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1 (*-algebras

1.1 x-algebras

Let 2 be an algebra. A mapping 2> A — A* € 2 is an antilinear involution iff
A = A, (AB)* = B*A*, (aA+ BB)* =aA* + 3B*.

An algebra with an involution is called a x-algebra.
Let 2 be a x-algebra. A € 2 is invertible iff A* is, and (A~1)* = (A4*)~L
A subset B of 2 is called self-adjoint iff B € B = B* € B.
Let A, B be *-algebras. A homomorphism 7 : 2 — B is called a *-homomorphism iff 7(A*) = w(A)*.

1.2 (*-algebras

2 is a C*-algebra if it is a Banach algebra equipped with an involution * satisfying
A=Al = [|A]%. (1.1)
[A™[] = [l Al (1.2)
We can weaken the conditions (1.1) and (1.2) in the definition of a C* -algebra as follows:

Theorem 1.1 If2 is a Banach algebra with an involution * satisfying
1AI? < (1A% Al (1.3)
then it is a C*-algebra.
Proof. Clearly,
[AZA] < [[A*[[]|A]l- (1.4)
Hence, by (1.3), ||A]| < ||A*||. Using A** = A, this gives ||A*|| > ||A||. Hence (1.2) is true.
(1.2) and (1.4) give ||A*A|| < ||A||?>. This and (1.3) imply (1.1). O

Let 2 be a fixed C*-algebra. A subset of 2 is a C*-algebra iff it is a self-adjoint closed algebra. If
B C A, then C*(B) will denote the smallest C*-subalgebra in A containing B.

Let H be a Hilbert space. Then B(H) is a C*-algebra. A C*-algebra inside B(H) is called a concrete
C*-algebra.

A concrete C*-algebra is called nondegenerate if for & € H, A® = 0 for all A € A implies & = 0.

If 2 is not necessarily non-degenerate, and H; := {® € H : Az =0, A € A}, then A restricted to
Hi is nondegenerate.

Theorem 1.2 If1 e, then ||1]| = 1.

Proof. By the uniqueness of the identity, we have 1 = 1*. Hence ||1]|? = ||1*1]| = ||1]|. O



1.3 Special elements of a x-algebra

A € 2is called normal if AA* = A*A. It is called self-adjoint if A* = A. s, denotes the set of self-adjoint
elements of A

P € 2 is called a projection if it is a self-adjoint idempotent. P(2) denotes the set of projections of
2A.

Theorem 1.3 Let P* = P and P?> = P3. Then P is a projection.

U € A is called a partial isometry iff U*U is a projection. If this is the case, then UU* is also a
projection. U*U is called the right support of U and UU™* is called the left support of U.

U is called an isometry if U*U = 1.

U is called a unitary if U*U = UU* = 1. U(2l) denotes the set of unitary elements of 2.

U is called a partial isometry iff U*U and UU* are projections.

We can actually weaken the above condition:

Theorem 1.4 Let either U*U or UU* be a projection. Then U is a partial isometry.

1.4 Spectrum of elements of C*-algebras

Theorem 1.5 Let A € 2 be normal. Then

sr(A) = [|A]l

Proof.
|A%))2 = (| A% A%|| = [|[(A*A)*| = [|A*A* = || AlI*.

Thus ||A?"|| = ||A||*". Hence, using the formula for the spectral radius of A we get ||A%"||> " = ||A||l. O

Theorem 1.6 (1) Let V € 2 be isometric. Then sp(V) C {|z]| < 1}.
(2) U e A is unitary = U is normal and sp(U) C {z : |z| =1}.
(3) A e is self-adjoint = A is normal and sp(A) C R.
Proof. (1) We have ||[V[|? = ||[V*V| = ||1]| = 1. Hence, sp(V) C {|z] < 1}.
(2) Clearly, U is normal.
U is an isometry, hence sp(U) C {|z| < 1}.
U~! is also an isometry, hence sp(U ') C {|z| < 1}. This implies sp(U) C {|z| > 1}.
(3) For [\~ > || A, 14+iAA is invertible. We check that U := (1 —i\A)(1+i\A)~! is unitary. Hence,
by (2).=, sp(U) C {|z| = 1}. By the spectral mapping theorem, sp(A) C R. O

Note that in (2) and (3) we can actually replace = <, which will be proven later.

1.5 Dependence of spectrum on the Banach algebra
Theorem 1.7 Let B be a closed subalgebra of a Banach algebra A and 1, A € 5.
(1) rsi(A) is an open and closed subset of rsg(A) containing a neighborhood of co.

(2) The connected components of rsy(A) and of rs;s(A) containing a neighborhood of infinity coincide.
(3) Ifrsg(A) is connected, then rsg(A) = rsm(A).



Proof. rsg(A) is open in C. Hence also in rsy(A).

Let 29 € rsg(A) and 2, € rsg(A), 2, — 20. Then (2, — A)~™! — (20 — A)~! in 2, hence also in B.
Therefore, zy € rsg(A). Hence rsp(A) is closed in rsg(A). This proves 1.

(2) and (3) follow immediately from (1). O

If A € 2, define 551(14) to be the closed algebra generated by A\lt/g(A)

Lemma 1.8 Let U C C be open. Then there exists a countable family of open connected sets {U; : i € I}
such that U = U;e1U; and US'NU; =0, i # j. Besides, U; are isolated in U.

Proof. For z1, 2o € U we will write 21 ~ z5 iff there exists a continuous path in U connecting z; and zs.
This is an equivalence relation. Let {U; : i € I} be the family of equivalence classes. Clearly, U; are
open (and hence also open in the relative topology of U).

Suppose that 2o € US'NU;. Then there esists € > 0 with K (29, €) C U;. There exists z1 € U;NK (20, €).
Clearly, z1 ~ z9. Hence U; = U;.

Thus Ufl N U = U;. Thus it is closed in the relative topology of U. O

The sets U; described in the above lemma will be called connected components of U. Clearly, if C\U
is compact, then one of them is a neighborhood of infinity.

Theorem 1.9 (1) Ifrso(A) is connected, then Ban(A) = Ban(A, 1).
(2) If rsg(A) is disconnected, choose one point A1, g, ... in every connected component of rsg(A) that

does not contain a neighborhood of infinity. Then Ban(A) = Ban(A, (A, — A)~1, (Ae — A)~1,..).

Example 1.10 Let U € L?(N), Ue,, := e,41. Consider the algebras B := Ban(1,U), A = Ban(1,U, U*).
Then
sppU = {lz[ < 1}, spU = {[z| =1},

because -
(z=U) =~ Z 2t
n=0
1.6 Invariance of spectrum in (C*-algebras

Lemma 1.11 Let A be invertible in 2. Then A~ belongs to C*(1, A).

Proof. First assume that A is self-adjoint. Then spy(A) C R. Hence rsy(A) is connected. But
¢ :=(C*(1,A) = Ban(1, A). Hence, by Theorem 1.7,

rse(A) = 15y (A) (1.5)

A is invertible iff 0 € rsy(A). By (1.5), this means that 0 € rs¢(A4) and hence A=t € €.

Next assume that A be an arbitrary invertible element of 2. Clearly, A* is invertible in 24 and
(A*)~1 = (A~1)*. Likewise, A*A is invertible in 2 and (A*A)~! = (A*)"tA~!. But A*A is self-adjoint
and hence (A*A)~! € C*(1,A*A) C C*(1, A). Next we check that A=1 = (A*A)~1A4*. O

Theorem 1.12 Let B C A be C*-algebras and A,1 € B. Then spy(A) = spgy(4).

Proof. By Lemma 1.11, spy(A) = spe(A4), where € := C*(1,A). But € CB C . O

Motivated by the above theorem, when speaking about C*-algebras, we will write sp(A) instead of
spa(4).



1.7 Holomorphic spectral theorem for normal operators

If K is a compact subset of C let Cho1(K) be the completion of Hol(K) in C(K).

Theorem 1.13 Let A be unital and A € 2 be normal. Then there exists a unique continuous iSomor-
phism
Chai(sp(A)) 2 f— f(A) € C*(1,4) C U,
such that
(1) id(A) = A difid(z) =

Moreover, we have
(2) If f € Hol(sp(A)), then f(A) coincides with f(A) defined in (?7).
(3) sp(f(A)) = f(sp(A)).
(4) g € Cra(f(sp(A))) = go f(A) = g(f(A)).
() [If(A)] = sup|f].
Remark 1.14 The previous theorem will be improved in next section so that the functional calculus will
be defined on the whole C(spA).

In the case A is self-adjoint or unitary, C(spA) = Chol(spA), so in this case we do not need the
Gelfand theory.

1.8 Fuglede’s theorem
Theorem 1.15 Let A, B € 2 and let B be normal. Then AB = BA implies AB* = B*A.

Proof. For A € C, the operator U()) := e*B" =B = ¢=*BeAB” i5 ynitary. Moreover, A = e’ Ae= B,

Hence . .
e AN = U(=N)AU(N) (1.6)

is a uniformly bounded analytic function. Hence is constant. Differentiating it wrt A we get [A4, B*] = 0.
O

2 Adjoining a unit

2.1 Adjoining a unit in an algebra

Let 2 be an algebra. Introduce the algebra 2, equal as a vector space to C @ 2 with the product
(M A)(u, B) := (A, AB+ pA+ AB).

Then 2, is a unital algebra and 2 is an ideal of 2, of codimension 1.
If 2 is non-unital, B is unital and 7 : » — B is a homomorphism, then there exists a unique extension
Tun © Aun — B such that 7(1) = 1.



2.2 Unit in a Banach algebra
Let 2 be a unital Banach algebra. Then ||1]| > 1. Besides, if A is the regular representation, then
[A[ < IACAIIF < 1Al

Thus the norms ||A]| an ||A(A4)| are equivalent. Note also that ||A(1)|| = 1.
This means, that if 2 is a unital Banach algebra, then by replacing the initial norm with the equivalent
norm A(A) we can always assume that ||1]] = 1. We will make always this assumption.

Theorem 2.1 If 2 is a unital Banach algebra such that ||1|| = 1, then the regular representation A >
A A(A) € L(Q) is isometric.

Theorem 2.2 Let 2 be a Banach algebra. Equip U, with the norm
1A+ Al == Al + Al
Then Ay is a Banach algebra and A — Ay, is an isometry.
Note, however, that there may be other (even more natural) norms on 2, extending the norm on 2I.
Theorem 2.3 Let 2 be a unital Banach algebra. Then 1 is an extreme point of the unit ball (2);.

Proof. A can be isometrically embedded in B(V), where V is a Banach space. Hence the theorem follows
from the fact that if V is a Banach space, then 1 is an extreme point in (B(V));. O

2.3 Approximate units

Let 2 be a normed algebra. If 2 does not have a unit, then we can use the so-called approximate unit.
We say that a net (E,) C ()1 is a left appproximate unit in 2, if for any A € A, ||[E,A — Al — 0.
Let 2 be a Banach algebra without a unit. In 20, we define

A+ Allun == sup |[AB + AB||.
I BlI<1

Clearly, || - ||un is & seminorm satisfying

[A+A) (1 + B)llun < [+ Allunll (1 + B)[un-

Theorem 2.4 If A possesses an approximate unit, then || - ||un i a norm and A — Wy, is an isometry.
Moreover, the reqular representation A > A w— A(A) € L(A) is isometric.

Recall that if J is a closed ideal in a Banach algebra 2, then
|A+ 3| :=inf{||]A+ 1] : I€J}.

Theorem 2.5 Suppose that J is aclosed ideal in a Banach algebra A and J possesses a left approximate
unit (Ey) such that
- Bl <1 (2.7)

Then the norm in A/J is given by

[A+3[ = lim [[(1 = Ea)A[.



Proof. Let A €2 and I € J. Using first |E,I — I|| — 0 and then ||1 — E,| < 1, we get
limsup [|(1 — Ea) Al = limsup [|(1 — Eo)(A+ I)[| < A+ 1]|.

Hence
limsup |[(1 — Eu)A| <inf{||[A+1I| : I €J}.
Moreover,
liminf (1 — Ea)A| > inf (1 - Ea)A]
>inf{||[A+1I| : T €3}
O

2.4 Adjoining a unit to a C"*-algebra
Theorem 2.6 Let 2 be an C*-algebra. Then the algebra Uy, with the norm given by

AB+ AB
IIA+ Allun := sup IAB + AB| H,
Bzo0  |IBll
and the involution (A + A)* := (A + A*) is a C*-algebra.
Proof. Step 1. Recall from the theory of Banach algebras that |- ||un is a seminorm on 2, that satisfies

A+ A) (1 + B)llun < 1A+ Allun [l + Bllun-

Step 2. We show that || - |lun coincides on 2 with || - ||. In fact, ||A|lun < ||A|| is obvious for any
Banach algebra. The converse inequality follows by
[AA"|
[Allun = === = A1l
[[A=]|

Step 3. For any p < 1 there exists B such that ||B|| = 1 and p||A + Allun < |AB + AB||. Then
PN+ Allfn < IAB + AB|* = [|B* (A + A)* (A + A) Bl < (A + A)* (A + A)].

un —

This proves
1A+ AlGn < 1+ A)" (A + ).

a

3 Gelfand theory

3.1 Characters and maximal ideals in an algebra

Let 2 be an algebra.
A nonzero homomorphism of 2 into C is called a character. We define Char(2) to be the set of
characters of /. For any A € 2 let A be the function

Char(2) 3 ¢ — A(¢) := ¢(A) € C. (3.8)

Char(2() is endowed with the weakest topology such that (3.8) is continuous for any A € 2. Note that
thus Char(2l) becomes a Tikhonov space and a net (¢, ) in Char(2() converges to ¢ € Char(2l) iff for any
A€ ¢a(A) = ¢(4).



Theorem 3.1 X
A> A— A e C(Char()) (3.9)

is a homomorphism. Moreover, the range of (3.9) separates points and does not vanish on every element

of Char().

Proof. Let A,B € 2, ¢ € Char(). Then

A(9)B(¢) = 6(A)¢(B) = 6(AB) = AB(¢).

If ¢,¢ € Char(). If ¢ # 1, then there exists A € 2 such that ¢(A) # ¥(A). Hence the range of
(3.9) separates points. O

J is a maximal ideal if it is a proper ideal such that if & is a proper ideal containing J, then J = K.
Let I(2(), MI() and MI; (2() denote the set of ideals, maximal ideals and ideals of codimesion 1 in 2I.
Clearly,
MI; () € MI(() C I(A).
Theorem 3.2 (1) If ¢ € Char(), then Ker¢ is an ideal of codimension 1.
In what follows we assume that A is unital.
(2) Let ¢ € Char(). Then ¢(1) = 1.

(3) If 73 is an ideal of codimension 1, then there exists a unique character ¢ such that 3 = Kerg.

Proof. (1) Ker¢ is an ideal, because ¢ is a homomorphism. It is of codimension 1 because ¢ is a nonzero
linear functional onto C. (3) If A€ Jand A € C we set p(A+N) :=A. O

Theorem 3.3 (1) For any ¢ € Char() there exists a unique extension of ¢ to a character ¢un on
Aun- It is given by dun(A+ A) = A+ ¢(A).

(2) There exists a unique ¢oo € Char(Ayy) such that Kergoo = A.

(3) The map
Char(Ql) S ¢ pun € Char(mun)\{‘lsoo}

is a homeomorphism.

Theorem 3.4 If2A is unital and I C A is a proper ideal, then there exists a maximal ideal containing
J.

Proof. We use the Kuratowski-Zorn lemma. O

Theorem 3.5 Let A € A. Then
(1) spa(4) 2 {¢(A4) : ¢ € Char(A)}.
(2) Char() 3 ¢ — ¢(A) € spy(A) is a continuous map.

Proof. If 2 is non-unital, then we adjoin the identity and extend all the characters to 2Ayy.
Let ¢ € Char(2() and ¢(A) = A. Then ¢(A — ) = 0. Hence A — A belongs to a proper ideal. Hence
it is not invertible. Hence A € sp(4). O

Theorem 3.6 Let 2 be a commutative unital algebra. Let A € 2 be non-invertible. Then
(1) 3:={AB : B €} is a proper ideal;



(2) There exists a mazximal ideal containing A;
(3) There exists ¢ € Char(A) with ¢(A) =

Proof. Clearly, J is an ideal such that 1 ¢ J. This shows (1). (2) follows from Theorem 3.4. O

Theorem 3.7 (1) Let w: A — B be a homomorphism. Then
Char(8) 3 ¢ — 77 (¢) € Char(), (3.10)
defined for 1 € Char(B) by (77¢)(A) := ¢(7(A)), is continuous.
(2) If 3 is an ideal in B, then 7~1(J) is an ideal in A containing Kermw. Thus we obtain a map

I(B)>T— 7 13) e () (3.11)

(3) (3.11) maps MI(®B) into MI(2).

(4) (8.11) maps MI;(B) into MI; ().

(5) If w is surjective, then (3.11) maps I1(B) bijectively onto {J € I(A) : Kerw C J}.
Proof. (1) Let (3;) be a net in Char(8B) converging to ¢ € Char(%8B). Let A € 2. Then

T (i) (A) = Yi(n(A)) = Y(n(4)) = 77 () (A).
Hence 7% (;) — 77 (¢). O

We say that an algebra is simple if it has no nontrivial ideals.

Theorem 3.8 Let A be an algebra with a mazimal ideal I. Then A/T is simple.

3.2 Characters and maximal ideals in a Banach algebra

Theorem 3.9 Let 2 be a unital Banach algebra.
(1) Let T be a mazimal ideal in A. Then T is closed.
(2)
(3) Char(2l) is a compact Hausdor(f space.
(4) The Gelfand transform

Let ¢ be a character on . Then it is continuous and ||¢|| = 1.

A3 A— Ae C(Char(A))

s a morm decreasing unital homomorphism of Banach algebras.

Proof. (1) Invertible elements do not belong to any proper ideal. But a neighborhood of 1 consists of
invertible elements. Hence the closure of any proper ideal does not contain 1.

By the continuity of operations, the closure of an ideal is an ideal. Hence if J is any proper ideal,
then J¢ is also a proper ideal.

(2) Ker¢ is a maximal ideal. Hence it is closed. Hence ¢ is continuous.

Suppose that ||¢|| > 1. Then for some A € 2, ||A| < 1 we have |[¢p(A)] > 1. Now A" — 0 and
|p(A™)] = |¢(A)|™ — oo, which means that ¢ is not continuous.

(3) and (4) follow easily from (2). O

Theorem 3.10 Let A be a Banach algebra.



(1) Let ¢ be a character on A. Then it is continuous and ||¢| < 1.
(2) Char(2) is a locally compact Hausdorff space.
(3) The Gelfand transform R

A> A— A€ Cx(Char(A))

s a norm decreasing homomorphism of Banach algebras.

Theorem 3.11 (Gelfand-Mazur) Let 2 be a unital Banach algebra such that all non-zero elements
are invertible. Then A = C.

Proof. Let A € 2. We know that sp(A) # 0. Hence, there exists A € sp(A). Thus A— A is not invertible.
Hence A — A =0. Hence A= AX. O

3.3 Gelfand theory for commutative Banach algebras

Theorem 3.12 Let 2 be a commutative unital Banach algebra. Every maximal ideal in 2 has codimen-

sion 1. Hence the map
Char(2l) 5 ¢ — Kerg € MI(2()

is a bijection.

Proof. Let ¢ be a character. Then we know that ker ¢ has codimension 1 and hence is a maximal ideal
by Theorem 3.4.

Conversely, let J be a maximal ideal. If it has a codimension 1, then it is the kernel of a character by
Theorem 3.2. Thus it is sufficient to show that every maximal ideal has the codimension 1.

Let J be a ideal of 2. Then 2/7J is a commutative Banach algebra and 7 : 2 — 24/J is a homomor-
phism. Assume that the codimension of J is not 1. This means that 2/J is not C. By the Gelfand-Mazur
theorem, 2[/J contains non-invertible elements. Every such an element is contained in a proper ideal R.
By theorem 3.7, 7~1(R) is a proper ideal of 2 containing J. Hence J is not maximal. O

Theorem 3.13 Let A be a commutative unital Banach algebra. For each A € 2,

sp(4) = {¢(4) : ¢ € Char(A)}.

Hence

st(A) = sup{|A(¢)| : ¢ € Char()} = || Al

Proof. The inclusion D was proven in Theorem 3.5.
Let 2z € sp(A). Then (2 — A) is not invertible. Hence there exists a maximal ideal containing z — A.
Therefore, exists ¢ € Char(2) such that ¢(z — A) = 0. Hence z = ¢(A) = A(¢). O

Theorem 3.14 Let 2 be a commutative unital Banach algebra. Let A € 2. The following conditions
are equivalent:

(1) A belongs to the intersection of all maximal ideals;
(2) For all ¢ € Char(2) we have $(A) =0
(3) A

(@) s )
(5) limsup ||A"||1/" = 0.

10



The set of A € 2 satisfying the conditions of Theorem 3.14 is called the radical of . It is a closed
ideal of .

Theorem 3.15 Let 2 be a unital Banach algebra. Let A € . Set € := ng;lm(A), (which is a unital
commutative Banach algebra). Recall that spe(A) = spg(A). Recall also that we have the homomorphisms

Hol(spy (4)) 3 f - f(A) € €, (3.12)

€3 B— BeC(sp(d)), (3.13)

where C is the Gelfand transform of C' with respect to the algebra €. Then the following holds:
(1) For f € Hol(spy(4)), ¢ € Char(€),

F(A)(6) = 6(F(4)) = £(6(4)).
In other words, if we apply (3.12) and then (3.13), we obtain the identity.

(2) The following map is a homeomorphism:
Char(€) 3 ¢ — ¢(A) € spe(A4) = spy (4). (3.14)
Thus spg(A) can be identified with Char(€).

Proof. (1) Let ¢ € Char(¢) and z € C. Then ¢(z—A) = z—@(A). Hence, ¢ ((z — A)7') = (z—¢(A4)) 7,
for z € rsA. But the span of (2 — A)~! is dense in € and ¢ is continuous.

(2) If ¢1,¢2 € Char(€) and ¢1(A) = ¢p2(A), then, by (1), ¢1 = ¢2 on the range of (3.12), which is
dense in €. Hence ¢1 = ¢2 on €. Therefore, (3.14) is injective. We already know that it is continuous
and surjective. A continuous bijection on a compact Hausdorff space is always a homeomorphism. O

Recall that if X is a compact Hausdorff space, 2 is Banach algebra and v : C(X) — 2 a homomor-
phism, we defined the spectrum of ~ as

= F~H0).
5Py FGQer'y (0)

The following theorem gives the relationship between the above definition and the Gelfand theory.

Theorem 3.16 Let X, 2 and v be as above. Identify Char(C(X)) with X. Let ¥ be vy, where we restrict
the target to v(C(X)). Let 7% be defined as in (3.10). Then

spy = 77 (Char((C(X))))

3.4 Gelfand theory for commutative C*-algebras

Theorem 3.17 Let A be a C*-algebra and ¢ a character on A. Then ¢ is a *-homomorphism and
ol = 1.

Proof. Adjoin the unit if needed. Let A = A*. Let ¢ := ¢ ooy’ Then ¢ is a character on the
*(1,
commutative C*-algebra C*(1, A). Hence ¢(A) € spA C R. Thus ¢(A) € R.
Let A € A be arbitrary. Then ReA := 2(A+ A*) and ImA := L (A%) are self-adjoint. Hence, ¢(ReA),
¢(ImA) € R. By linearity, this implies

P(A") = ¢(A). (3.15)

a
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Theorem 3.18 Let A be a unital commutative C*-algebra. Then the Gelfand transform
A3 A— A e C(Char())
18 a x-isomorphism.

Proof. Step 1 We already know that it is a norm-decreasing homomorphism by Theorem 3.9.

Step 2 Using (3.15) we see that the Gelfand transform is a *-homomorphism.

Step 3 Every A € 2 is normal. Hence ||A| = sr(A) by Theorem 1.5. But we know that || A|| = sr(A).
This show that the Gelfand transform is isometric.

Step 4 We know that the image of the Gelfand transform is dense in C'(Char(2()) and 2 is complete.
We proved also that it is isometric. Hence it is bijective. O

Theorem 3.19 (1) U € 2 is unitary < U is normal and sp(U) C {z : |z| = 1}.
(2) A e is self-adjoint < A is normal and sp(A) C R.

Proof. = was proven before.

(1)<=. Consider the algebra € := C*(1,U). By the normality of U, it is commutative. Let ¢ € Char(€).
Then ¢(U*)p(U) = ¢(U)p(U) = 1. Hence sp(U) C {|z| = 1}. Hence U*U = 1.

(2)«<=. Consider the algebra € := C*(1, A). By the normality of A, it is commutative. Let ¢ € Char(€),
Then ¢(A) € sp(4A) C R. Hence ¢(A*) = ¢(A). Hence A* = A. O

Theorem 3.20 Let A be a commutative C*-algebra. Then the Gelfand transform
A3 A A e Co(Char())

is a *-isomorphism.

3.5 Functional calculus for normal operators

Theorem 3.21 Let A be a unital C*-algebra. Let A € 2 be normal. Then there exists a unique
continuous unital x-isomorphism

C(sp(A)) > f— f(A) € C7(1,4) C 4,

such that
(1) id(A) = A ifid(z) =

Moreover, we have
2) If f € Hol(sp(A)), then f(A) coincides with f(A) defined by the holomorphic functional calculus.
3) sp(f(A)) = f(sp(A)).
4) g€ C(f(sp(A))) = go f(A) = g(f(A).
5) [If(A)] = sup|f].

—~ o~ —~

Proof. If f is a polynomial, that is f(z) = > anmz"2™, we set
)= apm AT AT

C*(1,A) is a commutative algebra. Let ¢ be a character on C*(1, A). Then we easily check that
o(f(A)) = f(¢(A)). Hence sp(f(A)) = f(sp(A4)).
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Clearly, f(A) is normal. Hence
[ (A)]| = sr(f(A)) = sup [f].

Therefore, on polynomials the map f — f(A) is isometric. Since polynomials are dense in a complete
metric space C(sp(A4)) and polynomials in A, A* are dense in a complete metric space C*(1, A), there is
exactly one continuous extension of this map to the whole C'(sp(A)), which is an isometric bijection of
C(sp(4)) to C*(1, A).

Clearly, on polynomials, the map f — f(A) is a *-homomorphism. Since the multiplication, and
involution are continuous both in C(sp(A4)) and C*(1, A), this map is a homomorphism on C(sp(4)). O

If 1 is not unital, either we can adjoin the identity and consider the algebra 2l,,, or we can use the
following version of the above theorem:

Theorem 3.22 Let A be a C*-algebra. Let A € A be normal. Then there exists a unique continuous
x-isomorphism

Coo(sp(AN{0}) 3 f = f(A) € C7(4) C 2,
such that id(A) = A if id(z) = =.

4 Positivity in C*-algebras

4.1 Positive elements

Let A € 2. We say that A is positive iff A is self-adjoint and sp(A) C [0, c0[. 2[; will denote the set of
positive elements in 2. We will write A > B iff A— B € 2. We will write A > Biff A > B and A # B.

Lemma 4.1 Let A be self-adjoint. Then ||\ — A|| < X iff A >0 and ||A]| < 2.

Theorem 4.2 (1) A€, and A > 0 implies NA € 2.
(2) A,B e, implies A+ B eUy.
(3) A,—A €Ay implies A =0.
(4) Ay is closed.
In other words, 4 is a closed pointed cone.
Proof. (2)
1A+ 1Bl — A = B|| < [[IlAl = Al| + [[I1B] = BIl|| < 1Al + [|B]I

Hence A+ B > 0.

(3) sp(A),sp(—A) C [0, 00] implies sp(A) = {0}. But A is self-adjoint. Hence A = 0.

(4) Let A, — A. Then ||A,] — ||A|l. A, € Ay iff |4, — ||4An]ll] < ||An]l. By taking the limit,
[|A—J|A|l]] < ||All. Hence A € 2. O

Theorem 4.3 Let A € 2, and n € N\{0}. Then there exists a unique B € 2 such that B" = A.

Proof. [0,00[> X — A" is a continuous function. Hence B := A'/™ is well defined. Clearly, B satisfies
the requirements of the theorem.
Let Bed,, B" = A. Clearly,
BA=B""' = AB. (4.16)

Let € := C*(1,B,A). By (4.16), € is commutative. If ¢ € Char(C), then ¢(4) = ¢(B™) = ¢(B)™.
Moreover, ¢(B) > 0. Hence ¢(B) = $(A)*/™. Hence B is uniquely determined, and equals A'/". O
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Theorem 4.4 (Jordan decomposition of a self-adjoint operator.) Let A € U be self-adjoint. Then
there exist unique Ay, A_ € A, such that AyA_ =A_A, =0and A=Ay —A_.

Proof. The functions |z|4 := max(z,0) and |z|_ := max(—z,0) are continuous. Hence A, and A_ can
be defined as |A|+ and |A|- by the functional calculus.
Assume that A_ and A, satisfy the conditions of the theorem. Then

AZ =A% 4+ A2 = (A + AL

By the uniqueness of the positive square root, |A| = A, + A_. Hence A, = $(|A| + A) and A_ =
s(JAl-4). D
5 .

Theorem 4.5 Let A € A. The following conditions are equivalent
(1) A>o0.
(2) There exists B € 2 such that A= B*B

Proof. (1) = (2) is contained in Theorem 4.3.
Let us prove (1) <= (2). Clearly, B* B is self-adjoint. Let B*B = A, —A_ be its Jordan decomposition.
Clearly

(BAL)*(BA_)=A_(Ay —A_)A_ =A% € —9,.
Let BA_ =S +1iT. Then

(BA_)(BA_)* =S?+4+T?+i(TS - ST)
—(BA_)*(BA_) +2(5? 4+ T?) € 24,

using the fact that 2 is a convex cone.
But

sp((BA_)*(BA_)) U{0} = sp((BA_)(BA_)*) U{0}.

Hence sp((BA_)*(BA-)) = {0}. Consequently, (BA_)*(BA_) = 0. Consequently, A?

° = 0. By the
uniqueness of the positive third root, A_ = 0. O

Theorem 4.6 (1) Let A be self-adjoint, then —||A]| < A < ||4].
In what follows, let 0 < B < A. Then

1Bl < 1Al

If D*D <1, then DD* < 1.

0 < C*BC < C*AC.
0<A+A)T<(A+B)™H 0<A
BA+B)"1 < AN+ AL
0<B?<A? 0<0<I1,

(2
(3
(4
(5
(6
(7

~— Y — ~— ~— ~—

Proof. (1) sp(A) C [—||All,||Al]]. Hence ||A]| — A >0 and ||A]| + A > 0.

(2) By (1), A <||A||. Hence, B < ||A]|. Hence sp(B) C [0, ||A]|]. Therefore, || B < ||A]l.

(3) Clearly, ||D*D|| < 1. Hence || DD*|| < 1. Hence, by (1), DD* < 1.

(4) C*(A—B)C = ((A—B)3C)" (A~ B)2C > 0.

(5) Clearly, A\+ A > X+ B > A. Hence A+ A and A + B are positive invertible. By (4), applied with
C=(A+A)"2, for D:=(A+B)2(A+ A)"2 we have 1 > D*D. Hence 1 > DD*.
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(6) follows immediately from (5).
(7). We use (6) and

AY = 09/ MNTTAN+ A)~taa.
0

4.2 Left and right ideals

Theorem 4.7 LetJ be a right ideal and B; € INAL, ||B;l| < 1, i =1,2. Then there exists B € INA4,
such that ||B|| <1 and B; < B, i =1,2.

Proof. Set A; := B;(1 — B;)~!. Note that 4; € IN2A, and
By = A;(14+ A)™, (4.17)
We set
B = (Al —|—A2)(1+A1 —|—A2)_1. (418)

Clearly B € 2, |B]| <1 Clearly, A; < Ay + Ay, i = 1,2. Hence, by (4.17), (4.18) and Theorem 4.6, we
get BZ < B. O

Let J be a right ideal of 2. Then a positive left approximate unit of J is defined to be a net {E,} of
elements of J such that

(1) 0< E, <1,
(2) a < g implies E, < Ejg,
(3) lim, ||E,A— Al =0 for all A € 7.
The following theorem implies that every ideal possesses a canonical positive approximate unit.
Theorem 4.8 Let J be a right ideal of A. Then
¢e:={AeT; : A <1} (4.19)
ordered by < is a positive approximate unit in J.

Proof. By Theorem 4.7, € is a directed set.
Let A € 3. Then, for any A > 0, set E) := AA*(A~1 + AA*)~L.
Let E € ¢, E\ < E. Then

(1= E)A|? = [[A*(1 — E)2A| < [|A*(1 - E)A| < [|A*(1 — Ex)A]|

= | A*(1 + AAAY) A = [|A*A(L + AAAY) | < A1
O

Theorem 4.9 If R is a closed left ideal in a C*-algebra A, and S € R, then there exists A € A and
K € Ry such that S = AK.

Proof. Set K := (S*S)'/4 A, := S(n~! 4+ K?)~%/2. Then we easily show that ||A,, — 4,| <

sup |vVm—1+t—+/n-1+1¢. Thus A, is a Cauchy sequence. We set A := lim,, o, A,. O
tespK?

Corollary 4.10 FEvery closed ideal is self-adjoint.
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4.3 Quotient algebras

Theorem 4.11 Let J be a closed ideal of a C*-algebra A. Then A/T is a C*-algebra and we have a
short exact sequence of *x-homomorphisms:

0—-J3—-A—-A/T—0.
If (E,) is a positive approzimate unit, then the norm in A/T is given by

|A+73| = ligl AL — Ey)||- (4.20)

Proof. The approximate unit €, defined in (4.19), satisfies the condition (2.7), so (4.20) holds. Now let

AcAand I €.
A+ jHQ = lim,, [[A(1 - Eoz)HQ

=lim, ||(1 — E,)A*A(1 — E,)|?
=lim, [|(1 — E,)(A*A+I)(1 - E,)|?
< [|A*A + I||.

Hence
JA+3] <[[(A+3)*(A+T)].

Therefore, 2/7 is a C*-algebra. O

4.4 Homomorphisms of C'*-algebras
Theorem 4.12 Let A, B be C*-algebras and 7 : A — B a *-homomorphism. Then
(1) (=A< 1All;
(2) w(A) is a C*-algebra.
(3) The following conditions are equivalent
(i) Kerm = {0},
(i) [[w(A) = [IA]l-
Proof. First we would like to argue that it is sufficient to assume that 7 preserves the identity. If 2 has a
unit, then 7(1) = P is a projection in B. We can replace B with P8P, and then consider 7 : % — PBP.
If 2 does not have a unit, we simply adjoin the unit to 2, if needed also to 8, and consider the

extended s-homomorphism 7y, : Aun — Bun such that m,,(1) = 1.
Proof of (1). Clearly, if A € 2, then sp(m(A)) C sp(A). If A is self-adjoint, then

[w(A)|| = sr(w(A)) < sr(4) = [ Al
For an arbitrary B € 2,
Ix(B)II* = |lx(B)*=(B)|| = |=(B*B)|| < | B*B| = || B|>.

Proof of (3.i)=(3.ii). Step 1. Let 2 be commutative. Then so is 7(2). We have % ~ C(Y) and
m(A) ~ C(X) for some compact Hausdorff spaces Y, X. Besides, for some continuous map p : X — Y,
w(f)(z) = fop(x), for f € A. We know that 7 is injective iff p is surjective. This means that ||7(f)|| = || f|I
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Step 2. Let 21 be arbitrary and A € 2 self-adjoint. By considering the commutative C*-algebra
C*(1, A), Step 1 implies that ||7(A4)| = || A]|.
Step 3. Let B € 2 be arbitrary. Then

Iw(B)||* = llx(B)*n(B)|| = n(B*B)|| = |B*B = || B||*.

(3.1)«=(3.ii) is obvious.
Proof of (2). Clearly, 7 : 2/Kerm — 7(2) is a *-isomorphism. By (3.ii) it is also isometric. Since
A/ ker A is a C*-algebra by Theorem 4.11, so is 7(2). O

4.5 Linear functionals

Let w be a linear functional on . The adjoint functional w* is defined by

w*(A) == w(A*).

We say that w is self-adjoint iff w* = w, or equivalently, if w(A) € R for A self-adjoint.
We say that w is positive iff
w(A)>0, Aec,.

The set of continuous functionals over 2 will be denoted A#. The set of continuous positive functionals
over 2 will be denoted Qlf

Theorem 4.13 Ifw is a positive functional, then it is self-adjoint and
|w(A*B)|? < w(A*A)w(B*B). (4.21)
Proof. If A is self-adjoint, then we can decompose A as A = —A_ + A with A_, A, positive. Now
w(Ay) > 0. Hence w(A) =w(A;) —w(A_) e R.
To prove (4.21), we note that for any A € C,
w((A+AB)*(A+ AB)) > 0.
O

Theorem 4.14 Let w be a linear functional on a unital C*-algebra A. The following conditions are
equivalent:

(1) w is positive
(2) w is continuous and ||w|| = w(1)
Proof. (1)=-(2). Step 1 Let A € 2. Then A < ||A||. Hence |w(A)| = w(A) < || A|lw(1).
Step 2 Let B € 2. Then, by (4.21), using the positivity of B*B and Step 1, we get
w(B)|* < w(l)w(B*B) < w(1)?||B*B|| = w(1)*||B]*.

Hence [jw]]? < w(1)2.

(1)< (2). Tt is enough to assume that |w|| = 1.
Step 1 Let A be self-adjoint. Let «, 8,7 € R and w(4) = « + i8. It is enough to assume that
w(1l) = ||w|| = 1. Clearly,

Iy —iAll = V2 + [ A]?, wly —i4) =7+ 6 —ia.
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But
lw(y —14)]? < ||y — 14

Hence
(Y+08)* +a® <2+ Al

For large ||, this is possible only if 8 = 0. Hence w is self-adjoint.
Step 2 Let A € 2. Then ||[|A] — A|| < ||A[|. Therefore,

[ Allw(1) = w(A)] < Al

But w(1) =1, and w(A) is real. Hence w(A) > 0. O

Theorem 4.15 Let w be a linear functional on a non-unital C*-algebra. The following conditions are
equivalent:

(1) w is positive

(2) w is continuous and for some positive approximate identity {E.} of A
|w|| = limw(E?2).
(3) w is continuous and if the functional wyuy : Uun — C is given by wun(A + A) := A|w|| + w(A), then

wun 18 a positive functional on Ay,

Moreover, wyy, is the unique functional on Ay, that extends w and satisfies ||w|| = ||wun]|-
Proof. (1)=-(2). Step 1. We want to show that
¢ sup{w(d) : 0< A< 1)
is finite. Suppose that it is not true, 0 < A4,, <1 and w(A,) — 0o. Then we will find A,, > 0 such that
> An < oo and Y A\w(Ay) =oc0. But A:=>" A\, A, is convergent and, for any n,

i)\jw(Aj) < w(4) < oo,

which is a contradiction.
Step 2. If A €2, then A=Y i/4; with A; € 2, and ||4;|| < ||A||. Hence

w(A)] < w(Ay) < 4e| Al
§=0

Hence w is continuous.

Step 3. Let FE, be a positive approximate unit. w(FE,) is an increasing bounded net, so ¢ :=
lim, w(E,) exists. Since |Ey|| < 1, we have ¢ < [jw]|.

Step 4 Let A € 2. Then

w(Ead)]? < w(Eg)w(A™A) < w(ED)||w|AAll < cllwll] All*.

IN

Moreover, E,A — A and w is continuous, hence the left hand side goes to |w(A)|>. Hence |w(A)?
c||wl||[|A||?. Therefore, |w| < c.
(2)=-(3). It is obvious that ||wyun|| > ||w||. Let us prove the converse inequality.
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Let E, be a positive approximative unit. We have
wWan(A+ A) =limw(AE, + E,A).

Hence
|wun (A + A)|  =lim, [wAE. + EqA)| < lim, ||w||||AExs + Eo A
< [lw[[limsup, [ Ea[[[[A + Al = [lw[[[|A + All.

Hence, ||wun|| < [Jw]|.

Thus we proved that ||w| = ||wun||. Therefore, wyn(1) = ||wun||. Therefore, w is positive by the
previous theorem.

(3)=(1) is obvious. O

A positive functional over A satisfying ||w|| = 1 will be called a state. For a unital algebra it is
equivalent to w(1) = 1. For a non-unital algebra it is equivalent to 1 = sup{w(A) : A < 1}. The set of
states on a C*-algebra 2 will be denoted E(2).

If w is a positive functional on 2, then

wan(A+ ) =w(A) + Aw|| AeA NeC,

defines a state on 2, extending w with ||w| = ||wun]|-
If ¢ is a positive functional on 2, then

DA+ X)) =0w(A)+ Ao, AeA XeC,

where 0 < 0 < ||¢]], and w is a state on .

4.6 The GNS representation
Let (H, ) be a x-representation of 2, 2 € H and w € Qlf We say that €2 is a vector representative of w
iff

w(A) = (Qr(A)Q).
We say that € is cyclic iff 7(2) is dense in H. (H, 7, Q) is called a cyclic *-representation iff (7, H) is
a x-representation and € is a cyclic vector.

Theorem 4.16 Let w be a state on 2A. Then there exists a cyclic *-representation (Hy,, 7w, Qw) such
that 2, is a vector representative of w. Such a representation is unique up to a unitary equivalence.

Proof. We adjoin the unit if needed.

For A, B € 2, w(A*B) is a pre-Hilbert scalar product on 2. Define N, := {A € A : w(A*A4) = 0}.
Then 9 is a closed left ideal. The scalar product on /91, is well defined. Let H,, be the completion of
A/MN,.

The left regular representation

A5 A ANA) e L(A), MA)B:=AB,
preserves N,,. Hence we can define the representation 7, on 2/M,, by
Tw(A)(B+MNy,) := AB+N,,.
We have
17 (A)(B + M) |* = w(B*A*AB) < ||A*A||w(B*B)
= [IA]I2[1B + 9. |1*.

Hence |7, (A)]| < ||A|| and 7, extends to a linear map on H,,,.
We set Q, :=1+M,. Clearly, 7,(A4)Q, = A+ MN,, hence €, is cyclic. O
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4.7 Existence of states and representation

Theorem 4.17 Let A be a C*-algebra and A € Ay,. Then there exists a state w on A such that |w(A)| =
Al

Proof. We adjoin the unit if needed.

Let 2y = C*(1, A) = C(spA). Let wg be the character on 2y with |wy(A)| = srA = ||A||. Then wy is
a state on . By the Hahn-Banach Theorem we extend wy to a functional w on A with |jw| = 1. But
w(1) = wp(1) = 1, hence by Theorem 4.14, w is a state. O

Theorem 4.18 There exists an injective representation (H,m) of A.

Proof. For any A € 2y there exists a state wy such that wa(A) # 0. Let (ma,Ha,Q4) be the
corresponding GNS representation. Then (Qa|ma(A)Q24) = wa(A). Hence wa(A) # 0. Set

H:= & Ha, 7= D ma.
Aey, Ay,

Then 7 is a representation of 2 in H and for any A € 2y, w(A) # 0. Since self-adjoint elements span 2,
7 is injective. O

Theorem 4.19 Let Ay be a C*-subalgebra of a C*-algebra A. Let wy be a state on Ag. Then there
exists a state w on A extending wy. If Qo is hereditary, then w is unique.

Proof. By the Hahn-Banach Theorem, there exists a linear functional w on 2 extending wy with
[lwo]l = |lwl]l- But [|w|| > w(1) > |lomegap||. Hence w|| = w(1). Therefore, w is a state. O

4.8 Jordan decomposition of a form

Let w € A#. Then Rew := §(w +w*), Imw := 5:(w — w*) are self-adjoint. Moreover, w = Rew + ilmw.

Theorem 4.20 Let A be a C*-algebra and ¢, € Qlf Then the following conditons are equivalent:

1) [l =l = llell + I,
(2) For every e > 0 there is a A € A4 with | A|| <1 such that

oIl —¢(A) <€, ¥(A) <e.

Proof. We adjoin the unit, if needed, and consider the extended 9y, dun.
(1)=(2). Since ¢ — 7 is self-adjoint, there exists B € 2}, with || B|| < 1 such that

(@ =¥)(B)+e=o—vl. (4.22)

We set A:=1(1+ B). Clearly, 0 < A < 1.
The rhs of (4.22) equals ||¢|| + [|¢]| = #(1) + ¥(1). Hence ¢(1 — A) +1(A) < e. Hence ¢(1 — A) <e,
P(A) <e.

(1)-=(2). Clearly, [|¢ — || < [l¢] + [|¢]-
Let us prove the converse inequality. Let € > 0 and A satisfy the conditions of (2). Then |24 -1 < 1,
and hence

oIl + 1l = (1) + (1) < (¢ = ¥)(24 = 1) + 4e < [|¢ — Y| + 4de.
But € > 0 was arbitrary, hence ||¢| + ||¢|| < |l¢ —v|]. O

If the (equivalent) conditions of the above theorem are satisfied, then we will write ¢ L 1.
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Theorem 4.21 (Jordan decomposition of a self-adjoint form.) Let A be a C*-algebra. Let w €
A# be self-adjoint. Then there exist unique w,,w_ € Qlf such that

w=—w_+ws, w_Llw;.

Proof. Existence. Step 1. First note that (91#)1 (the unit ball in Qlf) is compact in the U(Ql#,%l)
topology. Hence E(2() (the set of states on 2) is compact too, because it is a closed subset of (th#)l

Therefore,
CH(—E(2) UE(2)) (4.23)

is also compact. Clearly, (4.23) is contained in (A7), .
Step 2. Suppose that ¢ € (th#)l, but does not belong to (4.23). By the 2nd Separation Theorem,
there exists A € 2 such that

¢o(A) > sup{Reg(A) : ¢ € CH(-E(2) UE(2)}.
By replacing A with (A + A*) and using the self-adjointness of ¢, we can assume that A € ;,. Now
$o(A) >sup{p(A4) : ¢ € CH(-E(A) UE(A)}
=sup{|¢p(A)| : ¢ € E(A)} = [|A].

Hence ||¢o|| > 1. Therefore,
CH(—E(2) UER) = (Af),. (4.24)

Step 3. Now let us prove the existence part of the theorem. Let w € QI# . It is sufficient to assume
that ||w|| = 1. By (4.24), there exist w_, w4 € E() and 0 € [0, 1] such that w = —0w_ + (1 — O)w4. We
set w_ 1= 60w_ and wy = (1 — 0)04. They clearly satisfy

[w-[| + [lws ]| =0+ (1 —0) = 1.
Uniqueness. Let us prove the uniqueness part of the theorem. Suppose that
w=—-w_+twy=—w_ 4w

and
[wll = lw-| + llwt ]l = W]l + ] ]I-

Let € > 0 and choose C' € (y); such that
w(0) 2 [l - 3¢ (1.25)
Set B := 1(1+C). Clearly, 0 < B < 1. Adding } times (4.25) and —w_(3) — w4 (3) = —%|jw|| we get
w_ (B)+wi(1-B)< %2.
Hence,

1 1
w,(B) < 162, w+(1 - B) < 162.

For A € 2, by the Cauchy-Schwarz inequality,
w_(BA) < w_(Blw_(A"BA) < 1| 4|12,

4.
Wi (1= B)A)]? < wi(1- By (A*(1 - B)A) < €[ A|, 20
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Using w_ —w’ =wy — ', we get
w_(A) —w_ (A) =w_(BA) —w_ (BA)+wi((1 - B)A) —w/ ((1 - B)A).
Hence, using (4.26) and analogous inequalities for w’ and &/, , we get
lw_(A) —w" (A)] < 2¢|| 4]
Since the last inequality is true for any € > 0, w_(A) = w’(A). O
Corollary 4.22 Let w € . Then there exists a x-representation m : 24 — B(H) and vectors ®,¥ such

that
w(A) = (P|x(A)D).

Theorem 4.23 Let A be a C*-algebra, ¢ € A* and A € A,.. Assume that
o(A) = ||l All-
Then ¢ is positive.

Proof. We can assume that ||¢|| =1 and ||A]| = 1.
Step 1 If 2 does not have the identity, then we can extend ¢ to a functional ¢,, on 2., such that
o] = ||Punl- If ¢un is positive, then so is ¢ is. Therefore, in what follows it is sufficient to assume that
2 has an identity.
Step 2 Let ¢(1) = a+i8, o, 3, A € R. Then

6L+ XA)| = [a+iA+ ) > A+ 6], ([T +irA[| = (1+ 2?2,
But

|o(1 +1MA)| < ||1 +iAA].

Hence
A+ 87 < (14 X%).
If this is true for all A, then § = 0. Hence ¢(1) € R.
Step 3 We will show that ¢(1) = 1.
It is clear that ¢(1) < ||¢|| = 1. Using first the positivity of A, ||A|| = 1, and then ||¢]| = 1, we get

1> []1=2A] = |¢(1 —24)].
But ¢(1 — 24) = ¢(1) — 2. Hence ¢(1) > 1.
This proves that ¢(1) = 1. By Theorem 4.14, this means that ¢ is positive. O
Theorem 4.24 Let ¢ be a state on A and A € A. Suppose that A > B +— ¢(BA) is hermitian. Then
[0(AH)| < ||Allp(H), H €Ay
Proof. Iterating ¢(B*A) = ¢(BA) = ¢(A*B*) we obtain p(BA?") = ¢(A™*BAN). If H € 2, then
qf)(HAn) :¢(H1/2H1/2A”) < ¢(A7L*HAn)1/2¢(H)1/2

— (A 2(H) 2,
Hence,
p(HA) < ¢(HA2")2’"¢(H)2*1+...+2*"
< H[> " Alg(H) 2" — || All¢(H).
O
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4.9 Unitary elements

Let A € 2. Then Red := 1(A+ A*), ImA := (A — A*) are self-adjoint and A = ReA +iA*.
For A € A we set |A| := (A*A)z.

Theorem 4.25 Assume that A is invertible. Then there exists a unique unitary U such that A = U|A]|.
Theorem 4.26 If2 is unital, then the unit ball (A), is the closed convex hull of unitary elements of 2.
Proof. The theorem is easy for self-adjoint elements. If A is self-adjoint and of norm less than 1, then
for U = %A—i— 5V1—A*A, we have A=U +U".
In the general case, set
Ulz) == (1 — AA*) Y2 (2 + A)(1 + zA*) 71 (1 — A*A)V/2.
Then U(0) = A, U(z) is unitary for |z] = 1 and by the Cauchy formula

1

T o

27
A U(e®)dg.
/0 (€9)dg

4.10 Extreme points of the unit ball

Theorem 4.27 The extreme points of ()1 N2y, are precisely the self-adjoint unitary elements.
Theorem 4.28 The extreme points of ()1 N2, are precisely the projections.
Theorem 4.29 The extreme points of the unit ball (A); are precisely the elements A € A such that

(1— AAAL — A*A) = {0}
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