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These lecture notes are devoted to the most basic properties of bounded operators in Banach and

Hilbert spaces. We also introduce the notions of Banach algebras. We avoid using more advanced concepts

(locally convex topologies, unbounded operators, applications of the Baire category theorem).

1 Vector spaces

Let K denote the field C or R.

If the vector space X over K is isomorphic to K", we say that X is of a finite dimension and its

dimension is n.

If A C X, then SpanA denotes the set of finite linear combinations of elements of A. Clearly, SpanA

is a subspace of X.

1.1 Linear operators

Let L(X,)) denote the set of linear transformations from X to Y and L(X) := L(X, X). For A € L(X,)),

KerA denotes the kernel of A and Ran A the range of A. A is injective iff KerA = {0}.
If A is bijective, then A~! is linear.
If x € X, then |x) denotes the operator

KoA— |z)A =Xz € X.

Sometimes we will write |z) instead of |z).
If v is a linear functional on X, then its action on x € X will be usually denoted by (v|z).

1.2 Factor spaces

Let X be a vector space and V C X a subspace. We define

T~y = r—ye.

Then ~ is an equivalence relation in X compatible with the addition of vectors and multiplication of
vectors by numbers. The set X'/ ~ is denoted by X' /V it has a natural structure of a vector space. The

dimension of X' /V is called the codimension of V. We have the linear map
Xozx—z+VeX/V

whose kernel equals V.



1.3 Direct sums

If X is a vector space and X, Xs subspaces, then we write X = X; @ Ay when A3 N X; = {0} and
X = X1 + X5, We say that X is an internal direct sum of X; and Xo.

P € L(X) is called an idempotent if P? = P. If P is an idempotent, then so is 1 — P.

If X = X1 @& X, then there exists a unique idempotent P such that Ran P = X} and KerP = A%.
Conversely, if P is an idempotent, then X = Ran P & KerP.

If X7 and X5 are vector spaces, then X7 x X5 has a natural structure of a vector space, and

X1XX2:X1X{O}@{O}XX2

in the sense of the internal direct sum. We often write X7 @& X5 instead of X7 x Xy and we call this the
external direct sum.

If X;, i € I is a family of vector spaces, then we write @& X for the Cartesian product x X; equipped
= il
al
with the vector space structure and & X; for its subspace consisting of finite linear combinations of
il
elements of X;.

1.4 2 x 2 matrices

Let P° € L(X) be an idempotent and P! := 1 — P? the complementary idempotent.
If H € L(X), then full information about H is contained in the matrix HY := PHPJ with i,j €
{0,1}. We can write H as
HOO HOl
H= |: H10 g1 :l . (11)
Theorem 1.1 Suppose that H'! is bijective.

(1) The following identity, sometimes called the Schur-Frobenius decomposition, is valid:

g [ 1o E) } { H — HOYHM)THY 0 ] [ (Hn)l 0

0 1 0 HY “tH 1
(2) Set Go = H® — HOL(H') 1 g0,
Then H™1 is bijective iff Gal is and
e — Gy P HO (H1)1

H' =
—(Hll)_lHloGal (Hll)—l + (Hll)_lHloGng01(H11)_1

— (100 _ (Hll)—lHlO) Gal (100 _ HOl(Hll)—l) + (Hll)—l.

1.5 Convexity

Let V be a vector space over K, where K =R or K = C.

V C X is convex iff 1,29 € V, 0 <t <1 implies tx; + (1 —t)ze € V.

If V C X is convex and e € V, then we say that it is an extremal point of V iff e;,eq € V and
e = 1(e1 + e2) implies e = e; = e5. E(V) will denote the set of extremal points of V.

CHY denotes the convex hull of V, that is

CHV := {txz1 + (1 —t)z2 : z1,22 €V, t€]0,1]}.



1.6 Absolute convexity

A set V C X is balanced iff x € V and |a| < 1 implies axz € V. It is called symmetric iff z € V implies
—z € V. If K= R then symmetric is synonymous with balanced.
A balanced convex set is called absolutely convex. ACHV denotes the absolutely convex hull of V),

that is
ACHV := {anx1 + asxs : z1,22 €V, |ag|+ |az| < 1}

1.7 Cones

C C X is called a cone iff

(1) x € C, A > 0 implies Az € C.

(2) x,y € C implies z +y € C.
A cone C is called pointed iff C N (—C) C {0}.
It is called generating iff SpanC = X. In the real case it means that C —C = X.
If A C X, then Cone(A) denotes the smallest cone containing A.
We can introduce the relation

x>y & zxz—yeCl.

We will write z > y iff z > y and = # y.
Theorem 1.2 (1) C={z : =z >0}.
(2) x>y and XA > 0 imply Az > Ay.
(3)
(4) If the cone is pointed then x >y and y > x imply y = x.
(5) If0eC, thenx > x

1 > Y1 and 22 > Yo imply 1 + T2 > Y1 + Yo.

Thus in the case of a pointed cone containing zero, > is an order.

1.8 Hahn-Banach Theorem
Let X be a real vector space. Let U C X. For x € X, define

pu(x) :==inf{A >0 : Xtz € U}.

Then py : X — [0, 00] is called the supporting functional of U.
We say that U C X is absorbing iff for any = € X there exists Ag such that for A > Xy, we have
xz e .

Theorem 1.3 (1) py(Az) = Apy(x) for A > 0.

(2) py s finite iff U is absorbing.

(3) U=-U (U is symmetric) iff pu(z) = pv(—zx).

(4) U =aU for|a| =1 (U is balanced) iff py(Ax) = |Apu(z).

(5) U is conves iff pu (@ +3) < pu(@) + pu(y)-

(6) Let W :=p;;*([0,1]). Then U C W, W is convex and contains 0. Moreover, py = pw .



A function p: X — [0, 00[ is called a Minkowski functional iff
p(x1 +22) < p(z1) + p(22), 71,72 € X,
p(Ax) = Ap(z), A>0.

Clearly, if p is a Minkowski functional, then U := {« : p(z) < 1} is a convex absorbing set containing
0. Moreover, p is equal to the supporting functional of U.

Theorem 1.4 (Hahn-Banach) Let X be a real vector space with a Minkowski functional p. Let ) be
a subspace of X and v a functional on Y satisfying

(vlz) <p(x), ze).
Then there exists a linear functional © on X such that

(O)z) < p(z), xe€X.

Lemma 1.5 The Hahn-Banach Theorem is true if dim X /Y =1
Proof. Let 27 € X\Y, so that X =Y + Rxy. Let o := sup(v(y) — p(y — x1)). We have for y1,y2 € Y,
yeY

v(y1) +o(y2) = vy +y2) < p(y1 +y2) < p(yr — 1) + p(21 + y2).
Therefore,
a<p(zr+y2) —v(y2), v2€, (1.2)
In particular, « is finite. We set

o(x+ty) :=v(y) +ta, yeY, teR.
Using (1.2) with yo = ¥, we obtain

By + tar) < o) + ¢ (plar + ) = o(5)) = ply + tan).
O
Proof of Theorem 1.4 Consider the family P of spaces equipped with a linear functional (};, v;) such
that Y C Vi, v; y =wv and v;(z) < p(x), z € V;. We will write (M1, v1) < (Mo, v2) iff Yy C Vo and vy is a

restriction of vg. Let (V;,v;), ¢ € I be a linearly ordered subfamily. Then it has an upper bound (Y, vo)
where ) is the union of ); and vy is the obvous extension. P is nonempty, since (), v) belongs to P.
Thus by the Kuratowski-Zorn lemma P has a maximal element (Vmax, Umax). By the previous lemma,
ymax =X. 0

1.9 Hahn-Banach Theorem for seminorms

Let X be a real or complex vector space. A function p : X — [0, oo] satisfying
p(z1 +22) < p(21) +p(a2), 1,72 € X,
p(Az) = [Alp(z), A €K,

is called a seminorm.

Clearly, if If p is a seminorm, then U := {& : p(z) < 1} is an absolutely convex absorbing set
containing 0. Moreover, p is equal to the supporting functional of U.

Theorem 1.4 implies easily



Theorem 1.6 Let X be a real or complex vector space with a seminorm p. Let ) be a subspace of X
and v a functional on Y satisfying
[(v|z)| < p(z), €.

Then there exists a linear functional ¥ on X such that

|(0]z)] < p(z), z€X.

2 Algebras

2.1 Algebras

Let A be a vector space over C. 2 is called an associative algebra iff it is equipped with a multiplication
satisfying
A(BC) = (AB)C,
A(B+C)=AB+ AC, (B+C)A=BA+CA,
(aB)(AB) = (aA)(8B).
(We will say simply an algebra instead of an associative algebra) 2 is called a commutative algebra iff
A, B € 2 implies AB = BA.
B C A is called a subalgebra if it is a linear subspace and A, B € B = AB € B. Clearly, a subalgebra
is also an algebra.
Let V be a vector space. Clearly, the set of linear maps in V, denoted by L(V), is an algebra.
A subalgebra of L(V) is called a a concrete algebra.
An identity of an algebra 2 is an element I € 2 such that

A=TA=AI, Aeq.
Any algebra has at most one identity. In fact, if I;, I are identities, then
I =L, = L.

We say that 2 is unital if it possesses an identity. In what follows, for A € C we will simply write A
instead of AlL

P € 2 is called an idempotent iff P2 = P. PP is a subalgebra called the reduced algebra.

If A C L(V) is a concrete algebra and E € 2 is its identity, then E is an idempotent in L(V). We can
then restrict 2 to Ran F.

An idempotent P is called finite discrete iff PP is finite dimensional. It is called abelian iff PP is
commutative.

Fix an algebra 2. Let B C 2. Alg() denotes the smallest subalgebra of 2 containing B. Alg(B)
will be called the subalgebra generated by ‘B.

2.2 Commutant

Fix an algebra 2. Let B C 2.
The relative commutant of 98 in 2 is defined as

B':={Ae : AB=BA, Be B}

Clearly, B’ is a subalgebra of 2 and B’ = Alg(®B)’. If 2 contains 1, then so does B’.
B’ is a subalgebra of 2l containing B.



If there is a risk of confusion (it is not clear which 2 we have in mind), we will write B’ N2 instead
of B'.
The center of 2 is defined as

ANA' ={A €U : AB=BA, Be A}

2.3 Direct sums

If 24, 2y are algebras, then we can define 21 @ 2s.
If 21 is an algebra and P € 2AN A is an idempotent, then clearly P2l = P2IP is a subalgebra. 2l is
naturally isomorphic to P2 @ (1 — P)2L.

2.4 Homomorphisms
Let 2, B be algebras. A map ¢ : A — B is called a homomorphism if it is linear and preserves the
multiplication, that means it satisfies
(1) ¢(AA) = Ao(A);
(2) ¢(A+ B) = ¢(A) + ¢(B);
(3) ¢(AB) = ¢(A)o(B).
A homomorphism of 2 into L(V) is called a representation of 2 in V.
If 2( is a unital algebra and ¢ : 2 — B is a homomorphism, then ¢(1) is an idempotent in B. ¢ is
called unital iff

6(1) = 1.

2.5 Ideals

B is a left ideal of an algebra 2L iff it is a linear subspace of 2 and A € A, B € B = AB € B. Similarly
we define the right ideal.

If A€ then AA is a left ideal.

B is called a two-sided ideal if it is a left and right ideal. In what follows we will write an ideal instead
of a two-sided ideal.

We say that an ideal J is proper iff 7 # 2. We say that an ideal J is nontrivial iff J # 2 and J # {0}.

Theorem 2.1 The kernel of a homomorphism is an ideal. If J is an ideal of A, then A/T has a natural
structure of an algebra. The map
A>5A— A4+TeA/T

is a homomorphism whose kernel equals J.

2.6 Left regular representation
The so-called left regular representation
A>3 A A(A) € L(A)

is defined by
AMA)B:=AB, A/ BecA.

If 2 is unital, then A is injective. If 2 is not unital, then A can be extended to a representation
A5 A— N(A) € L(24)

in the obvious way, which is injective.
In any case, we see that every algebra is isomorphic to a concrete algebra.



2.7 Invertible elements

Let 2 be an algebra. A € 2 is left invertible in 2 iff there exists an element B € 2, called a left inverse
of A, such that BA = 1. It is called right invertible iff there exists C' € 2 such that AC = 1.

Theorem 2.2 IfJ C 2 is a proper left or right ideal, then no elements of J are left or right invertible.

Theorem 2.3 Let Ac . TFAE:
(1) A is left and right invertible.
(2) There exists a unique B € 2 such that AB = BA =1

Proof. Let B, C be a left and right inverse of A. Then
B=B1=BAC=1C=_C.
O

If the above conditions are satisfied, then we say that A is invertible, and the element B, called the
inverse of A, is denoted A~!

Theorem 2.4 1. If A is invertible and B is a left or right inverse of A, then B = A™1.
2. If A, B are invertible, then
(AB)"'=B7'A7!, AT'-BT'=A"Y(B-A)B".

2.8 Spectrum, resolvent
Let 2 be a unital algebra and A € 2. The resolvent set of A, denoted rsg(A), is defined as
rsg(A) :={z€C : z— Aisinvertible in A}. (2.3)
The spectrum of A, denoted spy(A) is defined as
spg (A4) := C\ rsg (4).

If 2 is non-unital, then in (2.3) we demand that z — A is invertible in 24 .
Theorem 2.5 1. spy(AB)U{0} =spy(BA)U{0}.

2. If B is a subalgebra of A and B € B, then spy(B) D spy(B).

8. If m: A — B is a unital homomorphism, then spy(A) D Spr(a)(m(A)).

Proof. To prove 1., let z & spy (AB) U{0}. Let C := (2 — AB)~!. Then z71(1 + BCA) is the inverse
of z— BA. O

A is nilpotent of degree n iff A" =0 and A"~ # 0. A is quasinilpotent iff spy(A) = {0}.
Theorem 2.6 (1) Every nilpotent A is quasinilpotent.
(2) If P is an idempotent not equal to 0 or 1, then spy(P) = {0,1}.

Proof. (1) Let z # 0. Then }.7° 27771 A7 is a finite sum and is the inverse of (z — A).
(2) We check that for z # 0,1, (z —1)"'P+271(1 — P) is the inverse of z — P = (z — 1)P + 2(1 — P).
O



Theorem 2.7 Let A,B €, z €rs(A) and AB = BA. Then

B(z—A) ' =(z-A)"'B.

Proof. We have
(z— A)B=DB(z—A).

Then we multiply both sides by (2 — A)~!. O

If A € 2, we define o
Algy(A) := Algy ({A, (2 — A)™! + 2 €rsg(A)}).

Clearly, by Theorem 2.7, KIT%Q{(A) is commutative and contains 1.

Theorem 2.8 K\IEQ[(A) is the smallest amonyg the subalgebras of A containg A, 1 and such that spy (A) =

spe(A).

2.9 Functional calculus

Let K C C. The rational functions with poles outside K form a commutative algebra that we denote
Rat(K). If f € Rat(K), then f(2) = p(2)q(z)~!, where p(z), ¢(z) are polynomials and ¢(z) = (2 —

AL)™ (2= Ap)™ with z; € K.
Let 2 be a unital algebra, A € 2 and f € Rat(sp(A4)). We define

flA) =p(A)(A—2z1)7™ - (A= z,)" ™.

Note that the commutativity of Kvlg(A) guarantees that (2.4) does not depend on the order of Ay, ...

Theorem 2.9 .
Rat(sp(A)) o f — f(A) € Alg(4) c A

is a unital homomorphism. Moreover,

(1) if
Rat(sp(4)) > f—n(f) e

is a unital homomorphism satisfying w(id) = A, where id(z) = z, then n(f) = f(4);
(2) sp(f(A)) = f(sp(4));
(3) g € Rat(f(sp(A))) = g o f(A) = g(f(A)).

Proof. Elementary reasoning shows that (2.5) is a homomorphism.
Let us show (1). To this end it is sufficient to show that if A € rs(A), then

(A —id)™H =\ - A~

(2.4)

s An.

(2.5)

(2.6)

(2.7)

We know that (A —id) = A — A. Moreover, (A —id)~! € Rat(sp(A)) and (A —id)~}(A —id) = 1.

Hence
(A —id) " HA = A4) = A= A7r((A—id)1) = 1.

Therefore, (2.7) is true.
Let us prove (2) First we show that if f € Rat(sp(A)), then

sp(f(A4)) C f(sp(A)).

10



If u & f(sp(A))), then z — f(z) — u # 0 on sp(A). Therefore z — (f(z) — p) belongs to Rat(sp(4))
Therefore (f(A) — p)~t exists in A. Hence p € 1s(f(A)), which means that (2.8) is true.
Let us prove

sp(f(A4)) D f(sp(A))- (2.9)

Let i ¢ sp(f(A)). Obviously, (f(A) — p)~! exists in 2. Let A € C, u = f(\). Then z — g(z) :=
(f(2) — pw)(z — A\)~* belongs to Rat(sp(4)). Hence g(A) is well defined as an element of 2.

Then we check that g(A)(f(A)—pu)~ ! is the inverse of \— A. Hence A ¢ sp(A). Therefore u & f(sp(4)),
which proves (2.9). O

3 Banach spaces

3.1 Norms and seminorms

Definition 3.1 Let X be a vector space over K. X 3z — ||z|| € R is called a seminorm iff

1) =[]l = 0

2) [|Az]] = [Alll]l,

3) = +yll < ll=ll + llyll-
If in addition

4) [lz] =0 <= = =0,
then it is called a norm.

If X is a space with a seminorm, then N := {z € X : ||z|| = 0} is a linear subspace. Then on X /N
we define

[+ N} = [l

which is a norm on X' /A
If || - || is a norm, then

d(z,y) := [z =yl
defines a metric.
Let || - |3 and || - ||]2 be two norms on X'. They are equivalent iff there exist ¢1,ca > 0 such that

allzfly < flzll2 < eaflzls-

The equivalence of norms is an equivalence relation. If || - ||; and || - |2 are equivalent, then the
corresponding metrics are equivalent.

Theorem 3.2 (1) All norms on a finite dimensional vector space are equivalent.
(2) Finite dimensional vector spaces are complete.

(3) FEwery finite dimensional subspace of a normed space is closed.

For r > 0, (X)), denotes the closed ball in X of radius r, that is (X), :={x € X : ||z|| < r}.
If V C X, then V' will denote the closure of V, V? its interior.

11



3.2 Banach spaces

Definition 3.3 X is a Banach space if it has a norm and is complete.

Definition 3.4 Let x;, i € I, be a family of vectors in a normed space. Then

E Ty — X

i€l

in:x(:) AN \Y A < €.

I I
el €>01pe2f, IoCl€2

fin

We say then that Y., x; is convergent to x.

icl
Clearly,

>

icl

<3l

icl

If c, € Rand ), ¢; is convergent, then only a countable number of terms ¢, # 0.

Theorem 3.5 1) Let X be a Banach space, x; € X and
Z |l || < oo
il

Then there exists

3

icl
2) Conversely, if X is a normed space such that

oo

D llzall <00

n=1

implies the convergence of
o0
>
n=1
then X is a Banach space.

Proof. 1) Since only a countable number of terms x,, is different from zero, the nonzero terms can be
treated as a usual sequence indexed by integers. Let

N
YN ‘= § T
n=1

Forn <m
m m
i=n+1 i=n+1

Hence (yn) is Cauchy and therefore convergent.
2) Let (2,,) be a Cauchy sequence in X'. By induction we can find a subsequence (z,,) of the sequence
(z,) such that
HITLJ'-H - ITLJ” <27

12



By assumption,
o0
§ : x”ﬁ-l l‘nj
j=1

is convergent. The mth partial sum equals xy,,,, —xy,. Hence x,, is convergent to some z € X. Since
(2,,) was Cauchy, it also has to be convergent to xz. O

Theorem 3.6 Let X be a normed space. Then there exists a unique up to an isometry Banach space
X, such that Xy C X and Xy is dense in X. X is called the completion of Xy and is denoted XOCPI.

3.3 Bounded operators in a Banach space

Let X and )Y be normed spaces. An operator A : X — ) is called bounded iff there exists a number C
such that
|Az|| < ¢||z||, =€ X. (3.1)

[|A]] is defined as the least ¢ possible in (3.1), or

147 = sup 20— Gup 1 4al] < oo
. 0 ezl <

The set of such operators is denoted B(X,)). We write B(X) := B(X, X).

Theorem 3.7 The following conditions are equivalent:
1. A is bounded;

2. A is uniformly continuous;

3. A is continuous;

4. A is continuous in one point.

Proof. 1 = 2 = 3 = 4 is obvious. Clearly, 4. holds <= A is continuous at 0. Let us show that it
implies the boundedness of A.

Suppose A is not bounded. Then there exists a sequence (x,) such that ||z, || =1 and
[Aza ] = n.
Then
o oz

Thus A is not continuous at 0. O

Example 3.8 A linear operator from C™ to C™ can be defined by a matriz [a;;].

(1) If C™ is equipped with the norm | - |1 and C™ with the norm || - ||, then ||A|| = max{|a;;|}.

(2) If C™ is equipped with the norm || - [[oc and C™ with the norm || - ||1, then [|A|| <, ; lai;].

(3) If C™ is equipped with the norm || - ||1 and C™ with the norm || - |1, then ||A] = max;{}_, |ai;|}-
(4) If C™ is equipped with the norm || - [l and C™ with the norm || - ||, then [|Al| = max;{3_; |ai;|}.

Proposition 3.9 All linear operators on a finite dimensional space are bounded.
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Theorem 3.10 If Y is a Banach space, then B(X,)) is a Banach space. Besides, if A € B(X,)) and
B e B(Y,2), then
IBA| < [|BJl[| Al

Proof. Clearly, B(X,)) is a normed space. Let us show that it is complete. Let (A,) be a Cauchy
sequence in B(X,Y). Then (A,x) is a Cauchy sequence in Y. Define

Az = lim A,x.

n—oo

Obviously, A is lenear.
Fix n. Clearly,
(A= A,z = lim (4,, — A,)z.

m—0o0

Hence
[(A— Ap)z||

= limp— o0 [[(Am — An)z| < ||z im0 [[(Am — An)]|-

Thus,
JA— Ay < Tim Ay — A,

Therefore, by the Cauchy condition,
lim ||A— A,] =0.

Thus the sequence A, is convergent to A. O

Theorem 3.11 Let X,) be Banach spaces and Xy a dense subspace of X. Let Ag € B(Xy,)). Then
there exists a unique A € B(X,Y) such that A o Ag. Moreover, ||A| = || Aoll-

0

Theorem 3.12 Let X, Y be normed spaces. Let A : X — Y be bounded, Xy dense in X and Ran A
dense in'Y. Then AXy is dense in ).

Proof. Let y € Y and € > 0. There exists y; € Ran A such that ||y — y1|| < /2. Let 1 € X such that
Ary = y;. Then there exists zo € Xy such that ||z — zo|| < ||A|| " e/2. Hence

ly — Azoll < lly — yoll + [[A(z1 — x0)|| < e.

3.4 Quotient spaces
Let V be a subspace of a normed space X. In the space X'/} we introduce
lz 4+ V| :=inf{||y| : y€x+V}.

Theorem 3.13 (1) X/Voz+Vw— |+ V| is a seminorm and ||z + V|| < ||z||.

(2) IfV is closed, it is a norm,
Xozx—z+VeX/V

has norm 1 and maps open sets onto open sets

(3) If X is Banach, so is X/V.

14



Proof. To prove the triangle inequality we use the property

inf(a 4+ b) < inf a + inf b.

[z+V]|=0=2+V=V

follows easily from the closedness of V.
To prove the completeness, assume that y, € X'/V satisfies

o0
D lyall < oo,
n=1

Then, there exists a sequence z,, € X’ such that y, = [z,] and
0]l < llynll + 27

Hence s
Z lzn|l < oo
n=1

But X is complete, hence Zf;l ., converges to some z € X. But
N N
Il =3y zalll < llz = Xnoy @l = 0,
—00

hence

oo

>t

n=1
converges to [z]. O

Theorem 3.14 Let A € B(X,Y) and V a closed subspace in KerA. Then there exists a unique operator
Ae B(X/V,Y) such that

Al +V) = Ax.
It satisfies | A|| = ||A]|.

3.5 Dual of a normed space

Let X be a normed vector space. Recall that the dual space to X, denoted X# is the space of bounded
linear functionals. In other words, X# := B(X,K). Clearly,

[l := sup |(v]a)| < oc.
lzfl<1

It follows from Theorem 3.10, that
Theorem 3.15 X# is a Banach space.

Theorem 3.16 (Hahn-Banach) Let X, be a subspace of a Banach space X. Let vy € Xf. Then there
exists v € X7 such that ||v|| = ||vo| and

( = V0.
Xo

15



Corollary 3.17 Let xzqg € X. Then

sup  [(v]zo)| = |zoll-
lo]| <1, vex#
The set
{veXx# : (v]ag) = |zoll} (3.2)

is a non-empty convex subset of X#.
Proof. The inequality < is obvious. Consider Xy = Czg and vy € Xg# such that
<’Uo|>\l’0> = )\||$0||

Then |lvo|| = 1. We extend vg to v on X such that ||v|| = 1 This proves the inequality (3.2). O

Definition 3.18 (3.2) is called the set of normed tangent functionals at xg.
Theorem 3.19 IfV is a subspace of X of a finite codimension, then V is closed.

We define
Xszr Jre (XH)# (3.3)

by
(Jz|v) = (v|x).

J is isometric
| Jz|| = SUPyex#,|v||<1 |(Jx|v)]

= SUPyex# |lv||<1 [(v|z)| = |||

We will identify X with the subset Ran.J of X##. We say that X is reflexive <= X## = X,

Proposition 3.20 X is reflexive & X# is reflexive.

3.6 Examples of Banach spaces

Let I be an arbitrary set. Let v = (v');er be sequences indexed by I with values in C. Set
_ ) e P) T 1<p<og
lolly := 1-
sup;e; [v°], p = o0.
Lemma 3.21 The Hélder inequality

E v'w®

iel

< Jollpllwllg, p™" +q7" =1,

and the Minkowski inequality are true:

o+ wllp < lvllp + [[wllp-

Definition 3.22
LP(I) :={(v"), i €1 : |jv], < oo}

Coo(I):={(v"), i€l : A VvV sup [|<el.
€>01I0€2f, iel\Io
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Theorem 3.23 LP(I) with the norm || - ||, and Coo(I) with the norm || - || are Banach spaces.

Proof. The Minkowski inequality shows that these are normed spaces.
Le us show that LP(I) is complete. Let v, = (v}) satisfy

o0
> lloally < oo

n=1

Then vy, is also summable
oo
i i
E v, ="
n=1

Put v := (v%). By the Minkowski inequality,
n oo
o= vills < D 11971l
j=1 j=n+1

Hence .
i J —
nh_)rréoz:v = .
j=1
We check that v € LP(I). Thus by Theorem 3.5, LP(I) is a Banach space.
To see that C (1) is complete, we check that it is a closed subspace of L*°(I). O

Theorem 3.24

L/(I# =L1I), p~'+q¢ =1 1<p<oo,

Coo(I)# = LY(I).
Hence LY(I), Coo(I) and L°°(I) are not reflexive for infinite sets I.

Proof. Let C.(I) denote the set of sequences with a finite number of nonzero terms. Let X := LP(I)
for p < oo and X := Coo(I) for p = oo. Clearly, C.(I) is dense in X. Hence ever functional v given on
C.(I), has a unique extension to a functional on X.
The vectors e; span C.(I). Hence the functional v is determined by v; := (vle;) and its action on
x € X is given by the formula
(v|z) = szxz

icl

‘ zl:vm < (22: |vz|q>;<zz: |xi|p)%,

we have X# O Li(I). Assume that v € X#\L9(I). We can assume that I = N and p > 1. Define a
sequence of vectors z" € X

By the Holder inequality

=

e ) Tl (S fult) T, i<n
07 1> n.

Then

1

n
1—
Wy = (Y lul7) 7 = o,
— n— 00
-

17



"l = 1.

We will now describe when v € L7(I) is a normed tangent functional for x € LP(I): if 1 <p < o0
_1
v =Tl (P lal) 7

ifp=1
U¢=Ti|$i‘7l, SL‘Z#O, |’U¢‘ <1l,z; =0.

For L*(I), normed tangent functionals can form a many element set.

Example 3.25 Let (X, u) be a space with a measure.
(1) Let 1 <p<oo. Then LP(X, ) equipped with the norm

1/p
o= ( [ 1o@Pauco))
is a Banach space.

(2) If 1 <p<oo,p t4+q ' =1 and the measure is semifinite, then LY(X, 1) can be identified with the
dual of LP(X, u) by the duality

LUX, 1) x LP(X, 1) 3 (w,y) = {wly) - / w(@)o(e)du(z).

3.7 Direct sum of Banach spaces

If X, are Banach spaces and p is an arbitrary norm in R2, then X @ ) becomes a Banach space if we
equip it with the norm
[, 9)llp = o], [ly])-

All these norms in X @Y are equivalent and generate the product topology.
If X;, i € I is a family of Banach spaces, then we can define LP(X;, i € I) and Cy (X, € I). They
are Banach spaces and we have the obvious analog of Theorem 3.24.

3.8 Integration, differentiation

For continuous |a,b[> t — v(t) € X we can define the Riemann integral. It has all the usual properties,

for instance,
b
/ o(t)dt
a

A/abu(t)dt = /ab Aw(t)dt.

Let Ja,b[> ¢t — v(t) € X. The (norm) derivative of v(t) is defined as

b
< / lo(t)]|dt,

it Ae B(X,Y), then

d . v(to+h) —v(to)
gz to) = fimy h
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It has all the usual properties, for instance,

d d
&Av(to) = Aav(to),
d t
a v(s)ds = v(t)

3.9 Analyticity

We assume that K = C. Let Q be an open subset of C. We say that Q 5 z — v(z) € X is analytic iff for
any zo € ) there exists
. v(zo+h) —v(z0)
— =1 .
dz U(ZO) }LEI%) h

Theorem 3.26 (1) Let zg,21,... € X and v~ :=limsup,, . |a||%. Then

is absolutely uniformly convergent for |z| < r1 < r and divergent for |z| > r. In B(0,r) it is analytic

(2) Q3 z—v(z) € X is analytic iff around any zy € Q we can develop it into a power series. Its radius
of convergence equals
1) -

(3) If f is analytic on 2, continuous on Q' and zy € €, then

v(”)(zo)
n!

<lim sup

n—oo

2mi

feo) = 5 [ f)

3.10 Invertible elements
Let A € B(X,Y). We say it is invertible iff it is bijective and A=! € B(Y, X).
Theorem 3.27 Let A € B(X,Y). Suppose that for some ¢ >0
[ Az]| > clz|.
Then Ran A is closed. If Ran A = Y, then A is invertible and

A7 <!

Proof. Let y, € Ran A and y,, — y. Let Az, = y,,. Then z,, is a Cauchy sequence, hence convergent.
Let lim,, .o z,, :== x. But A is bounded, hence Ax = y. Therefore, Ran A is closed. O

Corollary 3.28 Let A € B(X,)). Suppose that for some ¢ > 0
[Az| > cl[=]],

and Ran A is dense in Y. Then A is invertible.
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Theorem 3.29 Let A € B(X,)) be invertible and B € B(X,)) such that
[BA™Y| < 1.

Then A + B is invertible and
(A+B)™' => (-1)/A"1(BA™').
i=0

J

Moreover,
I(A+B)7H < [[A7H(1 = [[BATH),

|47 = (A4 B) 7 < AT BATY(1— [ BAT)

In particular, invertible elements form an open subset of B(X,)) on which the inverse is a continuous
function.

4 Banach algebras

4.1 Banach algebras

An algebra 2 over C is called a normed algebra, if it is equipped with a norm 2 3 A — ||A]| € R such
that
IAB]| < [|A[[|B|-

It is called a Banach algebra if it is complete in the norm || - ||.

If 2 is a Banach algebra, then every norm closed subalgebra of 2 is a Banach algebra. If 8 C 2, then
the smallest Banach algebra containing 9B is denoted by Ban ().

Let V be a Banach space. Recall that B()) denotes the set of bounded operators on V. Clearly, B(V)
is a Banach algebra. Every norm closed subalgebra of B(V) is a Banach algebra. Such Banach algebras
are called concrete Banach algebras.

4.2 Ideals and quotient algebras

Recall that if V is a Banach space and W its closed subspace, then V/W has the structure of a Banach
space and V 3 v — v+ W € V/W is a surjective open map of norm one.

Theorem 4.1 Let T be a two-sided closed ideal of A. Then A/T is a Banach algebra and
A>A—A+TeA/T (4.4)
is a norm-decreasing homorphism of Banach algebras with the kernel equal to J.

Proof. By Theorem 2.1 we know that (4.4) is a homomorphism of algebras with the kernel equal to 7.
We also know that /7 is a Banach space and (4.4) is norm decreasing. Hence it is enough to show that

1(A+9)(B+I) < A+TlIB+ 7.
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4.3 Spectrum

Note that Theorem 3.29 remains true if we replace B(X,)) and B(Y, X’) with a unital Banach algebra
2A
We assume that K = C. Let A € A. We define the resolvent set of A as

rsA:={z€C : z— A is invertible }.
We define the spectrum of A as spA := C\rsA.

Theorem 4.2 Let A € 2. Then

spA is a compact subset of C.

A

2z — A)~t is analytic on 1sA.
— )*1

cannot be analytically extended beyond rsA.

Proof. (1) For |z — \| < ¢!, we have ||(z — A)(A — A)7!|| = |z — Alc < 1 Hence we can apply Theorem
3.29. This implies (2)

(3) We check that > o2 27" 1 A" is convergent for |z| > || A and equals (z — A)~'.

(4) follows from (1) and (3).

(5) We check that the resolvent is differentiable in the complex sense:

R (z+h—A) " —(-A) ) =-(+h-A) N (z-A) - —(z - 472

(6) follows from (2).
(7) (z—A)~! is an analytic function tending to zero at infinity. Hence it cannot be analytic everywhere,
unless it is zero, which is impossible. O

For A € B(X), the point spectrum is defined as the set of eigenvalues of A
sppA={z € C : there exists x € X such that Az = zx}.

Clearly, (sp,4)° C spA.

4.4 Spectral radius
Spectral radius of A € B(X) is defined as

stA:= sup |A|.
A€EspA

Lemma 4.3 Let a sequence of reals (cy,) satisfy
Cn + Cm 2 Cn4+m-
Then

. Cn . +Cn
lim — =inf —.
n—oo M n
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Proof. Fix m € N. Let n = mqg+r, r <m. We have

cn < qCpy + Cp.

So
Cn qCm Cr
— < —+ —.
n n n
Hence . ‘
. n m
limsup — < —.
n—oo N m
Thus,
. & . o C
limsup = < inf —&.
n—00 m
O

Theorem 4.4 Let A € B(X). Then
lim || A"||=

exists and equals stA. Besides, stA < ||A]|.

Proof. Let
cn = log ||A™]].

Then
Cn + Cm Z Cn+m

Hence there exists
. Cn
lim —.
n—oo N
Consequently, there exists
ro= lim ||A™|Y".
n—oo

By the Cauchy criterion, the series
oo

D o ArgT (4.5)

n=0

is absolutely convergent for |z| > r, and divergent for |z| < r. We easily check that (4.5) equals (z— A)
g

4.5 Idempotents
Theorem 4.5 Let P,Q € B(V) be idempotents such that st(P—Q)? < 1. Then there exists an invertible
U € B(X) such that P=UQU 1.
Proof. Set ~ B
U=QP+(1-Q)(1-P), V:=PQ+(1-P)(1-Q).

We have ~ } ) ~
QU =UP, PV =VQ.

We also have . o
VU=UV =1—-R,
R=(P-Q)?*=P+Q—-PQ-QP.
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We check that P and ) commute with R (note in particular that PR = P — PQP, etc.).
Set ¢ := stR < 1. Then on sp(1 — R) C B(1,c¢), the function z — 22 is well defined. Hence we can

introduce the function
(1 o R)fl/Z

(which can be defined by a convergent power series). We set
U:=U1-R™?=(1-R)™?U, V:=VA-R™?=(1-R"V.

SoUV=VU=1,or V=U""and
Q=UPU %

Proposition 4.6 Let t — P(t) be a differentiable function with values in idempotents. Then

PPP =0.
Proof. d d
—P=—P?>=PP+ PP.
T +

Hence PPP = 2PPP. O

4.6 Functional calculus

Let K C C be compact. By Hol(K) let us denote the set of analytic functions on a neighborhood of K.
It is a commutative algebra.

More precisely, let ﬁoi(K ) be the set of pairs (f, D), where D is an open subset of C containing K.
We introduce the relation (f1,D1) ~ (fa2,D2) iff f1 = f2 on D1 N Dy. We set Hol(K) := Hol(K)/ ~.

Definition 4.7 Let A € A and f € Hol(spA). Let v be a contour in the domain of f that encircles spA
counterclockwise. We define

flA) = % (z— A7 f(2)dz (4.6)

~
Clearly, the definition is independent of the choice of the contour.

Theorem 4.8
Hol(spA) > f— f(A) e (4.7)
is a linear map satisfying
(1) fg(A) = f(A)g(A);
(2) 1(4) =1;
(3) id(A) = A, forid(z) = z;
(4) If f(2) = 307 fn2™ is an analytic function defined by a series absolutely convergent in a disk of
radius greater than srA, then

FIA) =) faA™
n=0

(5) (Spectral mapping theorem). spf(A) = f(spA)
(6) g € Hol(f(spA)) = g o f(A) = g(f(A)),
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(7) Nf (A < ey,asup.ey [f(2)]-
Proof. From the formula

—A)t = Zz_”_lA", |z| > sr(A),

we get that 1(A) = 1 and id(A) = A.
It is clear that f — f(A) is linear. Let us show that it is multiplicative. Let fi, fo € Hol(spA).
Choose a contour 5 around the contour 77, both in the domains of f; and fs.

(2mi)~ f fi(z1)(z1 — A)~tdz f fa(22) (22 — A)~td2o
(2mi)~ f’Yl fw fi(z1)f2(z2) ((21 — A) 7t — (22 — A)71) (22 — 21) "'dzrdzy
(2mi)~ f fi(z1)(z1 — A)~tdz f%‘ 29 — 21) " fa(z2)d2e
+(27) 2fvz fo(22)(22 — A)~tdz f’Yl (21 — 22) "1 f1(21)d2.

But
[, (21 = 22) 7 fi(z1)der = 0,
fw 2 — 21) ! fa(z2)dze = 2mifa(21).
Thus
fi(A)f2(A) = fif2(A). (4.8)
Let us prove the spectral mapping theorem. First we will show
spf(A) C f(spA). (4.9)

If u & f(spA), then the function z — f(2) — u # 0 on spA. Therefore, z — (f(z) — u)~! belongs to
Hol(spA). Thus f(A) — p is invertible and therefore, 1 & spf(A). This implies (4.9).
Let us now show
Sp(A) > f(spA). (4.10)
Let p & spf(A). This clearly implies that f(A) — p is invertible.
If 11 does not belong to the image of f, then of course it does not belong to f(spA). Let us assume
that g = f(A). Then the function

2 g(2) = (f(2) =)z =N~

belongs to Hol(spA). Hence g(A) is well defined as an element of B(X). We check that g(A)(f(A) —
fO)"t=(\— A)~! Hence A €spA. Thus u ¢ f(spA). Consequently, (4.10) holds.

Let us show now (6). Notice that if w & f(spA), then the function z — (w — f(2))~! is analytic on a
neighborhood of

(w— FA)" = 5 [ (= 7 e = )
We compute
9(f(A))
= 5m Jy9(w (A))‘ldw
= @y J5 fyg w— f(2)) "z — A)~tdwdz

= oy J (- A>-1dz J. 9(w)(w — f(=))" dw
= [ g(f(2) (= — A)de
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4.7 Spectral idempotents

Let Q be a subset of B C C. Q will be called an isolated subset of B, if QN(B\Q)! = ) and Q'N(B\Q) = 0
(or € is closed and open in the relative topology of B).
Let € C spA be an isolated subset of spA. We define the function

1Q(Z) =

1 2z belongs to a neighborhood of €2,
0 z belongs to a neighborhood of spA\.

Clearly, 1o € Hol(spA) and 13 = 1o Hence 1g(A) is an idempotent.
If v is a contour around §2 outside of spA\(?, then

Lo(A) = — /(z _A)lde

27

This operator will be called the spectral idempotent of the operator A onto . Let g := 1o(A4)A1q(A)
be the subalgebra of 2 reduced by the projection 1g(A). Then

Spa, (Ala(A)) =spAN Q.
If Q4 and Q5 are two isolated subsets of spA, then

Io, (A)lﬂz (A) = lo,no, (A)

4.8 Isolated eigenvalues

Assume now that A is an isolated point of spA. Set
P:=1,(4), N:=(A-)P

Definition 4.9 We say that )\ is a semisimple eigenvalue if N = 0 If N = 0 and N"~! # 0, then we
say that X is nilpotent of degree n. It is easy to see that if A € L(X), then the degree of nilpotence of A
is less than or equal to dim P.

Proposition 4.10 The operator N is quasinilpotent, satisfies PN = NP = N and can be written as

N=f(A), [f(z):=(z=N)L(2). (4.11)
Besides,
(z—A)'P=(z= NP+ > N(z— NI

and (z — A)~Y(1 — P) is analytic in the neighborhood of \. If N is nilpotent of degree n, then there exist
0 >0 and C such that
Iz = A7 < Cle = A", 2 € BO\). (1.12)

Proof. Clearly, AP = Al,(A) and AP = A1,(A). This shows (4.11). Then note that f(z) = 0 for

z € spA. Hence spN = {0}.
Using the Laurent series expansion we get

(z=A)7 =) Culz— A",

n=—oo
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where
1

27 5

Clearly, C_y = P and C_5 = N. Besides, by Theorem 4.8 we obtain

(z—A) Yz =N)"""dz

n

CinCim=C1pm.

4.9 Spectral theory in finite dimension
Suppose that X is finite dimensonal of dimension d and A € L(X). Then spA has at most d elements.

Let spA = {\1,..., A\ }.
We say that A is diagonalizable iff

A= "N\l (A).
j=1

It is well known that in a finite dimension for every A € L(X), there exist unique diagonalizable D
and nilpotent N satisfying DN = ND such that A = D + N. Let m be the degree of nilpotence of N.

In fact, define two functions on a neighborhood of spA: d(z) is equal to A; on a neighborhood of
Ai € spA and n(z) = z — A; on a neighborhood of A; € spA. Both d and n belong to Hol(spA). Clearly,
and D := d(A) and N := n(A) satisfy the above requirements.

Clearly then N = 7" N; with N; = P;NP; also nilpotent. Let m; be the degree of nilpotence of
N;. We have

FA) =30, f®(D)NT
= Z?:l Z;cn:jo f(k)()‘j)NTJ!k'

4.10 Functional calculus for several commuting operators

Let K C C™ be compact. By Hol(K) let us denote the set of analytic functions on a neighborhood of K.
It is a commutative algebra.
Let 2 be a Banach algebra.

Definition 4.11 Let Ay,..., A, € A commute with one another. Let F € Hol(spA; x .-+ X spA,).
Let v1,...,vn be contours such that v1 X --- X 7, lies in the domain of F' and each ~y; encircles spA;
counterclockwise. We define

F(Al,...,An) = ﬁ/ le / dzn(zl —Al)_l (Zn — An)_lF(Zl,...,Zn). (413)

Clearly, the definition is independent of the choice of the contour.
Theorem 4.12
Hol(spAy x -+ xspAyp) 3 F+— F(Ay,...,A) €2 (4.14)
is a linear map satisfying
(1) FG(Ay,...,A,) = F(A1,...,A,)G(Ay, ..., Ay);
(2) 1(44,...,4,) =1;
(3) id;(Ay,..., Ay) = Aj, forid;j(z1,...,2,) = 2j;
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(4) If F(z1,...,2n) = Efnohm)mnzo Foyoomn 21t -2 is an analytic function defined by a series
absolutely convergent in a neighborhood of B(srAy) x -+ x B(sr4,,), then

(oo}
F(Ala---7An) = Z F77L1,...,,7rznA71n1 ,_,A’Tn;
mi,...,m,=0
(5) (Weak version of the spectral mapping theorem). spF(A1,..., A,) C F(spAi,...,spA,)
(6) g € Hol(F(spy x ... x spAn)) = g0 F(A1,..., Au) = g(F(As,..., Ay)),
(7) [1F(Ax, .. An)ll < ¢y,a4,...4, SUP-ey [ f(2)]-

Proof. The proof is essentially the same as that of Theorem 4.8. Let us show for instance the weak
version of the spectral mapping theorem. Let u & F(spAy,...,spA,). Then the function (z1,...,2,) —
F(z1,...,2,) — p # 0 on spAy x ... x spA,. Therefore, (21,...,2,) — (F(21,...,2,) — p)~! belongs to
Hol(spA; X ... x A,). Thus F(Ay,...,A,) — p is inverible and therefore, u & spF(A4,...,,A,). O

5 Hilbert spaces

5.1 Scalar product spaces

Let V be a vector space.
VxV3(vy)— (vy) €C

is called a scalar product if

(vly +2) = (vly) + (v]z),  (v[Ay) = A(v]y),
(v+yl2) = (v]2) + (ylz),  (wly) = A(vly),
(v[v) =0,

(vjv) =0=0v=0.

Theorem 5.1 (The hermitian property.)

(vly) = (ylv)-
Proof. We use the polarization identity:
3 I\ n in
(wly) = 1 o (D) (v +i"ylv +i%y),
3 . . .
(lo) = 1 55y (v + i7yfo + 7).

We define
[v]| :== v/ (v]v)

Theorem 5.2 (The parallelogram identity.)
2ol + llylI*) = llo +ylI* +llv — yl*.

Theorem 5.3 (The Schwarz inequality.)

[ly)] < [lollllyll
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Proof.

0 < (vttylv+ty) = ol* +t(vly) +t(ly) + lyl* 2>

We set t = — ?{;‘ﬁ’g and we get

@)

0ol = T

|

Theorem 5.4 (The triangle inequality.)

lo+yll < vl + [yl

Proof.
o+ ylI? = vl + (vly) + (wlv) + lylI* < (ol + llyl)?.

Hence || - || is a norm.

5.2 The definition and examples of Hilbert spaces

Definition 5.5 A space with a scalar product is called o Hilbert space if it is complete.

Example 5.6 Let I be an arbitrary set of indices. Then L*(I) denotes the space of families (v');er with
values in C indexed by I such that
Z [v|? < oo

iel

(vjw) = Zawl

icl

equipped with the scalar product

The Schwarz inequality guarantees that the scalar product is well defined.

Example 5.7 Let (X, ) be a space with a measure. Then L?(X, ) equipped with the scalar product

(oh) = [ wleyu(e)duta)
is a Hilbert space.

Theorem 5.8 Let Vy be a space equipped with a scalar product (but not necessarily complete). Let

VSPI be its completion (see Theorem 3.6). Then there exists a unique scalar product on Vgpl, which is
compatible with the norm on V*'. VP! with this scalar product is is a Hilbert space.

5.3 Complementary subspaces

Suppose that (for the time being) V is a space with a scalar product (not necessarily complete).
If ACV, then At denotes

At ={veV : (v]z)=0, z€ A}

Proposition 5.9 (1) At is a closed subspace.
(2) ACcB = A+t > B+
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(3) (A%)* > Span(A)!

Proof. 1. and 2. are obvious. To prove 3. we note that (A+)+ > A. But (A+)" is a closed subspace
by 1. Hence it contains the least closed subspace containing A, or Span(A)°. O

Suppose that V is Hilbert space.
Theorem 5.10 Let W be a closed subspace of V. Then W+ is a closed subspace and
wewt=y, Wht=w.

Proof. Let
inf |jv—wl| =:d.

weW
Then there exists a sequence y,, € W such tlfat
i [Jo— | = d.
Then using first the parallelogram identity and then %(yn + ym) €W we get
lyn = yml® = 2llyn = vl + 2llym — vl = 4llv = 5(yn +ym)II®
< 2[lyn — vl + 2/lym — v]|* — 4d* — 0.
Therefore, (y,,) is a Cauchy sequence and hence

lim y, =:y.

n—oo

Clearly, ¥ € W and it is an element closest to v. We set z := v —y. We will show that z € W*. Let

w € W. Then ) ) )
[2[]* = llv—yl* <[lv—(y +tw)|

= [z = tw||* = ||2]|* — E(w|2) — t(wlz) + [t*[|lw]]*.

We set ¢t = fffu‘lfg . We get
(wl2)P?
=l

Thus (w|z) = 0. This shows that Span(W U W) = V.

W N W+ = {0} is obvious. This implies the uniqueness of the pair y € W, z € W+. This ends the
proof of V =W @ W+,

Let us show now that (W=+)t Cc W. Let v € (W+)*. Then v = y + 2, where y € W, 2 € W+, But
(z|v) = 0 and (z|y) = 0. We have

(vlz) = (yl2) + (2]2).
Hence (z|z) =0, or z = 0, therefore v € W O

Corollary 5.11
ALt = Span(A)Cl
Proof. N
Span(A)t 5 ALT 5 Span(A4)!
follows by Proposition 5.9.
1
Spaun(A)CIL = Span(A)9
follows by Proposition 5.10. O
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5.4 Orthonormal basis

Assume for the time being that V is a space with a scalar product.

Definition 5.12 A C V\{0} is an orthogonal system iff e1,e2 € A, e1 # e implies (e1lez) =0. A CV
is na orthonormal system if it is orthogonal and if e € A, then |le|| = 1.

Theorem 5.13 Let (e1,...,en) be an orthonormal system. We then have the Pythagoras Theorem

N N
lol> = > 1@len)? + o = > (enlv)enll?
n=1 n=1

and the Bessel inequality:

N
lol> > [(v]en) .
n=1

Assume now that V is a Hilbert space.
Definition 5.14 A mazimal orthonormal system is called an orthonormal basis.

Theorem 5.15 Let {e;}ics be an orthonormal system. It is an orthonormal basis iff one of the following
conditions holds:

(1) {e; : ieI}t={0}.
(2) (Span{e; : i€ I} =V

Theorem 5.16 FEvery orthonormal system can be completed to an orthonormal basis.

Proof. Let B denote the family of all orthonormal systems ordered by inclusion. Let {A4; : i€ I} C B
be a subset linearly ordered. Then

Uier4i
is also an orthonormal system. It is also an upper bound of the set {A; : i € I'}. Hence we can apply
the Kuratowski-Zorn lemma. O

The definition of an orthogonal basis is similar. From an orthogonal basis (w;);e; we can construct

an orthonormal basis {|w;||~2w; }ier.

Theorem 5.17 Let (e;)icr be an orthonormal basis. Then
(1)
v= Z(ei\v)ei, (5.15)

iel
and
[olI> =" (v]e:) .
i€l
(2) If

v = Z)\iei,

iel
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Proof. By the Bessel inequality, a finite number of coefficients is greater than ¢ > 0. Hence a countable
number of coefficients is non-zero. Let us enumerate the non-zero coefficients (e;, |v), n =1,2,... By the

Bessel inequality, we get
o0

D leiv)® < Jloll®.
i=1

Set
N
UN = Z(em})ei,
n=1
Then for N < M "
loar = ol = > [(eilo)]*.
i=N+1

Hence by the completeness of V we get the convergence of vy and thus the convergence of the series.
Besides, the vector
v— Z e;(e;|v)

iel
is orthogonal to the basis. Hence it is zero. This proves 1. O
Theorem 5.18 Let By and Bs be orthonormal bases in V. Then they have the same cardinality.

Proof. First we prove this for finite By or Bs.

For any y € B; there exists a countable number of « € B such that (z|y) # 0. For every = € By we
will find y € By such that (z|y) # 0. Hence there exists a function f : By — Bj such that the preimage
of every set is countable. Hence

‘BQ| < |Bl X N| = IIlaX(‘Bﬂ,No).

Similarly we check that
|B1| S 1’I1aX(|BQI7 No)

O

Definition 5.19 The cardinality of this basis is called the dimension of the space.

Definition 5.20 We say that a linear operator U : Vi — Vs is unitary iff it is a bijection and
(Uw|Uv) = (w|v), v,w € V.

We say that the Hilbert spaces V1 and Vo are isomorphic iff there exists a unitary operator from Vi to
Hs.

Theorem 5.21 Two Hilbert spaces are isomorphic iff they have the same dimension.

Proof. Let {z; : i € I} be an orthonormal basis in V. It suffices to show that V is isomorphic to L?([).

We define the unitary operator
(Uv); := (x;]v).

d
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5.5 The space dual to a Hilbert space
Theorem 5.22 (The Riesz Lemma) The formula

(Cy(v)|z) == (v]z)
defines an antilinear isometry from V onto V#.

Proof. Isometricity:
[Cv(v)] = sup [(v|z)| < [v].
llzll<1

It suffices to take z = ﬁ to get the equality.

Surjectivity: Let w € V# and W := Kerw. If W = V, then w = C(0). If not, then let zp € W+,
[|zol] = 1. Set

v = xo(w|zg).

We will prove that w = C(v).
An arbitrary y can be represented as

Y= <y_ <<w|y> xo) N <<w|y> 20

wlxo) wlx)

The first term belongs to WW. Hence

(vly) = (wolwleo)| %o

= L = (wly).
The space dual to a Hilbert space has a natural structure of a Hilbert space:
(Cyv|Cyz) = (x|v), v,z € V.
Theorem 5.23 A Hilbert space is reflezive: (V#)# =V and Cy4Cy = 1.
Proof. Let y € V, v € V#. Then
(Cv# Cyylv) = (Cyylv) = (C5ly) = (vly) = (Jylv),

where J was defined in (3.3) Or, C\,»Cy = J. But Cy# and Cy are bijective, therefore, J is also a
bijection (which we will identify with the identity). O

5.6 Quadratic forms

Let V, W be complex vector spaces.
Definition 5.24 a is called a sesquilinear form on W x V iff it is a map
Wx V'3 (w,0) — a(w,v) € C

antilinear wrt the first argument and linear wrt the second argument.
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If A € C, then X can be treated as a sesquilinear form A(w,v) := AM(w|v). If a is a form, then we define
Aa by (Aa)(w,v) := Aa(w,v). and a* by a*(v,w) := a(w, v). If a; and ay are forms, then we define a; +as
by (a1 + az2)(w,v) := a1 (w, v) + az(w,v).

Suppose that V = W. We will write a(v) := a(v,v). We will call it a quadratic form. The knowledge
of a(v) determines a(w,v):

1
a(w,v) = 1 (a(w +v) +ia(w — iv) — a(w —v) —ia(w + iv)) . (5.16)
Suppose now that V, W are Hilbert spaces. A form is bounded iff
la(w, v)| < Cllwll[|v]].

Proposition 5.25 (1) Let a be a bounded sesquilinear form on W x V. Then there exists a unique
operator A € B(V, W) such that
a(w,v) = (w|Av).

(2) If A€ B(V,W), then (w|Av) is a bounded sesquilinear form on W x V.

Proof. (2) is obvious. To show (1) note that w +— a(w|v) is an antilinear functional on WW. Hence there
exists 7 € W such that a(w, v) = (w|n). We put Av := .

Theorem 5.26 Suppose that D, Q are dense linear subspaces of V, W and a is a bounded sesquilinear
form on D x Q. Then there exists a unique extension of a to a bounded form onV x W.

5.7 Adjoint operators
Definition 5.27 Let A € B(V,W). Then the operator A* given (uniquely) by the formula

(A"wlv) := (w]Av)
is called the (hermitian) conjugate of A.

Note that the definition is correct, because a(w,v) := (w|Av) is a bounded sesquilinear form, and
hence so is a*; and A* is the operator associated with a*.

Theorem 5.28 The hermitian conjugation has the following properties
J4*]| = 14]

(AA)* = \A*

(A+ B)* = A* + B*,

(AB)* = B*A*,

Ran A)1 = KerA*,

Ran A*)+ = KerA,

A is invertible < A* s invertible < ||Av|| > C||v|| and ||A*v| > C||v|, moreover,
(A7) = (4"~

9) spA* = spA.

(
(
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5.8 Numerical range
Definition 5.29 Let t be a quadratic form on X. The numerical range of t is defined as
Numt:={t(z) € C : z € X, |z| =1}

Theorem 5.30 (1) In a twodimensional space the numerical range of a quadratic form is always an
elipse together with its interior.

(2) Numt is a convex set.

(3) Num(at + ) = aNum(t) + 5.

(4) Numt* = Num t.

(5) Num(t+s) C Numt+ Nums.

Proof. (1) We write Let t(v) = Ret(v) + Imt(v). We diagonalize the imaginary part of t. Thus if
[ ZH 212 is the matrix of t, then ai5 = @2;. By multiplying one of the basis vectors with a phase
21 22

factor we can guarantee that ajo = ao; is real.
Now t is given by a matrix of the form

SRR YRR

Any normalized vector up to a phase factor equals v = (cos a, e sin «) and
t(v) — ¢ = Acos2a + p cos ¢ sin 2 + iy cos 2 (5.17)
Now it is an elementary exercise to check that the range of x + iy given by (5.17), equals
(v = Ay)? + py® < ¥°u’
(2) follows immediately from (1). O

Let V be a Hilbert space. If A is an operator on V, then the numerical range of A is defined as the
numerical range of the form (v|Aw), that is

NumA := {(v|Av) e C : v eV, |v|]| =1}

Theorem 5.31 Let A € B(V). Then
(1) spA C (NumA)<!.

(2) For z ¢ (NumA),
(z — A)7Y| < dist(z, NumA)~*.

Proof. Let (20 ¢ NumA)!. Recall that Num(A) is convex. Hence, replacing A wih a4 + 3 we can
assume that zg = iv with v = dist(z, Num(A)) and NumA C {Imz < 0}. Now
I(z0 — A)o|* = (Av|Av) + iv(v] Av) — iv(Avjv) + [v]?||v]]*
= (Av|Av) — 2vIm(v]|Av) + |v|?||v]]?

> V]2 lo]|*.
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Next, NumA* C {Imz > 0}.
|Go — A%Yol? = (A*0]A) — iv(u] %) + iw(A*v]o) + [Pl
= (A*0]4*0) — 2wTm(o]A0) + P [o]?
> Vo]l

Hence zg — A is invertible and z € rsA. O

5.9 Self-adjoint operators

Theorem 5.32 Let A € B(V). The following conditions are equivalent:
(1) A=A~

(2) (Aw|v) = (w]Av), w,v € V.

(3) (w|Av) = (v|Aw), w,v € V.

(4) (v|Av) e R.

Proof. (1)&(2)<(3)=(4) is obvious. To show (4)=(3) we use the polarization identity:

(w]Av) = (i) (w + Vv|A(w + iTv)),

1y}
I
<

o) (v +VwlA(v + Vw))

—
=2
BN
g
S~—"
I
Ll L T
I

o (=) (w4 o] A(w + ).

a

Definition 5.33 An operator A € B(V) satisfying the conditions of Theorem 5.32 is called self-adjoint.
An operator A € B(V) such that (v|Av) > 0 is called a positive operator.

By Theorem 5.32, positive operators are self-adjoint.
Clearly, if A € B(V), then A is self-adjoint iff NumA C R and positive iff NumA C [0, cof.

Theorem 5.34 Let A be self-adjoint. Then spA C R.
Proof. Let p# 0, u, A € R. We have

I(A = (A +i))oll* = (A = Xoll* + p?[lvo]]* > p?||v]]*.
Besides, (A — (A+ip))* = A — (A —iu). Hence

1A = (A i) 0l = [1(A = Noll* + 2 [[ol]* > p? o).

So A — (A +ip) is invertible. O.

Theorem 5.35 The operator A*A is positive and
| A=Al = || Al

35



Proof. A*A is positive because
(v]A* Av) = || Av|* > 0.

IA] = [[A*[[l Al = |A Al = supyj, =1 (v] A* Av)

= SupP|jy||=1 | Av[|* = [|A]]>.

The following facts will follow immediately from the spectral theorem. In particular, Theorem 5.18
will follow for an arbitrary normal operator.

Lemma 5.36 Let A be self-adjoint. Then
Al = sup |(v[Av)].

lloll<1

Proof. Let w,v € V. We will show first that

|(wl|Av)| < 5 (lwlf* + [0]*) sup (y]Ay).

lyll<1

N

Replacing w with e*®w we can suppose that (w|Av) is positive. Then
(w]Av) = 5((w|Av) + (v]Aw))

1 (w+v|A(w +v) = (w = v]A(w — v)))

1 (v +w[? + Jlv — w|?) supyjy (=1 |(y|Ay)|

3 ([0l1* + [lw]l?) supy, =1 [y Ay)|

IN

Hence |w| = ||v]| = 1 implies
|(w|Av)| < sup |(y|Ay)|-
lyl=1
But
1]l = i o |(w]Av)].

a

Theorem 5.37 If A is self-adjoint, then
(NumA)® = CH(spA). (5.18)
Proof. Step 1. Let A be self-adjoint and
—inf(spA) = sup(spA) =: a. (5.19)
Clearly, CH(spA) = [~a,a] and a = ||A||. By Lemma 5.36, (NumA)< C [~a,a]. Hence, (NumA)* C
CH(spA). The converse inclusion follows from Theorem 5.31.

Step 2. Let A be self-adjoint. Let a_ := inf(spA), as := sup(spA4). Then A= A- %(a, +aq)is
self-adjoint and satisfies (5.19). Hence (5.18) holds for A. Hence (5.18) holds for A as well. O
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5.10 Projectors

Theorem 5.38 Let P € B(V) be an idempotent. The following conditions are equivalent:

(1) P is self-adjoint.

(2) KerP = (Ran P)*

An idempotent P satisfing these conditions with Ran P = W will be called the projector onto W.

If (w;)ser is an orthogonal basis in W, then

0=
2
o]

Proposition 5.39 (Gramm-Schmidt ortogonalization) Let y1,ys,... be a linearly independent sys-
tem. Let P, be a projection onto the (n-dimensional) space Span{yi,...,yn}. Then

Wy, 1= (1 - Pn—l)yn

is an orthogonal system. An equivalent definition:

w1 = Y1, Wn = Yn —
j=1

Theorem 5.40 Let P* = P and P2 = P3. Then P is a projector.

Proof. (P? — P)*(P? — P) =0, hence P = P2. O

5.11 Orthogonal polynomials

Theorem 5.41 Let ju be a Borel measure on R such that for some € > 0

/eg‘w‘d,u(x) < 00.

Proof. Let ¢ € L?(R,u). Clearly, for Rez| < ¢, ¢(2)e**l bejongs to L*(R,p). Define F(z) :=
J e * ¢(x)dpu(z). Tt is analytic for |Rez| < € Now

Then polynomials are dense in L?(R, ).

(@16) = [ a"6()duta) = (" - F(O)

If ¢ is orthogonal to polynomials, all the derivatives of F' at zero vanish. Hence F(z) = 0 in the whole
strip. In particular, F(iy) = 0, y € R. Therefore, ¢(x)du(x) is zero. O

5.12 Isometries and partial isometries

Definition 5.42 An operator U is called a partial isometry if U*U and are UU* projectors.
Theorem 5.43 U is a partial isometry iff U*U is a projector.

Proof. We check that (UU*)? = (UU*)2. O
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Proposition 5.44 If U is a partial isometry, then UU* is a projector onto RanU and U*U is the
projector onto (KerU)>.

Proof.

veKertU & Uv=0
< 0= (Uv|UV) = (v|U*Uv) = (v|UUU*Uv) = (U*Uv|U*Uv)
< v e KerU'U.

This proves that U*U is the projector onto (KerU)+. O

Theorem 5.45 Let U € B(V,W). The following properties are equivalent:

1) UU =1,
2) (Uv|Uw) = (v|w), v,w €V,
3) U is an isometry, that means ||[Uv|| = ||v||.

Definition 5.46 An operator U satisfying the properties of Theorem 5.45 is called a linear isometry.

Proof. 1)<2) is obvious, and so is2)=-3). 3)=-2) follows by the polarization identity:

(Uw|Uv) =330 (=) (Uw + ¥ Uv|Uw + ¥ Uv),
(W) =130 (-1 (v + Vwlv + Pw).

O

Theorem 5.47 Let V be isometric. Then spV C {|z| < 1}.

Proof. We have |V||? = ||[V*V|| = ||1]| = 1. Hence, spV C {|z| < 1}.0

5.13 Unitary operators

Theorem 5.48 Let U € B(V,W). The following properties are equivalent:

UU =U0U*=1;

2) U is a surjective isometry;

3) U is bijective and U* = UL,

Definition 5.49 An operator satisfing the properties of Theorem 5.48 is called unitary.
Proposition 5.50 Let V be finite dimensional and V € B(V) isometric. Then V is unitary.

Proof. We have dimKerV +dimRanV = dim V. KerV = {0}, since V is isometric. Hence dimRanV =
dim V. But V is finite dimensional, hence RanV = V. O

Example 5.51 Let (e;), i = 1,2,... be the canonical basis in L*(N). Put
T€7; = €i41-
Then T is isometric but not unitary. It is called the unitaral shift.

Theorem 5.52 (1) U is unitary iff U is normal and spU C {z : |z| = 1}.
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(2) A is self-adjoint iff A is normal and spA C R.

Proof. (1)=-. Clearly, U is normal.

U is an isometry, hence spU C {|z| < 1}.

U~ is also an isometry, hence spU ! C {|z| < 1}. This implies spU C {|z| > 1}.

(1)< Since U is normal and |z| = 1 on spU, by the spectral mapping theorem, [|U] = 1. U~! is
normal as well and by the spectral mapping theorem |z| = 1 on spU~!, hence ||[U~!|| = 1.

Suppose that |[Uv|| < |[v||. Then for w := Uv, ||[Uw| > ||w||. Thus U and U~! are isometries. Hence
U is unitary.

(2)=- was proven in Theorem 5.34. Let us prove (2)< Let A be normal and spA C R. We can find
A > 0 such that A||A]| < 1. Hence 1+i\A is invertible. It is easy to check that U := (1 —i\A)(1 +i\A)~!
is normal. By the spectral mapping theorem, spU C {|z| = 1}. Hence, by (1), it is unitary. Now

A=—iAN1-U)(1+U) =iAx"YU-UU)U+U*V)"!
=IATI(1 = U (1+U*)"L = 4%,

5.14 Convergence

Let (Ayx) be a net of operators in B(V, W).
(1) We say that (A,) is norm convergent to A iff lim, ||Ax — A|| = 0. In this case we write

hiﬂAA = A.

(2) We say that (A)) is strongly convergent to A iff limy ||Axv — Av|| =0, v € V. In this case we write

s—lim Ay, = A.
X

(3) We say that (Ay) is weakly convergent to A iff limy |(w]Axv) — (w|Av)| =0, v € V, w € W. In this
case we write
w— liin Ay = A.

Theorem 5.53 Let (Uy) be a net of unitary operators
(1) If (Uy) is norm convergent, then its limit is unitary.
(2) If (Uy) is strongly convergent, then its limit is isometric.

(3) If (Uy) is weakly convergent, then its limit is a contraction.

Theorem 5.54 Let (Ay) be a net of operators in B(V) weakly convergent to A. Then

NumA C ﬂ U NumA,.

HEAA>L
In particular, if Ay are self-adjoint, then so is A; if Ay are positive, then so is A.

Theorem 5.55 Let (A,) be a weakly convergent sequence of operators in B(V). Then it is uniformly
bounded.

Proof. This follows from the uniform boundedness principle. O
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Example 5.56 In L%(N), let (eq,es,...) be the canonical basis. Set
U?Lej:6j+17 jzlvan_lv
Unen = €1;
Unej =ej, j=n+1,...;

Uej:ej_H, jZl,....

Then U, are unitary, s—lim,_., U, = U is not. Moreover. spU, = {exp(i2n/n) : j=1,...,n} and
$pU = {J2] < 1}.

Example 5.57 In L?(Z), let e;, i € 7 be the canonical basis. Set Unej = €jtn, j € Z. Then U, are
unitary, w—lim, . U, = 0. Moreover, spU,, = {|z| = 1}, spU = {0}.

5.15 Monotone convergence of selfadjoint operators

Theorem 5.58 Let {Ayx : X\ € A} be an increasing net of self-adjoint operators, which is uniformly
bounded. Then there exists the smallest self-adjoint operator A such that Ay < A. We will denote it
lubAy (the least upper bound). We have

A=s—-1limA,.
X

Proof. Let ||A\|| < ¢. For each v € V, (v|Ayv) is an increasing net bounded by c|[v||?. Hence it is
convergent. Using the polarization identity we obtain the convergence of (v|Ayw). Thus we obtain a
sesquilinear form

li/{n(v|AAw) (5.20)

It is bounded by ¢, hence it is given by a bounded operator, which we denote by A, so that (5.20) equals
(v|Aw). Tt is evident that A is the smallest self-adjoint operator greater than Aj.
Since A — Ay > 0, we have

(A— Ay = (A— A3 (A A)(A - A)F < A A[(A- AY).
Besides, ||A — A,|| < 2¢. Now

1(A = Anol* = (vl(A = Ax)*v) < [|A = Ax|(v](A = Ax)v) — 0.

6 Spectral theorems

In this section we prove various forms of the spectral theorem. We avoid using the Gelfand theory, which
makes our approach slightly more elementary than that of most contemporary literature.
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6.1 Holomorphic spectral theorem for normal operators
Theorem 6.1 Let A € B(V) be normal. Then

sr(A) = [[All

Proof.
1A% = (| A% 42| = [|[(A*4)?|| = | A" A = [|A]I*.
Thus ||A2"|| = ||A||?". Hence, using the formula for the spectral radius of A we get [|A2" || " = ||A]. O

If K is a compact subset of C let Cpo(K) be the completion of Hol(K) in C(K).

The following version of the spectral theorem follows easily from Theorem 6.1. It will be improved in
next subsection so that the functional calculus will be defined on the whole C(spA).

Note that in the case A is self-adjoint or unitary, C(spA) = Chei(spA).

Theorem 6.2 Let A € B(V) be normal. Then there exists a unique continuous isomorphism
Choi(sp(A)) o f— f(A) € B(V),

such that
(1) id(A) = A ifid(z) = =.

Moreover, we have

(2) If f € Hol(sp(A)), then f(A) coincides with f(A) defined in (4.6).
(3) sp(f(A)) = f(sp(A4)).

(4) 9 € Gra(f(sp(A))) = g o f(A) = g(f(A)).

() [[f(A)] = sup|[f].

6.2 Commutative C*-algebras

Let X be a compact Hausdorff space. Then C'(X) with the norm | - || is a commutative C*-algebra.
Note that if A C U C X where U is open and A is closed, then there exists F' € C(X) with F' =1 on
A 0<F<land {F#0}CU.
Let Y C X and Let Cy (X) denote the set of functions vanishing on Y.
The following fact is well known from topology.
Theorem 6.3 Let X be a compact Hausdorff space.
(1) LetY be a closed subset of X. Then Cy(X) is a closed ideal of C(X).
(2) Let O be a closed ideal of C(X). Set
Y= (] FH(0).
Fen
Then Y is closed and Mt = Cy (X).
(3)

C(X)/Cy (X) 3 F+Cy(X) = F| € C(Y)

18 an isometric x-homomorphism.
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6.3 Spectrum of a x-homomorphisms of C'(X)

Let X be a compact Hausdorff space. Let V be a Hilbert space and v : C(X) — B(V) a homomorphism.
We say that it is a #-homomorphism iff y(F) = v(F)*.

Theorem 6.4 FEvery x-homomorphism is a contraction.

Proof. Let z ¢ F(X). Then (2 — F)~! € C(X). Thus v((z — F)~1) is the inverse of z — v(F). Thus
spy(F) C F(X), and hence sty (F) < || F||so-
Clearly, v(F') is normal, and hence [|v(F)|| = sry(F). O

In what follows v : C(X) — B(V) is a unital *-homomorphism.
We define the spectrum of the homomorphism v as

spy= () F
FeKery

Clearly, spy is a closed subset of X and Kery = Cgp(X).
Theorem 6.5 Let F' € C(X) Then the following is true:
(1) F(spy) = spy(F).
@) IWE)] = sev(F) = |F),,,
(3) v is injective iff X = spy and then it is isometric.
(4)

2

oo

There exists a unique *-isomorphism Yeq : C(spy) — B(V) such that

Y(F) = Yrea (F sm) , FecC(X)

Yred 1S tnjective.

Proof. (1) F(spy) C spy(F).

Suppose that z € rs(y(F)). Then there exists A € B(V) with Ay(z — F) = 1. Let x € X with
F(z) = z. We can find G € C(X) such that 0 < G <1, G =1 on a neighborhood U of = and on suppG
we have |F — z| < ||A|| 7. Then Ay((z — F)G) = v(G), hence

V&) < IAllllv(Gz = F)G)]
< ANz = F)Glloo < 3
Let H € C(X), suppH C U, H(z) = 1. Then for any n, H = HG™. Hence

V(H) = ~(H)y(G)".
Therefore,
V(] < [ (H)[[27" = 0.

Thus ||y(H)|| = 0. Hence v(H) = 0. But = ¢ H~'(0). Hence = ¢ spy. This proves (2).

(1) F(spy) 2 Spv(F)

Let z &€ F(sp7). = {z F(z) = z} is a closed subset of X disjoint from spy. Hence,
there exists a functlon G € C’(X ) buch that G = 1 on spy and G = 0 on a neighborhood of Z. Clearly,
G — 1 € Cspy(X), hence v(G) = 1. Now G(z — F)~! € C(X). We have

Yz = F)y((z = F)7'G) =~(G) = 1.
Hence v((z — F)71Q) is the inverse of z — v(F). This means that z € rsy(F).
(2) follows from (1) and the normality of v(F).

The kernel of v is a closed ideal of C'(X), hence it equals Cy (X) for some closed Y C X. « is injective
iff its kernel equals {0}. Cy(X) = C(X) iff Y = X. This together with (2) proves (3). O
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6.4 Functional calculus for a single normal operator

Lemma 6.6 Let (A; : i € I) be a family of self-adjoint commuting operators in a B(V). Then there
erists a unique unital x-homomorphism

O( x SpAi) SF e F(A; - iel)eB(Y) (6.21)
i€

such that id;(A; : i€ I) = A;, whereid;(z; :i € I) = x;.
Proof. On polynomials we define (6.21) in the obvious way. By the weak spectral mapping theorem of
Theorem 4.12,
spF(A; 1 iel)C F( X spAZ->.
il
Hence, stF(A; : i € I) <||F|lco. But F(A; : i€ I)is normal and hence |F(4; : i € I)]] < ||F co-
By the Stone-Weierstrass Theorem, polynomials are dense in continuous functions, therefore we can

extend the definition of (6.21) from polynomials to C' ( X spAi). |
il

We define the joint spectrum of the family of operators (A; : @ € I), denoted sp(A; : i € I), to be
the spectrum of the homomorphism (6.21).

Theorem 6.7 Let A € B(V) be normal. Then there exists a unique continuous isomorphism

C(sp(A)) > f = f(A) € B(V), (6.22)
such that
(1) id(A) = A ifid(z) =

Moreover, we have
2) If f € Hol(sp(A)), then f(A) coincides with f(A) defined in (4.6).
3) sp(f(A)) = f(sp(4)).
4) g € C(f(sp(A))) = go f(A) = g(f(A)).
5) [IF (Al = sup|f].

Proof. BR := 1(B + B*) and B! := (B — B*) are commuting self-adjoint operators. Therefore, we
have the homomorphisms

~—~ o~~~

C(spB™) > f = f(BY) € B(V),
C(spB') > f — f(B') € B(V),
with commuting ranges. We can construct the product of these homomorphism,
C(spB® x spB") 5 F — F(B®, B). (6.23)
Define R? > (x,y) — j(x,y) := 2 + iy € C. We claim that
j(sp(B™, BY)) = spB.
Let (20, v0) € sp(BY, BY). The function
() — (xo +iyo — & — iy) ™!
is well defined outside of (g, o). In particular, it s well defined on sp(BY, B!). Hence

(zg +iyo — BR —iBY) ™! = (29 4+ iyo — B)™*
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exists. Therefore, xg + iyg € rs(B).
Let xo + iyo & spB and (z0,y0) € sp(BR®, B'). Let € > 0 and f € C(sp(B®, BY)) with f(xq,y0) = 1
and {f # 0} C {(z — 20)?> + (y — y0)? < €?}. Clearly,

f(B®, BY) = f(B®, B")(z0 + iyo — B)(z0 + iyo — B) "
Hence,
I1£(B™, BY)|| < |[f(BY, B")(zo + iyo — B)|lll(zo +iyo — B) || < €ll(zo +iyo — B)~'|.

By choosing € small enough we can demand that the right hand side is less than 1. But f(zo,y0) = 1.
This is a contradiction.

Now the *-homomrphism (6.22) is simply the reduced *-homorphism (6.23), where we identify sp(B®, BY)
with a subset of C with the map j. O

6.5 Functional calculus for a family of commuting normal operators
Theorem 6.8 (Fuglede) Let A, B € A and let B be normal. Then AB = BA implies AB* = B*A.

Proof. For A € C, the operator U(\) := AB =B — = ABAB” g ymitary. Moreover, A = 3 Ae = B,
Hence
e BT AN = U(=N)AU(N) (6.24)

is a uniformly bounded analytic function. Hence is constant. Differentiating it wrt A we get [A, B*] = 0.
O

Suppose that {B; : i € I} is a family of commuting normal operators in B(V). Set BY := 1(B;+ B})
and B! := %(Bi — BY). Then by the Fuglede theorem, {B}, B! : i € I} is a family of commuting self-
adjoint operators. Thus we have a *-homomorphism

[[spB! xspBf 5 G G(BF,B] : icI)eB(V) (6.25)
el

Recall that the joint spectrum
sp(BX, B} : i€l (6.26)

(the spectrum of the *-homomorphism (6.25)) is defined as a subset of [[,.; sp(BY, B}). By Theorem ?7?,
we can identify sp(Bf, Bf) C R? with spB; C C. Thus [[,.,; sp(BY, B}) can be identified with [T, ; spB;.
The image of (6.26) under this identification is called the joint spectrum of the family (B; : i € I) and
denoted sp(B; : i € I). Note that this generalizes the definition from the self-adjoint case.

Theorem 6.9 Let {B; : i€ I} be a family of commuting normal operators in a B(V). Then

(1) {zi : i € I} € [l;c;spB; does not belong to sp{B; : i € I} iff there exists a finite sub-
set {i1,...,in} C I and functions f;; € C(spBy;), with fi,(z;) # 0, j = 1,...,n such that
fir(Bi) -+ fi, (Bi,) = 0.

(2) There exists a unique continuous unital *-homomorphism
C(sp(B; : iel)3g—g(B; : iel)e B(V) (6.27)
such that if id;(z; : i € I) = z;, then
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(3) (6.27) is injective and satisfies
lg(Bi : i€ D] =llglloo-

Proof. It is obvious that the spectrum of (6.21) is contained in the set described in (1). We need to
prove the converse inclusion.

Suppose that {z; : ¢ € I} does not belong to the spectrum of (6.21). Then there exists F €
C(II;c;spA;i) such that F(z; : i€ I)=1and F(B; : i€ I)=0. Changing F' into min(2F,1) we
can guarantee that F = 1 on a neighborhood of {z; : i € I}. This means that there exists a finite
subset {i1,...,i,} C I and open sets U;,, z;; € Uy;, U;; C spBy; such that I’ = 1 on [],.; W; where
Wi =spA; for i & {i1,...,in} and Wy, =U;;, j =1,...,n. We can find g;; € C(spB;;) with g;;(z;,) # 0
and {g;, # 0} C U;;. Now

0=F(B; : i€1)gi(Bi,) 9,(Bi,) = gi,(Bi,) - 9i,(Bi,)-

This ends the proof of (1).
To see (2) and (3) we reduce the homomrphism (6.25) and use Theorem 6.5 implies (2) and (3). O

6.6 Projector valued (PV) measures

Le (X, F) be a set with a o-field. Let V be a Hilbert space. We say that

F > A Py € Proj(V) (6.28)
is a projector valued measure on V iff
(1) Py =0;
(2) If Ay, As, ... € F are disjoint, and A = U°, A;, then Py = s— nILIEO > iy Pay.

We call Py the support of the projector valued measure (6.28).
Theorem 6.10 For any A, B € F we have
PyPp = Psnp.
Proof. First consider the case AN B = (. By (2)
Pyup = Pa + Pp.
Hence P4 + Pp is a projector. Hence (P4 + Pg)? = P4 + Pp. This implies
PsPp + PPy = 0. (6.29)

Multiplying from both sides by Pg we get 2Pg P4 Pg = 0 Multiplying (6.29) from the left by Pg we get
PBPA = 7PBPAPB. Thus PBPA = 0.
Next consider the case A C B. Then

Pp = Pa + Pp\4.

Using PaPp\4 = 0 we see that PgP4 = Pa.
Finally, consider arbitrary A, B. Then

PaPp = (Ps\B + Pan)(Pp\a + Panp) = Pans.
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Theorem 6.11 Let F > A — Pa be a projector valued measure and let L°(X) denote the space of
bounded measurable functions on X. Then there exists a unique contractive x-homomorphism

LX(X)3 f / F(z)dP(z) € B(V)

such that [14(x)dP(z) = Py, A€ F.

Proof. If f is an elementary function, that is a finite linear combination of characteristic functions of
measurable sets .
F=>"Nla,,
j=1

then clearly
/ f(x)dP(x Z)\ Pa,.

For such functions the multiplicativity of v is obvious.
Then we use the fact that elementary functions are dense in £°°(X) in the supremum norm. O

Let us give an alternative equivalent definition of the spectral integral, which uses directly concepts
from measure theory. For any w € V

F 5 A i(A) i= (w]Paw)
is a finite measure. Likewise, for any w,v € V,

F 3 A i (A) = (w]Pav)
is a finite charge.

Theorem 6.12 For any f € L>2(X),
[ f(@)dpew(z) = (w] [ f(z)dP(z)w) .

Here is a version of the Lebesgue dominated convergence theorem for spectral integrals:

Theorem 6.13 If f,, — f pointwise, |f,| < c, then s—lim, . [ fn(2)dP(z) = [ f(z)dP(z)

6.7 Projector valued Riesz-Markov theorem

Let X be a compact Hausdorff space, V a Hilbert space and v : C(X) — B(V) a unital *-homomorphism.
We define the upper projector valued measure associated with « as follows. For any open U C X we
define
PP :=sup{y(f) : 0< f <1y, feCX)}.
For any A C X we set
PP :=inf{P;” : Uisopen, ACU}.
We define the lower projector valued measure associated with v as follows. For any closed C' C X we
define
PEY = inf{y(f) : lo < f, feOX))
For any A C X we set
PRV = sup{P¥Y : Cisclosed , C C A}.

We say that A C X is y-measurable if Py” = PI™. The family of y-measurable sets is denoted F,.
For such sets A we set Py = PP = PYv.
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Theorem 6.14 (1) Py’ and PYY are projectors for any A C X.
(2) Fy is a o-field containing Borel sets.

(3) Fy 3 A Py € Proj(V) is a projector valued measure with support 1.
(4) C(X) C L>(X) and if f € C(X), then v(f) = [ f(z)dP(z).

One can construct the spectral integral directly from ~ as follows.
We define the upper integral as follows. If f is a lower semicontinuous function on X, we set

/ Y F(@)dP(@) = sup{r(g) : g€ C(X). g< f}.

If f is an arbitrary function, we set

up up
/ f(x)dP(x) := inf {/ g(x)dP(zx) : g is lower semicontinuous and f < g} .

We define the lower integral as follows. If f is a upper semicontinuous function on X, we set

low

f(@)dP(z) :=inf{y(g) : g€ C(X), f<g}

If f is an arbitrary function, we set

low

low
f(x)dP(z) := sup {/ g(z)dP(x) : g is upper semicontinuous and g < f} .

Theorem 6.15 A function f on X is F,-measurable iff

up low
/ f@dP@) = [ f@)dP() (6.30)

and then (6.30) equals
/f(x)dP(m)

One can also construct the spectral integral using the Riesz-Markov for usual measures. For any
w eV,
C(X) > f = (wh(fw)

is a positive functional on X. By the Riesz-Markov theorem it defines a unique Radon measure on X,
which we will call g,,.

Theorem 6.16 If f is y-measurable, then it is measurable for measure ., for any w € V, and then,

(u] [ s@r@) w) = [ s to)
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6.8 Absolute continuous, singular continuous and point spectrum

Let (X, F) be a set with a o-field and F 5 A — P(A) € Proj(V) a projection valued measure. Let Z C F
be a o-ring — an ideal in F. We say that P is Z-singular if

P(A)=sup{P(B) : BC A, BeI}, AcF.

We say that P is Z-continuous if
AeI = P(A)=0. (6.31)

Let
PIS::SUI){P(N) : NEI}7 Pr. :=1— Pr..

Then

F5A — PIC(A) = .PIC.P(A)7
F>5A — PIS(A) = PISP(A)

are respectively Z-continuous and Z-singular PV measures.

In particular, let Zy be the o-ring of countable sets. If Z is contained in F, then it is clearly an ideal
in F. Then instead of saying Zp-continuous, we say simply continuous and instead of Pr,. we write P..
Instead of saying Zy-singular, we say point and instead of Pr s we write P;.

Theorem 6.17 Suppose that V is separable. Let A — P(A) € B(V) be a PV measure. Then there
exists a countable set I C X, such that P, = Pr.

Assume now that F is a Borel o-field on a subset of R or C. Let Z; be the o-ring of sets of the
Lebesgue measure zero. Clearly, Z; N F is an ideal in F. (If needed, in what follows we replace Z with
71 NF). Then instead of saying Z;-continuous, we say absolutely continuous and instead of Pr,. we write
P,.. Then instead of saying Z;-singular, we say singular and instead of Pr,s we write Fs.

Clearly, we have P,. < P.. A measure that is both singular wrt Z; and continuous is called singular
continuous and we write Py := (1 — P,.)Ps. Thus we have the decompositions

1:Pac+Psc+Pp; Ps:Psc+Pp7 PC:Pac+Psc~

Theorem 6.18 Suppose that V is separable. Let A — P(A) € B(V) be a PV measure. Then there
exists a set N C X of the Lebesque measure zero and a countable set I C X such that Ps. = Py and
P, = Pr.

If B is a normal operator, then we can define the corresponding PV measure A — 14(B), and
correspondingly we obtain the projections 1,.(A), 1s.(A4), 1,(A). Note that 1,(A) is the projection onto
the closed span of eigenvectors of A. In this case one often introduces the absolutely continuous and
singular continuous spectrum of A:

sp,..A:=sp| A A:=spl A .
SPac °P ( Ran 1aC(A)> » s °P ( Ran 1SC(A))
Note that we defined the point spectrum of A as the set of eigenvalues of A. Therefore,

(6.32)

cl
(sppA) =sp <A o 1p(A)) .

However, some authors prefer to use the right hand side of (6.32) as the definition of of sp,A.
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6.9 L? spaces

Let (X, F, ) be a space with a measure. Let Y be a topological space and f: X — Y a Borel function.
We say that y € Y belongs to the essential range of f, denoted y € essRan f, iff for any neighborhood U
of y we have p(f~1(U)) # 0. Note that if f: X — C is Borel, then ||f||oc = sup{|f(z)| : x € essRan f}.

Let f € L*°(X). Then

L*(X) 2 hw Tih = fh € L*(X)

is a bounded normal operator with spTy = essRan f and ||T|| = || f||lco. The operator T is self-adjoint
iff essRan f C R.

Suppose that (f; : ¢ € I) is a family of functions in L>°(X). Clearly, the operators T, commute
with one another.

We can introduce the function

X sz (filz) : iGI)EHC.
iel
We have
sp(Ty, : i €I} =essRan(f; : i1 €1).

6.10 Spectral theorem in terms of L? spaces

Theorem 6.19 Let v : C(X) — B(V) be a unital *-homomorphism. Then there exists a family of
Radon measures pi;, i € I on X and a unitary operator U : & L*(X, p;) such that v(f) =U & TyU*.
i€l i€l

Proof. Step 1. If v € V, the cyclic subspace for v is defined as V, := {Av : A € v(C(X))}". Note
that V, is a closed linear subspace invariant wrt v(C(X)) and Vi~ is also invariant wrt v(C/(X)).
We easily see that there exists a family of nonzero vectors {v; : i € I'} such that V= @ V,,.
iel

Step 2. By the Riesz-Markov Theorem there exists a Radon measure y; on X such that [ fdu, =
(vily(f)vi). The unitary operator U is defined by Uh := 3, ; v(h)v;. O

7 Discrete and essential spectrum

7.1 Discrete and essential spectrum

Let X be a Banach space and A € B(X). We say that e € spA belongs to the discrete spectrum of A if
it is an isolated point of spA and dim1¢.,(A) < oo. The discrete spectrum is denoted by spy(A4). The
essential spectrum is defined as

SPess A = SpA\spgA.

Assume now that H is a Hilbert space and A is an operator on H. Then
Theorem 7.1 Let A be self-adjoint and \ € spA. Then
(1) X € spgA iff there exists € > 0 such that dim 1j\_ y1.q(A) < oc.
(2) A € 8pegs(A) iff for every € > 0 we have dim 1_ y1q(A) = oc.

Theorem 7.2 Let A be normal and X € spA. Then
(1) X € spgA iff there exists € > 0 such that dim 1p() ¢)(A) < co.
(2) X € spegs(A) iff for every e > 0 we have dim 15 ¢)(A) = oco.

Remark 7.3 If A is a closed operator, then the definitions of discrete and essential spectrum remain
unchanged, as well Theorems 7.1 and 7.2.
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7.2 The mini-max and max-min principle
Let A be a bounded self-adjoint operator on a Hilbert space V. We define for n = 1,2,...
tn(A) == inf{sup{(v|Av) : |lv||=1, ve L} : L is an n-dim. subspace of V}.
Y(A) :=infsp(4).

Theorem 7.4 Write py,, ¥ for un(A4), L(A).

(1) () is an increasing sequence.
(2) lim p, =%

n—oo
(3) Let a € R. Then

a < i ~ 1]—oo,a[(A) =0;
Hn <0< fipy1 & 1]—00,(1[(A) =n;
Y¥<a & 1lj_oq[(A) = o0

Proof. For any (n + 1)-dimensional space £ there exists an n-dimensional space £’ contained in L.
Clearly,
sup{(v|Av) : |jv||=1, v e L'} <sup{(v|Av) : |v]| =1, v e L}.

Therefore, py, < fini1.
Let L, := Ran1j_ 4[(A) be n-dimensional.
For some ag < a, L, = Ran 1j_ 4,(A). Now

sup{(v[|Av) : |jv]| =1, v € Ly} < ap < a.

Thus py, < a.
If £ is (n + 1)-dimensional, then £ N £} # {0}. Thus we can find normalized v € £ N L. Now
v € Ran 1}, oo[(A), hence (v|Av) > a. Thus

sup{(v|Av) : |lv||=1, ve L} >a.

Hence, a < ppy1. O

Theorem 7.5 (The Reyleigh-Ritz method) Let W be a linear subspace. Set Ayx = PWAPW’W,
where Py, denotes the projector onto W. Then Ay is a bounded self-adjoint operator and

Theorem 7.6 (1) Let A< B. Then p,(A) < u,(B).
(2) |pn(A) = pn(B)| < [|[A = B].

Remark 7.7 The theorems of this subsection remain true if the operators are only bounded from below
(but not necessarily bounded). In this case, if v does not belong to the form domain of A, then we set
(v|Av) = 0.

Notice also that if D is an essential domain for the quadratic form generated by A, then

pn(A) ;== inf{sup{(v|4v) : ||v|| =1, ve LND} : L is an n-dim. subspace of V}.
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7.3 Singular values of an operator
Let A be a bounded operator on a Hilbert space V. We define for n = 1,2, ...
sp(A) := sup{inf{(|][Av]| : |lv||=1, v € L} : L n-dim. subspace of V}.
Clearly, for |A| := (A*A)'/2,
sn(A) = sn(|A]) = —pn(—[4]),
and s1(A) = [|4].

8 Compact operators

8.1 Finite rank operators

This subsection can be viewed as an elementary introduction to compact operators.
Definition 8.1 An operator K € B(X,)) is called a finite rank operator iff dim Ran K < oc.
Theorem 8.2 Let K € B(X,)) be a finite rank operator. Then

dim Ran K = dim X /KerK.

Proof. Let y;,...,y, be a basis in Ran K. We can find z1,...,z, € X such that Kz; = y;. Then
Span{zi,...,z,} N KerK = {0}. Assume that z € X. Then Kz = Y ¢;y;. Thus z — > ¢;z; € KerK.
Hence z € Span{x1,...,2,} + KerK. O

Theorem 8.3 Let K € B(X) be a finite rank operator. Then spK = spp K. Moreover, spo K = 0 if
dim X < oo, otherwise spyK = {0}.

Proof. Using the fact that dim X' /KerK is finite, we can find a finite dimensional subspace Z such that
X =KerK® Z. Z; := Z+Ran K is also finite dimensional. We have K Z; C Z;. We can find a subspace
Z5 such that Z; @ Z5, = X. Obviously, Z; C KerK. O

8.2 Compact operators on Banach spaces I

Let X, Y be Banach spaces.

Definition 8.4 K € B(X,)Y) is called a compact operator iff for any bounded sequence x1,xs,... € X
we can find a convergent subsequence from the sequence Kxy, Kxo,... € ).

Equivalent definition: if (X)1 denotes the unit ball in X, then (K(X)1) is a compact set. The set of
compact operators from X to Y will be denoted By (X,D).

Theorem 8.5 (1) Let K be a compact operator. Let (x;);er be a bounded net weakly convergent to x.
Then IIHII Kz; = Kz. (K is weak-norm continuous on the unit ball).
1€

2) Let K be a compact operator. Let (z,,) be a sequence weakly convergent to x. Then lim Kz, = Kx.

n—oo

(

(3
4
(5

If A is bounded, K is compact, then AK and KA are compact.
If K,, are compact and lim,, .., K, = K, then K is compact.
If K is finite rank, then K is compact.

)
)
)
)
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Proof. (1) Let (x;);cr be a bounded net weakly convergent to z. Then w— lim;c; Kz; = Kz (because
K is bounded). Hence, if Kx; is convergent in norm, its only limit can be K.

Suppose that Kx; is not convergent. Then there exists a subnet z;, such that ||Kz;, — Kxz|| > € > 0.
By compactness, we can choose a subsubnet x;; such that Kx;, is convergent. But it can be convergent
only to Kz, which is impossible.

(3) is obvious, if we note that A maps a ball into a ball and a convergent sequence onto a convergent
sequence.

(4) Let x1, 2, . .. be a bounded sequence so that ||z, | < C. Below we will construct a double sequence
Zn,k such that, for any n, 2,411, Zn+41,2,... i a subsequence of z,, 1,2, 2,... and

| Kzpm — Kan il < (min(m,k‘,n))_l.

Eventually, the sequence z,, ,, is a subsequence of z,, such that Kz, , satisfies the Cauchy condition.

Suppose that we have constructed x, ., up to the index n. We can find N such that |K — Ky|| <
m. We put p41,m = Tn,m for m =1,...n. For m > n, we choose =41, as the subsequence of

Tn,m such that || KNTnt1,m — KNTnt1k

|<ﬁfork‘,m>n. Then for m > n
||Kmn+1,m - Kxn—i-l,k” S ||K='17n+1,m - KNIn—&-l,m” + ||KNIn+1,m - KNl'n—&-l,kH
HIENTn11,k — Kopg1kll < ﬁcﬂ) + 3y = (n+ 17

(5) follows by the compactness of the ball in a finite dimensional space Ran K. O

Note that Bo(X) is a closed ideal of B(X).

8.3 Compact operators on Banach spaces I1

In this subsection we prove some properties of compact operators on Banach spaces. They will be proved
again in the context of Hilbert spaces, so the reader interested only in Hilbert spaces can omit this
subsection.

Theorem 8.6 (Schauder) If K is compact, then K# is compact.

Let K € B(X,Y) be compact. We treat (Y#); (the unit ball in Y#) as a family of continuous
functions on X. It is equicontinuous on ) and bounded on ()));. Therefore, (Y#); is equicontinuous and
bounded on the compact metric space (K(X);) (where (X); is the unit ball in X). Hence, by the Ascoli
Theorem, from every sequence v, € (Y#); we can choose a subsequence v, uniformly convergent on

(K(X)1)%. Hence (K#uv,, ,x) converges uniformly for z € (X);. Therefore, K#uv,, is norm convergent
in X#. O

Theorem 8.7 (Riesz-Schauder) Let K be a compact operator. Then sp K = {0} if the space is
infinite dimensional and sp, K = 0 otherwise.
Lemma 8.8 sp,(K)\{0} is a discrete set.

Proof. Let A\, €sp,(K),n=1,2,..., A\, = A #0, 2, € X, Kz, = \yz,,. Let M,, = Span{zy,...,z,}.
Notice that M, is a strictly increasing sequence of subspaces invariant for K. We can find a sequence of
vectors vy, Vg, ... such that v, € M, dist(v,, M,—_1) > % and ||lv, || = 1. For m < n write

M Kvy — A K vy, = v, — (A Ko — ALK — Ay)oy) (8.33)

We have Kv,, € M,, C M,,—1 and (K — \,)v, € M,_;. Hence the second term on the right of (8.33)
has the norm > % Thus A, ' Kv,, does not contain a Cauchy subsequence. But it is a bounded sequence.
Hence K is not compact. O
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Lemma 8.9 If z ¢ sp, K\{0}, then there exists ¢ > 0 such that

I(z = K)z|| = cf|].

Proof. Let the sequence x,, satisty ||x,| =1, (2 — K)x,, — 0. Passing to a subsequence, we can suppose
that Kz, — y. Then zx,, — y. We have 2 possibilities:

1) y # 0. Then Ky = zy. But this contradicts the assumption z ¢ spp K.

2) y = 0. Then z,, — 0, which contradicts ||z,| = 1. O

Lemma 8.10 spK =sp, K U sppK# U {0}.
Proof. Let z ¢ sp, K U sppK# U {0}. Using Lemma 8.9 and the compactness of K#, we obtain
Ker(z — K) = Ker(z — K#) = {0}.
Hence (Ran (2 — K))! = (Ker(z — K#))*" = X. Lemma 8.9 implies also that Ran (z — K) is closed, hence

Ran (z — K) = X. By Lemma 8.9, (z — K) has a bounded inverse. O

Proof of Theorem 8.7 Let A € spK\{0}. Then A is an isolated point of spK. Let v be a closed curve
around A that does not encircle 0. Then

1oy (K) = 2m)~! [(z — K)~'dz = (2mi) L [ ((z _K)l - z—l)dz
=2m)7! [(z—K)"'Kz"'dz

is compact. But a projection is compact iff it is finite dimensional. O

8.4 Compact operators in a Hilbert space
Theorem 8.11 Let X, Y be Hilbert spaces and K € B(X,Y). TFAE:
(1) K is compact (i.e. (K(X)1) is compact).

(2) K maps bounded weakly convergent nets onto norm convergent sequences (K is weak-norm contin-
uous on the unit ball).

(3) K(X)1 is compact.

(4) Let (x,) be a sequence weakly convergent to x. Then lim Kz, = Kx.

(5) If K| := (K*K)'/2, then sp. | K| C {0}.

(6) There exist orthonormal systems x1,x2,... € X and y1,y2,... € Y and a sequence of positive

numbers ki, ks, ... convergent to zero such that
oo
n=1

(7) There exists a sequence of finite rank operators K,, such that K, — K.
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Proof. (1)=-(2), by Theorem 8.5, is true even in Banach spaces.

(2)=-(3). In a Hilbert space (X); is weakly compact. The image of a compact set under a continuous
map is compact.

(3)=(1) is obvious.

(2)=(4) is obvious.

(4)=(5). Suppose (5) is not true. This means that for some € > 0, Ran1j [(|K]) is infinite

dimensional. Let x1,22,... be an infinite orthonormal system in Ran 1jc ((A). Then z,, goes weakly to
zero, but [|[Kz,|| > e.
(5)=(6). Let x1,x2,... be an orthonormal system of eigenvectors of |K| with eigenvalues k,,. Then

set y, =k, ' Kx,.
(6)=(7). It suffices to set K. := K1 o[(|K][). Then

1 = K|l = 1K 1p.q (KD < e

(7)=(1), by Theorem 8.5, is true for Banach spaces. O
(1)=(6) is sometimes called the Hilbert-Schmidt Theorem.

Corollary 8.12 (Schauder) Let X, Y be Hilbert spaces and K € By (X,Y). Then K* € By (Y, X).

Proof. It follows immediately from Theorem 8.11 (7).

8.5 The Fredholm alternative

Theorem 8.13 (Analytic Fredholm Theorem) Let V be a Hilbert space, Q@ C C is open and con-
nected. Let Q) 3 z — A(z) € B (V) be an analytic function. Let S := {z € Q : 1-A(z) is not invertible }
Then either

(1) S=9Q, or
(2) S is discrete in Q). Moreover, for z € S, Ker(1 — A(z)) # {0} and the coefficients at the negative

powers of the Laurent expansion of (1 — A(2))~! are of finite rank. In particular, the residuum is of
finite rank.

Proof. Let zp € Q. We can find a finite rank operator F' with ||A(zg) — F|| < 1/2. Let € > 0 with
[|[A(2) — A(20)|| < 1/2 for |z — 20| < €. Thus [|A(z0) — F|| < 1 for |z — 2| < 1.
Set G(z) := F(1+ F — A(2))~. We have

(1-G()A+F—A(2)) =1— A(2).

Thus 1 — A(z) is invertible iff 1 — G(%) is invertible and Ker(1 — A(z)) = {0} iff Ker(1 — G(2)) = {0}.
Let P be the projector onto Ran F'. Set

Go(z) =G(2)P = PG(z)P,
Gi1(z) =G(z)(1—-P) =PG(z)(1-P).
Then
1-G(z)=1-Gp(2) — G1(z) = (1 = G1(2))(1 — Go(2)),

and (1 —G1(2))"! =1+ G1(2). Hence, 1 — G(2) is invertible iff 1 — G(2) is and Ker(1 — G(z)) = {0} iff

Ker(1 — Go(z)) = {0}. Since Go(z) is an analytic function in a fixed finite dimensional space, 1 — G(z)

is invertible iff det(1 — Go(z)) # 0 iff Ker(1 — Go(2)) = {0}. Thus S ={z € Q : det(l — Go(z)) # 0}.
Now we have

(1= A=) =1 +F = A(2) 7 (1 = Go(2) " (1 + Go(2)).
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The first and third factor on the rhs are analytic in the neighborhood of zy. Suppose that the middle
term has a singularity at zp. Then it is a pole of the order at most dim Ran F' and all the coefficients at
the negative powers of its Laurent expansion are finite rank. O

Corollary 8.14 (Riesz-Schauder) Let K be a compact operator on a Hilbert space. Then sp.. KK = {0}
if the space is infinite dimensional and sp.K = 0 otherwise.

Proof. We apply the Analytic Fredholm Theorem to 1 — z~'K. O

8.6 Positive trace class operators
Let {v; }scr be an orthonormal basis of a Hilbert space V. Let A € B(V) and A > 0. Define
TrA = Z(vi|Avi). (8.34)
iel
Theorem 8.15 (8.34) does not depend on the basis.
Proof. First note that if A, € B(V) is an increasing net, then
Z(vﬂAvi) = sup Z(vi\Aavi). (8.35)
i€l * el
Let {v; : i €I} and {w; : j € J} are orthonormal bases. Assume that ¢ < ) (v;|Av;). By (8.35),

iel
we can find a finite subset Jy C J such that if Py is the projection onto Span{w; : j € Jo}, then

c < Z(vz|POAPOvz)

el
Now
Yo (ilPoAPovi) =30 o (vilwy)(wj|Awy) (wg|v;)
iel icl j,kedo (8.36)
= > (wjlAw;) < 37 (wj|Awy).
j€Jo jedJ

Above we used the fact that for any j, &k

D |(wilwy) (w; | Awg ) (wievs) | < A,

i€l

which together with the finiteness of Jy imples that the second sum in (8.36) is absolutely convergent,

and also
> (ilw;) (wi|vi) = 64
iel
This shows
D (wilAv) <> (wy] Awy).
iel jeJ

Of course, we can reverse the argument. O

We will write B1 (V) for the set of A € B (V) such that TrA < oo.

Theorem 8.16 (1) IfA,B € B(V), then Tr(A+B) = TrA+TrB. If A € [0,00], then TrtAA = ATrA,

where 0oo = 0.
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2
3
4
5

Let B € B(V,W). Then TtB*B = TrBB*.
If Ae BL(V), and B € BOW,V). Then B*AB € BL (W) and TrB*AB < | B||*TrA.
If A€ BL(V), then A is compact.

(
(
(
(5) Let (A; i € I) be an increasing net in By (V) and A =lubA;. Then

— — — ~—

TrA =sup{Tr4; : iel}.
(6) TrA =3 s,(A).
Proof. (2) Let (v;) and (w;) be bases of V and W. Then
TB'B =¥, %, (v B w;) (w;| Bus)
= > 2i(wj|Bu)(vi|B*w;)  =TrBB",

where all the terms in the sum are positive, which justifies the exchange of the order of summation.

(3) By (2), we have TrB*AB = TrA'/?BB*A'/2. Besides A'/?BB*A'/? < || B||?A.

(4) If A has continuous spectrum, then there exists an infinite dimensional projector P and ¢ > 0
such that A > eP. Then TrA > €TrP = oo.

Hence A has just point spectrum. We have TrA = > a;, where a; are eigenvalues of A (counting

il
their multiplicities). O
8.7 Hilbert-Schmidt operators

For A € B(V,W) set

B2(V, W) denotes the set of operators with a finite norm || Al|,. Clearly,

oo 1/2
Al = (z sn<A>2> .
n=1

If (vi)ier and (w;) e are bases in V and W, then

1Al =D > I(w;]Avy) . (8.37)

icl jeJ
B?(V, W) is equipped with the scalar product

(AIB)2 => > (w;|Av;)(w;|Bu;), (8.38)

iel jeJ
where we used (v;);er and (w;) e orthonormal bases in V and W.
Proposition 8.17 (8.38) is finite and does not depend on a choice of bases.

Proof. Clearly, (8.37) is the norm for (8.38). Hence the finiteness of(8.38) follows by the Schwarz
inequality. |(A|B)a] < [|ls]| Bl
Next note that
J(A+B)o? < 2]l o] + 2 Bol.
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Therefore,
I(A+i*B)l5 < A5 + 1BI3 + -

Hence if A, B are Hilbert-Schmidt, then so are A +i*B. Then we note that (8.38) equals

>

k=0

ik

—

(A|B), Tr(A +i*B)*(A +i*B), (8.39)

|

which is basis independent.

Remark 8.18 In the next subsection we extend the notion of trace and (8.39) will be written simply as
TrA*B.

Theorem 8.19 (1) If A€ B*(V,W), then A is compact.

(2) B2(V,W) is a Hilbert space.

(3) If {viticr is a basis in V and {w;};cy is a basis in W, then |w;)(v;| is a basis in B*(V,W).
(4) B2(V,W) 3 A A* € B2(W,V) is a unitary map.

(5) If A€ B*(V,W) and B € BIW, X), then BA € B>(V, X).

(6)

6) If (X,u) and (Y,v) are spaces with measurs and V = B*(X, u), W = B2(Y,v), then every operator
A € B%(H,K) has the integral kernel A(-,-) € B2(Y x X,v ® p), ie.

<u4Av>::j/j/&R§SA<y~rwmx>du@ndu<x>

The transformation B2(V,W) > A+ A(-,-) € B3(Y x X,v ® p) that to an operator associates its
integral kernel is unitary.

Proof. (1) The operator A*A is trace class, hence is compact. We can represent A*A as

ATA=3 bl (s,
j=1
with b; — 0.
If we set w; := Awvj, then

A= ajlwy) (v,
j=1

with |a;|? = b;. Hence, a; — 0.

Let us show (2) and (3). Set E;; := |w;)(v;|. We first check that it is an orthonormal system. If
A € B%2(V,W) is orthogonal to all Ej;, then all its matrix elements are zero. Hence A = 0.

Then we check that if a;; belongs to L*(J x I), then ZjeJ, ser @jiEji is the integral kernel of an
operator in B2(V,W). Hence, B%(V, W) is isomorphic to L?(J x I). Hence it is a Hilbert space and
{E;; : i€l,j e J} is its orthonormal basis. This proves (2) and (3), O

Theorem 8.20 Suppose that f,g € L=(R?) converge to zero at infinity. Then the operator g(D)f(z)
is compact.
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Proof. Let

falw) = { Jo s | > n,
9n(€) = { A € > n,
9(D)f(x) = Frg(x)F f(x).

lg(@)F f(2) = gn(@)Ffr(2)l < (g9(x) — gn(2))Ff ()]
+lgn (@) F(f (x) = fu(z)l| — 0.
It suffices to show the compactness of g, (z)F f,(x). But its integral kernel equals
(2m) " 2ga (@) fuly),

which is square integrable . O

8.8 Trace class operators

Lemma 8.21 Let Ay, A € BL(V), A_, A" € B, (V) satisfy Ay — A_ = A" — A__. Then

TrAy — TrA_ = TrA!, — TrA’.

Proof. Clearly, Ay + A” = A_+ A, € B{ (V). Thus

TrAy + TrA” =Tr(Ap + AL) =Tr(A- + A)) = TrA_ + TrA/,.

By Lemma 8.21, we can uniquely extend the definition of trace as a function with values in [—o0, 0]
to operators in Bg, (V) that admit a decomposition A = Ay — A_, where A, ,A_ € By(V) and either
B, or B_ belongs to BL(V), by setting

Tr(Ay —A_):=TrA, — TrA_.

We define B (V) := SpanBZ (V). Clearly, B4 (V)N B' (V) = BL(V).
Obviously, Tr is well defined and finite on B (V).

Theorem 8.22 Let A € BY(V). Then for any orthonormal basis (v;) in V,

TrA = (vi|Avy), (8.40)

iel
where the above series is absolutely convergent.

Proof. Let A=A, — A_, where Ay, A_ € BY(V). Then for any orthonormal basis >, (vi|A+v;)
is finite, hence absolutely convergent. Thus (8.40) is the sum of two absolutely convergent series, and
hence, absolutely convergent. O

Theorem 8.23 B,C € B?(V,W) implies B*C € B*(V) and (B|C)y = TtB*C = TrCB*.
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Proof. We know that B +i~*C € B2(V,W). Hence B*C € B'(V) follows immediately from (8.39).
(B|C)2 = TrB*C = TrC'B* also follows from (8.39).

Theorem 8.24 If A€ BY(V) and B € B(V), then AB, BA € B*(V) and
TrAB = TrBA.

Proof. It suffices to assume that A € BL (V). AY/? and BA'/2 belong to B?(V). Hence, using Theorem
8.23, we obtain

TrBA = Tr(BAY/?)AY? = TrAY/2(BAY/?)

= Tr(AY2B)AY?2 =TrAY?(AY?B) = TrAB.

a

Theorem 8.25 TFAE
(1) AeBi(Y).

(2) |4l € BL(V).

(3) There exist B,C € B*(V,W) such that A= B*C.
(4)

(5) F

sn(A) < o0.

ﬁmg

5) For any orthonormal basis (v;) in V,

> [(wil Avy)| < oo

i€l

Proof. Let A = U|A| be the polar decomposition of A.

(1)=(2). Let A € B*(V). Then U*A = |A| € BY(V). Since |A| € BL(V), this also means that
Ae BL(V).
(1)<=(2). Let A € B(V) with A € BY(V). Then A = U|A| shows that A € BL(V).
(2)=(3). A= U|A|'/?|A|"/? with U|A|'/2,|A|'/? € B2(V).
(2)<(3) is Theorem 8.23.

(1)=(5). Write A = A; +iA4; — A3 —iAy4, with A; € B (V). We have Y (v;|A;v;) < oo. Thus (v;|Av;)
is a linear combination of 4 absolutely convergent series.

(1)<=(5). First assume that A is self-adjoint. Then A = A, — A_ with AyA_ = A_A, =0
and Ay, A € B{(V). We have the decomposition V = Ranlj_, g4) © KerA © Ranlj o[A4). Let

(v1,05,... Jod 08 vf, v;, ...) be a basis that respects this decomposition. Then we compute that
00> Yy |(vf]Av)| = TrAy + TrA .
e=—,0,+ i

Thus A, A_ € BL(V). Hence A € B*(V).
If A is not necessarily self-adjoint, then consider ReA := (4 + A*), A := 4 (A — A*). Then

Z |(vi|ReAw;)[ + Z |(vi[ImAv;)| < 22 |(vil Av;)| < 00
Thus (5) is satisfied for ReA, ImA, and hence ReA,ImA € B*(V). But A = ReA +ilmA. O
For A € BY(V) we set

AL == Tr|A] = " su(A)
n=1
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Theorem 8.26 (1) If A€ BY(V), B € B(V), then

[AB[x < [AlL1BIl,  [1BA[ < Al [I1BI]-

(2) BY(V) is a Banach algebra.

Proof. (1) Let BA = W|BA)| be the polar decomposition of BA and A = U|A| be the polar decomposition
of A. Note that BU|A|'/? € B?(V). Thus

Tr| BA| = TeW* BU|A|'2|A]V2] < |[W*BUJA|"? ||| A2 2.

Now
IIA]Y2]l2 = (Tx|A])'/2,
IW*BU|AI'Y2 ||y < [W*BU|[||AI'?|l2 < || BJ|(Tx|A])"/2.
(2) Let us prove the subadditivity. Let A, B € B'(V) and A+ B = W|A + B| be the polar decompo-
sition of A 4+ B. Then, using |A + B| = W*(A + B),
|A+ Bl = TrW*(A+ B)
< | TeW*A|+ TeW*B| < ||[W*||Tr|A| + ||W*||Tr|B| = Tr|A| + Tr|B|.

Thus B!(V) is a normed space.
Using ||A]] < ||A|l1 we see, that (1) implies

IAB|lx < [|A[l1]|B]]1-

Thus BY(V) is a normed algebra.
Let A,, be a Cauchy sequence in the || - || norm. Then it is also Cauchy in the || - || norm. Thus there
exists lim A, =: A€ B(V). Let A— A,, = U,|A — A,| be the polar decomposition of A — A,,. Let P be

n—oo

a finite projection. Clearly, for fixed n, ||A,, — Ayn|1 is a Cauchy sequence and thus lim |4, — A.|1
m— 00

exists.
|P|A— A, |P|1 =TrPU*(A - A,)P

= lim TrPU*(A,, — A,)P < lim |4, — A,]1.

m—0o0

Since P was arbitrary,
14~ Al < D[4 — Ayl — 0.

Hence BY(V) is complete. O

o0 o0
Theorem 8.27 Let x1,22,... and y1,ya, ... be sequences of vectors with > ||z,]|*> < 0o, Y |lynll* <

n=1 n=1

o0
0o. Then > |yn)(xy| is trace class.
n=1

o0 e}
Proof. Let ej,es,... be an orthonormal system. Define A := 3 |z,)(en|, B := > |yn)(en|. Then
n=1 n=1

TrA*A =" ||z,|? and TrB*B = Y ||ly.|*. Hence A, B are Hilbert-Schmidt. But C = BA*. O
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8.9 Duality in operator spaces

Let V be a Hilbert space.

Theorem 8.28 For B € BL(V) define p(B) € Boo(V)* by
(p(B)|A) := TrBA.

Then p : BY(V) — By (V)# is an isometric isomorphism.

Proof. It suffices to prove that p is onto. Let ¢ € Boo(V)#. Then ¢ € B?(V)#. Therefore, there exists
B € B?(V) such that
W(A) = TrB* A.

For any finite projection P and if A = U|A| is the polar decompoition of A, then
TrP|B|P = Tr|B|P = TtB*UP = ¢(UP) < ||¢||.

Hence Tr|B| < ||¢]|. Thus B € BY(V) and v = p(B*). O

Theorem 8.29 For A € B(V) define m(A) € BL(V)# by

7(A)|B) := TrAB, B < B'(V).
Then m: B(V) — BY(V)# is an isometric isomorphism.
Proof. It suffices to prove that 7 is onto. Let ¢ € B'(V)#. We define the sequilinear form

Vx V3 (w,v)— ¢(v](w]) € C.
Clearly, |||v)(wl|]1 = ||v||||w]|. Thus the boundedness of ¢ means that

[6(j0)wl)| < Il
Hence, there exists a unique A € B(V) such that
o(|v)(w]) = (w]Av),

and ¢ = w(A). O

8.10 Fredholm operators
Let V, W be Hilbert spaces.

Theorem 8.30 Let T € B(V,W). TFAE:

(1) There exists a unique S € BOW,V) such that TS =1 — P, where P is the projection on KerT* and
dim P < oo.

(2) There exists S € B(W,V) such that TS — 1 € Boo(W).
(3) The image of T in B(V,W)/Bs(V, W) is right invertible.
(4) TV is closed and dim(TV)* < .

If the above conditions are satisfied, then we say that T is right Fredholm. We say that T is left
Fredholm iff T is right Fredholm. We say that T" is Fredholm iff it is left and right Fredholm.
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Theorem 8.31 T is Fredholm iff (TT*)'/? is Fredholm.

If T is Fredholm, we define
indexT :=dimT — dimT* € Z.

Theorem 8.32 (1) The set of Fredholm operators is open in B(V, W).

(2) Fredholm operators of a given index for a connected component of B(V,W).

(3) If T is Fredholm and K is compact, then T + K is Fredholm and index(T + K) = indexT .
(4) If T is Fredholm, then so is T*, and indexT* = —indexT.

(5)

5) If T, S are Fredholm, then so is T'S, and indexT'S = indexT + indexS.

Recall that B (V) is a closed ideal of B(V). Thus B(V)/B (V) is a C*-algebra. and we have
the canonical *-homomorphism ¢ : B(V) — B(V)/Bo(V). It is called the Calkin algebra. Note that
Fredholm operators are mapped by ¢ onto the group of invertible operators in the Calkin algebra and
the index is a homomorphism of this group onto Z.
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