inf
b(a

Eb,∞
[
. 2

4 Scattering theory

4.1 Abstract scattering theory

Assume that H0 and H are self-adjoint operators on a Hilbert space H.
The Møller or wave operators (if they exist) are defined as

Ω± := s− lim
t→±∞

eitHe−itH0 .

The scattering operator is defined as

S := Ω+∗Ω−. (4.71)

Theorem 4.1 (i) If the Møller operators exist, they are isometric and inter-
twine the free and the full Hamiltonian: Ω±H0 = HΩ±.

(ii) The scattering operator exists and commutes with the free Hamiltonian:
H0S = SH0.

18



Proof. Ω± are isometric as strong limits of unitary operators.
We have

eisH
(

s− lim
t→∞

eitHe−itH0

)
e−isH0 = s− lim

t→±∞
ei(t+s)He−i(t+s)H0 (4.72)

= s− lim
t→±∞

eitHe−itH0 . (4.73)

Hence,
eisHΩ± = Ω±eisH0 .

2

Theorem 4.2 If the Møller operator exists and H0Ψ = EΨ, then HΨ = EΨ.

Proof. Let H0Ψ = EΨ. If lim
t→∞

eitHe−itH0Ψ exists, then it coincides with

the limit of its exponential average:

lim
t→∞

eitHe−itH0Ψ = lim
ε↘0

ε

∫ ∞
0

e−εteitHe−itH0Ψdt

= lim
ε↘0

ε

∫ ∞
0

et(−ε+iH−iE)Ψdt = lim
ε↘0

ε

(ε+ i(E −H))
Ψ = 1l{E}(H)Ψ.

This is the reason why in practice the standard formalism of scattering theory
is usually applied in situations where the unperturbed Hamiltonian H0 has only
continuous spectrum, which we will assume below.

Note that RanΩ± is an invariant subspace of H. H can have eigenvectors,
but they are orthogonal to RanΩ±. The property

Ran1lp(H)⊕ RanΩ± = H

or
RanΩ± = Ran1lc(H)

is called asymptotic completeness. It guarantees that S is unitary.

4.2 1-body Schrödinger operators

Consider a single quantum particle in an external potential, described by the
Hilbert space L2(Rd) and the Schrödinger Hamiltonian.

H = H0 + V (x),

where

H0 = p2, p =
1

i
∂x.

Theorem 4.3 Assume that V (x) is short range, that is,

|V (x)| ≤ c〈x〉−µ, µ > 1.
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Then there exist Møller operators

Ω± := s− lim
t→±∞

eitHe−itH0 ,

They are of course isometric, intertwine H0 and H. Besides, they are complete:

RanΩ± = Ran1lc(H).

Sketch of proof of the existence. First we study the free dynamics. We
show that for Φ from a dense subset in L2(Rd), their free evolution e−itH0Φ is
for large t concentrated in |x| ≥ ct, where c > 0. We will prove that

lim
t→∞

eitHe−itH0Φ, (4.74)

exists for such Φ. We compute

d

dt
eitHe−itH0Φ = ieitHV (x)e−itH0Φ.

But for |x| > ct we have |V (x)| ≤ C(1 + t)−µ, which is integrable. Therefore,∫ ∞
0

∥∥∥ d

dt
eitHe−itH0Φ

∥∥∥dt <∞.

But ∥∥∥eit2He−it2H0Φ− eit1He−it1H0Φ
∥∥∥ ≤ ∫ t2

t1

∥∥∥ d

dt
eitHe−itH0Φ

∥∥∥dt.

Therefore,
t 7→ eitHe−itH0Φ

is Cauchy. Hence, the limit (4.74) exists. 2

Note that the existence part of the above theorem is quite easy. The asymp-
totic completeness is much more difficult.

Theorem 4.4 Assume that V (x) is long range, that is,

V (x) = Vl(x) + Vs(x),

where Vs(x) is short range and

|∂αxVl(x)| ≤ cα〈x〉−|α|−µl , µl > 0, α ∈ Nd.

Then there exists a function (t, ξ) 7→ St(ξ) and modified Møller operators

Ω± := s− lim
t→±∞

eitHe−iSt(p),

Ω± are isometric, they satisfy HΩ± = Ω±H0 and they are complete:

RanΩ± = Ran1lc(H).

The integral kernel of S defines scattering amplitudes. Setting k = |k|k̂, it
can be written as

S(k2, k1) = δ(k1 − k2) + δ(k2
1 − k2

2)t(k2
1; k̂2, k̂1), (4.75)

where |t(k2
1; k̂2, k̂1)|2 describes the scattering cross-section for the process at

energy k2
1 = k2

2 from the angle k̂1 to the angle k̂2.
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4.3 Scattering theory for N-body Schrödinger Hamiltoni-
ans

Consider an N -body Schrödinger Hamiltonian (3.57). Introduce various objects
defined in Subsection 3.3. In addition, define

Ha := Ran1lp(Ha) ' Ran1lp(Hc1)⊗ · · · ⊗ Ran1lp(Hck).

Let
Ea := Ha

∣∣∣
Ha

= Hc1
∣∣∣
Hc1

+ · · ·+Hck
∣∣∣
Hck

be the operator describing the bound state energies of clusters. Let

Ja : L2(Xa)⊗Ha → L2(X)

be the embedding of bound states of clusters into the full Hilbert space.

Theorem 4.5 Assume that the potentials Vij are short range. Then for any
cluster decompostion a there exists the corresponding partial wave operator

Ω±a := s− lim
t→±∞

eitHJae−it(− 1
2 ∆a+Ea).

Ω±a are isometric, they intertwine the cluster and the full Hamiltonian:

Ω±a (−1

2
∆a + Ea) = HΩ±a

and are complete:
⊕
a

RanΩ±a = L2(X).

Theorem 4.6 Assume that the potentials Vij are long range with

µl >
√

3− 1.

Then for any cluster decompostion a there exists a function (t, ξa) 7→ Sa,t(ξa),
the corresponding partial modified wave operator

Ω±a := s− lim
t→±∞

eitHJae−i(Sa,t(pa)+tEa),

which satisfy the same properties as those stated in the short range case.

Note that Ω±{1,...,n} = 1lp(H{1,...,n}).

AC means that all states in L2(X) can be decomposed into states with a
clear physical/chemical interpretation such as atoms, ions and molecules. The
partial wave operators Ω±a can be organized into

⊕
a
L2(Xa)⊗Ha 3 (ψa) 7→

∑
a

Ω±a ψa ∈ L2(X),
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which is unitary.
We can introduce partial scattering operators

Sab := Ω+∗
a Ω−b

describing various processes, such as elastic and inelastic scattering, ionization,
capture of an electron, chemical reactions. The partial scattering operators Sab
arranged in the matrix [Sab] form a unitary operator on ⊕

a
L2(Xa)⊗Ha.

2-body scattering theory, including AC in both short- and long-range case,
was understood already in the 60’s.

Existence of N -body wave operators and the orthogonality of their ranges
was established about the same time. What was missing for a long time was
Asymptotic Completeness – the fact that the ranges of wave operators span the
whole Hilbert space.

5 Scattering amplitudes and cross-sections

We will describe general rules how to compute transition probabilities and scat-
tering cross-sections from scattering amplitudes, that is, matrix elements of the
scattering operator. These rules are essentially independent of details of a quan-
tum system and can be derived from basic quantum mechanics.

5.1 Scattering amplitude and transition probability

Suppose that S is a unitary operator on a Hilbert space H having the inter-
pretation of a scattering operator. Suppose that the initial state is given by a
normalized vector Φ− and the final measurement by a positive operator Q+.
Then the transition probability is given by(

Φ−|S∗Q+SΦ−
)

= Tr
(√

Q+S|Φ−)(Φ−|S∗
√
Q+
)
. (5.76)

In particular, let Q+ = |Φ+)(Φ+|. The matrix element

A =
(
Φ+|SΦ−

)
is called a scattering amplitude. The corresponding transition probability equals

|A|2 =
∣∣(Φ+|SΦ−

)∣∣2 .
Basic formalism of the scattering theory does not distinguish between the

future and the past. (This is independent of whether there exists a time reversal
symmetry or not). However, in practical applications of scattering theory, the
difference between the past and the future is important.

(i) The initial state can be assumed to be very simple. In particular, in practice
it involves one or two particles. One can suppose that it is prepared quite
precisely, so that it is possible to describe it by a pure state.
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(ii) On the other hand, the final state can be complicated and involve many
particles. It is less natural to assume that it is given by a 1-dimensional
projection. Typically, one considers a measurement of a spectral projection
of a certain natural observable.

The observables that one would like to use to prepare and measure states,
such as the Hamiltonian and the momentum, often have continuous spectrum,
therefore they do not have normalizable eigenvectors. In order to obtain physi-
cally meaningful quantities, one needs to deal with their non-normalizable eigen-
vectors. We present typical heuristic arguments which are employed in this
context in standard textbooks.

5.2 The square of the delta function

It is well known that the square of Dirac’s delta is ill defined. However, when
computing transition probabilities such an object appears naturally.

Suppose we assume that the process takes place within the time interval
[−T/2, T/2]. Let E have the meaning of the energy, which is the dual variable
to the time. In such a situation physics textbooks use the heuristic substitution

(2πδ(E))2 → T2πδ(E). (5.77)

Similarly, suppose that the measurement takes place in a box of volume V ,
say, the cube [−L/2, L/2]d with V = Ld. Then we use the heuristic substitution(

(2π)dδ(~p)
)2 → V (2π)dδ(~p). (5.78)

One of heuristic justifications of (5.77) goes as follows. In the continuous
case we have at our disposal integration∫

f(E)dE (5.79)

and the Dirac delta δ(E − E1) which satisfies∫
δ̌(E − E1)f(E1)dE1 = f(E). (5.80)

Suppose that the system is time-periodic with the period T . Then the al-
lowed values of the energy are 2π

T Z. Therefore, the integral (5.79) should be
approximated by the Riemann sum∑

E∈ 2π
T Z

f(E)
2π

T
. (5.81)

The Dirac delta δ(E) should be replaced by the appropriately normalized Kro-
necker delta δ̌T (E1 − E2) := T

2π δ̌E,E1
. Indeed, with this convention we have∑

E1∈ 2π
T Z

δ̌T (E − E1)f(E1)
2π

T
= f(E), (5.82)
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which corresponds to the usual identity in the case of continuous energy (5.80).
Now,

δ̌T (E1 − E2)2 =
T

2π
δ̌T (E1 − E2).

Another justification of (5.77) uses

δT (E) :=
1

2π

∫ T/2

−T/2
dteiEt =

sinET/2

πE
. (5.83)

Note that ∫ ∞
−∞

δT (E)dE = 1 (5.84)

hence δT is an approximate delta function. Moreover,∫ ∞
−∞

δ2
T (E)dE =

∫ ∞
−∞

sin2ET/2

π2E2
dE =

T

2π
.

Hence 2π
T δ

2
T is also an approximate delta function.

5.3 Measuring the energy

Suppose I ⊂ R is an interval of the energy that we want to measure. We also
want to measure another independent observable, say, given by Π+ = |s+)(s+|
Thus the operator describing our measured observable is

1lI(H0)Π+ ≈
∫
I

dE
2π

T
δ2
T (E −H0)Π+. (5.85)

Thus if we prepare a state Φ−, then the expectation value of the measurement
of (5.85) is

(SΦ−|1lI(H0)Π+SΦ−) =

∫
I

dE|(E, s+|SΦ−)|2 (5.86)

≈
∫
I

dE
2π

T
(SΦ−|s+)δT (E −H0)2(s+|SΦ−) (5.87)

=

∫
I

dE
2π

T
‖δT (E −H0)(s+|SΦ−‖2. (5.88)

The measurement of the energy E and of Π+ over time T can be represented
by the application of the operator δT (H0 − E)|s+)(s+|. We have

T

2π
|(E, s+|SΦ−)|2 ≈ ‖δT (E −H0)(s+|SΦ−‖2 (5.89)

which is interpreted as the probability of measurement of energy E over time
T .
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Suppose that the theory is invariant wrt time translations. Then the scat-
tering operator S commutes with the free Hamiltonian H0. We can represent
the Hilbert space as a direct integral

H =

∫ ⊕
H(E)dE,

so that H0 and S decompose:

H0 =

∫ ⊕
EdE, S =

∫ ⊕
S(E)dE.

Suppose that we consider the initial state

Φ− :=

∫
f(E−)|E−, s−)dE−.

Then (5.89) is
T

2π
|(E, s+|S(E)|E, s−)|2|f(E)|2. (5.90)

In the literature it is sometimes described heuristically as follows. We con-
sider an initial state |E−, s−) ∈ H(E−) and a final state |E+, s+) ∈ H(E+).
The corresponding scattering amplitude is given by

A(E+, s(+);E−, s−) :=
(
E+, s+|S(E+)|E−, s−

)
δ(E+ − E−).

The transition probability is the square of the scattering amplitude, where we
take into account the heuristic formula for the square of the delta:

|A(E+, s+;E−, s−)|2 =
∣∣(E+, s+|S(E+)|E−, e−

)∣∣2 δ(E+ − E−)T

2π
.

The quantity of physical interest is the transition probability per unit time

|A(E+, s+;E−, s−)|2

T
=
∣∣(E+, s+|S(E+)|E−, s−

)∣∣2 δ(E+ − E−)

2π
.

5.4 Measuring the momentum

This subsection is parallel to the previous one. Suppose that ~P is the momentum
operator (generator of space translations). We want to measure the momentum
inside Ω ⊂ Rd together with an observable Πs+ . We also want to measure
another independent observable, say s+ given by Πs+ = |s+)(s+| It corresponds
to the observable

1lΩ(~P )Πs+ ≈
∫

Ω

(2π)d

V
δ2
V (~k − ~P )Πs+ , (5.91)

where
δV (~k) := δL(k1) · · · δL(kd),
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Thus if we prepare a state Φ−, then the expectation value of the measurement
of (5.91) is

(SΦ−|1lΩ(~P )Πs+SΦ−) =

∫
Ω

d~k|(~k, s+|SΦ−)|2 (5.92)

≈
∫

Ω

d~k
(2π)d

V
‖δV (~P − ~k)SΦ−‖2, (5.93)

Thus if we measure the momentum ~P = ~k and Πs+ in the volume V = Ld,
which can be represented by the application of the operator δV (~P − ~k)Πs+ on
our state, we obtain the probability

V

(2π)d
|(~k, s+|SΦ−)|2. (5.94)

Suppose that the theory is invariant wrt space translations. Then the scat-
tering operator S commutes with the momentum ~P . We can represent the
Hilbert space as a direct integral with respect to ~k:

H =

∫ ⊕
H(~k)d~k,

so that ~P and S decompose:

~P =

∫ ⊕
~kd~k, S =

∫ ⊕
S(~k)d~k.

Suppose that we consider an initial and a final state |~k±, s±) ∈ H(~k±). The
scattering amplitudes are given by

A(~k+, s+;~k−, s−) :=
(
~k+, s+|S(~k+)|~k−, s−

)
δ(~k+ − ~k−).

The transition probability is the square of the scattering amplitude:

|A(~k+, s+;~k−, s−)|2 =
∣∣∣(~k+, s+)|S(~k+)|~k−, s−

)∣∣∣2 δ(~k+ − ~k−)V

(2π)d
.

The quantity of physical interest is the transition probability per unit volume

|A(~k+, s+;~k−, s−)|2

V
=
∣∣∣(~k+, s+|S(~k+)|~k−, s−

)∣∣∣2 δ(~k+ − ~k−)

(2π)d
.

5.5 Flux

We assume that H0(~k, s| = E(~k, s)(~k, s| and ~P (~k, s| = ~k(~k, s|. Note that we
have the normalization (

~k, s|~k′, s′
)

= δ(~k − ~k′)δs,s′ .
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Define the velocity by
~v = ∇~kE(~k, s).

In the relativistic case, when E(~k) =
√
m2 + ~k2, we have

~v =
~k

E(~k)
.

As an initial state we can take the plane wave restricted to the box [−L/2, L/2]d.
We set

1lV (~x) := 1l[−L/2,L/2](x1) · · · 1l[−L/2,L/2](xd),

|~k, s)V :=
(2π)d/2

V 1/2
1lV (~x)|~k, s) (5.95)

=
(2π)d/2

V 1/2

∫
· · ·
∫
δV (~k)d~k|~k, s). (5.96)

The amplitude is (
Φ+|S| ~k−

)
V

and the transition probability is∣∣∣(Φ+|S| ~k−
)
V

∣∣∣2 .
The flux is defined as |~v−|V −1. In applications one considers the transition
probability per unit flux ∣∣∣(Φ+|S| ~k−

)
V

∣∣∣2
|~v−|V −1

.

For V →∞ this converges to∣∣∣(Φ+|S| ~k−
)∣∣∣2 (2π)d

|~v−|
.

Supose that the initial state describes a pair of particles described by the

product of plane waves | ~k−1 ,
~k−2 ). Again, we use their finite volume version

| ~k−1 ,
~k−2 )V , obtaining the finite volume scattering amplitude(

Φ+|S| ~k−1 ,
~k−2

)
V
.

As usual, the transition probability is∣∣∣(Φ+|S| ~k−1 ,
~k−2

)
V

∣∣∣2 .
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First assume that ~v−1 and ~v−2 are collinear. Then the flux for a pair of particles is

defined as | ~v−1 −
~v−2 |V −2. The transition probability per unit flux for a collinear

pair of particles equals ∣∣∣(Φ+|S| ~k−1 ,
~k−2

)
V

∣∣∣2
| ~v−1 −

~v−2 |V −2
.

For V →∞ this converges to∣∣∣(Φ+|S| ~k−1 ,
~k−2

)∣∣∣2 (2π)2d

| ~v−1 −
~v−2 |

.

In the relativistic case, for collinear ~v−1 and ~v−2 (and hence also for collinear
~k−1 and ~k−2 ), we have the identity√

(k−1 k
−
2 )2 − (m−1 )2(m−2 )2

E−1 E
−
2

= | ~v−1 −
~v−2 |.

Therefore, in the physics literature one defines transition probability per unit
flux for a pair of particles by a Lorentz covariant expression∣∣∣(Φ+|S| ~k−1 ,

~k−2

)∣∣∣2 (2π)2dE−1 E
−
2√

(k−1 k
−
2 )2 − (m−1 )2(m−2 )2

,

independently of whether the particle velocities are collinear or not.

6 Second quantization

In this chapter we describe the terminology and notation of multilinear algebra.
We will concentrate on the infinite dimensional case, where it is often natural to
use the structure of Hilbert spaces. We will introduce Fock spaces and various
classes of operators acting on them. In quantum physics the passage from a
dynamics on one-particle spaces to a dynamics on Fock spaces is often called
second quantization – hence the name of the chapter.

6.1 Direct sum

Let (Yi)i∈I be a family of vector spaces. The algebraic direct sum of Yi will be
denoted

al⊕
i∈I
Yi, (6.97)

If (Yi)i∈I is a family of Hilbert spaces, then
al⊕
i∈I
Yi has a natural scalar

product. The direct sum of Yi in the sense of Hilbert spaces is defined as

⊕
i∈I
Yi :=

(
al⊕
i∈I
Yi
)cpl

.
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If I is finite, then
al⊕
i∈I
Yi = ⊕

i∈I
Yi

Let (Yi), (Wi), i ∈ I, be families of vector spaces. If ai ∈ L(Yi,Wi), i ∈ I,

then their direct sum is denoted ⊕
i∈I

ai and belongs to L

(
al⊕
i∈I
Yi,

al⊕
i∈I
Wi

)
.

Let Yi, Wi, i ∈ I be families of Hilbert spaces, and ai ∈ B(Yi,Wi) with

supi∈I ‖ai‖ <∞. Then the operator ⊕
i∈I

ai is bounded. Its extension inB

(
⊕
i∈I
Yi, ⊕

i∈I
Wi

)
will be denoted by the same symbol.

6.2 Tensor product

Let Y,W be vector spaces. The algebraic tensor product of Y and W will be
denoted Y al⊗W.

If Y, W are Hilbert spaces, then Y al⊗W has a unique scalar product such
that

(y1 ⊗ w1|y2 ⊗ w2) := (y1|y2)(w1|w2), y1, y2 ∈ Y, w1, w2 ∈ W.

We set
Y ⊗W := (Y al⊗W)cpl,

and call it the tensor product of Y and W in the sense of Hilbert spaces.
If one of the spaces Y or W is finite dimensional, then Y al⊗W = Y ⊗W.
Let Y1,Y2,W1,W2 be vector spaces. If a ∈ L(Y1,Y2) and b ∈ L(W1,W2),

then a ⊗ b denotes the tensor product of a and b, which is an operator in
L(Y1

al⊗W1,Y2
al⊗W2)

If Y1,Y2,W1,W2 are Hilbert spaces and a ∈ B(Y1,Y2), b ∈ B(W1,W2), then
a⊗ b is bounded. It extends uniquely to an operator in B(Y1 ⊗W1,Y2 ⊗W2),
denoted by the same symbol.

To prove the boundedness of a ⊗ b, it is sufficient to consider the operator
a⊗1l from Y1

al⊗W to Y2
al⊗W. Let e1, e2, . . . and f1, f2 . . . be orthonormal bases

in Y1, W resp. Consider a vector
∑
cijei ⊗ fj .

‖a⊗ 1l
∑

cijei ⊗ fj‖2 =
∑
j

‖
∑
i

cijaei‖2

≤
∑
j

‖a‖2
∑
i

|cij |2

= ‖a‖2‖
∑

cijei ⊗ fj‖2.

6.3 Fock spaces

Let Y be a vector space. Let Sn denote the permutation group of n elements

and σ ∈ Sn. Θ(σ) is defined as the unique operator in L(
al⊗
n
Y) such that

Θ(σ)y1 ⊗ · · · ⊗ yn = yσ−1(1) ⊗ · · · ⊗ yσ−1(n).
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We define the symmetrization/antisymmetrization projections

Θn
s :=

1

n!

∑
σ∈Sn

Θ(σ), Θn
a :=

1

n!

∑
σ∈Sn

sgnσΘ(σ).

If Y is a Hilbert space, then Θ(σ) is unitary and Θn
s/a are orthogonal pro-

jections.
Let Y be a vector space. The algebraic n-particle bosonic/fermionic space is

defined as
al⊗
n

s/aY := Θn
s/a

al⊗
n
Y.

The algebraic bosonic/fermionic Fock space or the symmetric/antisymmetric
tensor algebra is

al

Γs/a(Y) :=
∞
⊕
n=0

al⊗
n

s/aY.

The vacuum vector is Ω := 1 ∈ ⊗0
s/aY = C.

If Y is a Hilbert space, then the n-particle bosonic/fermionic space is defined
as

⊗ns/aY := Θn
s/a ⊗

n Y.

The bosonic/fermionic Fock space is

Γs/a(Y) :=
∞
⊕
n=0
⊗ns/aY.

For z ∈ Y we define the creation operator

â∗(z)Ψ := Θn+1
s/a

√
n+ 1z ⊗Ψ, Ψ ∈ ⊗ns/aY,

and the annihilation operator â(z) := (â∗(z))
∗
.

Above we used the compact notation for creation/annihilation operators pop-
ular among mathematicians. Physicists commonly prefer the traditional nota-
tion, which is longer and less canonical. In order to introduce it, we need to fix
an identification of Y with L2(Ξ) for some measure space (Ξ,dξ). If z equals a
function Ξ 3 ξ 7→ z(ξ), then

â∗(z) =

∫
z(ξ)â∗ξdξ, â(z) =

∫
z(ξ)âξdξ.

6.4 Second quantization of operators

For a contraction q on Z we define the operator Γ(q) on Γs/a(Z) by

Γ(q)
∣∣∣
⊗n

s/a
Z

= q ⊗ · · · ⊗ q
∣∣∣
⊗n

s/a
Z
.

Γ(q) is called the second quantization of q.
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Similarly, for an operator h we define the operator dΓ(h) by

dΓ(h)
∣∣∣
⊗n

s/a
Z

= h⊗ 1(n−1)⊗ + · · ·+ 1(n−1)⊗ ⊗ h
∣∣∣
⊗n

s/a
Z
.

dΓ(h) is called the (infinitesimal) second quantization of h.
Traditional notation: If h is the multiplication operator by h(ξ), then dΓ(h) =∫

h(ξ)a∗ξaξdξ. This will be justified in (6.104).

Note the identity Γ(eith) = eitdΓ(h).

6.5 Wick quantization

Let
(ξ1, · · · ξm, ξ′k, · · · , ξ′1) 7→ b(ξ1, · · · ξm, ξ′k, · · · , ξ′1) (6.98)

be a complex function, symmetric/antisymmetric separately wrt the first m and
the last k arguments. It can be treated as the kernel of a symmetric/antisymmetric
multilinear function on Z ⊕ Z:∫

· · ·
∫
b(ξ1, · · · ξm, ξ′k, · · · , ξ′1)

a(ξ1) · · · a(ξm)a(ξ′k) · · · a(ξ′1)dξ1 · · · dξmdξ′k · · · dξ′1.

In the symmetric case this can be interpreted as a polynomial on Z. It is
common to use the name a polynomial also in the antisymmetric case.

Note that (6.98) can be also interpreted as the integral kernel of an operator
from ⊗ks/aZ to ⊗ms/aZ.

The Wick quantization of the polynomial b will have two notations: the
compact and the traditional:

b(â∗, â) =

∫
b(ξ1, · · · ξm, ξ′k, · · · , ξ′1) (6.99)

â∗(ξ1) · · · â∗(ξm)â(ξ′k) · · · â(ξ′1)dξ1, · · · dξkdξ′1 · · · dξ′m.

Its only nonzero matrix elements are between Φ ∈ ⊗p+ms/a Z, Ψ ∈ ⊗p+ks/a Z, and

equal

(Φ|b(â∗, â)Ψ) =

√
(m+ p)!(k + p)!

p!
(Φ|b⊗ 1⊗pZ Ψ). (6.100)

Actually, we can also consider b which is not symmetric/antisymmetric.
The operator (6.99) defined by such b will depend only on its symmetriza-
tion/antisymmetrization. In particular, if b is interpreted as an operator from
⊗kZ to ⊗mZ, then

b(a∗, a) = bs/a(a∗, a), bs/a := Θm
s/abΘ

k
s/a.
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6.6 Particle number preserving operators

If m = k, then the operator b(â∗, â) preserves the number of particles and
(6.100). For Φ ∈ ⊗ns/aZ, Ψ ∈ ⊗ns/aZ it can be rewritten as

(Φ|b(â∗, â)Ψ) =
n!

(n−m)!
(Φ|b⊗ 1

⊗(n−m)
Z Ψ). (6.101)

But n!
(n−m)!m! is the number of m-element subsets of {1, 2, . . . , n}. Therefore,

we can rewrite, in the obvious notation, (6.101) as

1

m!
b(â∗, â) =

∑
1≤i1<···<im≤n

bi1,...,im . (6.102)

In particular, for m = 2 we can write

1

2
b(â∗, â) =

∑
1≤i<j≤n

bij . (6.103)

Finally, for m = 1, we have

b(â∗, â) =
∑

1≤i≤n

bi = dΓ(b). (6.104)

6.7 Examples

Consider L2(Rd). We have the position representation, with the generic vari-
ables x, y and the momentum representation with the generic variables k, k′.
We can pass from one representation to the other by

a∗(k) = (2π)−
d
2

∫
a∗(x)e−ikxdx, a∗(x) = (2π)−

d
2

∫
a∗(k)eikxdk, (6.105)

a(k) = (2π)−
d
2

∫
a(x)eikxdx, a(x) = (2π)−

d
2

∫
a(k)e−ikxdk. (6.106)

Here we give a few quadratic operators in the two representations:

dΓ(h) =

∫ ∫
a∗(x)h(x, y)a(y)dxdy = (2π)−d

∫ ∫
a∗(k)ĥ(−k, k′)a(k′)dkdk′,

where ĥ(k, k′) :=

∫ ∫
h(x, y)e−ikx−ik′ydxdy;

dΓ(V (x)) =

∫
a∗(x)V (x)a(x)dx = (2π)−d

∫
a∗(k)V̂ (−k + k′)a(k′)dkdk′

where V̂ (k) :=

∫
V (x)e−ikxdx;

dΓ(−∆) =

∫
a∗(x)(−∆x)a(x)dx =

∫
a∗(k)k2a(k)dk.
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Consider L2([0, L]d) ' L2
(

2π
L Zd

)
. Again we use x, y in the position rep-

resentation an k, k′ in the momentum representation. We can pass from one
representation to the other by

a∗(k) = L−
d
2

∫
a(x)e−ikxdx, a∗(x) = L−

d
2

∑
k

a(k)eikx, (6.107)

a(k) = L−
d
2

∫
a(x)eikxdx, a(x) = L−

d
2

∑
k

a(k)e−ikx. (6.108)

Here we give a few quadratic operators in the two representations:

dΓ(h) = (2π)−d
∫ ∫

a∗(x)h(x, y)a(y)dxdy = L−d
∑
k

∑
k′

a∗(k)ĥ(−k, k′)a(k′),

where ĥ(k, k′) :=

∫ ∫
h(x, y)e−ikx−ik′ydxdy;

dΓ(V (x)) =

∫
a∗(x)V (x)a(x)dx = L−d

∑
k,k′

a∗(k)V̂ (−k + k′)a(k′)

where V̂ (k) :=

∫
V (x)e−ikxdx;

dΓ(−∆) =

∫
a∗(x)(−∆x)a(x)dx =

∑
k

a∗(k)k2a(k).

Now consider the 2-body potential V (x− y). Denote this operator by b. Its
kernel in the position and momentum representation is

b(x, y; y′, x′) = V (x− y)δ(x− x′)δ(y − y′), (6.109)

b(k, p, p′, k′) = (2π)−dV̂ (−p+ p′)δ(p+ k − p′ − k′). (6.110)

Indeed,

(p′|(q′|V (x− y)|p)|q)

=(2π)−2d

∫ ∫
e−ip′xe−iq′yeipxeiqyV (x− y)dxdy

= (2π)−2d

∫ ∫
ei(p−p′)(x−y)e−iy(p+q−p′−q′)V (x− y)dxdy

= (2π)−dV̂ (−p+ p′)δ(p+ q − p′ − q′).

Therefore,∫ ∫
dxdyV (x− y)a∗xa

∗
yayax = (2π)−d

∫ ∫ ∫
dpdqdkV̂ (k)a∗p+ka

∗
q−kaqap.

Similarly, in the box we have∫ ∫
dxdyV (x− y)a∗xa

∗
yayax = L−d

∑
p

∑
q

∑
k

V̂ (k)a∗p+ka
∗
q−kaqap.
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For example, consider the Schrödinger Hamiltonian of n identical particles

Hn = −
n∑
i=1

∆i +
∑

1≤i<j≤n

V (xi − xj), (6.111)

Pn =

n∑
i=1

1

i
∂xi , (6.112)

In the momentum representation

Hn =

n∑
i=1

∫
p2|p)i(p|idp

+(2π)−d
∑

1≤i<j≤N

∫
δ(p′ + q′ − q − p)V̂ (p′ − p)|p′)i|q′)j(q|j(p|i.

Pn = −
n∑
i=1

∫
p|p)i(p|idp.

In the 2nd quantized notation we can rewrite all this as

H :=
∞
⊕
n=0

Hn = −
∫
a∗x∆xaxdx

+

∫ ∫
dxdyV (x− y)a∗xa

∗
yayax

=

∫
p2a∗papdp

+ (2π)−d
∫ ∫ ∫

dpdqdkV̂ (k)a∗p+ka
∗
q−kaqap

P :=
∞
⊕
n=0

Pn =

∫
a∗x

1

i
∂xaxdx

=

∫
pa∗papdp.

7 Coherent states and van Hove Hamiltonians

7.1 Translation in phase space

The Baker-Campbell-Hausdorff formula says that if [A, [A,B]] = [B, [A,B]] = 0,
then

eA+B = eAeBe−
1
2 [A,B].

In particular, consider a Hilbert space L2(Ξ,dξ) and the corresponding Fock
space Γs(L

2(Ξ,dξ)). Let g ∈ L2(Ξ).

ea
∗(g)−a(g) = e−

1
2 (g|g)ea

∗(g)e−a(g).
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We have

e−a
∗(g)+a(g)a(ξ)ea

∗(g)−a(g) = a(ξ) + g(ξ), (7.113)

e−a
∗(g)+a(g)a∗(ξ)ea

∗(g)−a(g) = a∗(ξ) + g(ξ). (7.114)

7.2 Coherent vectors

Ωg := ea
∗(g)−a(g)Ω = e−

1
2 (g|g)ea

∗(g)Ω.

is called a coherent vector associated to g.
Suppose H = h(a∗, a) is a Hamiltonian. Then we can easily compute the

expectation value of H in Ωg:

(Ωg|HΩg) = (Ω|e−a
∗(g)+a(g)h(a∗, a)ea

∗(g)−a(g)Ω)

= (Ω|h(a∗ + g, a+ g)Ω) = h(g, g).

Therefore,
inf H ≤ inf h.

Another point of view: We introduce

b(ξ) := a(ξ)− g(ξ), b∗(ξ) := a∗(ξ)− g(ξ).

Then b∗, b satisfy the same commutation relations as a∗, a. Ωg is a new “vacuum:

b(ξ)Ωg = 0.

We use b∗, b instead of a∗, a, in particular H = h(b∗ + g, b+ g).
This is just an equivalent approach if g is square integrable, since the two

points of view are unitarily equivalent. However, this is often used when g
is not square integrable–then we use a different representation of CCR. The
“classical Hamiltonian” is the same, however the “quantum representation” has
been changed.

7.3 Van Hove Hamiltonians

Let ξ 7→ ω(ξ) ≥ 0. Consider the self-adjoint operator H0 =
∫
ω(ξ)a∗(ξ)a(ξ)dξ

and the perturbation V =
∫
v(ξ)a∗(ξ)dξ +

∫
v(ξ)a(ξ)dξ.

The operator given by H := H0 + V will be called a van Hove Hamiltonian.
Van Hove Hamiltonians are exactly solvable. Nevertheless, their theory is

surprisingly rich. To avoid the ultraviolet problem we will always assume∫
ω≥1

|v(ξ)|2dξ <∞.

We will discuss various possible infra-red behaviors of van Hove Hamiltonians.
Formally, we can write

H =

∫
ω(ξ)

(
a∗(ξ) +

v(ξ)

ω(ξ)

)(
a(ξ) +

v(ξ)

ω(ξ)

)
dξ −

∫
|v(ξ)|2

ω(ξ)
dξ. (7.115)
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Infrared case A. ∫
ω<1

|v(ξ)|2

ω(ξ)2
dξ < ∞.

Introduce the dressing operator

U := exp

(
−
∫

v(ξ)

ω(ξ)
a∗(ξ)dξ +

∫
v(ξ)

ω(ξ)
a(ξ)dξ

)

= exp

(
−
∫

v(ξ)

ω(ξ)
a∗(ξ)dξ

)
exp

(∫
v(ξ)

ω(ξ)
a(ξ)dξ

)

× exp

(
−1

2

∫
|v(ξ)|2

ω(ξ)2
dξ

)
and the ground state energy

E := −
∫
|v(ξ)|2

ω(ξ)
dξ.

The operator H is well defined and, up to a constant, is unitarily equivalent
to H0:

H − E = UH0U
∗

Clearly, the Fock vacuum Φ0 = Ω is the unique ground state of H0 with the
eigenvalue E0 = 0. Therefore H has a unique ground state

Ψ = exp

(
−
∫
|v(ξ)|2

2ω(ξ)2
dξ

)
exp

(
−
∫
a∗(ξ)

v(ξ)

ω(ξ)
dξ

)
Ω,

and its eigenvalue is E.
Infrared case B
Let ∫

ω<1

|v(ξ)|2

ω(ξ)
dξ < ∞;∫

ω<1

|v(ξ)|2

ω(ξ)2
dξ = ∞.

Then H is well defined, has the spectrum [E,∞[, but has no bound states.
Infrared case C.
Let ∫

ω<1

|v(ξ)|2dξ < ∞;∫
ω<1

|v(ξ)|2

ω(ξ)
dξ = ∞.

Then H is well defined, but spH =]−∞,∞[.
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7.4 Dynamics of time-independent van Hove Hamiltoni-
ans

It is easy to compute eitH in the case A:

eitH = exp
(
− a∗

(
ω−1v

)
+ a
(
ω−1v

))
Γ
(
eitω
)

exp
(
a∗
(
ω−1v

)
− a
(
ω−1v

))
× exp

(
− it(v|ω−1v)

)
= exp

(
− a∗

(
ω−1v

)
+ a
(
ω−1v

))
exp

(
a∗
(
eitωω−1v

)
− a
(
eitωω−1v

))
× Γ

(
eitω
)

exp
(
− it(v|ω−1v)

)
= exp

(
a∗
(
(eitω − 1)ω−1v

)
+ a
(
(1− eitω)ω−1v

))
× Γ

(
eitω
)

exp
(1

2

(
v|(eitω − e−itω − i2tω)ω−2v

))
.

We easily see that the above expression is well defined in the case A, B and C
for all t and strongly continuously depends on t. Therefore, H is well defined
as a self-adjoint operator.

7.5 Reminder about notation for evolution

It is convenient to use the following notation for a dynamics generated by time
dependent Hamiltonian H(t):

U(t+, t−) := Texp

(
−i

∫ t+

t−

H(s)ds

)
.

The evolution in the interaction picture is defined as

UInt(t+, t−) := eit+H0U(t+, t−)e−it−H0 .

The interaction Hamiltonian is defined as

HInt(t) := eitH0V (t)e−itH0 .

Note that

UInt(t+, t−) = Texp

(
−i

∫ t+

t−

HInt(t)dt

)
.

S± := UInt(0,±∞)

are called Møller operators and

S := UInt(∞,−∞)

is called the scattering operator.
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7.6 Time-dependent BCH formula

Let R 3 t 7→ A(t), B(t) be operator valued functions such that

[A(t), A(t′)] = [B(t), B(t′)] = 0,

[[A(t), B(t′)], A(t′′)] = [[A(t), B(t′)], B(t′′)] = 0.

Then

Texp

(∫ ∞
−∞

dt(A(t) +B(t))

)
(7.116)

= exp

(∫ ∞
−∞

dtA(t)

)
exp

(∫ ∞
−∞

dtB(t)

)
(7.117)

× exp

(∫ ∞
−∞

dt1

∫ ∞
−∞

dt2θ(t1 − t2)[B(t1), A(t2)]

)
. (7.118)

The exponent of (7.118) by a simple substitution can be rewritten as∫ ∞
−∞

dt1

∫ ∞
−∞

dt2θ(t1 − t2)[B(t1), A(t2)] (7.119)

=
1

2

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2

(
θ(t1 − t2)[B(t1), A(t2)] + θ(t2 − t1)[B(t2), A(t1)]

)
.

7.7 Time dependent Van Hove Hamiltonians

The BCH formula has the following time-dependent version:
Consider a (time-dependent) Van Hove Hamiltonian H(t) := H0 +V (t) with

V (t) =

∫
v(t, ξ)a∗(ξ)dξ +

∫
v(t, ξ)a(ξ)dξ.

Clearly, the van Hove Hamiltonian in the interaction picture equals

HInt(t) =

∫
eitω(ξ)v(t, ξ)a∗(ξ)dξ +

∫
e−itω(ξ)v(t, ξ)a(ξ)dξ.

Theorem 7.1 The corresponding scattering operator is then given by

S = Texp

(
−i

∫
HInt(t)dt

)
= exp

(
−i

∫
v(ω(ξ), ξ)a∗(ξ)dξ

)
exp

(
−i

∫
v(ω(ξ), ξ)a(ξ)dξ

)
× exp

(
i

2π

∫
v(τ, ξ)v(τ, ξ)ω(ξ)

ω(ξ)2 − τ2 − i0
dτdξ

)
,

where v(τ, ξ) :=
∫
v(t, ξ)eitτdt.
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Proof. We apply the time-dependent BCH formula with

A(t) := −i

∫
eitω(ξ)v(t, ξ)a∗(ξ)dξ, (7.120)

B(t) := −i

∫
e−itω(ξ)v(t, ξ)a(ξ)dξ. (7.121)

We obtain

S = exp

(
−i

∫
dξ

∫
dteitω(ξ)v(t, ξ)a∗(ξ)

)
exp

(
−i

∫
dξ

∫
dte−itω(ξ)v(t, ξ)a(ξ)

)
× exp

(
−1

2

∫
dξ

∫
dt1

∫
dt2e−iω(ξ)|t1−t2|v(t1, ξ)v(t2, ξ)

)
.

2

Let us note the identity

− 1

2

∫ ∫
dt1dt2

(
Ω|T

(
HInt(t1)HInt(t2)

)
Ω
)

(7.122)

=− 1

2

∫
dξ

∫
dt1

∫
dt2e−iω(ξ)|t1−t2|v(t1, ξ)v(t2, ξ) (7.123)

=
i

2π

∫
v(τ, ξ)v(τ, ξ)ω(ξ)

ω(ξ)2 − τ2 − i0
dτdξ, (7.124)

which shows that a kind of a Feynman propagator appears naturally in this
context.

7.8 Adiabatic scattering theory for van Hove Hamiltoni-
ans

Assume for the moment that H0, V be self-adjoint operators and ε > 0. We
define Vε(t) := e−ε|t|V . We will write

Hε(t) := H0 + Vε

for the corresponding time-dependent Hamiltonian. We also introduce Uε(t+, t−),
UεInt(t+, t−), S±ε , Sε, etc.

We can compute the adiabatic Møller operator for van Hove Hamiltonians.

To this end, consider v+
ε (t, ξ) := θ(t)e−ε|t|v(ξ). Then v+

ε (τ, ξ) = iv(ξ)
τ+iε . We have

S+
ε = exp

(∫
v(ξ)

ω(ξ) + iε
a∗(ξ)dξ

)
exp

(
−
∫

v(ξ)

ω(ξ)− iε
a(ξ)dξ

)

× exp

(
i

2π

∫
|v(ξ)|2ω(ξ)dτdξ

(τ2 + ε2)(ω(ξ)2 − τ2 − i0)

)
. (7.125)
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(7.125) does not have a limit as ε↘ 0. Indeed, an elementary calculation shows∫
dτ

(τ2 + ε2)(ω(ξ)2 − τ2 − i0)
=

∫
1

ω(ξ)2 + ε2

(
1

τ2 + ε2
+

1

ω(ξ)2 − τ2 − i0

)
dτ

=
π

ε(ω(ξ)2 + ε2)
+

iπ

ω(ξ)(ω(ξ)2 + ε2)
. (7.126)

Now the real part of iω(ξ)
2π (7.126) equals − 1

2(ω(ξ)2+ε2) . Therefore we can renor-

malize Sε by removing the divergent phase:

|(Ω|S+
ε Ω)|

(Ω|S+
ε Ω)

S+
ε = exp

(
−
∫

v(ξ)

ω(ξ) + iε
a∗(ξ)dξ

)
exp

(∫
v(ξ)

ω(ξ)− iε
a(ξ)dξ

)

× exp

(
−1

2

∫
|v(ξ)|2

ω(ξ)2 + ε2
dξ

)
.

Therefore, if
∫ |v(ξ)|2

ω(ξ)2 dξ < ∞, that is in Case A, then the Gell-Mann and

Low wave operator for H equals

S+
GL = s− lim

ε↘0

|(Ω|S+
ε Ω)|

(Ω|S+
ε Ω)

S+
ε

= exp

(
−
∫

v(ξ)

ω(ξ)
a∗(ξ)dξ

)
exp

(∫
v(ξ)

ω(ξ)
a(ξ)dξ

)

× exp

(
−1

2

∫
|v(ξ)|2

ω(ξ)2
dξ

)
and coincides with the dressing operator U∗.

If
∫ |v(ξ)|2

ω(ξ)2 dξ =∞, that is in Case B and C, then S+
GL does not exist because

of the infrared problem.
An analogous computation yields S−GL = S+

GL. Therefore, the Gell-Mann
and Low scattering operator for H equals

SGL := S+∗
GLS

−
GL = 1l.

One can also compute SGL directly, setting v(t, ξ) := e−ε|t|v(ξ). Then
v(τ, ξ) = 2ε

τ2+ε2 v(ξ). Therefore,

Sε
(Ω|SεΩ)

= exp

(
−i

∫
v(ξ)2ε

ε2 + ω(ξ)2
a∗(ξ)dξ

)
exp

(
−i

∫
v(ξ)2ε

ε2 + ω(ξ)2
a(ξ)dξ

)
.

This converges weakly to 1l.
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8 Slater determinants and the Hartree-Fock method

8.1 Slater determinants

Let W be a Hilbert space. We consider the fermionic Fock space Γa(W).
Let e1, . . . , em be an orthonormal subset of a Hilbert space W. Then

a∗(e1) · · · a∗(em)Ω =
1√
m!

∑
σ∈Sm

sgnσeσ(1) ⊗ · · · ⊗ eσ(m) (8.127)

=
√
m!e1 ⊗a · · · ⊗a em =

1√
m!
e1 ∧ · · · ∧ em (8.128)

is a normalized vector. Such vectors are called Slater determinants. If f1, . . . , fm
is another basis of the subspace spanned by e1, . . . , em, so that ei =

∑
j cijfj ,

then
a∗(e1) · · · a∗(em)Ω = det[cij ]a

∗(f1) · · · a∗(fm)Ω.

Let π denote the orthogonal projection on the space spanned by e1, . . . , em.
We will denote the vector (8.128) by Φπ. (This is not quite correct, because it
is fixed by π only up to a phase factor). However the the state

ωπ(A) :=
(
a∗(e1) · · · a∗(em)Ω|Aa∗(e1) · · · a∗(em)Ω

)
depends only on π.

8.2 CAR

Suppose that e1, e2, . . . is a basis of W. We use two conventions:

ai := a(ei), a∗i := a∗(ei),

Then
[ai, aj ]+ = 0, [ai, a

∗
j ]+ = δi,j , aiΩ = 0. (8.129)

Alternatively, if w =
∑
wiei ∈ W we write

a(w) =
∑

wiai, a∗(w) =
∑

wia
∗
i ,

We can write

[a(w), a(w′)]+ = 0, [a(w), a∗j (w
′)]+ = (w|w′), a(w)Ω = 0. (8.130)

The vectors a∗i1 · · · a
∗
in

Ω, i1 < · · · < in form an orthonormal basis of Γa(W).

8.3 Changing the vacuum

Suppose we want to treat the Slater determinant

Φ := a∗1 · · · a∗nΩ
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as a new vacuum for the space Γa(W). One can do it as follows: we rename

bi := a∗i , b∗i := ai, i = 1, . . . ,m.

Then we set

ãi :=

{
bi i ≤ n,
aj j > n;

ã∗i :=

{
b∗i i ≤ n,
a∗j j > n.

.

Then ãi, ã
∗
i , i = 1, . . . satisfy the usual anticommutation relations with the

vacuum Φ.
Let us introduce the complex conjugation on the space Cn (which is embed-

ded in W, spanned by e1, . . . , en:

Cn 3 w =
∑

wnen 7→ w :=
∑

wiei ∈ W.

Then we can set

ã(w) :=

n∑
i=1

biwi +

∞∑
j=n+1

wjaj , (8.131)

ã∗(w) :=

n∑
i=1

b∗iwi +

∞∑
j=n+1

wja
∗
j . (8.132)

Then ã(w), ã∗(w) satisfy the usual commutation relations with vacuum Φ

[ã(w), ã(w′)]+ = 0, [ã(w), ã∗j (w
′)]+ = (w|w′), ã(w)Φ = 0. (8.133)

Thus in the new representation the 1-particle space is πW ⊕ (1l− π)W) and
not W. Therefore, we obtain a representation of the space Γa(W) as the space
Γa(πW ⊕ (1l− π)W).

We can implement this change (up to some signes) by a unitary transforma-
tion: Set U :=

∏m
i=1(ai + a∗i ). U satisfies

Ua∗iU
∗ = (−1)m+1bi, i = 1, . . . ,m; (8.134)

Ua∗iU
∗ = (−1)ma∗i , i = m+ 1, . . . (8.135)

UΩ = Φ. (8.136)

In fact

(a+ a∗)a(a+ a∗) = a∗aa∗ = a∗(aa∗ + a∗a) = a∗, (8.137)

(a+ a∗)a∗(a+ a∗) = aa∗a = a(aa∗ + a∗a) = a. (8.138)

8.4 Free fermionic Hamiltonians

For simplicity, assume thatW is finite dimensional. Consider H = dΓ(h), where
h is a self-adjoint operator on W. We can diagonalize h, so that

h =
∑
i

λi|ei)(ei|.
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It is easy to see that dΓ(h) possesses a unique ground state iff 0 6∈ sph. Indeed,
let λ1 ≤ λ2 ≤ · · · ≤ λm < 0 < λm+1 ≤ . . . . Then the ground state of dΓ(h) is
given by

Φ := a∗1 · · · a∗mΩ,

so that
HΦ = EΦ, E = λ1 + · · ·+ λm.

The Hamiltonian H can be rewritten as

H =
∑
i

λia
∗
i ai =

∑
i≤m

|λi|b∗i bi +
∑
i>m

λia
∗
i ai +

∑
i≤m

λi.

Note that strictly speaking this construction makes sense only for a finite di-
mensional 1l]−∞,0](h). However, it is often used also if this dimension is infinite.
The constant E is usually dropped—it is often in fact infinite, and we use the
renormalized Hamiltonian

Hren =
∑
i≤m

|λi|b∗i bi +
∑
i>m

λia
∗
i ai.

Example 8.1 Consider the free Fermi gas with the chemical potential µ in
volume L.

H =
∑

k∈ 2π
L Zd

(k2 − µ)a∗kak.

The ground state is called the “Fermi sea”:
∏
k2<µ a

∗
kΩ. It has the energy

E =
∑
k2<µ

(k2 − µ).

The renormalized Hamiltonian is

Hren =
∑
k2<µ

|k2 − µ|b∗kbk +
∑
k2≥µ

|k2 − µ|a∗kak.

In infinite volume the Hamiltonian is

H =

∫
(k2 − µ)a∗kakdk.

E is infinite and the Slater determinant is ill defined. However, we can change
the representation of CAR replacing H with

Hren =

∫
k2<µ

|k2 − µ|b∗kbkdk +

∫
k2≥µ

|k2 − µ|a∗kakdk.

Example 8.2 Consider the Dirac Hamiltonian

h := ~α~p+ βm+ V (x).
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It is a self-adjoint operator on L2(R3⊗C4) The naive quantization of h, that is
dΓ(h), acts on the space Γa

(
L2(R3⊗C4)

)
. It is however physically meaningless—

it yields an operator unbounded from below. Formally, the ground state of dΓ(h)
is the Slater determinant with all negative energy states present. This state is
called the Dirac sea.

In practice, we change the representation of CAR. Set

Λ± := 1l[0,∞[(±h).

The physical one particle space is

CΛ−L2(R3 ⊗ C4)⊕ Λ+L2(R3 ⊗ C4),

where C is an antilinear map, usually the charge conjugation.

8.5 CAR C∗-algebra

A is a C∗-algebra if it is a Banach ∗algebra satisfying ‖A∗‖ = ‖A‖ and ‖A∗A‖ =
‖A‖2. ω is a state on A if it is a functional on A such that ω(A∗A) ≥ 0 and
ω(1l) = 1. π∗(A)→ B(H) is a ∗-representation if it is a ∗-homomorphism.

Every closed ∗-algebra in B(H) is a C∗-algebra. Every functional of the
form A 7→ TrAρ, where Trρ = 1, ρ ≥ 0 is a state.

The operators a(w), a∗(w) with w ∈ W satisfying the CAR can be treated
as abstract elements generating a ∗-algebra. After an appropriate completion
it becomes a C∗-algebra, called the CAR algebra. It can be denoted CAR(W).
The representation in the Fock space Γa(W) is one of possible representations.
I

Let π be an orthogonal projection on W Fix an antilinear conjugation on
πW, denoted by C, that is an antiunitary operator satisfying C2 = 1l. Consider
the one particle Hilbert space CπW⊕ (1l−π)W and the Fock space Γa

(
CπW⊕

(1l − π)W
)

Creation/annihilation operators for Cw ∈ CRanπ will be denoted
b∗(Cw) and b(Cw). Then the operators

ρ(a∗(w)) := b(Cπw) + a∗
(
(1l− π)w

)
extends to a ∗-representation of CAR(W).

If Ranπ is infinite dimensional, there is no unitary map U that intertwines
the two kinds of representations of CAR. In particular, there is no vector killed
by ρ(a(w)).

8.6 Expectation values of Slater determinants

Theorem 8.3 Let b be an operator on ⊗mW. Let π be a projection onto a
subspace of W. Then

ωπ
(
b(a∗, a)

)
=
∑
σ∈Sm

Tr b π⊗m Θ(σ)sgn(σ).
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Proof. It is enough to check this assuming that

b = |ei1) · · · |eim)(ejm | · · · (ej1 |,

corresponding to
b(a∗, a) = a∗i1 · · · a

∗
inajn · · · aj1 .

Now
(a∗1 · · · a∗nΩ|a∗i1 · · · a

∗
imajm · · · aj1 a

∗
1 · · · a∗nΩ) (8.139)

is nonzero only if i1, . . . , im are distinct,

{i1, . . . , im} = {j1, . . . , jm} ⊂ {1, . . . , n}.

Then it is ±1, where its sign is determined by the unique permutation that
maps {i1, . . . , im} onto {j1, . . . , jm}. Now

1 = Trπ⊗m|ei1) · · · |eim)(ejm | · · · (ej1 |Θ(σ).

2

In particular, we have the cases n = 1, 2:

ωπ
(
dΓ(h)

)
= Trπh, (8.140)

ωπ
(
b(a∗, a)

)
= Tr b π⊗π(1l− τ), (8.141)

where τ : W ⊗W → W ⊗W is the transposition of the factors in the tensor
product.

8.7 The Hartree-Fock method

Let h be a self-adjoint operator onW and b onW⊗W. We assume that τbτ = b.
Consider the particle number preserving operator

H = dΓ(h) +
1

2
b(a∗, a).

We would like to find the ground state energy of H in the n-body sector.
The Hartree-Fock functional is the expectation value of H in a Slater deter-

minant:

EHF(π) := ωπ(H) = Trhπ +
1

2
Tr b π⊗π (1l− τ).

The ground state energy of H is clearly estimated from above by its Hartree-
Fock energy

EHF := inf{EHF(π) : π is an n-dimensional orthogonal projection}.

If a minimizer of EHF exists, we denote it by πHF. We define the Hartree-Fock
Hamiltonian (called also the Fock Hamiltonian) by its expectation value in a
trace class matrix γ:

TrhHFγ := Trhγ + Tr b πHF⊗γ (1l− τ).

Notice the absence of 1
2 .
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Theorem 8.4 πHF is a projection onto n lowest lying levels of hHF

Proof. Every orthogonal projection has the kernel

π(x, y) =

n∑
i=1

φi(x)φi(y),

where φ1, . . . , φn is an orthonormal basis of Ranπ. The Hartree-Fock functional
can be written as

EHF(π) =: E(φ1, . . . φn) =
∑
i

(φi|hφi)

+
1

2

∑
ij

(φi ⊗ φj |b φi ⊗ φj)−
1

2

∑
ij

(φi ⊗ φj |b φj ⊗ φi).

Using the method of Lagrange multipliers, EHF is given as the infimum of

EHF(φ1, . . . , φn)−
∑
ij

εij
(
(φi|φj)− δij

)
,

where we may assume that the matrix εij is Hermitian. Writing φi+δφi, εij+δεij
for the variations, we find

δEHF =
∑
i

(
φi|hHFδφi) +

(
δφi|hHFφi) (8.142)

−
∑
ij

εij(φi|δφj)−
∑
ij

εij(δφi|φj) (8.143)

+
∑
ij

δεij
(
(φi|φj)− δij

)
. (8.144)

Comparing the coefficients at δφi on the right of the scalar product and on the
left of the scalar product independently, we obtain

hHFφi =
∑
j

εijφj .

We can diagonalize the matrix [εij ] with a unitary transformation, so that εij =
δijεi, and we obtain

hHFφi = εiφi.

Thus the minimizing sequence φ1, . . . , φn can consist of normalized eigenvectors
of hHF.

Now assume that there is an eigenvector of hHF, say ψ orthogonal to φ1, . . . φn
and with an eigenvalue β lower than one of the eigenvalues ε1, . . . , εn. For in-
stance,

hHFψ = βψ, β < ε1.
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Then we can consider a variation φ1 + δφ1 :=
√

1− t2φ1 + tψ. This variation is
tangent to the constraints. Besides,

δEHF(φ1 + δφ1, φ2, . . . , φn)

=
δ2

δφ2
1

EHFδφ1δφ1 +
δ2

δφ
2

1

EHFδφ1δφ1 +
δ2

δφ1δφ1

EHFδφ1δφ1.

The first two terms are zero because of the operator 1l− τ . The second equals

−t2(φ1|hHFφ1) + t2(ψ|hHFψ) = t2(−ε1 + β),

hence is negative. 2

Note that the Hartree-Fock energy is in general not equal to the sum of the
lowest n eigenvalues of HHF.

8.8 Hartree-Fock method for atomic systems

Suppose now that V (x) = V (−x) and

H =−
∫
a∗x∆xaxdx+

∫
a∗xW (x)axdx (8.145)

+
1

2

∫ ∫
a∗xa
∗
yV (x− y)axaydxdy. (8.146)

Let π be an n-dimensional projection. We set

ρ(x) := π(x, x), ρHF(x) := πHF(x, x).

Then

EHF(π) =

∫
∂x∂yπ(x, y)

∣∣∣
x=y

dx+

∫
W (x)ρ(x)dx (8.147)

+
1

2

∫ ∫
V (x− y)ρ(x)ρ(y)dxdy − 1

2

∫ ∫
V (x− y)|π(x, y)|2dxdy,

HHF = −∆ +W (x) +

∫
ρHF(y)V (x− y)dy − Tex, (8.148)

where Tex is a nonlocal operator with the kernel

Tex(x, y) = V (x− y)πHF(x, y).

A semiclassical argument implies that the first term in (8.147), that is the
kinetic energy, can be approximated by

(2π)−d
d

d+ 2
c
−2/d
d

∫
ρ
d+2
d (x)dx, (8.149)
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where cd is the volume of a unit ball in d dimensions. We also expect that
the last term, that is the exchange energy is relatively small. This leads to the
so-called Thomas-Fermi functional, which depends only on the density:

ETF(ρ) :=(2π)−d
d

d+ 2
c
−2/d
d

∫
ρ
d+2
d (x)dx

+

∫
W (x)ρ(x)dx+

1

2

∫ ∫
V (x− y)ρ(x)ρ(y)dxdy.

9 Squeezed states

9.1 1-mode squeezed vector

Consider Γs(C).

Theorem 9.1 Let |c| < 1. Then

Ωc := (1− |c|2)
1
4 e

c
2a
∗2

Ω

is a normalized vector satisfying

(a− ca∗)Ωc = 0. (9.150)

Proof.(
e
c
2a
∗2

Ω|e c2a
∗2

Ω
)

=

∞∑
n=0

|c|2n(2n)!

(n!)222n

=
∑ (−1)n|c|2n(− 1

2 )(− 1
2 − 1) · · · (− 1

2 − n)

n!
=
(
1− |c|2

)− 1
2 .

Using

e−
c
2a
∗2
ae

c
2a
∗2

=a− c

2
[a∗2, a] = a+ ca∗,

we obtain (9.158). 2

Theorem 9.2 Set
Ut := e

t
2 (−a∗2+a2).

Then

UtaU
−1
t = a cosh t+ a∗ sinh t, (9.151)

Uta
∗U−1

t = a∗ cosh t+ a sinh t, (9.152)

Ut =
1√

cosh t
e−

tanh t
2 a∗2Γ

( 1

cosh t

)
e

tanh t
2 a2 , (9.153)

Ωtanh t = UtΩ. (9.154)

48



Proof. (9.151) and (9.152) are immediate. We next compute

d

dt
Ut =

1

2
(−a∗2 + a2)Ut

= − 1

2 cosh2 t
a∗2Ut +

1

2 cosh2 t
Uta

2 − sinh t

cosh2 t
a∗Uta−

sinh t

2 cosh t
Ut.

Then we use the identity concerning the derivative of Γ(eh) = eha
∗a contained

in (9.155). 2

Lemma 9.3
d

dt
eh(t)a∗a = ḣ(t)eh(t)a∗eh(t)a∗aa. (9.155)

Proof.

d

dt
eha
∗a = ḣeha

∗aa∗a (9.156)

= ḣeha
∗aa∗e−ha

∗aeha
∗aa = ḣeha∗eha

∗aa. (9.157)

2

9.2 Many-mode squeezed vector

Suppose c is a symmetric complex matrix on Cn. One can show that then
there exists an orthonormal basis such that c is diagonal where all terms on the
diagonal are nonnegative. Therefore, we have the many-mode generalizations
of the results of the previous subsection to Γs(Cn):

Theorem 9.4 Let c be a symmetric n× n matrix such that ‖c‖ < 1. Then

Ωc := det(1− |c|2)
1
4 e

1
2 cija

∗
i a
∗
jΩ

is a normalized vector satisfying

(ai − cija∗j )Ωc = 0. (9.158)

where we write |c| :=
√
c∗c.

Theorem 9.5 Let θ be a symmetric n× n matrix. Set

Uθ := e
1
2 (−θija∗i a

∗
j+θijajai).
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Then

UθaiU
−1
θ = (cosh |θ|)ijaj +

(
θ

sinh |θ|
|θ|

)
ij
a∗j , (9.159)

Uθa
∗
iU
−1
θ = (cosh |θ|)ija∗j +

(
θ

sinh |θ|
|θ|

)
ij
aj , (9.160)

Uθ =
1√

det cosh |θ|
e
−
(
θ

tanh |θ|
2|θ|

)
ij
a∗i a
∗
jΓ
( 1

cosh |θ|

)
e

(
θ

tanh |θ|
2|θ|

)
ij
ajai

,

(9.161)

UθΩ = Ω tanh |θ|
|θ| θ

. (9.162)

9.3 Single-mode gauge-invariant squeezed vector

Consider Γs(C2). The creation/annihilation of first mode are denoted a∗, a, of
the second b∗, b.

We assume that in our space there is a “charge operator”

Q := a∗a− b∗b,

and we are interested mostly in gauge invariant states, that is satisfying Q = 0.

Theorem 9.6 Let |c| < 1. Then

Ωc := (1− |c|2)
1
2 eca

∗b∗Ω

is a normalized vector satisfying

(a− cb∗)Ωc = 0, (9.163)

(b− ca∗)Ωc = 0. (9.164)

Proof. (
eca
∗b∗Ω|eca

∗b∗Ω
)

=

∞∑
n=0

|c|2n(n!)2

(n!)2

=
(
1− |c|2

)−1
.

Using

e−ca
∗b∗aeca

∗b∗ =a− c[a∗b∗, a] = a+ cb∗,

we obtain (9.164). 2

Remark 9.7 Clearly,

eca
∗b∗ = exp

( c
4

(a∗ + b∗)2 − c

4
(a∗ − b∗)2

)
.

Hence a single mode gauge-invariant squeezed vector can be also understood as
a 2-mode squeezed state. However, it is often simple to deal with it directly.
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Theorem 9.8 Set
U t := et(−a

∗b∗+ab).

Then

U taU−t = a cosh t+ b∗ sinh t, (9.165)

U ta∗U−t = a∗ cosh t+ b sinh t, (9.166)

U tbU−t = b cosh t+ a∗ sinh t, (9.167)

U tb∗U−t = b∗ cosh t+ a sinh t, (9.168)

U t =
1

cosh t
e− tanh ta∗b∗Γ

( 1

cosh t

)
etanh tba, (9.169)

Ω− tanh t = U tΩ. (9.170)

Proof. We compute

d

dt
U t = (−a∗b∗ + ba)U t

= − 1

cosh2 t
a∗b∗U t +

1

cosh2 t
U tba− sinh t

cosh2 t

(
a∗U ta+ b∗U tb

)
− sinh t

cosh t
U t.

10 Bose gas and superfluidity

n identical bosonic particles are described by the Hilbert space

Hn := L2
s

(
(Rd)n

)
= ⊗ns L2(Rd),

the Schrödinger Hamiltonian

Hn = −
n∑
i=1

∆i + λ
∑

1≤i<j≤n

V (xi − xj)

and the momentum Pn := −
n∑
i=1

i∂xi . We have PnHn = HnPn, which expresses

the translational invariance of our system.
The potential V is a real function on Rd that decays at infinity and satisfies
V (x) = V (−x).

We enclose these particles in a box of size L with fixed density ρ := n
Ld

and
n large. Instead of the more physical Dirichlet boundary conditions, to keep
translational invariance we impose the periodic boundary conditions, replacing
the original V by the periodized potential

V L(x) :=
∑
n∈Zd

V (x+ Ln) =
1

Ld

∑
p∈(2π/L)Zd

eipxV̂ (p),

well defined on the torus [−L/2, L/2[d. (Note that above we used the Poisson
summation formula).
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The original Hilbert space is replaced by

HLn := L2
s

((
[−L/2, L/2[d

)n)
= ⊗ns

(
L2([−L/2, L/2[d)

)
.

We have a new Hamiltonian

HL
n = −

n∑
i=1

∆L
i + λ

∑
1≤i<j≤n

V L(xi − xj)

and a new momentum PLn := −
n∑
i=1

i∂Lxi .

Because of the periodic boundary conditions we still have

PLnH
L
n = HL

nP
L
n .

In the sequel we drop the superscript L.
We use the second quantized formalism

H =
∞
⊕
n=0
Hn = Γs

(
L2[0, L]d

)
' Γs

(
l2
(2π

L
Zd
))
.

The Hamiltonian and the momentum in second quantized notation are

H :=
∞
⊕
n=0

Hn = −
∫
a∗x∆xaxdx+

λ

2

∫ ∫
dxdya∗xa

∗
yV (x− y)ayax

=
∑
p

p2a∗pap +
λ

2Ld

∑
p,q,k

V̂ (k)a∗p+ka
∗
q−kaqap,

P :=
∞
⊕
n=0

Pn =

∫
a∗x

1

i
∂xaxdx

=
∑
p

pa∗pap.

10.1 Bogoliubov’s approximation in the canonical formal-
ism

We assume that the potential is repulsive, more precisely,

V̂ ≥ 0, V ≥ 0.

The Hamiltonian H commutes with N . We are interested in its low energy part
for large eigenvalues n of the number of particle operator N .

We expect that for low energies most particles will be spread evenly over
the whole box staying in the zeroth mode, so that N ' N0 := a∗0a0. (The Bose
statistics does not prohibit to occupy the same state). Following the arguments
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of N. N. Bogoliubov from 1947, we drop all terms in the Hamiltonian involving
more than two creation/annihilation operators of a nonzero mode. We obtain

H ≈ λV̂ (0)

2Ld
a∗0a
∗
0a0a0 +

∑
k 6=0

(
k2 + a∗0a0

λ

Ld
(
V̂ (k) + V̂ (0)

))
a∗kak

+
∑
k 6=0

λ

2Ld
V̂ (k)

(
a∗0a
∗
0aka−k + a∗ka

∗
−ka0a0

)
=

λV̂ (0)ρ

2
(N − 1) +HBog +R,

where we set

ρ =
N

Ld
,

HBog :=
∑
k 6=0

(
k2 + λρV̂ (k)

)
a∗kak

+
1

2

∑
k 6=0

λρV̂ (k)
(
a∗ka
∗
−k + aka−k

)
,

R = −λV̂ (0)

2Ld
(N −N0)(N −N0 − 1)

+
∑
k 6=0

λ

2Ld
V̂ (k)

(
(a∗0a

∗
0 −N)aka−k + a∗ka

∗
−k(a0a0 −N)

)
.

We used

a∗0a
∗
0a0a0 = N0(N0 − 1)

= N(N − 1)− 2N0(N −N0)− (N −N0)(N −N0 − 1).

We argue that R is small because

a∗0a
∗
0 ≈ a0a0 ≈ N0 ≈ N.

A Bogoliubov transformation, is a linear transformation of creation/annihilation
operators preserving the commutation relations. If we demand in addition that
it should commute with translations, it should have the form

ãp := cpap + spa
∗
−p, (10.171)

ã∗p := cpa
∗
p + spa−p, p 6= 0, (10.172)

where
c2p − s2

p = 1, p 6= 0.
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We are looking for a Bogoliubov transformation that diagonalizes the quadratic
Hamiltonian HBog:

HBog = EBog +
∑
p 6=0

ω(p)ã∗pãp,

PBog =
∑
p 6=0

pã∗pãp,

This is realized by

cp :=

√
|p|2 + 2λρV̂ (p) + |p|

2
√
ω(p)

,

sp :=

√
|p|2 + 2λρV̂ (p)− |p|

2
√
ω(p)

,

ω(p) : = |p|
√
|p|2 + 2λρV̂ (p),

EBog := −1

2

∑
p 6=0

(
|p|2 + λρV̂ (p)− |p|

√
|p|2 + 2λρV̂ (p)

)
.

ω(p) is called the Bogoliubov dispersion relation and EBog the Bogoliubov energy.
Let us show some computations:

A(a∗kak + a∗−ka−k) +B(a∗ka
∗
−k + a−kak)

=(Ca∗k + Sa−k)(Cak + Sa∗−k) + (Ca∗k + Sa−k)(Cak + Sa∗−k)− 2S2,

where C :=
1

2
(
√
A+B +

√
A−B),

S :=
1

2
(
√
A+B −

√
A−B).

To obtain ck, sk we divide C, S by the square root of

C2 − S2 =
√
A2 −B2.

Note that cp = coshβp, sp = sinhβp, where

tanh(βp) :=
|p|2 + λρV̂ (p)− |p|

√
|p|2 + 2λρV̂ (p)

λρV̂ (p)
,

Set

U = exp
(∑
p 6=0

βp
2

(
−a∗pa∗−p + apa−p

) )
.

54



Then U is unitary and

ãp = UapU
∗,

ã∗p = Ua∗pU
∗,

HBog = EBog + U
∑
p 6=0

ω(p)a∗papU
∗,

P = U
∑
p 6=0

pa∗papU
∗.

The ground state of the Bogoliubov Hamiltonian is a squeezed state in the
non-zero mode sector:

a∗n0√
n!
UΩ.

The Bogoliubov dispersion relation depends on λ and ρ only through λρ =
λn
Ld

.
The Bogoliubov Hamiltonian depends on L only through the choice of the

lattice spacing 2π
L .

We expect that the low energy part of the excitation spectra of Hn and HBog

are close to one another for large n, hoping that then n−n0 is small. We expect
some kind of uniformity wrt L.

Note that formally we can even take the limit L→∞ obtaining

HBog − EBog = (2π)−d
∫
ω(p)ã∗pãpdp,

P = (2π)−d
∫
pã∗pãpdp.

10.2 Bogoliubov’s approximation in the grand-canonical
approach

For a chemical potential µ > 0, we define the grand-canonical Hamiltonian

Hµ := H − µN =
∑
p

(p2 − µ)a∗pap

+
λ

2Ld

∑
p,q,k

V̂ (k)a∗p+ka
∗
q−kaqap.

We will mostly set λ = 1.
If Eµ is the ground state energy of Hµ, then it is realized in the sector n

satisfying

∂µEµ = −n.

In what follows we drop the subscript µ.
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For α ∈ C, we define the displacement or Weyl operator of the zeroth mode:
Wα := e−αa

∗
0+αa0 . Let Ωα := WαΩ be the corresponding coherent vector. Note

that PΩα = 0. The expectation of the Hamiltonian in Ωα is

(Ωα|HΩα) = −µ|α|2 +
V̂ (0)

2Ld
|α|4.

It is minimized for α = eiτ

√
Ldµ√
V̂ (0)

, where τ is an arbitrary phase.

We apply the Bogoliubov translation to the zero mode of H by W (α). This
means making the substitution

a0 = ã0 + α, a∗0 = ã∗0 + α,

ak = ãk, a∗k = ã∗k, k 6= 0.

Note that
ãk = W ∗αakWα, ã∗k = W ∗αa

∗
kWα,

and thus the operators with and without tildes satisfy the same commutation
relations. We drop the tildes.

Here is the translated Hamiltonian:

H := −Ld µ2

2V̂ (0)

+
∑
k

(1

2
k2 + V̂ (k)

µ

V̂ (0)

)
a∗kak

+
∑
k

V̂ (k)
µ

2V̂ (0)

(
e−i2τaka−k + ei2τa∗ka

∗
−k
)

+
∑
k,k′

V̂ (k)
√
µ√

V̂ (0)Ld
(e−iτa∗k+k′akak′ + eiτa∗ka

∗
k′ak+k′)

+
∑

k1+k2=k3+k4

V̂ (k2 − k3)

2Ld
a∗k1a

∗
k2ak3ak4 .

If we (temporarily) replace the potential V (x) with λV (x), where λ is a
(small) positive constant, the translated Hamiltonian can be rewritten as

Hλ = λ−1H−1 +H0 +
√
λH 1

2
+ λH1.

Thus the 3rd and 4th terms are in some sense small, which suggests dropping
them. Thus

H ≈ −Ld µ2

2V̂ (0)
+ µ(eiτa∗0 + e−iτa0)2 +HBog,
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where

HBog =
∑
k 6=0

(1

2
k2 + V̂ (k)

µ

V̂ (0)

)
a∗kak

+
∑
k 6=0

V̂ (k)
µ

2V̂ (0)

(
e−i2τaka−k + ei2τa∗ka

∗
−k
)

Then we proceed as before obtaining the Bogoliubov dispersion relation

ω(p) = |p|

√
|p|2 + 2µ

V̂ (p)

V̂ (0)
.

and the Bogoliubov energy

EBog := −1

2

∑
p 6=0

(
|p|2 + µ

V̂ (p)

V̂ (0)
− |p|

√
|p|2 + 2µ

V̂ (p)

V̂ (0)

)

Thus, as compared with the canonical approach, we have µ in place of λρ.
Note that the grand-canonical Hamiltonian Hµ is invariant wrt the U(1)

symmetry eiτN . The parameter α has an arbitrary phase. Thus we broke the
symmetry when translating the Hamiltonian.

The zero mode is not a harmonic oscillator – it has continuous spectrum and
it can be interpreted as a kind of a Goldstone mode.

10.3 Landau’s argument for superfluidity

A translation invariant system such as homogeneous Bose gas is described by
a family of commuting self-adjoint operators (H,P ), where P = (P1, . . . , Pd)
is the momentum. If the translation invariance is on Rd, then the momentum
spectrum is Rd. If it is in a box with periodic boundary conditions then eiPiL =
1l, therefore the momentum spectrum is 2π

L Zd.
We can define its energy-momentum spectrum sp(H,P ).

sp(H,P ) ⊂

{
R× Rd, L =∞,
R× 2π

L Zd, L <∞.

By general arguments the momentum of the ground state of a Bose gas is
zero. Let E denote the ground state energy of H. We define the critical velocity
by

ccr := sup{c : H ≥ E + c|P |}.

Suppose that our n-body system is described with (H,P ) with critical ve-
locity ccr. We add to H a perturbation u travelling at a speed w:

i
d

dt
Ψt =

(
H + λ

n∑
i=1

u(xi − wt)
)

Ψt.
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We go to the moving frame:

Ψw
t (x1, . . . , xn) := Ψt(x1 − wt, . . . , xn − wt).

We obtain a Schrödinger equation with a time-independent Hamiltonian

i
d

dt
Ψw
t =

(
H − wP + λ

n∑
i=1

u(xi)
)

Ψw
t .

Let Ψgr be the ground state of H. Is it stable against a travelling perturba-
tion? We need to consider the tilted Hamiltonian H − wP .

If |w| < ccr, then H − wP ≥ E and Ψgr is still a ground state of H − wP .
So Ψgr is stable.

If |w| > ccr, then H − wP is unbounded from below. So Ψgr is not stable
any more.

11 Fermionic Gaussian states

11.1 1-mode particle-antiparticle vector

Consider Γa(C2). The creation/annihilation of first mode are denoted a∗, a, of
the second b∗, b.

We assume that in our space there is a “charge operator”

Q := a∗a− b∗b,

and we are interested mostly in states with Q = 0.

Theorem 11.1 Let c ∈ C. Then

Ωc := (1 + |c|2)−
1
2 eca

∗b∗Ω = (1 + |c|2)−
1
2

(
Ω + ca∗b∗Ω

)
is a normalized vector satisfying

(a− cb∗)Ωc = 0,

(b+ ca∗)Ωc = 0.

Theorem 11.2 Set
U t := et(−a

∗b∗+ba).

Then

U taU−t = a cos t+ b∗ sin t, (11.173)

U ta∗U−t = a∗ cos t+ b sin t, (11.174)

U tbU−t = b cos t− a∗ sin t, (11.175)

U tb∗U−t = b∗ cos t− a sin t, (11.176)

U t = cos te− tan ta∗b∗Γ
( 1

cos t

)
etan tba, (11.177)

Ω− tan t = U tΩ. (11.178)
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Proof. First we derive (11.173)-(11.176). Then we compute

d

dt
U t = (−a∗b∗ + ba)U t

= − 1

cos2 t
a∗b∗U t +

1

cos2 t
U tba+

sin t

cos2 t

(
a∗U ta+ b∗U tb

)
− sin t

cos t
U t.

2

11.2 Fermionic oscillator

Let
H = (a∗ + a)(b∗ + b).

Theorem 11.3 We have H2 = −1l, H∗ = −H

etH = cos t1l + sin tH,

etH(a∗ + a)e−tH = cos 2t(a∗ + a)− sin 2t(b∗ + b),

etH(b∗ + b)e−tH = cos 2t(b∗ + b) + sin 2t(a∗ + a),

etH(a∗ − a)e−tH = a∗ − a,
etH(b∗ − b)e−tH = b∗ − b,

Ωtan t = etHΩ.

In particular,

e±
π
2H = ±H,

Ha∗H−1 = −a, HaH−1 = −a∗,
Hb∗H−1 = −b, HbH−1 = −b∗.

12 Fermi gas and superconductivity

12.1 Fermi gas

We consider fermions with spin 1
2 described by the Hilbert space

Hn := ⊗na
(
L2(Rd,C2)

)
.

We use the chemical potential from the beginning and we do not to assume the
locality of interaction, so that the Hamiltonian is

Hn = −
n∑
i=1

(
∆i − µ

)
+ λ

∑
1≤i<j≤n

vij .

The interaction will be given by a 2-body operator on ⊗2
(
L2(Rd,C2)

)
given by

(vΦ)i1,i2(x1, x2) =

∫ ∫
v(x1, x2, x3, x4)Φi1,i2(x3, x4)dx3dx4.
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We will assume that v is invariant wrt the exchange of particles, Hermitian, real
and translation invariant:

v(x1, x2, x3, x4) = v(x2, x1, x4, x3)

= v(x1, x2, x3, x4)

= v(x4, x3, x2, x1)

= v(x1 + y, x2 + y, x3 + y, x4 + y).

By the invariance wrt the exchange of particles v preserves ⊗2
a

(
L2(Rd,C2)

)
. By

translation invariance, v can be written as

v(x1, x2, x3, x4) = (2π)−4d

∫
eik1x1+ik2x2−ik3x3−ik4x4q(k1, k2, k3, k4)

× δ(k1 + k2 − k3 − k4)dk1dk2dk3dk4,

where q is a function defined on the subspace k1 + k2 = k3 + k4. An example
of such interaction is a local 2-body potential V (x) such that V (x) = V (−x),
which corresponds to

v(x1, x2, x3, x4) = V (x1 − x2)δ(x1 − x4)δ(x2 − x3),

q(k1, k2, k3, k4) =

∫
dpV̂ (p)δ(k1 − k4 − p)δ(k2 − k3 + p).

Similarly, as before, we periodize the interaction

vL(x1, x2, x3, x4)

=
∑

n1,n2,n3∈Zd
v(x1 + n1L, x2 + n2L, x3 + n3L, x4)

=
1

L3d

∑
k1+k2=k3+k4

eik1·x1+ik2x2−ik3x3−ik4x4q(k1, k2, k3, k4),

where ki ∈ 2π
L Zd. The Hamiltonian

HL,n =
∑

1≤i≤n

(
−∆L

i − µ
)

+
∑

1≤i<j≤n

vLij

acts on Hn,L := ⊗na
(
L2([−L/2, L/2]d,C2)

)
. We drop the superscript L.

We will denote the spins by i =↑, ↓. It is convenient to put all the n-particle
spaces into a single Fock space

∞
⊕
n=0
Hn = Γa

(
L2([L/2, L/2]d,C2)

)
and rewrite the Hamiltonian and momentum in the language of 2nd quantiza-
tion:
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H :=
∞
⊕
n=0

Hn =
∑
i

∫
a∗x,i(∆x − µ)ax,i2dx

+
1

2

∑
i1,i2

∫ ∫
a∗x1,i1a

∗
x2,i2v(x1, x2, x3, x4)ax3,i2ax4,i1dx1dx2dx3dx4,

P :=
∞
⊕
n=0

Pn = −
∑
i

i

∫
a∗x,i∇xax,idx.

In the momentum representation,

H =
∑
i

∑
k

(k2 − µ)a∗k,iak,i

+
1

2Ld

∑
i1,i2

∑
k1+k2=k3+k4

q(k1, k2, k3, k4)a∗k1,i1a
∗
k2,i2ak3,i2ak4,i1 ,

P =
∑
i

∑
k

ka∗k,iak,i.

We also have the generators of the spin su(2).

Sx =
1

2

∑
k

(a∗k↑ak↓ + a∗k↓ak↑), (12.179)

Sy =
i

2

∑
k

(a∗k↑ak↓ − a∗k↓ak↑), (12.180)

Sz =
1

2

∑
k

(a∗k↑ak↑ − a∗k↓ak↓). (12.181)

The Hamiltonian is invariant with respect to the spin su(2).

13 Hartree-Fock-Bogoliubov approximation with
BCS ansatz

We try to compute the excitation spectrum of the Fermi gas by approximate
methods. We look for a minimum of the energy among Gaussian states. We
assume that a minimizer is invariant wrt translations and the spin su(2). We use
the Hartree-Fock-Bogoliubov approximation with the Bardeen-Cooper-Schrieffer
ansatz.

For a sequence 2π
L Zd 3 k 7→ θk such that θk = θ−k, set

Uθ :=
∏
k

e
1
2 θk(−a∗k↑a

∗
−k↓+a−k↓ak↑−a

∗
−k↑a

∗
k↓+ak↓a−k↑).

(Note the double counting for k 6= 0). We are looking for a minimizer of the
form UθΩ.
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Note that Uθ commutes with P and the spin su(2). Therefore, UθΩ is
translation and su(2) invariant.

We want to compute

(UθΩ|HUθΩ) = (Ω|U∗θHUθΩ).

To do this we can use the fact that Uθ implements Bogoliubov rotations:

U∗θ a
∗
k↑Uθ = cos θka

∗
k↑ + sin θka−k↓,

U∗θ ak↑Uθ = cos θkak↑ + sin θka
∗
−k↓,

U∗θ a
∗
k↓Uθ = cos θka

∗
k↓ − sin θka−k↑,

U∗θ ak↓Uθ = cos θkak↓ − sin θka
∗
−k↑,

Afteer inserting this into U∗θHUθ be can Wick order the obtained expression.
In practice, this is usually presented differently. One makes the substitution

ak↑ = cos θkb
∗
k↑ + sin θkb−k↓,

ak↑ = cos θkbk↑ + sin θkb
∗
−k↓,

a∗k↓ = cos θkb
∗
k↓ − sin θkb−k↑,

ak↓ = cos θkbk↓ − sin θkb
∗
−k↑,

in the Hamiltonian. Note that

Uθa
∗
k↑U

∗
θ = b∗k↑,

Uθak↑U
∗
θ = bk↑,

Uθa
∗
k↓U

∗
θ = b∗k↓,

Uθak↓U
∗
θ = bk↓.

Then one Wick orders wrt the operators B∗, b. Our Hamiltonian becomes

H = B +
∑
k

D(k)
(
b∗k↑bk↑ + b∗k↓bk↓

)
+

1

2

∑
k

O(k)
(
b∗k↑b

∗
−k↓ + b∗−k↑b

∗
k↓
)

+
1

2

∑
k

O(k)
(
b−k↓bk↑ + bk↓b−k↑

)
+ terms higher order in b’s.

Note that
(Ωθ|HΩθ) = B.

By the Beliaev Theorem, minimizing B is equivalent to O(k) = 0.
If we choose the Bogoliubov transformation according to the minimization

procedure, the Hamiltonian equals

H = B +
∑
k

D(k)
(
b∗k↑bk↑ + b∗k↓bk↓

)
+ terms higher order in b’s
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with

B =
∑
k

(k2 − µ)(1− cos 2θk)

+
1

4Ld

∑
k,k′

α(k, k′) sin 2θk sin 2θk′

+
1

4Ld

∑
k,k′

β(k, k′)(1− cos 2θk)(1− cos 2θk′).

Here,

α(k, k′) :=
1

2

(
q(k,−k,−k′, k′) + q(−k, k,−k′, k′)

)
,

β(k, k′) = 2q(k, k′, k′, k)− q(k′, k, k′, k).

In particular, in the case of local potentials we have

α(k, k′) :=
1

2

(
V̂ (k − k′) + V̂ (k + k′)

)
,

β(k, k′) = 2V̂ (0)− V̂ (k − k′).

The condition ∂θkB = 0, or equivalently O(k) = 0, has many solutions. We
can have

sin 2θk = 0, cos 2θk = ±1,

They correspond to Slater determinants and have a fixed number of particles.
The solution of this kind minimizing B, is called the normal or Hartree-Fock
solution.

Under some conditions the global minimum of B is reached by a non-normal
configuration satisfying

sin 2θk = − δ(k)√
δ2(k) + ξ2(k)

, cos 2θk =
xi(k)√

δ2(k) + ξ2(k)
,

where

δ(k) =
1

2Ld

∑
k′

α(k, k′) sin 2θk′ ,

ξ(k) = k2 − µ+
1

2Ld

∑
k′

β(k, k′)(1− cos 2θk′),

and at least some of sin 2θk are different from 0. It is sometimes called a super-
conducting solution.

For a superconducting solution we get

D(k) =
√
ξ2(k) + δ2(k).
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Thus we obtain a positive dispersion relation. One can expect that it is strictly
positive, since otherwise the two functions δ and ξ would have a coinciding zero,
which seems unlikely. Thus we expect that the dispersion relation D(k) has a
positive energy gap.

Conditions guaranteeing that a superconducting solution minimizes the en-
ergy should involve some kind of negative definiteness of the quadratic form α
– this is what we vaguely indicated by saying that the interaction is attractive.
Indeed, multiply the definition of δ(k) with sin 2θk and sum it up over k. We
then obtain

∑
k

sin2 2θk
√
δ2(k) + ξ2(k)

= − 1

2Ld

∑
k,k′

sin 2θkα(k, k′) sin 2θk′ .

The left hand side is positive. This means that the quadratic form given by the
kernel α(k, k′) has to be negative at least at the vector given by sin 2θk.
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