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These lecture notes are devoted to the most basic properties of bounded operators in Banach and
Hilbert spaces. We also introduce the notions of Banach algebras. We avoid using more advanced concepts
(locally convex topologies, unbounded operators, applications of the Baire category theorem).

1 Vector spaces

Let K denote the field C or R.
If the vector space X over K is isomorphic to Kn, we say that X is of a finite dimension and its

dimension is n.
If A ⊂ X , then SpanA denotes the set of finite linear combinations of elements of A. Clearly, SpanA

is a subspace of X .

1.1 Linear operators

Let L(X ,Y) denote the set of linear transformations from X to Y and L(X ) := L(X ,X ). For A ∈ L(X ,Y),
KerA denotes the kernel of A and RanA the range of A. A is injective iff KerA = {0}.

If A is bijective, then A−1 is linear.
If x ∈ X , then |x〉 denotes the operator

K 3 λ 7→ |x〉λ := λx ∈ X.

Sometimes we will write |x) instead of |x〉.
If v is a linear functional on X , then its action on x ∈ X will be usually denoted by 〈v|x〉.

1.2 Factor spaces

Let X be a vector space and V ⊂ X a subspace. We define

x ∼ y ⇐⇒ x− y ∈ V.

Then ∼ is an equivalence relation in X compatible with the addition of vectors and multiplication of
vectors by numbers. The set X/ ∼ is denoted by X/V, it has a natural structure of a vector space. The
dimension of X/V is called the codimension of V. We have the linear map

X 3 x 7→ x+ V ∈ X/V

whose kernel equals V.
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1.3 Direct sums

If X is a vector space and X1,X2 subspaces, then we write X = X1 ⊕ X2 when X1 ∩ X2 = {0} and
X = X1 + X2. We say that X is an internal direct sum of X1 and X2.

P ∈ L(X ) is called an idempotent if P 2 = P . If P is an idempotent, then so is 1− P .
If X = X1 ⊕ X2, then there exists a unique idempotent P such that RanP = X1 and KerP = X2.

Conversely, if P is an idempotent, then X = RanP ⊕KerP .
If X1 and X2 are vector spaces, then X1 ×X2 has a natural structure of a vector space, and

X1 ×X2 = X1 × {0} ⊕ {0} × X2

in the sense of the internal direct sum. We often write X1 ⊕ X2 instead of X1 × X2 and we call this the
external direct sum.

If Xi, i ∈ I is a family of vector spaces, then we write ⊕
i∈I

Xi for the Cartesian product ×
i∈I

Xi equipped

with the vector space structure and
al
⊕
i∈I

Xi for its subspace consisting of finite linear combinations of

elements of Xi.

1.4 2× 2 matrices

Let P 0 ∈ L(X ) be an idempotent and P 1 := 1− P 0 the complementary idempotent.
If H ∈ L(X ), then full information about H is contained in the matrix Hij := P iHP j , with i, j ∈

{0, 1}. We can write H as

H =
[
H00 H01

H10 H11

]
. (1.1)

Theorem 1.1 Suppose that H11 is bijective.
(1) The following identity, sometimes called the Schur-Frobenius decomposition, is valid:

H =
[

1 H01(H11)−1

0 1

] [
H00 −H01(H11)−1H10 0

0 H11

] [
1 0

(H11)−1H10 1

]
(2) Set

G0 = H00 −H01(H11)−1H10.

Then H−1 is bijective iff G−1
0 is and

H−1 =

 G−1
0 −G−1

0 H01(H11)−1

−(H11)−1H10G−1
0 (H11)−1 + (H11)−1H10G−1

0 H01(H11)−1


=
(
100 − (H11)−1H10

)
G−1

0

(
100 −H01(H11)−1

)
+ (H11)−1.

1.5 Convexity

Let V be a vector space over K, where K = R or K = C.
V ⊂ X is convex iff x1, x2 ∈ V , 0 ≤ t ≤ 1 implies tx1 + (1− t)x2 ∈ V .
If V ⊂ X is convex and e ∈ V, then we say that it is an extremal point of V iff e1, e2 ∈ V and

e = 1
2 (e1 + e2) implies e = e1 = e2. E(V) will denote the set of extremal points of V.

CHV denotes the convex hull of V, that is

CHV := {tx1 + (1− t)x2 : x1, x2 ∈ V, t ∈ [0, 1]}.
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1.6 Absolute convexity

A set V ⊂ X is balanced iff x ∈ V and |α| ≤ 1 implies αx ∈ V. It is called symmetric iff x ∈ V implies
−x ∈ V. If K = R then symmetric is synonymous with balanced.

A balanced convex set is called absolutely convex. ACHV denotes the absolutely convex hull of V,
that is

ACHV := {α1x1 + α2x2 : x1, x2 ∈ V, |α1|+ |α2| ≤ 1}.

1.7 Cones

C ⊂ X is called a cone iff
(1) x ∈ C, λ > 0 implies λx ∈ C.
(2) x, y ∈ C implies x+ y ∈ C.

A cone C is called pointed iff C ∩ (−C) ⊂ {0}.
It is called generating iff SpanC = X . In the real case it means that C − C = X .
If A ⊂ X , then Cone(A) denotes the smallest cone containing A.
We can introduce the relation

x ≥ y ⇔ x− y ∈ C.

We will write x > y iff x ≥ y and x 6= y.

Theorem 1.2 (1) C = {x : x ≥ 0}.
(2) x ≥ y and λ > 0 imply λx ≥ λy.

(3) x1 ≥ y1 and x2 ≥ y2 imply x1 + x2 ≥ y1 + y2.

(4) If the cone is pointed then x ≥ y and y ≥ x imply y = x.

(5) If 0 ∈ C, then x ≥ x

Thus in the case of a pointed cone containing zero, ≥ is an order.

1.8 Hahn-Banach Theorem

Let X be a real vector space. Let U ⊂ X . For x ∈ X , define

pU (x) := inf{λ > 0 : λ−1x ∈ U}.

Then pU : X → [0,∞] is called the supporting functional of U .
We say that U ⊂ X is absorbing iff for any x ∈ X there exists λ0 such that for λ > λ0, we have

x ∈ λU .

Theorem 1.3 (1) pU (λx) = λpU (x) for λ > 0.

(2) pU is finite iff U is absorbing.

(3) U = −U (U is symmetric) iff pU (x) = pU (−x).
(4) U = αU for |α| = 1 (U is balanced) iff pU (λx) = |λ|pU (x).

(5) U is convex iff pU (x+ y) ≤ pU (x) + pU (y).

(6) Let W := p−1
U ([0, 1]). Then U ⊂W , W is convex and contains 0. Moreover, pU = pW .
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A function p : X → [0,∞[ is called a Minkowski functional iff

p(x1 + x2) ≤ p(x1) + p(x2), x1, x2 ∈ X ,

p(λx) = λp(x), λ > 0.

Clearly, if p is a Minkowski functional, then U := {x : p(x) ≤ 1} is a convex absorbing set containing
0. Moreover, p is equal to the supporting functional of U .

Theorem 1.4 (Hahn-Banach) Let X be a real vector space with a Minkowski functional p. Let Y be
a subspace of X and v a functional on Y satisfying

〈v|x〉 ≤ p(x), x ∈ Y.

Then there exists a linear functional ṽ on X such that

〈ṽ|x〉 ≤ p(x), x ∈ X .

Lemma 1.5 The Hahn-Banach Theorem is true if dimX/Y = 1

Proof. Let x1 ∈ X\Y, so that X = Y + Rx1. Let α := sup
y∈Y

(v(y)− p(y − x1)). We have for y1, y2 ∈ Y,

v(y1) + v(y2) = v(y1 + y2) ≤ p(y1 + y2) ≤ p(y1 − x1) + p(x1 + y2).

Therefore,
α ≤ p(x1 + y2)− v(y2), y2 ∈ Y, (1.2)

In particular, α is finite. We set

ṽ(x+ ty) := v(y) + tα, y ∈ Y, t ∈ R.

Using (1.2) with y2 = y
t , we obtain

ṽ(y + tx1) ≤ v(y) + t
(
p(x1 +

y

t
)− v(

x

t
)
)

= p(y + tx1).

2

Proof of Theorem 1.4 Consider the family P of spaces equipped with a linear functional (Yi, vi) such
that Y ⊂ Yi, vi

∣∣∣
Y

= v and vi(x) ≤ p(x), x ∈ Yi. We will write (Y1, v1) ≺ (Y2, v2) iff Y1 ⊂ Y2 and v1 is a

restriction of v2. Let (Yi, vi), i ∈ I be a linearly ordered subfamily. Then it has an upper bound (Y0, v0)
where Y0 is the union of Yi and v0 is the obvous extension. P is nonempty, since (Y, v) belongs to P.
Thus by the Kuratowski-Zorn lemma P has a maximal element (Ymax, vmax). By the previous lemma,
Ymax = X . 2

1.9 Hahn-Banach Theorem for seminorms

Let X be a real or complex vector space. A function p : X → [0,∞[ satisfying

p(x1 + x2) ≤ p(x1) + p(x2), x1, x2 ∈ X ,

p(λx) = |λ|p(x), λ ∈ K,

is called a seminorm.
Clearly, if If p is a seminorm, then U := {x : p(x) ≤ 1} is an absolutely convex absorbing set

containing 0. Moreover, p is equal to the supporting functional of U .
Theorem 1.4 implies easily
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Theorem 1.6 Let X be a real or complex vector space with a seminorm p. Let Y be a subspace of X
and v a functional on Y satisfying

|〈v|x〉| ≤ p(x), x ∈ Y.

Then there exists a linear functional ṽ on X such that

|〈ṽ|x〉| ≤ p(x), x ∈ X .

2 Algebras

2.1 Algebras

Let A be a vector space over C. A is called an associative algebra iff it is equipped with a multiplication
satisfying

A(BC) = (AB)C,
A(B + C) = AB +AC, (B + C)A = BA+ CA,
(αβ)(AB) = (αA)(βB).

(We will say simply an algebra instead of an associative algebra) A is called a commutative algebra iff
A,B ∈ A implies AB = BA.

B ⊂ A is called a subalgebra if it is a linear subspace and A,B ∈ B ⇒ AB ∈ B. Clearly, a subalgebra
is also an algebra.

Let V be a vector space. Clearly, the set of linear maps in V, denoted by L(V), is an algebra.
A subalgebra of L(V) is called a a concrete algebra.
An identity of an algebra A is an element I ∈ A such that

A = IA = AI, A ∈ A.

Any algebra has at most one identity. In fact, if I1, I2 are identities, then

I1 = I1I2 = I2.

We say that A is unital if it possesses an identity. In what follows, for λ ∈ C we will simply write λ
instead of λI.

P ∈ A is called an idempotent iff P 2 = P . PAP is a subalgebra called the reduced algebra.
If A ⊂ L(V) is a concrete algebra and E ∈ A is its identity, then E is an idempotent in L(V). We can

then restrict A to RanE.
An idempotent P is called finite discrete iff PAP is finite dimensional. It is called abelian iff PAP is

commutative.
Fix an algebra A. Let B ⊂ A. Alg(B) denotes the smallest subalgebra of A containing B. Alg(B)

will be called the subalgebra generated by B.

2.2 Commutant

Fix an algebra A. Let B ⊂ A.
The relative commutant of B in A is defined as

B′ := {A ∈ A : AB = BA, B ∈ B}

Clearly, B′ is a subalgebra of A and B′ = Alg(B)′. If A contains 1, then so does B′.
B′′ is a subalgebra of A containing B.
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If there is a risk of confusion (it is not clear which A we have in mind), we will write B′ ∩ A instead
of B′.

The center of A is defined as

A ∩ A′ = {A ∈ A : AB = BA, B ∈ A}.

2.3 Direct sums

If A1, A2 are algebras, then we can define A1 ⊕ A2.
If A is an algebra and P ∈ A ∩ A′ is an idempotent, then clearly PA = PAP is a subalgebra. A is

naturally isomorphic to PA⊕ (1− P )A.

2.4 Homomorphisms

Let A, B be algebras. A map φ : A → B is called a homomorphism if it is linear and preserves the
multiplication, that means it satisfies
(1) φ(λA) = λφ(A);
(2) φ(A+B) = φ(A) + φ(B);
(3) φ(AB) = φ(A)φ(B).

A homomorphism of A into L(V) is called a representation of A in V.
If A is a unital algebra and φ : A → B is a homomorphism, then φ(1) is an idempotent in B. φ is

called unital iff
φ(1) = 1.

2.5 Ideals

B is a left ideal of an algebra A iff it is a linear subspace of A and A ∈ A, B ∈ B ⇒ AB ∈ B. Similarly
we define the right ideal.

If A ∈ A, then AA is a left ideal.
B is called a two-sided ideal if it is a left and right ideal. In what follows we will write an ideal instead

of a two-sided ideal.
We say that an ideal I is proper iff I 6= A. We say that an ideal I is nontrivial iff I 6= A and I 6= {0}.

Theorem 2.1 The kernel of a homomorphism is an ideal. If I is an ideal of A, then A/I has a natural
structure of an algebra. The map

A 3 A 7→ A+ I ∈ A/I

is a homomorphism whose kernel equals I.

2.6 Left regular representation

The so-called left regular representation

A 3 A 7→ λ(A) ∈ L(A)

is defined by
λ(A)B := AB, A,B ∈ A.

If A is unital, then λ is injective. If A is not unital, then λ can be extended to a representation

A 3 A 7→ λ1(A) ∈ L(A1)

in the obvious way, which is injective.
In any case, we see that every algebra is isomorphic to a concrete algebra.
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2.7 Invertible elements

Let A be an algebra. A ∈ A is left invertible in A iff there exists an element B ∈ A, called a left inverse
of A, such that BA = 1. It is called right invertible iff there exists C ∈ A such that AC = 1.

Theorem 2.2 If I ⊂ A is a proper left or right ideal, then no elements of I are left or right invertible.

Theorem 2.3 Let A ∈ A. TFAE:
(1) A is left and right invertible.

(2) There exists a unique B ∈ A such that AB = BA = 1

Proof. Let B, C be a left and right inverse of A. Then

B = B1 = BAC = 1C = C.

2

If the above conditions are satisfied, then we say that A is invertible, and the element B, called the
inverse of A, is denoted A−1

Theorem 2.4 1. If A is invertible and B is a left or right inverse of A, then B = A−1.

2. If A,B are invertible, then

(AB)−1 = B−1A−1, A−1 −B−1 = A−1(B −A)B−1.

2.8 Spectrum, resolvent

Let A be a unital algebra and A ∈ A. The resolvent set of A, denoted rsA(A), is defined as

rsA(A) := {z ∈ C : z −A is invertible in A}. (2.3)

The spectrum of A, denoted spA(A) is defined as

spA(A) := C \ rsA(A).

If A is non-unital, then in (2.3) we demand that z −A is invertible in A1.

Theorem 2.5 1. spA(AB) ∪ {0} = spA(BA) ∪ {0}.

2. If B is a subalgebra of A and B ∈ B, then spB(B) ⊃ spA(B).

3. If π : A → B is a unital homomorphism, then spA(A) ⊃ spπ(A)(π(A)).

Proof. To prove 1., let z 6∈ spA(AB) ∪ {0}. Let C := (z − AB)−1. Then z−1(1 + BCA) is the inverse
of z −BA. 2

A is nilpotent of degree n iff An = 0 and An−1 6= 0. A is quasinilpotent iff spA(A) = {0}.

Theorem 2.6 (1) Every nilpotent A is quasinilpotent.

(2) If P is an idempotent not equal to 0 or 1, then spA(P ) = {0, 1}.

Proof. (1) Let z 6= 0. Then
∑∞

j=0 z
−j−1Aj is a finite sum and is the inverse of (z −A).

(2) We check that for z 6= 0, 1, (z− 1)−1P + z−1(1−P ) is the inverse of z−P = (z− 1)P + z(1−P ).
2
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Theorem 2.7 Let A,B ∈ A, z ∈ rs(A) and AB = BA. Then

B(z −A)−1 = (z −A)−1B.

Proof. We have
(z −A)B = B(z −A).

Then we multiply both sides by (z −A)−1. 2

If A ∈ A, we define
ÃlgA(A) := AlgA({A, (z −A)−1 : z ∈ rsA(A)}).

Clearly, by Theorem 2.7, ÃlgA(A) is commutative and contains 1.

Theorem 2.8 ÃlgA(A) is the smallest among the subalgebras of A containg A, 1 and such that spA(A) =
spC(A).

2.9 Functional calculus

Let K ⊂ C. The rational functions with poles outside K form a commutative algebra that we denote
Rat(K). If f ∈ Rat(K), then f(z) = p(z)q(z)−1, where p(z), q(z) are polynomials and q(z) = (z −
λ1)m1 · · · (z − λn)mn with zi 6∈ K.

Let A be a unital algebra, A ∈ A and f ∈ Rat(sp(A)). We define

f(A) := p(A)(A− z1)−m1 · · · (A− zn)−mn . (2.4)

Note that the commutativity of Ãlg(A) guarantees that (2.4) does not depend on the order of λ1, . . . , λn.

Theorem 2.9
Rat(sp(A)) 3 f 7→ f(A) ∈ Ãlg(A) ⊂ A (2.5)

is a unital homomorphism. Moreover,
(1) if

Rat(sp(A)) 3 f 7→ π(f) ∈ A (2.6)

is a unital homomorphism satisfying π(id) = A, where id(z) = z, then π(f) = f(A);

(2) sp(f(A)) = f(sp(A));

(3) g ∈ Rat(f(sp(A))) ⇒ g ◦ f(A) = g(f(A)).

Proof. Elementary reasoning shows that (2.5) is a homomorphism.
Let us show (1). To this end it is sufficient to show that if λ ∈ rs(A), then

π((λ− id)−1) = (λ−A)−1. (2.7)

We know that π(λ − id) = λ − A. Moreover, (λ − id)−1 ∈ Rat(sp(A)) and (λ − id)−1(λ − id) = 1.
Hence

π((λ− id)−1)(λ−A) = (λ−A)π((λ− id)−1) = 1.

Therefore, (2.7) is true.
Let us prove (2) First we show that if f ∈ Rat(sp(A)), then

sp(f(A)) ⊂ f(sp(A)). (2.8)

10



If µ 6∈ f(sp(A))), then z 7→ f(z) − µ 6= 0 on sp(A). Therefore z 7→ (f(z) − µ) belongs to Rat(sp(A))
Therefore (f(A)− µ)−1 exists in A. Hence µ ∈ rs(f(A)), which means that (2.8) is true.

Let us prove
sp(f(A)) ⊃ f(sp(A)). (2.9)

Let µ 6∈ sp(f(A)). Obviously, (f(A) − µ)−1 exists in A. Let λ ∈ C, µ = f(λ). Then z 7→ g(z) :=
(f(z)− µ)(z − λ)−1 belongs to Rat(sp(A)). Hence g(A) is well defined as an element of A.

Then we check that g(A)(f(A)−µ)−1 is the inverse of λ−A. Hence λ 6∈ sp(A). Therefore µ 6∈ f(sp(A)),
which proves (2.9). 2

3 Banach spaces

3.1 Norms and seminorms

Definition 3.1 Let X be a vector space over K. X 3 x 7→ ‖x‖ ∈ R is called a seminorm iff

1) ‖x‖ ≥ 0

2) ‖λx‖ = |λ|‖x‖,

3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

If in addition
4) ‖x‖ = 0 ⇐⇒ x = 0,

then it is called a norm.

If X is a space with a seminorm, then N := {x ∈ X : ‖x‖ = 0} is a linear subspace. Then on X/N
we define

‖x+N‖ := ‖x‖,

which is a norm on X/N .
If ‖ · ‖ is a norm, then

d(x, y) := ‖x− y‖

defines a metric.
Let ‖ · ‖1 and ‖ · ‖2 be two norms on X . They are equivalent iff there exist c1, c2 > 0 such that

c1‖x‖1 ≤ ‖x‖2 ≤ c2‖x‖1.

The equivalence of norms is an equivalence relation. If ‖ · ‖1 and ‖ · ‖2 are equivalent, then the
corresponding metrics are equivalent.

Theorem 3.2 (1) All norms on a finite dimensional vector space are equivalent.

(2) Finite dimensional vector spaces are complete.

(3) Every finite dimensional subspace of a normed space is closed.

For r > 0, (X )r denotes the closed ball in X of radius r, that is (X )r := {x ∈ X : ‖x‖ ≤ r}.
If V ⊂ X , then Vcl will denote the closure of V, Vo its interior.
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3.2 Banach spaces

Definition 3.3 X is a Banach space if it has a norm and is complete.

Definition 3.4 Let xi, i ∈ I, be a family of vectors in a normed space. Then

∑
i∈I

xi = x ⇐⇒ ∧
ε>0

∨
I0∈2I

fin

∧
I0⊂I1∈2I

fin

∥∥∥∥∥∑
i∈I1

xi − x

∥∥∥∥∥ < ε.

We say then that
∑

i∈I xi is convergent to x.

Clearly, ∥∥∥∥∥∑
i∈I

xi

∥∥∥∥∥ ≤∑
i∈I

‖xi‖.

If cn ∈ R and
∑

i∈I ci is convergent, then only a countable number of terms cn 6= 0.

Theorem 3.5 1) Let X be a Banach space, xi ∈ X and∑
i∈I

‖xi‖ <∞.

Then there exists ∑
i∈I

xi.

2) Conversely, if X is a normed space such that

∞∑
n=1

‖xn‖ <∞

implies the convergence of
∞∑

n=1

xn,

then X is a Banach space.

Proof. 1) Since only a countable number of terms xn is different from zero, the nonzero terms can be
treated as a usual sequence indexed by integers. Let

yN :=
N∑

n=1

xn.

For n ≤ m

‖yn − ym‖ =

∥∥∥∥∥
m∑

i=n+1

xi

∥∥∥∥∥ ≤
m∑

i=n+1

‖xi‖ →n,m→∞ 0.

Hence (yN ) is Cauchy and therefore convergent.
2) Let (xn) be a Cauchy sequence in X . By induction we can find a subsequence (xnj

) of the sequence
(xn) such that

‖xnj+1 − xnj‖ < 2−n.

12



By assumption,
∞∑

j=1

(xnj+1 − xnj
)

is convergent. The mth partial sum equals xnm+1 − xn1 . Hence xnj
is convergent to some x ∈ X . Since

(xn) was Cauchy, it also has to be convergent to x. 2

Theorem 3.6 Let X0 be a normed space. Then there exists a unique up to an isometry Banach space
X , such that X0 ⊂ X and X0 is dense in X . X is called the completion of X0 and is denoted X cpl

0 .

3.3 Bounded operators in a Banach space

Let X and Y be normed spaces. An operator A : X → Y is called bounded iff there exists a number C
such that

‖Ax‖ ≤ c‖x‖, x ∈ X . (3.1)

‖A‖ is defined as the least c possible in (3.1), or

‖A‖ := sup
x6=0

‖Ax‖
‖x‖

= sup
‖x‖≤1

‖Ax‖ <∞.

The set of such operators is denoted B(X ,Y). We write B(X ) := B(X ,X ).

Theorem 3.7 The following conditions are equivalent:
1. A is bounded;
2. A is uniformly continuous;
3. A is continuous;
4. A is continuous in one point.

Proof. 1 ⇒ 2 ⇒ 3 ⇒ 4 is obvious. Clearly, 4. holds ⇐⇒ A is continuous at 0. Let us show that it
implies the boundedness of A.

Suppose A is not bounded. Then there exists a sequence (xn) such that ‖xn‖ = 1 and

‖Axn‖ ≥ n.

Then

lim
n→∞

xn√
n

= 0, lim
n→∞

∥∥∥∥A xn√
n

∥∥∥∥ = ∞.

Thus A is not continuous at 0. 2

Example 3.8 A linear operator from Cm to Cn can be defined by a matrix [aij ].
(1) If Cm is equipped with the norm ‖ · ‖1 and Cn with the norm ‖ · ‖∞, then ‖A‖ = max{|aij |}.
(2) If Cm is equipped with the norm ‖ · ‖∞ and Cn with the norm ‖ · ‖1, then ‖A‖ ≤

∑
i,j |aij |.

(3) If Cm is equipped with the norm ‖ · ‖1 and Cn with the norm ‖ · ‖1, then ‖A‖ = maxj{
∑

i |aij |}.
(4) If Cm is equipped with the norm ‖ · ‖∞ and Cn with the norm ‖ · ‖∞, then ‖A‖ = maxi{

∑
j |aij |}.

Proposition 3.9 All linear operators on a finite dimensional space are bounded.
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Theorem 3.10 If Y is a Banach space, then B(X ,Y) is a Banach space. Besides, if A ∈ B(X ,Y) and
B ∈ B(Y,Z), then

‖BA‖ ≤ ‖B‖‖A‖.

Proof. Clearly, B(X ,Y) is a normed space. Let us show that it is complete. Let (An) be a Cauchy
sequence in B(X ,Y). Then (Anx) is a Cauchy sequence in Y. Define

Ax := lim
n→∞

Anx.

Obviously, A is lenear.
Fix n. Clearly,

(A−An)x = lim
m→∞

(Am −An)x.

Hence
‖(A−An)x‖

= limm→∞ ‖(Am −An)x‖ ≤ ‖x‖ limm→∞ ‖(Am −An)‖.

Thus,
‖A−An‖ ≤ lim

m→∞
‖Am −An‖.

Therefore, by the Cauchy condition,
lim

n→∞
‖A−An‖ = 0.

Thus the sequence An is convergent to A. 2

Theorem 3.11 Let X ,Y be Banach spaces and X0 a dense subspace of X . Let A0 ∈ B(X0,Y). Then
there exists a unique A ∈ B(X ,Y) such that A

∣∣∣
X0

= A0. Moreover, ‖A‖ = ‖A0‖.

Theorem 3.12 Let X , Y be normed spaces. Let A : X → Y be bounded, X0 dense in X and RanA
dense in Y. Then AX0 is dense in Y.

Proof. Let y ∈ Y and ε > 0. There exists y1 ∈ RanA such that ‖y − y1‖ < ε/2. Let x1 ∈ X such that
Ax1 = y1. Then there exists x0 ∈ X0 such that ‖x− x0‖ < ‖A‖−1ε/2. Hence

‖y −Ax0‖ ≤ ‖y − y0‖+ ‖A(x1 − x0)‖ < ε.

2

3.4 Quotient spaces

Let V be a subspace of a normed space X . In the space X/V we introduce

‖x+ V‖ := inf{‖y‖ : y ∈ x+ V}.

Theorem 3.13 (1) X/V 3 x+ V 7→ ‖x+ V‖ is a seminorm and ‖x+ V‖ ≤ ‖x‖.
(2) If V is closed, it is a norm,

X 3 x 7→ x+ V ∈ X/V

has norm 1 and maps open sets onto open sets

(3) If X is Banach, so is X/V.
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Proof. To prove the triangle inequality we use the property

inf(a+ b) ≤ inf a+ inf b.

‖x+ V‖ = 0 ⇒ x+ V = V

follows easily from the closedness of V.
To prove the completeness, assume that yn ∈ X/V satisfies

∞∑
n=1

‖yn‖ <∞.

Then, there exists a sequence xn ∈ X such that yn = [xn] and

‖xn‖ ≤ ‖yn‖+ 2−n.

Hence
∞∑

n=1

‖xn‖ <∞.

But X is complete, hence
∑∞

n=1 xn converges to some x ∈ X. But

‖[x−
∑N

n=1 xn]‖ ≤ ‖x−
∑N

n=1 xn‖ →
N→∞

0,

hence
∞∑

n=1

yn

converges to [x]. 2

Theorem 3.14 Let A ∈ B(X ,Y) and V a closed subspace in KerA. Then there exists a unique operator
Ã ∈ B(X/V,Y) such that

Ã(x+ V) := Ax.

It satisfies ‖A‖ = ‖Ã‖.

3.5 Dual of a normed space

Let X be a normed vector space. Recall that the dual space to X , denoted X# is the space of bounded
linear functionals. In other words, X# := B(X ,K). Clearly,

‖v‖ := sup
‖x‖≤1

|〈v|x〉| <∞.

It follows from Theorem 3.10, that

Theorem 3.15 X# is a Banach space.

Theorem 3.16 (Hahn-Banach) Let X0 be a subspace of a Banach space X . Let v0 ∈ X#
0 . Then there

exists v ∈ X# such that ‖v‖ = ‖v0‖ and
v
∣∣∣
X0

= v0.
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Corollary 3.17 Let x0 ∈ X . Then

sup
‖v‖≤1, v∈X#

|〈v|x0〉| = ‖x0‖.

The set
{v ∈ X# : 〈v|x0〉 = ‖x0‖} (3.2)

is a non-empty convex subset of X#.

Proof. The inequality ≤ is obvious. Consider X0 = Cx0 and v0 ∈ X#
0 such that

〈v0|λx0〉 := λ‖x0‖.

Then ‖v0‖ = 1. We extend v0 to v on X such that ‖v‖ = 1 This proves the inequality (3.2). 2

Definition 3.18 (3.2) is called the set of normed tangent functionals at x0.

Theorem 3.19 If V is a subspace of X of a finite codimension, then V is closed.

We define
X 3 x 7→ Jx ∈ (X#)# (3.3)

by
〈Jx|v〉 := 〈v|x〉.

J is isometric
‖Jx‖ = supv∈X#,‖v‖≤1 |〈Jx|v〉|

= supv∈X#,‖v‖≤1 |〈v|x〉| = ‖x‖.

We will identify X with the subset RanJ of X##. We say that X is reflexive ⇐⇒ X## = X .

Proposition 3.20 X is reflexive ⇔ X# is reflexive.

3.6 Examples of Banach spaces

Let I be an arbitrary set. Let v = (vi)i∈I be sequences indexed by I with values in C. Set

‖v‖p :=

{ (∑
i∈I |vi|p

)1/p
, 1 ≤ p <∞

supi∈I |vi|, p = ∞.

Lemma 3.21 The Hölder inequality∣∣∣∣∣∑
i∈I

viwi

∣∣∣∣∣ ≤ ‖v‖p‖w‖q, p
−1 + q−1 = 1,

and the Minkowski inequality are true:

‖v + w‖p ≤ ‖v‖p + ‖w‖p.

Definition 3.22

Lp(I) := {(vi), i ∈ I : ‖v‖p <∞}

C∞(I) := {(vi), i ∈ I : ∧
ε>0

∨
I0∈2I

fin

sup
i∈I\I0

|vi| < ε.}.
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Theorem 3.23 Lp(I) with the norm ‖ · ‖p and C∞(I) with the norm ‖ · ‖∞ are Banach spaces.

Proof. The Minkowski inequality shows that these are normed spaces.
Le us show that Lp(I) is complete. Let vn = (vi

n) satisfy

∞∑
n=1

‖vn‖p <∞.

Then vi
n is also summable

∞∑
n=1

vi
n =: vi.

Put v := (vi). By the Minkowski inequality,

‖v −
n∑

j=1

vj‖p <
∞∑

j=n+1

‖vj‖p.

Hence

lim
n→∞

n∑
j=1

vj = v.

We check that v ∈ Lp(I). Thus by Theorem 3.5, Lp(I) is a Banach space.
To see that C∞(I) is complete, we check that it is a closed subspace of L∞(I). 2

Theorem 3.24

Lp(I)# = Lq(I), p−1 + q−1 = 1, 1 ≤ p <∞,

C∞(I)# = L1(I).

Hence L1(I), C∞(I) and L∞(I) are not reflexive for infinite sets I.

Proof. Let Cc(I) denote the set of sequences with a finite number of nonzero terms. Let X := Lp(I)
for p < ∞ and X := C∞(I) for p = ∞. Clearly, Cc(I) is dense in X . Hence ever functional v given on
Cc(I), has a unique extension to a functional on X .

The vectors ei span Cc(I). Hence the functional v is determined by vi := 〈v|ei〉 and its action on
x ∈ X is given by the formula

〈v|x〉 =
∑
i∈I

vixi.

By the Hölder inequality ∣∣∣∑
i

vixi

∣∣∣ ≤ (∑
i

|vi|q
) 1

q
(∑

i

|xi|p
) 1

p

,

we have X# ⊃ Lq(I). Assume that v ∈ X#\Lq(I). We can assume that I = N and p > 1. Define a
sequence of vectors xn ∈ X

xn
i :=

 vi|vi|q−2
(∑n

i=1 |vi|q
)− 1

p

, i ≤ n

0, i > n.

Then

〈v|xn〉 =
( n∑

i=1

|vi|q
)1− 1

p →
n→∞

∞,

17



‖xn‖p = 1.

2

We will now describe when v ∈ Lq(I) is a normed tangent functional for x ∈ Lp(I): if 1 < p <∞

vi = xi|xi|p−2
(∑

i

|xi|p
)− 1

p

,

if p = 1
vi = xi|xi|−1, xi 6= 0, |vi| ≤ 1, xi = 0.

For L∞(I), normed tangent functionals can form a many element set.

Example 3.25 Let (X,µ) be a space with a measure.
(1) Let 1 ≤ p ≤ ∞. Then Lp(X,µ) equipped with the norm

‖v‖ :=
(∫

|v(x)|pdµ(x)
)1/p

is a Banach space.

(2) If 1 ≤ p <∞, p−1 + q−1 = 1 and the measure is semifinite, then Lq(X,µ) can be identified with the
dual of Lp(X,µ) by the duality

Lq(X,µ)× Lp(X,µ) 3 (w, y) 7→ 〈w|y〉 :
∫
w(x)v(x)dµ(x).

3.7 Direct sum of Banach spaces

If X ,Y are Banach spaces and p is an arbitrary norm in R2, then X ⊕ Y becomes a Banach space if we
equip it with the norm

‖(x, y)‖p = p(‖x‖, ‖y‖).

All these norms in X ⊕ Y are equivalent and generate the product topology.
If Xi, i ∈ I is a family of Banach spaces, then we can define Lp(Xi, i ∈ I) and C∞(Xi, i ∈ I). They

are Banach spaces and we have the obvious analog of Theorem 3.24.

3.8 Integration, differentiation

For continuous ]a, b[3 t 7→ v(t) ∈ X we can define the Riemann integral. It has all the usual properties,
for instance, ∥∥∥∥∥

∫ b

a

v(t)dt

∥∥∥∥∥ ≤
∫ b

a

‖v(t)‖dt,

if A ∈ B(X ,Y), then

A

∫ b

a

v(t)dt =
∫ b

a

Av(t)dt.

Let ]a, b[3 t 7→ v(t) ∈ X . The (norm) derivative of v(t) is defined as

d
dt
v(t0) := lim

h→0

v(t0 + h)− v(t0)
h

.
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It has all the usual properties, for instance,

d
dt
Av(t0) := A

d
dt
v(t0),

d
dt

∫ t

a

v(s)ds = v(t).

3.9 Analyticity

We assume that K = C. Let Ω be an open subset of C. We say that Ω 3 z 7→ v(z) ∈ X is analytic iff for
any z0 ∈ Ω there exists

d
dz
v(z0) := lim

h→0

v(z0 + h)− v(z0)
h

.

Theorem 3.26 (1) Let x0, x1, . . . ∈ X and r−1 := lim supn→∞ ‖xn‖
1
n . Then

v(z) :=
∞∑

n=0

xnz
n, z ∈ C

is absolutely uniformly convergent for |z| < r1 < r and divergent for |z| > r. In B(0, r) it is analytic

(2) Ω 3 z 7→ v(z) ∈ X is analytic iff around any z0 ∈ Ω we can develop it into a power series. Its radius
of convergence equals (

lim sup
n→∞

∥∥∥v(n)(z0)
n!

∥∥∥ 1
n

)−1

.

(3) If f is analytic on Ω, continuous on Ωcl and z0 ∈ Ω, then

f(z0) =
1

2πi

∫
∂Ω

f(z)dz.

3.10 Invertible elements

Let A ∈ B(X ,Y). We say it is invertible iff it is bijective and A−1 ∈ B(Y,X ).

Theorem 3.27 Let A ∈ B(X ,Y). Suppose that for some c > 0

‖Ax‖ ≥ c‖x‖.

Then RanA is closed. If RanA = Y, then A is invertible and

‖A−1‖ ≤ c−1

Proof. Let yn ∈ RanA and yn → y. Let Axn = yn. Then xn is a Cauchy sequence, hence convergent.
Let limn→∞ xn := x. But A is bounded, hence Ax = y. Therefore, RanA is closed. 2

Corollary 3.28 Let A ∈ B(X ,Y). Suppose that for some c > 0

‖Ax‖ ≥ c‖x‖,

and RanA is dense in Y. Then A is invertible.
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Theorem 3.29 Let A ∈ B(X ,Y) be invertible and B ∈ B(X ,Y) such that

‖BA−1‖ < 1.

Then A+B is invertible and

(A+B)−1 =
∞∑

j=0

(−1)jA−1(BA−1)j .

Moreover,
‖(A+B)−1‖ ≤ ‖A−1‖(1− ‖BA−1‖)−1,

‖A−1 − (A+B)−1‖ ≤ ‖A−1BA−1‖(1− ‖BA−1‖)−1.

In particular, invertible elements form an open subset of B(X ,Y) on which the inverse is a continuous
function.

4 Banach algebras

4.1 Banach algebras

An algebra A over C is called a normed algebra, if it is equipped with a norm A 3 A 7→ ‖A‖ ∈ R such
that

‖AB‖ ≤ ‖A‖‖B‖.

It is called a Banach algebra if it is complete in the norm ‖ · ‖.
If A is a Banach algebra, then every norm closed subalgebra of A is a Banach algebra. If B ⊂ A, then

the smallest Banach algebra containing B is denoted by Ban(B).
Let V be a Banach space. Recall that B(V) denotes the set of bounded operators on V. Clearly, B(V)

is a Banach algebra. Every norm closed subalgebra of B(V) is a Banach algebra. Such Banach algebras
are called concrete Banach algebras.

4.2 Ideals and quotient algebras

Recall that if V is a Banach space and W its closed subspace, then V/W has the structure of a Banach
space and V 3 v 7→ v +W ∈ V/W is a surjective open map of norm one.

Theorem 4.1 Let I be a two-sided closed ideal of A. Then A/I is a Banach algebra and

A 3 A 7→ A+ I ∈ A/I (4.4)

is a norm-decreasing homorphism of Banach algebras with the kernel equal to I.

Proof. By Theorem 2.1 we know that (4.4) is a homomorphism of algebras with the kernel equal to I.
We also know that A/I is a Banach space and (4.4) is norm decreasing. Hence it is enough to show that

‖(A+ I)(B + I)‖ ≤ ‖A+ I‖‖B + I‖.

2
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4.3 Spectrum

Note that Theorem 3.29 remains true if we replace B(X ,Y) and B(Y,X ) with a unital Banach algebra
A

We assume that K = C. Let A ∈ A. We define the resolvent set of A as

rsA := {z ∈ C : z −A is invertible }.

We define the spectrum of A as spA := C\rsA.

Theorem 4.2 Let A ∈ A. Then
(1) If ‖(λ−A)−1‖ = c, then {z : |z − λ| < c−1} ⊂ rsA.

(2) ‖(z −A)−1‖ ≥ (dist(z, spA))−1.

(3) {|z| > ‖A‖} is contained in rsA.

(4) spA is a compact subset of C.

(5) (z −A)−1 is analytic on rsA.

(6) (z −A)−1 cannot be analytically extended beyond rsA.

(7) spA 6= ∅

Proof. (1) For |z − λ| < c−1, we have ‖(z − λ)(λ−A)−1‖ = |z − λ|c < 1 Hence we can apply Theorem
3.29. This implies (2)

(3) We check that
∑∞

n=0 z
−n−1An is convergent for |z| > ‖A‖ and equals (z −A)−1.

(4) follows from (1) and (3).
(5) We check that the resolvent is differentiable in the complex sense:

h−1
(
(z + h−A)−1 − (z −A)−1

)
= −(z + h−A)−1(z −A)−1 → −(z −A)−2.

(6) follows from (2).
(7) (z−A)−1 is an analytic function tending to zero at infinity. Hence it cannot be analytic everywhere,

unless it is zero, which is impossible. 2

For A ∈ B(X ), the point spectrum is defined as the set of eigenvalues of A

sppA = {z ∈ C : there exists x ∈ X such that Ax = zx}.

Clearly, (sppA)cl ⊂ spA.

4.4 Spectral radius

Spectral radius of A ∈ B(X ) is defined as

srA := sup
λ∈spA

|λ|.

Lemma 4.3 Let a sequence of reals (cn) satisfy

cn + cm ≥ cn+m.

Then
lim

n→∞

cn
n

= inf
cn
n
.
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Proof. Fix m ∈ N. Let n = mq + r, r < m. We have

cn ≤ qcm + cr.

So
cn
n
≤ qcm

n
+
cr
n
.

Hence
lim sup

n→∞

cn
n
≤ cm

m
.

Thus,
lim sup

n→∞

cn
n
≤ inf

cm
m
.

2

Theorem 4.4 Let A ∈ B(X ). Then
lim

n→∞
‖An‖ 1

n

exists and equals srA. Besides, srA ≤ ‖A‖.

Proof. Let
cn := log ‖An‖.

Then
cn + cm ≥ cn+m

Hence there exists
lim

n→∞

cn
n
.

Consequently, there exists
r := lim

n→∞
‖An‖1/n.

By the Cauchy criterion, the series
∞∑

n=0

Anz−1−n. (4.5)

is absolutely convergent for |z| > r, and divergent for |z| < r. We easily check that (4.5) equals (z−A)−1.
2

4.5 Idempotents

Theorem 4.5 Let P,Q ∈ B(V) be idempotents such that sr(P−Q)2 < 1. Then there exists an invertible
U ∈ B(X ) such that P = UQU−1.

Proof. Set
Ũ := QP + (1−Q)(1− P ), Ṽ := PQ+ (1− P )(1−Q).

We have
QŨ = ŨP, P Ṽ = Ṽ Q.

We also have
Ṽ Ũ = Ũ Ṽ = 1−R,

R = (P −Q)2 = P +Q− PQ−QP.
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We check that P and Q commute with R (note in particular that PR = P − PQP , etc.).
Set c := srR < 1. Then on sp(1 − R) ⊂ B(1, c), the function z 7→ z

1
2 is well defined. Hence we can

introduce the function
(1−R)−1/2

(which can be defined by a convergent power series). We set

U := Ũ(1−R)−1/2 = (1−R)−1/2Ũ , V := Ṽ (1−R)−1/2 = (1−R)−1/2Ṽ .

So UV = V U = 1, or V = U−1 and
Q = UPU−1.

Proposition 4.6 Let t 7→ P (t) be a differentiable function with values in idempotents. Then

PṖP = 0.

Proof.
d
dt
P =

d
dt
P 2 = ṖP + PṖ .

Hence PṖP = 2PṖP . 2

4.6 Functional calculus

Let K ⊂ C be compact. By Hol(K) let us denote the set of analytic functions on a neighborhood of K.
It is a commutative algebra.

More precisely, let H̃ol(K) be the set of pairs (f,D), where D is an open subset of C containing K.
We introduce the relation (f1,D1) ∼ (f2,D2) iff f1 = f2 on D1 ∩ D2. We set Hol(K) := H̃ol(K)/ ∼.

Definition 4.7 Let A ∈ A and f ∈ Hol(spA). Let γ be a contour in the domain of f that encircles spA
counterclockwise. We define

f(A) :=
1

2πi

∫
γ

(z −A)−1f(z)dz (4.6)

Clearly, the definition is independent of the choice of the contour.

Theorem 4.8
Hol(spA) 3 f 7→ f(A) ∈ A (4.7)

is a linear map satisfying
(1) fg(A) = f(A)g(A);

(2) 1(A) = 1;

(3) id(A) = A, for id(z) = z;

(4) If f(z) :=
∑∞

n=0 fnz
n is an analytic function defined by a series absolutely convergent in a disk of

radius greater than srA, then

f(A) =
∞∑

n=0

fnA
n;

(5) (Spectral mapping theorem). spf(A) = f(spA)

(6) g ∈ Hol(f(spA)) ⇒ g ◦ f(A) = g(f(A)),
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(7) ‖f(A)‖ ≤ cγ,A supz∈γ |f(z)|.

Proof. From the formula

(z −A)−1 =
∞∑

n=0

z−n−1An, |z| > sr(A),

we get that 1(A) = 1 and id(A) = A.
It is clear that f → f(A) is linear. Let us show that it is multiplicative. Let f1, f2 ∈ Hol(spA).

Choose a contour γ2 around the contour γ1, both in the domains of f1 and f2.

(2πi)−2
∫

γ1
f1(z1)(z1 −A)−1dz1

∫
γ2
f2(z2)(z2 −A)−1dz2

= (2πi)−2
∫

γ1

∫
γ2
f1(z1)f2(z2)

(
(z1 −A)−1 − (z2 −A)−1

)
(z2 − z1)−1dz1dz2

= (2πi)−2
∫

γ1
f1(z1)(z1 −A)−1dz1

∫
γ2

(z2 − z1)−1f2(z2)dz2

+(2πi)−2
∫

γ2
f2(z2)(z2 −A)−1dz2

∫
γ1

(z1 − z2)−1f1(z1)dz1.

But ∫
γ1

(z1 − z2)−1f1(z1)dz1 = 0,∫
γ2

(z2 − z1)−1f2(z2)dz2 = 2πif2(z1).

Thus
f1(A)f2(A) = f1f2(A). (4.8)

Let us prove the spectral mapping theorem. First we will show

spf(A) ⊂ f(spA). (4.9)

If µ 6∈ f(spA), then the function z 7→ f(z) − µ 6= 0 on spA. Therefore, z 7→ (f(z) − µ)−1 belongs to
Hol(spA). Thus f(A)− µ is invertible and therefore, µ 6∈ spf(A). This implies (4.9).

Let us now show
spf(A) ⊃ f(spA). (4.10)

Let µ 6∈ spf(A). This clearly implies that f(A)− µ is invertible.
If µ does not belong to the image of f , then of course it does not belong to f(spA). Let us assume

that µ = f(λ). Then the function

z 7→ g(z) := (f(z)− µ)(z − λ)−1

belongs to Hol(spA). Hence g(A) is well defined as an element of B(X ). We check that g(A)(f(A) −
f(λ))−1 = (λ−A)−1. Hence λ 6∈ spA. Thus µ 6∈ f(spA). Consequently, (4.10) holds.

Let us show now (6). Notice that if w 6∈ f(spA), then the function z 7→ (w− f(z))−1 is analytic on a
neighborhood of

(w − f(A))−1 =
1

2πi

∫
γ

(w − f(z))−1(z −A)−1dz.

We compute
g(f(A))

= 1
2πi

∫
γ̃
g(w)(w − f(A))−1dw

= 1
(2πi)2

∫
γ̃

∫
γ
g(w)(w − f(z))−1(z −A)−1dwdz

= 1
(2πi)2

∫
γ
(z −A)−1dz

∫
γ̃
g(w)(w − f(z))−1dw

= 1
2πi

∫
γ
g(f(z))(z −A)−1dz.

2
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4.7 Spectral idempotents

Let Ω be a subset of B ⊂ C. Ω will be called an isolated subset of B, if Ω∩(B\Ω)cl = ∅ and Ωcl∩(B\Ω) = ∅
(or Ω is closed and open in the relative topology of B).

Let Ω ⊂ spA be an isolated subset of spA. We define the function

1Ω(z) :=

{
1 z belongs to a neighborhood of Ω,

0 z belongs to a neighborhood of spA\Ω.

Clearly, 1Ω ∈ Hol(spA) and 12
Ω = 1Ω Hence 1Ω(A) is an idempotent.

If γ is a contour around Ω outside of spA\Ω, then

1Ω(A) =
1

2πi

∫
γ

(z −A)−1dz

This operator will be called the spectral idempotent of the operator A onto Ω. Let AΩ := 1Ω(A)A1Ω(A)
be the subalgebra of A reduced by the projection 1Ω(A). Then

spAΩ
(A1Ω(A)) = spA ∩ Ω.

If Ω1 and Ω2 are two isolated subsets of spA, then

1Ω1(A)1Ω2(A) = 1Ω1∩Ω2(A)

4.8 Isolated eigenvalues

Assume now that λ is an isolated point of spA. Set

P := 1λ(A), N := (A− λ)P.

Definition 4.9 We say that λ is a semisimple eigenvalue if N = 0 If Nn = 0 and Nn−1 6= 0, then we
say that λ is nilpotent of degree n. It is easy to see that if A ∈ L(X ), then the degree of nilpotence of λ
is less than or equal to dimP .

Proposition 4.10 The operator N is quasinilpotent, satisfies PN = NP = N and can be written as

N = f(A), f(z) := (z − λ)1λ(z). (4.11)

Besides,

(z −A)−1P = (z − λ)−1P +
∞∑

j=1

N j(z − λ)−j+1.

and (z −A)−1(1− P ) is analytic in the neighborhood of λ. If N is nilpotent of degree n, then there exist
δ > 0 and C such that

‖(z −A)−1‖ ≤ C|z − λ|−n, z ∈ B(λ, δ). (4.12)

Proof. Clearly, AP = A1λ(A) and λP = λ1λ(A). This shows (4.11). Then note that f(z) = 0 for
z ∈ spA. Hence spN = {0}.

Using the Laurent series expansion we get

(z −A)−1 =
∞∑

n=−∞
Cn(z − λ)n,
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where
Cn =

1
2πi

∫
γ

(z −A)−1(z − λ)−n−1dz.

Clearly, C−1 = P and C−2 = N . Besides, by Theorem 4.8 we obtain

C−1−nC−1−m = C−1−n−m.

2

4.9 Spectral theory in finite dimension

Suppose that X is finite dimensonal of dimension d and A ∈ L(X ). Then spA has at most d elements.
Let spA = {λ1, . . . , λn}.

We say that A is diagonalizable iff

A =
n∑

j=1

λj1λj (A).

It is well known that in a finite dimension for every A ∈ L(X ), there exist unique diagonalizable D
and nilpotent N satisfying DN = ND such that A = D +N . Let m be the degree of nilpotence of N .

In fact, define two functions on a neighborhood of spA: d(z) is equal to λi on a neighborhood of
λi ∈ spA and n(z) = z − λi on a neighborhood of λi ∈ spA. Both d and n belong to Hol(spA). Clearly,
and D := d(A) and N := n(A) satisfy the above requirements.

Clearly then N =
∑n

j=1Nj with Nj = PjNPj also nilpotent. Let mj be the degree of nilpotence of
Nj . We have

f(A) =
∑m

k=0 f
(k)(D)Nk

k!

=
∑n

j=1

∑mj

k=0 f
(k)(λj)

Nk
j

k! .

4.10 Functional calculus for several commuting operators

Let K ⊂ Cn be compact. By Hol(K) let us denote the set of analytic functions on a neighborhood of K.
It is a commutative algebra.

Let A be a Banach algebra.

Definition 4.11 Let A1, . . . , An ∈ A commute with one another. Let F ∈ Hol(spA1 × · · · × spAn).
Let γ1, . . . , γn be contours such that γ1 × · · · × γn lies in the domain of F and each γj encircles spAj

counterclockwise. We define

F (A1, . . . , An) :=
1

(2πi)n

∫
γ1

dz1 · · ·
∫

γn

dzn(z1 −A1)−1 · · · (zn −An)−1F (z1, . . . , zn). (4.13)

Clearly, the definition is independent of the choice of the contour.

Theorem 4.12
Hol(spA1 × · · · × spAn) 3 F 7→ F (A1, . . . , An) ∈ A (4.14)

is a linear map satisfying
(1) FG(A1, . . . , An) = F (A1, . . . , An)G(A1, . . . , An);

(2) 1(A1, . . . , An) = 1;

(3) idj(A1, . . . , An) = Aj, for idj(z1, . . . , zn) := zj;
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(4) If F (z1, . . . , zn) :=
∑∞

m1,...,mn=0 Fm1,...,,mnz
m1
1 · · · zmn

n is an analytic function defined by a series
absolutely convergent in a neighborhood of B(srA1)× · · · × B(srAn), then

F (A1, . . . , An) =
∞∑

m1,...,mn=0

Fm1,...,,mnA
m1
1 · · ·Amn

n ;

(5) (Weak version of the spectral mapping theorem). spF (A1, . . . , An) ⊂ F (spA1, . . . , spAn)

(6) g ∈ Hol(F (spA1 × . . .× spAn)) ⇒ g ◦ F (A1, . . . , An) = g(F (A1, . . . , An)),

(7) ‖F (A1, . . . , An)‖ ≤ cγ,A1,...,An
supz∈γ |f(z)|.

Proof. The proof is essentially the same as that of Theorem 4.8. Let us show for instance the weak
version of the spectral mapping theorem. Let µ 6∈ F (spA1, . . . , spAn). Then the function (z1, . . . , zn) 7→
F (z1, . . . , zn)− µ 6= 0 on spA1 × . . .× spAn. Therefore, (z1, . . . , zn) 7→ (F (z1, . . . , zn)− µ)−1 belongs to
Hol(spA1 × . . .×An). Thus F (A1, . . . , An)− µ is inverible and therefore, µ 6∈ spF (A1, . . . , , An). 2

5 Hilbert spaces

5.1 Scalar product spaces

Let V be a vector space.
V × V 3 (v, y) 7→ (v|y) ∈ C

is called a scalar product if

(v|y + z) = (v|y) + (v|z), (v|λy) = λ(v|y),

(v + y|z) = (v|z) + (y|z), (λv|y) = λ(v|y),

(v|v) ≥ 0,

(v|v) = 0 ⇒ v = 0.

Theorem 5.1 (The hermitian property.)

(v|y) = (y|v).

Proof. We use the polarization identity:

(v|y) = 1
4

∑3
n=0(−i)n(v + iny|v + iny),

(y|v) = 1
4

∑3
n=0 in(v + iny|v + iny).

2

We define
‖v‖ :=

√
(v|v)

Theorem 5.2 (The parallelogram identity.)

2(‖v‖2 + ‖y‖2) = ‖v + y‖2 + ‖v − y‖2.

Theorem 5.3 (The Schwarz inequality.)

|(v|y)| ≤ ‖v‖‖y‖
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Proof.
0 ≤ (v + ty|v + ty) = ‖v‖2 + t(v|y) + t(v|y) + ‖y‖2|t|2.

We set t = − (v|y)
‖y‖2 and we get

0 ≤ ‖v‖2 − |(v|y)|2

‖y‖2
.

2

Theorem 5.4 (The triangle inequality.)

‖v + y‖ ≤ ‖v‖+ ‖y‖

Proof.
‖v + y‖2 = ‖v‖2 + (v|y) + (y|v) + ‖y‖2 ≤ (‖v‖+ ‖y‖)2.

2

Hence ‖ · ‖ is a norm.

5.2 The definition and examples of Hilbert spaces

Definition 5.5 A space with a scalar product is called a Hilbert space if it is complete.

Example 5.6 Let I be an arbitrary set of indices. Then L2(I) denotes the space of families (vi)i∈I with
values in C indexed by I such that ∑

i∈I

|vi|2 <∞

equipped with the scalar product
(v|w) =

∑
i∈I

viwi.

The Schwarz inequality guarantees that the scalar product is well defined.

Example 5.7 Let (X,µ) be a space with a measure. Then L2(X,µ) equipped with the scalar product

(v|w) :=
∫
v(x)w(x)dµ(x)

is a Hilbert space.

Theorem 5.8 Let V0 be a space equipped with a scalar product (but not necessarily complete). Let
Vcpl

0 be its completion (see Theorem 3.6). Then there exists a unique scalar product on Vcpl
0 , which is

compatible with the norm on Vcpl
0 . Vcpl

0 with this scalar product is is a Hilbert space.

5.3 Complementary subspaces

Suppose that (for the time being) V is a space with a scalar product (not necessarily complete).
If A ⊂ V, then A⊥ denotes

A⊥ := {v ∈ V : (v|z) = 0, z ∈ A}.

Proposition 5.9 (1) A⊥ is a closed subspace.

(2) A ⊂ B ⇒ A⊥ ⊃ B⊥
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(3) (A⊥)⊥ ⊃ Span(A)cl

Proof. 1. and 2. are obvious. To prove 3. we note that (A⊥)⊥ ⊃ A. But (A⊥)⊥ is a closed subspace
by 1. Hence it contains the least closed subspace containing A, or Span(A)cl. 2

Suppose that V is Hilbert space.

Theorem 5.10 Let W be a closed subspace of V. Then W⊥ is a closed subspace and

W ⊕W⊥ = V, (W⊥)⊥ = W.

Proof. Let
inf

w∈W
‖v − w‖ =: d.

Then there exists a sequence yn ∈ W such that

lim
n→∞

‖v − yn‖ = d.

Then using first the parallelogram identity and then 1
2 (yn + ym) ∈ W we get

‖yn − ym‖2 = 2‖yn − v‖2 + 2‖ym − v‖2 − 4‖v − 1
2 (yn + ym)‖2

≤ 2‖yn − v‖2 + 2‖ym − v‖2 − 4d2 → 0.

Therefore, (yn) is a Cauchy sequence and hence

lim
n→∞

yn =: y.

Clearly, y ∈ W and it is an element closest to v. We set z := v − y. We will show that z ∈ W⊥. Let
w ∈ W. Then

‖z‖2 = ‖v − y‖2 ≤ ‖v − (y + tw)‖2

= ‖z − tw‖2 = ‖z‖2 − t(w|z)− t(w|z) + |t|2‖w‖2.

We set t = (w|z)
‖w‖2 . We get

0 ≤ −|(w|z)|
2

‖w‖2
.

Thus (w|z) = 0. This shows that Span(W ∪W⊥) = V.
W ∩W⊥ = {0} is obvious. This implies the uniqueness of the pair y ∈ W, z ∈ W⊥. This ends the

proof of V = W ⊕W⊥.
Let us show now that (W⊥)⊥ ⊂ W. Let v ∈ (W⊥)⊥. Then v = y + z, where y ∈ W, z ∈ W⊥. But

(z|v) = 0 and (z|y) = 0. We have
(v|z) = (y|z) + (z|z).

Hence (z|z) = 0, or z = 0, therefore v ∈ W 2

Corollary 5.11

A⊥
⊥

= Span(A)cl

Proof.
Span(A)cl

⊥⊥ ⊃ A⊥
⊥ ⊃ Span(A)cl

follows by Proposition 5.9.

Span(A)cl
⊥⊥

= Span(A)cl

follows by Proposition 5.10. 2
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5.4 Orthonormal basis

Assume for the time being that V is a space with a scalar product.

Definition 5.12 A ⊂ V\{0} is an orthogonal system iff e1, e2 ∈ A, e1 6= e2 implies (e1|e2) = 0. A ⊂ V
is na orthonormal system if it is orthogonal and if e ∈ A, then ‖e‖ = 1.

Theorem 5.13 Let (e1, . . . , eN ) be an orthonormal system. We then have the Pythagoras Theorem

‖v‖2 =
N∑

n=1

|(v|en)|2 + ‖v −
N∑

n=1

(en|v)en‖2

and the Bessel inequality:

‖v‖2 ≥
N∑

n=1

|(v|en)|2.

Assume now that V is a Hilbert space.

Definition 5.14 A maximal orthonormal system is called an orthonormal basis.

Theorem 5.15 Let {ei}i∈I be an orthonormal system. It is an orthonormal basis iff one of the following
conditions holds:
(1) {ei : i ∈ I}⊥ = {0}.
(2) (Span{ei : i ∈ I})cl = V

Theorem 5.16 Every orthonormal system can be completed to an orthonormal basis.

Proof. Let B denote the family of all orthonormal systems ordered by inclusion. Let {Ai : i ∈ I} ⊂ B
be a subset linearly ordered. Then

∪i∈IAi

is also an orthonormal system. It is also an upper bound of the set {Ai : i ∈ I}. Hence we can apply
the Kuratowski-Zorn lemma. 2

The definition of an orthogonal basis is similar. From an orthogonal basis (wi)i∈I we can construct
an orthonormal basis {‖wi‖−

1
2wi}i∈I .

Theorem 5.17 Let (ei)i∈I be an orthonormal basis. Then
(1)

v =
∑
i∈I

(ei|v)ei, (5.15)

and
‖v‖2 =

∑
i∈I

|(v|ei)|2.

(2) If
v =

∑
i∈I

λiei,

then λi = (ei|v).
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Proof. By the Bessel inequality, a finite number of coefficients is greater than ε > 0. Hence a countable
number of coefficients is non-zero. Let us enumerate the non-zero coefficients (ein |v), n = 1, 2, . . . By the
Bessel inequality, we get

∞∑
i=1

|(ei|v)|2 ≤ ‖v‖2.

Set

vN :=
N∑

n=1

(ei|v)ei,

Then for N < M

‖vM − vM‖2 =
M∑

i=N+1

|(ei|v)|2.

Hence by the completeness of V we get the convergence of vN and thus the convergence of the series.
Besides, the vector

v −
∑
i∈I

ei(ei|v)

is orthogonal to the basis. Hence it is zero. This proves 1. 2

Theorem 5.18 Let B1 and B2 be orthonormal bases in V. Then they have the same cardinality.

Proof. First we prove this for finite B1 or B2.
For any y ∈ B1 there exists a countable number of x ∈ B2 such that (x|y) 6= 0. For every x ∈ B2 we

will find y ∈ B1 such that (x|y) 6= 0. Hence there exists a function f : B2 → B1 such that the preimage
of every set is countable. Hence

|B2| ≤ |B1 × N| = max(|B1|,ℵ0).

Similarly we check that
|B1| ≤ max(|B2|,ℵ0).

2

Definition 5.19 The cardinality of this basis is called the dimension of the space.

Definition 5.20 We say that a linear operator U : V1 → V2 is unitary iff it is a bijection and

(Uw|Uv) = (w|v), v, w ∈ V1.

We say that the Hilbert spaces V1 and V2 are isomorphic iff there exists a unitary operator from V1 to
H2.

Theorem 5.21 Two Hilbert spaces are isomorphic iff they have the same dimension.

Proof. Let {xi : i ∈ I} be an orthonormal basis in V. It suffices to show that V is isomorphic to L2(I).
We define the unitary operator

(Uv)i := (xi|v).

2
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5.5 The space dual to a Hilbert space

Theorem 5.22 (The Riesz Lemma) The formula

〈CV(v)|x〉 := (v|x)

defines an antilinear isometry from V onto V#.

Proof. Isometricity:
‖CV(v)‖ = sup

‖x‖≤1

|(v|x)| ≤ ‖v‖.

It suffices to take x = v
‖v‖ to get the equality.

Surjectivity: Let w ∈ V# and W := Kerw. If W = V, then w = C(0). If not, then let x0 ∈ W⊥,
‖x0‖ = 1. Set

v := x0〈w|x0〉.

We will prove that w = C(v).
An arbitrary y can be represented as

y =
(
y − 〈w|y〉

〈w|x0〉
x0

)
+
〈w|y〉
〈w|x0〉

x0

The first term belongs to W. Hence

(v|y) =
(
x0〈w|x0〉| 〈w|y〉〈w|x0〉x0

)
= 〈w|y〉〈w|x0〉

〈w|x0〉 = 〈w|y〉.

2

The space dual to a Hilbert space has a natural structure of a Hilbert space:

(CVv|CVx) := (x|v), v, x ∈ V.

Theorem 5.23 A Hilbert space is reflexive: (V#)# = V and CV#CV = 1.

Proof. Let y ∈ V, v ∈ V#. Then

〈CV#CVy|v〉 = (CVy|v) = (C−1
V v|y) = 〈v|y〉 = 〈Jy|v〉,

where J was defined in (3.3) Or, CV#CV = J . But CV# and CV are bijective, therefore, J is also a
bijection (which we will identify with the identity). 2

5.6 Quadratic forms

Let V,W be complex vector spaces.

Definition 5.24 a is called a sesquilinear form on W ×V iff it is a map

W ×V 3 (w, v) 7→ a(w, v) ∈ C

antilinear wrt the first argument and linear wrt the second argument.
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If λ ∈ C, then λ can be treated as a sesquilinear form λ(w, v) := λ(w|v). If a is a form, then we define
λa by (λa)(w, v) := λa(w, v). and a∗ by a∗(v, w) := a(w, v). If a1 and a2 are forms, then we define a1 +a2

by (a1 + a2)(w, v) := a1(w, v) + a2(w, v).
Suppose that V = W. We will write a(v) := a(v, v). We will call it a quadratic form. The knowledge

of a(v) determines a(w, v):

a(w, v) =
1
4

(a(w + v) + ia(w − iv)− a(w − v)− ia(w + iv)) . (5.16)

Suppose now that V,W are Hilbert spaces. A form is bounded iff

|a(w, v)| ≤ C‖w‖‖v‖.

Proposition 5.25 (1) Let a be a bounded sesquilinear form on W × V. Then there exists a unique
operator A ∈ B(V,W) such that

a(w, v) = (w|Av).

(2) If A ∈ B(V,W), then (w|Av) is a bounded sesquilinear form on W ×V.

Proof. (2) is obvious. To show (1) note that w 7→ a(w|v) is an antilinear functional on W. Hence there
exists η ∈ W such that a(w, v) = (w|η). We put Av := η.

Theorem 5.26 Suppose that D,Q are dense linear subspaces of V,W and a is a bounded sesquilinear
form on D ×Q. Then there exists a unique extension of a to a bounded form on V ×W.

5.7 Adjoint operators

Definition 5.27 Let A ∈ B(V,W). Then the operator A∗ given (uniquely) by the formula

(A∗w|v) := (w|Av)

is called the (hermitian) conjugate of A.

Note that the definition is correct, because a(w, v) := (w|Av) is a bounded sesquilinear form, and
hence so is a∗; and A∗ is the operator associated with a∗.

Theorem 5.28 The hermitian conjugation has the following properties

1) ‖A∗‖ = ‖A‖

2) (λA)∗ = λA∗

3) (A+B)∗ = A∗ +B∗,

4) (AB)∗ = B∗A∗,

5) A∗∗ = A,

6) (RanA)⊥ = KerA∗,

7) (RanA∗)⊥ = KerA,

8) A is invertible ⇔ A∗ is invertible ⇔ ‖Av‖ ≥ C‖v‖ and ‖A∗v‖ ≥ C‖v‖, moreover,

(A−1)∗ = (A∗)−1.

9) spA∗ = spA.
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5.8 Numerical range

Definition 5.29 Let t be a quadratic form on X . The numerical range of t is defined as

Num t := {t(x) ∈ C : x ∈ X , ‖x‖ = 1}.

Theorem 5.30 (1) In a twodimensional space the numerical range of a quadratic form is always an
elipse together with its interior.

(2) Num t is a convex set.

(3) Num(αt + β) = αNum(t) + β.

(4) Num t∗ = Num t.

(5) Num(t + s) ⊂ Num t + Num s.

Proof. (1) We write Let t(v) = Ret(v) + Imt(v). We diagonalize the imaginary part of t. Thus if[
a11 a12

a21 a22

]
is the matrix of t, then a12 = a21. By multiplying one of the basis vectors with a phase

factor we can guarantee that a12 = a21 is real.
Now t is given by a matrix of the form

c

[
1 0
0 1

]
+
[
λ µ
µ −λ

]
+ i
[
γ 0
0 −γ

]
Any normalized vector up to a phase factor equals v = (cosα, eiφ sinα) and

t(v)− c = λ cos 2α+ µ cosφ sin 2α+ iγ cos 2α (5.17)

Now it is an elementary exercise to check that the range of x+ iy given by (5.17), equals

(γx− λy)2 + µ2y2 ≤ γ2µ2.

(2) follows immediately from (1). 2

Let V be a Hilbert space. If A is an operator on V, then the numerical range of A is defined as the
numerical range of the form (v|Aw), that is

NumA := {(v|Av) ∈ C : v ∈ V, ‖v‖ = 1}.

Theorem 5.31 Let A ∈ B(V). Then
(1) spA ⊂ (NumA)cl.

(2) For z 6∈ (NumA)cl,
‖(z −A)−1‖ ≤ dist(z,NumA)−1.

Proof. Let (z0 6∈ NumA)cl. Recall that Num(A) is convex. Hence, replacing A wih αA + β we can
assume that z0 = iν with ν = dist(z,Num(A)) and NumA ⊂ {Imz ≤ 0}. Now

‖(z0 −A)v‖2 = (Av|Av) + iν(v|Av)− iν(Av|v) + |ν|2‖v‖2

= (Av|Av)− 2νIm(v|Av) + |ν|2‖v‖2

≥ |ν|2‖v‖2.
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Next, NumA∗ ⊂ {Imz ≥ 0}.

‖(z0 −A∗)v‖2 = (A∗v|A∗v)− iν(v|A∗v) + iν(A∗v|v) + |ν|2‖v‖2

= (A∗v|A∗v)− 2νIm(v|Av) + |ν|2‖v‖2

≥ |ν|2‖v‖2.

Hence z0 −A is invertible and z ∈ rsA. 2

5.9 Self-adjoint operators

Theorem 5.32 Let A ∈ B(V). The following conditions are equivalent:
(1) A = A∗.

(2) (Aw|v) = (w|Av), w, v ∈ V.
(3) (w|Av) = (v|Aw), w, v ∈ V.

(4) (v|Av) ∈ R.

Proof. (1)⇔(2)⇔(3)⇒(4) is obvious. To show (4)⇒(3) we use the polarization identity:

(w|Av) = 1
4

∑3
j=0(−i)j(w + ijv|A(w + ijv)),

(v|Aw) = 1
4

∑3
j=0(−i)j(v + ijw|A(v + ijw))

= 1
4

∑3
j=0(−i)j(w + ijv|A(w + ijv)).

2

Definition 5.33 An operator A ∈ B(V) satisfying the conditions of Theorem 5.32 is called self-adjoint.
An operator A ∈ B(V) such that (v|Av) ≥ 0 is called a positive operator.

By Theorem 5.32, positive operators are self-adjoint.
Clearly, if A ∈ B(V), then A is self-adjoint iff NumA ⊂ R and positive iff NumA ⊂ [0,∞[.

Theorem 5.34 Let A be self-adjoint. Then spA ⊂ R.

Proof. Let µ 6= 0, µ, λ ∈ R. We have

‖(A− (λ+ iµ))v‖2 = ‖(A− λ)v‖2 + µ2‖v‖2 ≥ µ2‖v‖2.

Besides, (A− (λ+ iµ))∗ = A− (λ− iµ). Hence

‖(A− (λ+ iµ))∗v‖2 = ‖(A− λ)v‖2 + µ2‖v‖2 ≥ µ2‖v‖2.

So A− (λ+ iµ) is invertible. 2.

Theorem 5.35 The operator A∗A is positive and

‖A∗A‖ = ‖A‖2.
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Proof. A∗A is positive because
(v|A∗Av) = ‖Av‖2 ≥ 0.

‖A‖2 = ‖A∗‖‖A‖ ≥ ‖A∗A‖ ≥ sup‖v‖=1(v|A∗Av)

= sup‖v‖=1 ‖Av‖2 = ‖A‖2.
2

The following facts will follow immediately from the spectral theorem. In particular, Theorem 5.18
will follow for an arbitrary normal operator.

Lemma 5.36 Let A be self-adjoint. Then

‖A‖ = sup
‖v‖≤1

|(v|Av)|.

Proof. Let w, v ∈ V. We will show first that

|(w|Av)| ≤ 1
2
(‖w‖2 + ‖v‖2) sup

‖y‖≤1

(y|Ay).

Replacing w with eiαw we can suppose that (w|Av) is positive. Then

(w|Av) = 1
2 ((w|Av) + (v|Aw))

= 1
4 ((w + v|A(w + v)− (w − v|A(w − v)))

≤ 1
4

(
‖v + w‖2 + ‖v − w‖2

)
sup‖y‖=1 |(y|Ay)|

= 1
2

(
‖v‖2 + ‖w‖2

)
sup‖y‖=1 |(y|Ay)|

Hence ‖w‖ = ‖v‖ = 1 implies
|(w|Av)| ≤ sup

‖y‖=1

|(y|Ay)|.

But
‖A‖ = sup

‖v‖=‖w‖=1

|(w|Av)|.

2

Theorem 5.37 If A is self-adjoint, then

(NumA)cl = CH(spA). (5.18)

Proof. Step 1. Let A be self-adjoint and

− inf(spA) = sup(spA) =: a. (5.19)

Clearly, CH(spA) = [−a, a] and a = ‖A‖. By Lemma 5.36, (NumA)cl ⊂ [−a, a]. Hence, (NumA)cl ⊂
CH(spA). The converse inclusion follows from Theorem 5.31.
Step 2. Let A be self-adjoint. Let a− := inf(spA), a+ := sup(spA). Then Ã := A − 1

2 (a− + a+) is
self-adjoint and satisfies (5.19). Hence (5.18) holds for Ã. Hence (5.18) holds for A as well. 2
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5.10 Projectors

Theorem 5.38 Let P ∈ B(V) be an idempotent. The following conditions are equivalent:
(1) P is self-adjoint.

(2) KerP = (RanP )⊥.
An idempotent P satisfing these conditions with RanP = W will be called the projector onto W.

If (wi)i∈I is an orthogonal basis in W, then

Pv =
∑
i∈I

(wi|v)
‖wi‖2

wi.

Proposition 5.39 (Gramm-Schmidt ortogonalization) Let y1, y2, . . . be a linearly independent sys-
tem. Let Pn be a projection onto the (n-dimensional) space Span{y1, . . . , yn}. Then

wn := (1− Pn−1)yn

is an orthogonal system. An equivalent definition:

w1 = y1, wn := yn −
n−1∑
j=1

(wj |yn)
‖wj‖2

wj .

Theorem 5.40 Let P ∗ = P and P 2 = P 3. Then P is a projector.

Proof. (P 2 − P )∗(P 2 − P ) = 0, hence P = P 2. 2

5.11 Orthogonal polynomials

Theorem 5.41 Let µ be a Borel measure on R such that for some ε > 0∫
eε|x|dµ(x) <∞.

Then polynomials are dense in L2(R, µ).

Proof. Let φ ∈ L2(R, µ). Clearly, for Rez| < ε, φ(x)ez|x| be;ongs to L2(R, µ). Define F (z) :=∫
e−zxφ(x)dµ(x). It is analytic for |Rez| < ε Now

(xn|φ) =
∫
xnφ(x)dµ(x) = (−i)n dn

dzn
F (0).

If φ is orthogonal to polynomials, all the derivatives of F at zero vanish. Hence F (z) = 0 in the whole
strip. In particular, F (iy) = 0, y ∈ R. Therefore, φ(x)dµ(x) is zero. 2

5.12 Isometries and partial isometries

Definition 5.42 An operator U is called a partial isometry if U∗U and are UU∗ projectors.

Theorem 5.43 U is a partial isometry iff U∗U is a projector.

Proof. We check that (UU∗)3 = (UU∗)2. 2
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Proposition 5.44 If U is a partial isometry, then UU∗ is a projector onto RanU and U∗U is the
projector onto (KerU)⊥.

Proof.

v ∈ KerU ⇔ Uv = 0
⇔ 0 = (Uv|UV ) = (v|U∗Uv) = (v|U∗UU∗Uv) = (U∗Uv|U∗Uv)
⇔ v ∈ KerU∗U.

This proves that U∗U is the projector onto (KerU)⊥. 2

Theorem 5.45 Let U ∈ B(V,W). The following properties are equivalent:
1) U∗U = 1,
2) (Uv|Uw) = (v|w), v, w ∈ V,
3) U is an isometry, that means ‖Uv‖ = ‖v‖.

Definition 5.46 An operator U satisfying the properties of Theorem 5.45 is called a linear isometry.

Proof. 1)⇔2) is obvious, and so is2)⇒3). 3)⇒2) follows by the polarization identity:

(Uw|Uv) = 1
4

∑3
j=0(−i)j(Uw + ijUv|Uw + ijUv),

(w|v) = 1
4

∑3
j=0(−i)j(v + ijw|v + ijw).

2

Theorem 5.47 Let V be isometric. Then spV ⊂ {|z| ≤ 1}.

Proof. We have ‖V ‖2 = ‖V ∗V ‖ = ‖1‖ = 1. Hence, spV ⊂ {|z| ≤ 1}.2

5.13 Unitary operators

Theorem 5.48 Let U ∈ B(V,W). The following properties are equivalent:
1) U∗U = UU∗ = 1;
2) U is a surjective isometry;
3) U is bijective and U∗ = U−1.

Definition 5.49 An operator satisfing the properties of Theorem 5.48 is called unitary.

Proposition 5.50 Let V be finite dimensional and V ∈ B(V) isometric. Then V is unitary.

Proof. We have dim KerV +dim RanV = dimV. KerV = {0}, since V is isometric. Hence dim RanV =
dimV. But V is finite dimensional, hence RanV = V. 2

Example 5.51 Let (ei), i = 1, 2, . . . be the canonical basis in L2(N). Put

Tei := ei+1.

Then T is isometric but not unitary. It is called the unitaral shift.

Theorem 5.52 (1) U is unitary iff U is normal and spU ⊂ {z : |z| = 1}.
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(2) A is self-adjoint iff A is normal and spA ⊂ R.

Proof. (1)⇒. Clearly, U is normal.
U is an isometry, hence spU ⊂ {|z| ≤ 1}.
U−1 is also an isometry, hence spU−1 ⊂ {|z| ≤ 1}. This implies spU ⊂ {|z| ≥ 1}.
(1)⇐ Since U is normal and |z| = 1 on spU , by the spectral mapping theorem, ‖U‖ = 1. U−1 is

normal as well and by the spectral mapping theorem |z| = 1 on spU−1, hence ‖U−1‖ = 1.
Suppose that ‖Uv‖ < ‖v‖. Then for w := Uv, ‖Uw‖ > ‖w‖. Thus U and U−1 are isometries. Hence

U is unitary.
(2)⇒ was proven in Theorem 5.34. Let us prove (2)⇐ Let A be normal and spA ⊂ R. We can find

λ > 0 such that λ‖A‖ < 1. Hence 1+iλA is invertible. It is easy to check that U := (1− iλA)(1+ iλA)−1

is normal. By the spectral mapping theorem, spU ⊂ {|z| = 1}. Hence, by (1), it is unitary. Now

A = −iλ−1(1− U)(1 + U) = iλ−1(U − U∗U)(U + U∗U)−1

= iλ−1(1− U∗)(1 + U∗)−1 = A∗.

2

5.14 Convergence

Let (Aλ) be a net of operators in B(V,W).
(1) We say that (Aλ) is norm convergent to A iff limλ ‖Aλ −A‖ = 0. In this case we write

lim
λ
Aλ = A.

(2) We say that (Aλ) is strongly convergent to A iff limλ ‖Aλv −Av‖ = 0, v ∈ V. In this case we write

s− lim
λ
Aλ = A.

(3) We say that (Aλ) is weakly convergent to A iff limλ |(w|Aλv)− (w|Av)| = 0, v ∈ V, w ∈ W. In this
case we write

w− lim
λ
Aλ = A.

Theorem 5.53 Let (Uλ) be a net of unitary operators
(1) If (Uλ) is norm convergent, then its limit is unitary.

(2) If (Uλ) is strongly convergent, then its limit is isometric.

(3) If (Uλ) is weakly convergent, then its limit is a contraction.

Theorem 5.54 Let (Aλ) be a net of operators in B(V) weakly convergent to A. Then

NumA ⊂
⋂
µ∈Λ

⋃
λ>µ

NumAλ.

In particular, if Aλ are self-adjoint, then so is A; if Aλ are positive, then so is A.

Theorem 5.55 Let (An) be a weakly convergent sequence of operators in B(V). Then it is uniformly
bounded.

Proof. This follows from the uniform boundedness principle. 2
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Example 5.56 In L2(N), let (e1, e2, . . .) be the canonical basis. Set

Unej = ej+1, j = 1, . . . , n− 1;

Unen = e1;

Unej = ej , j = n+ 1, . . . ;

Uej = ej+1, j = 1, . . . .

Then Un are unitary, s− limn→∞ Un = U is not. Moreover. spUn = {exp(i2π/n) : j = 1, . . . , n} and
spU = {|z| ≤ 1}.

Example 5.57 In L2(Z), let ei, i ∈ Z be the canonical basis. Set Unej = ej+n, j ∈ Z. Then Un are
unitary, w− limn→∞ Un = 0. Moreover, spUn = {|z| = 1}, spU = {0}.

5.15 Monotone convergence of selfadjoint operators

Theorem 5.58 Let {Aλ : λ ∈ Λ} be an increasing net of self-adjoint operators, which is uniformly
bounded. Then there exists the smallest self-adjoint operator A such that Aλ ≤ A. We will denote it
lubAλ (the least upper bound). We have

A = s− lim
λ
Aλ.

Proof. Let ‖Aλ‖ ≤ c. For each v ∈ V, (v|Aλv) is an increasing net bounded by c‖v‖2. Hence it is
convergent. Using the polarization identity we obtain the convergence of (v|Aλw). Thus we obtain a
sesquilinear form

lim
λ

(v|Aλw) (5.20)

It is bounded by c, hence it is given by a bounded operator, which we denote by A, so that (5.20) equals
(v|Aw). It is evident that A is the smallest self-adjoint operator greater than Aλ.

Since A−Aλ ≥ 0, we have

(A−Aλ)2 = (A−Aλ)
1
2 (A−Aλ)(A−Aλ)

1
2 ≤ ‖A−Aλ‖(A−Aλ).

Besides, ‖A−Aλ‖ ≤ 2c. Now

‖(A−Aλ)v‖2 = (v|(A−Aλ)2v) ≤ ‖A−Aλ‖(v|(A−Aλ)v) → 0.

2

6 Spectral theorems

In this section we prove various forms of the spectral theorem. We avoid using the Gelfand theory, which
makes our approach slightly more elementary than that of most contemporary literature.
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6.1 Holomorphic spectral theorem for normal operators

Theorem 6.1 Let A ∈ B(V) be normal. Then

sr(A) = ‖A‖.

Proof.
‖A2‖2 = ‖A2∗A2‖ = ‖(A∗A)2‖ = ‖A∗A‖2 = ‖A‖4.

Thus ‖A2n‖ = ‖A‖2n

. Hence, using the formula for the spectral radius of A we get ‖A2n‖2−n

= ‖A‖. 2

If K is a compact subset of C let Chol(K) be the completion of Hol(K) in C(K).
The following version of the spectral theorem follows easily from Theorem 6.1. It will be improved in

next subsection so that the functional calculus will be defined on the whole C(spA).
Note that in the case A is self-adjoint or unitary, C(spA) = Chol(spA).

Theorem 6.2 Let A ∈ B(V) be normal. Then there exists a unique continuous isomorphism

Chol(sp(A)) 3 f 7→ f(A) ∈ B(V),

such that
(1) id(A) = A if id(z) = z.

Moreover, we have

(2) If f ∈ Hol(sp(A)), then f(A) coincides with f(A) defined in (4.6).

(3) sp(f(A)) = f(sp(A)).

(4) g ∈ Chol(f(sp(A))) ⇒ g ◦ f(A) = g(f(A)).

(5) ‖f(A)‖ = sup |f |.

6.2 Commutative C∗-algebras

Let X be a compact Hausdorff space. Then C(X) with the norm ‖ · ‖∞ is a commutative C∗-algebra.
Note that if A ⊂ U ⊂ X where U is open and A is closed, then there exists F ∈ C(X) with F = 1 on

A, 0 ≤ F ≤ 1 and {F 6= 0} ⊂ U .
Let Y ⊂ X and Let CY (X) denote the set of functions vanishing on Y .
The following fact is well known from topology.

Theorem 6.3 Let X be a compact Hausdorff space.
(1) Let Y be a closed subset of X. Then CY (X) is a closed ideal of C(X).

(2) Let N be a closed ideal of C(X). Set

Y :=
⋂

F∈N

F−1(0).

Then Y is closed and N = CY (X).
(3)

C(X)/CY (X) 3 F + CY (X) 7→ F
∣∣∣
Y
∈ C(Y )

is an isometric ∗-homomorphism.
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6.3 Spectrum of a ∗-homomorphisms of C(X)

Let X be a compact Hausdorff space. Let V be a Hilbert space and γ : C(X) → B(V) a homomorphism.
We say that it is a ∗-homomorphism iff γ(F ) = γ(F )∗.

Theorem 6.4 Every ∗-homomorphism is a contraction.

Proof. Let z 6∈ F (X). Then (z − F )−1 ∈ C(X). Thus γ((z − F )−1) is the inverse of z − γ(F ). Thus
spγ(F ) ⊂ F (X), and hence srγ(F ) ≤ ‖F‖∞.

Clearly, γ(F ) is normal, and hence ‖γ(F )‖ = srγ(F ). 2

In what follows γ : C(X) → B(V) is a unital ∗-homomorphism.
We define the spectrum of the homomorphism γ as

spγ =
⋂

F∈Kerγ

F−1(0).

Clearly, spγ is a closed subset of X and Kerγ = Cspγ(X).

Theorem 6.5 Let F ∈ C(X) Then the following is true:
(1) F (spγ) = spγ(F ).
(2) ‖γ(F )‖ = srγ(F ) = ‖F

∣∣
spγ
‖∞.

(3) γ is injective iff X = spγ and then it is isometric.
(4) There exists a unique ∗-isomorphism γred : C(spγ) → B(V) such that

γ(F ) = γred

(
F
∣∣∣
spγ

)
, F ∈ C(X)

γred is injective.

Proof. (1) F (spγ) ⊂ spγ(F ).
Suppose that z ∈ rs(γ(F )). Then there exists A ∈ B(V) with Aγ(z − F ) = 1. Let x ∈ X with

F (x) = z. We can find G ∈ C(X) such that 0 ≤ G ≤ 1, G = 1 on a neighborhood U of x and on suppG
we have |F − z| < 1

2‖A‖
−1. Then Aγ((z − F )G) = γ(G), hence

‖γ(G)‖ ≤ ‖A‖‖γ((z − F )G)‖

≤ ‖A‖‖(z − F )G‖∞ < 1
2 .

Let H ∈ C(X), suppH ⊂ U , H(x) = 1. Then for any n, H = HGn. Hence

γ(H) = γ(H)γ(G)n.

Therefore,
‖γ(H)‖ ≤ ‖γ(H)‖2−n → 0.

Thus ‖γ(H)‖ = 0. Hence γ(H) = 0. But x 6∈ H−1(0). Hence x 6∈ spγ. This proves (2).
(1) F (spγ) ⊃ spγ(F ).
Let z 6∈ F (spγ). Z := {x ∈ X : F (x) = z} is a closed subset of X disjoint from spγ. Hence,

there exists a function G ∈ C(X) such that G = 1 on spγ and G = 0 on a neighborhood of Z. Clearly,
G− 1 ∈ Cspγ(X), hence γ(G) = 1. Now G(z − F )−1 ∈ C(X). We have

γ(z − F )γ((z − F )−1G) = γ(G) = 1.

Hence γ((z − F )−1G) is the inverse of z − γ(F ). This means that z ∈ rsγ(F ).
(2) follows from (1) and the normality of γ(F ).
The kernel of γ is a closed ideal of C(X), hence it equals CY (X) for some closed Y ⊂ X. γ is injective

iff its kernel equals {0}. CY (X) = C(X) iff Y = X. This together with (2) proves (3). 2
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6.4 Functional calculus for a single normal operator

Lemma 6.6 Let (Ai : i ∈ I) be a family of self-adjoint commuting operators in a B(V). Then there
exists a unique unital ∗-homomorphism

C
(
×
i∈I

spAi

)
3 F 7→ F (Ai : i ∈ I) ∈ B(V) (6.21)

such that idj(Ai : i ∈ I) = Ai, where idj(xi : i ∈ I) = xj.

Proof. On polynomials we define (6.21) in the obvious way. By the weak spectral mapping theorem of
Theorem 4.12,

spF (Ai : i ∈ I) ⊂ F
(
×
i∈I

spAi

)
.

Hence, srF (Ai : i ∈ I) ≤ ‖F‖∞. But F (Ai : i ∈ I) is normal and hence ‖F (Ai : i ∈ I)‖ ≤ ‖F‖∞.
By the Stone-Weierstrass Theorem, polynomials are dense in continuous functions, therefore we can

extend the definition of (6.21) from polynomials to C
(
×
i∈I

spAi

)
. 2

We define the joint spectrum of the family of operators (Ai : i ∈ I), denoted sp(Ai : i ∈ I), to be
the spectrum of the homomorphism (6.21).

Theorem 6.7 Let A ∈ B(V) be normal. Then there exists a unique continuous isomorphism

C(sp(A)) 3 f 7→ f(A) ∈ B(V), (6.22)

such that
(1) id(A) = A if id(z) = z.

Moreover, we have

(2) If f ∈ Hol(sp(A)), then f(A) coincides with f(A) defined in (4.6).

(3) sp(f(A)) = f(sp(A)).

(4) g ∈ C(f(sp(A))) ⇒ g ◦ f(A) = g(f(A)).

(5) ‖f(A)‖ = sup |f |.

Proof. BR := 1
2 (B + B∗) and BI := 1

2i (B − B∗) are commuting self-adjoint operators. Therefore, we
have the homomorphisms

C(spBR) 3 f 7→ f(BR) ∈ B(V),

C(spBI) 3 f 7→ f(BI) ∈ B(V),

with commuting ranges. We can construct the product of these homomorphism,

C(spBR × spBI) 3 F 7→ F (BR, BI). (6.23)

Define R2 3 (x, y) 7→ j(x, y) := x+ iy ∈ C. We claim that

j(sp(BR, BI)) = spB.

Let (x0, y0) 6∈ sp(BR, BI). The function

(x, y) 7→ (x0 + iy0 − x− iy)−1

is well defined outside of (x0, y0). In particular, it s well defined on sp(BR, BI). Hence

(x0 + iy0 −BR − iBI)−1 = (x0 + iy0 −B)−1
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exists. Therefore, x0 + iy0 ∈ rs(B).
Let x0 + iy0 6∈ spB and (x0, y0) ∈ sp(BR, BI). Let ε > 0 and f ∈ C(sp(BR, BI)) with f(x0, y0) = 1

and {f 6= 0} ⊂ {(x− x0)2 + (y − y0)2 < ε2}. Clearly,

f(BR, BI) = f(BR, BI)(x0 + iy0 −B)(x0 + iy0 −B)−1.

Hence,

‖f(BR, BI)‖ ≤ ‖f(BR, BI)(x0 + iy0 −B)‖‖(x0 + iy0 −B)−1‖ ≤ ε‖(x0 + iy0 −B)−1‖.

By choosing ε small enough we can demand that the right hand side is less than 1. But f(x0, y0) = 1.
This is a contradiction.

Now the ∗-homomrphism (6.22) is simply the reduced ∗-homorphism (6.23), where we identify sp(BR, BI)
with a subset of C with the map j. 2

6.5 Functional calculus for a family of commuting normal operators

Theorem 6.8 (Fuglede) Let A,B ∈ A and let B be normal. Then AB = BA implies AB∗ = B∗A.

Proof. For λ ∈ C, the operator U(λ) := eλB∗−λB = e−λBeλB∗
is unitary. Moreover, A = eλBAe−λB .

Hence
e−λB∗

AeλB∗
= U(−λ)AU(λ) (6.24)

is a uniformly bounded analytic function. Hence is constant. Differentiating it wrt λ we get [A,B∗] = 0.
2

Suppose that {Bi : i ∈ I} is a family of commuting normal operators in B(V). Set BR
i := 1

2 (Bi +B∗
i )

and BI
i := 1

2i (Bi − B∗
i ). Then by the Fuglede theorem, {BR

i , B
I
i : i ∈ I} is a family of commuting self-

adjoint operators. Thus we have a ∗-homomorphism∏
i∈I

spBR
i × spBI

i 3 G 7→ G(BR
i , B

I
i : i ∈ I) ∈ B(V) (6.25)

Recall that the joint spectrum
sp(BR

i , B
I
i : i ∈ I) (6.26)

(the spectrum of the ∗-homomorphism (6.25)) is defined as a subset of
∏

i∈I sp(BR
i , B

I
i). By Theorem ??,

we can identify sp(BR
i , B

I
i) ⊂ R2 with spBi ⊂ C. Thus

∏
i∈I sp(BR

i , B
I
i) can be identified with

∏
i∈I spBi.

The image of (6.26) under this identification is called the joint spectrum of the family (Bi : i ∈ I) and
denoted sp(Bi : i ∈ I). Note that this generalizes the definition from the self-adjoint case.

Theorem 6.9 Let {Bi : i ∈ I} be a family of commuting normal operators in a B(V). Then
(1) {zi : i ∈ I} ∈

∏
i∈I spBi does not belong to sp{Bi : i ∈ I} iff there exists a finite sub-

set {i1, . . . , in} ⊂ I and functions fij
∈ C(spBij

), with fij
(zij

) 6= 0, j = 1, . . . , n such that
fi1(Bi1) · · · fin

(Bin
) = 0.

(2) There exists a unique continuous unital ∗-homomorphism

C(sp(Bi : i ∈ I) 3 g 7→ g(Bi : i ∈ I) ∈ B(V) (6.27)

such that if idj(zi : i ∈ I) = zj, then

idj(Bi : i ∈ I) = Bj .
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(3) (6.27) is injective and satisfies
‖g(Bi : i ∈ I)‖ = ‖g‖∞.

Proof. It is obvious that the spectrum of (6.21) is contained in the set described in (1). We need to
prove the converse inclusion.

Suppose that {zi : i ∈ I} does not belong to the spectrum of (6.21). Then there exists F ∈
C(
∏

i∈I spAi) such that F (zi : i ∈ I) = 1 and F (Bi : i ∈ I) = 0. Changing F into min(2F, 1) we
can guarantee that F = 1 on a neighborhood of {zi : i ∈ I}. This means that there exists a finite
subset {i1, . . . , in} ⊂ I and open sets Uij

, zij
∈ Uij

, Uij
⊂ spBij

such that F = 1 on
∏

i∈I Wi where
Wi = spAi for i 6∈ {i1, . . . , in} and Wij

= Uij
, j = 1, . . . , n. We can find gij

∈ C(spBij
) with gij

(zij
) 6= 0

and {gij 6= 0} ⊂ Uij . Now

0 = F (Bi : i ∈ I)gi1(Bi1) · · · gin
(Bin

) = gi1(Bi1) · · · gin
(Bin

).

This ends the proof of (1).
To see (2) and (3) we reduce the homomrphism (6.25) and use Theorem 6.5 implies (2) and (3). 2

6.6 Projector valued (PV) measures

Le (X,F) be a set with a σ-field. Let V be a Hilbert space. We say that

F 3 A 7→ PA ∈ Proj(V) (6.28)

is a projector valued measure on V iff
(1) P∅ = 0;

(2) If A1, A2, . . . ∈ F are disjoint, and A = ∪∞i=1Ai, then PA = s− lim
n→∞

∑n
j=1 PAj

.

We call PX the support of the projector valued measure (6.28).

Theorem 6.10 For any A,B ∈ F we have

PAPB = PA∩B .

Proof. First consider the case A ∩B = ∅. By (2)

PA∪B = PA + PB .

Hence PA + PB is a projector. Hence (PA + PB)2 = PA + PB . This implies

PAPB + PBPA = 0. (6.29)

Multiplying from both sides by PB we get 2PBPAPB = 0 Multiplying (6.29) from the left by PB we get
PBPA = −PBPAPB . Thus PBPA = 0.

Next consider the case A ⊂ B. Then

PB = PA + PB\A.

Using PAPB\A = 0 we see that PBPA = PA.
Finally, consider arbitrary A,B. Then

PAPB = (PA\B + PA∩B)(PB\A + PA∩B) = PA∩B .

2
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Theorem 6.11 Let F 3 A 7→ PA be a projector valued measure and let L∞(X) denote the space of
bounded measurable functions on X. Then there exists a unique contractive ∗-homomorphism

L∞(X) 3 f 7→
∫
f(x)dP (x) ∈ B(V)

such that
∫

1A(x)dP (x) = PA, A ∈ F .

Proof. If f is an elementary function, that is a finite linear combination of characteristic functions of
measurable sets

f =
n∑

j=1

λj1Aj
,

then clearly ∫
f(x)dP (x) =

n∑
j=1

λjPAj
.

For such functions the multiplicativity of γ is obvious.
Then we use the fact that elementary functions are dense in L∞(X) in the supremum norm. 2

Let us give an alternative equivalent definition of the spectral integral, which uses directly concepts
from measure theory. For any w ∈ V

F 3 A 7→ µw(A) := (w|PAw)

is a finite measure. Likewise, for any w, v ∈ V,

F 3 A 7→ µw,v(A) := (w|PAv)

is a finite charge.

Theorem 6.12 For any f ∈ L∞(X),∫
f(x)dµw(x) =

(
w|
∫
f(x)dP (x)w

)
.

Here is a version of the Lebesgue dominated convergence theorem for spectral integrals:

Theorem 6.13 If fn → f pointwise, |fn| ≤ c, then s− limn→∞
∫
fn(x)dP (x) =

∫
f(x)dP (x).

6.7 Projector valued Riesz-Markov theorem

Let X be a compact Hausdorff space, V a Hilbert space and γ : C(X) → B(V) a unital ∗-homomorphism.
We define the upper projector valued measure associated with γ as follows. For any open U ⊂ X we

define
P up

U := sup{γ(f) : 0 ≤ f ≤ 1U , f ∈ C(X)}.
For any A ⊂ X we set

P up
A := inf{P up

U : U is open , A ⊂ U}.
We define the lower projector valued measure associated with γ as follows. For any closed C ⊂ X we

define
P low

C := inf{γ(f) : 1C ≤ f, f ∈ C(X)}.
For any A ⊂ X we set

P low
A := sup{P low

C : C is closed , C ⊂ A}.
We say that A ⊂ X is γ-measurable if P up

A = P low
A . The family of γ-measurable sets is denoted Fγ .

For such sets A we set PA = P up
A = P low

A .
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Theorem 6.14 (1) P up
A and P low

A are projectors for any A ⊂ X.

(2) Fγ is a σ-field containing Borel sets.

(3) Fγ 3 A 7→ PA ∈ Proj(V) is a projector valued measure with support 1.

(4) C(X) ⊂ L∞(X) and if f ∈ C(X), then γ(f) =
∫
f(x)dP (x).

One can construct the spectral integral directly from γ as follows.
We define the upper integral as follows. If f is a lower semicontinuous function on X, we set∫ up

f(x)dP (x) := sup{γ(g) : g ∈ C(X), g ≤ f}.

If f is an arbitrary function, we set∫ up

f(x)dP (x) := inf
{∫ up

g(x)dP (x) : g is lower semicontinuous and f ≤ g

}
.

We define the lower integral as follows. If f is a upper semicontinuous function on X, we set∫ low

f(x)dP (x) := inf{γ(g) : g ∈ C(X), f ≤ g}.

If f is an arbitrary function, we set∫ low

f(x)dP (x) := sup

{∫ low

g(x)dP (x) : g is upper semicontinuous and g ≤ f

}
.

Theorem 6.15 A function f on X is Fγ-measurable iff∫ up

f(x)dP (x) =
∫ low

f(x)dP (x) (6.30)

and then (6.30) equals ∫
f(x)dP (x).

One can also construct the spectral integral using the Riesz-Markov for usual measures. For any
w ∈ V,

C(X) 3 f 7→ (w|γ(f)w)

is a positive functional on X. By the Riesz-Markov theorem it defines a unique Radon measure on X,
which we will call µw.

Theorem 6.16 If f is γ-measurable, then it is measurable for measure µw for any w ∈ V, and then,(
w
∣∣∣ ∫ f(x)dP (x) w

)
=
∫
f(x)dµw(x).
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6.8 Absolute continuous, singular continuous and point spectrum

Let (X,F) be a set with a σ-field and F 3 A 7→ P (A) ∈ Proj(V) a projection valued measure. Let I ⊂ F
be a σ-ring – an ideal in F . We say that P is I-singular if

P (A) = sup{P (B) : B ⊂ A, B ∈ I}, A ∈ F .

We say that P is I-continuous if
A ∈ I ⇒ P (A) = 0. (6.31)

Let
PIs := sup{P (N) : N ∈ I}, PIc := 1− PIc.

Then

F 3 A 7→ PIc(A) := PIcP (A),
F 3 A 7→ PIs(A) := PIsP (A)

are respectively I-continuous and I-singular PV measures.
In particular, let I0 be the σ-ring of countable sets. If I0 is contained in F , then it is clearly an ideal

in F . Then instead of saying I0-continuous, we say simply continuous and instead of PI0c we write Pc.
Instead of saying I0-singular, we say point and instead of PI0s we write Pp.

Theorem 6.17 Suppose that V is separable. Let A 7→ P (A) ∈ B(V) be a PV measure. Then there
exists a countable set I ⊂ X, such that Pp = PI .

Assume now that F is a Borel σ-field on a subset of R or C. Let I1 be the σ-ring of sets of the
Lebesgue measure zero. Clearly, I1 ∩ F is an ideal in F . (If needed, in what follows we replace I with
I1∩F). Then instead of saying I1-continuous, we say absolutely continuous and instead of PI1c we write
Pac. Then instead of saying I1-singular, we say singular and instead of PI1s we write Ps.

Clearly, we have Pac ≤ Pc. A measure that is both singular wrt I1 and continuous is called singular
continuous and we write Psc := (1− Pac)Ps. Thus we have the decompositions

1 = Pac + Psc + Pp, Ps = Psc + Pp, Pc = Pac + Psc.

Theorem 6.18 Suppose that V is separable. Let A 7→ P (A) ∈ B(V) be a PV measure. Then there
exists a set N ⊂ X of the Lebesgue measure zero and a countable set I ⊂ X such that Psc = PN and
Pp = PI .

If B is a normal operator, then we can define the corresponding PV measure A 7→ 1A(B), and
correspondingly we obtain the projections 1ac(A), 1sc(A), 1p(A). Note that 1p(A) is the projection onto
the closed span of eigenvectors of A. In this case one often introduces the absolutely continuous and
singular continuous spectrum of A:

spacA := sp
(
A
∣∣∣
Ran 1ac(A)

)
, spscA := sp

(
A
∣∣∣
Ran 1sc(A)

)
.

Note that we defined the point spectrum of A as the set of eigenvalues of A. Therefore,

(
sppA

)cl = sp
(
A
∣∣∣
Ran 1p(A)

)
. (6.32)

However, some authors prefer to use the right hand side of (6.32) as the definition of of sppA.
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6.9 L2 spaces

Let (X,F , µ) be a space with a measure. Let Y be a topological space and f : X → Y a Borel function.
We say that y ∈ Y belongs to the essential range of f , denoted y ∈ essRan f , iff for any neighborhood U
of y we have µ(f−1(U)) 6= 0. Note that if f : X → C is Borel, then ‖f‖∞ = sup{|f(x)| : x ∈ essRan f}.

Let f ∈ L∞(X). Then
L2(X) 3 h 7→ Tfh := fh ∈ L2(X)

is a bounded normal operator with spTf = essRan f and ‖Tf‖ = ‖f‖∞. The operator Tf is self-adjoint
iff essRan f ⊂ R.

Suppose that (fi : i ∈ I) is a family of functions in L∞(X). Clearly, the operators Tfi commute
with one another.

We can introduce the function

X 3 x 7→ (fi(x) : i ∈ I) ∈
∏
i∈I

C.

We have
sp(Tfi

: i ∈ I} = essRan (fi : i ∈ I).

6.10 Spectral theorem in terms of L2 spaces

Theorem 6.19 Let γ : C(X) → B(V) be a unital ∗-homomorphism. Then there exists a family of
Radon measures µi, i ∈ I on X and a unitary operator U : ⊕

i∈I
L2(X,µi) such that γ(f) = U ⊕

i∈I
TfU

∗.

Proof. Step 1. If v ∈ V, the cyclic subspace for v is defined as Vv := {Av : A ∈ γ(C(X))}cl. Note
that Vv is a closed linear subspace invariant wrt γ(C(X)) and V⊥v is also invariant wrt γ(C(X)).

We easily see that there exists a family of nonzero vectors {vi : i ∈ I} such that V = ⊕
i∈I

Vvi .

Step 2. By the Riesz-Markov Theorem there exists a Radon measure µi on X such that
∫
fdµi :=

(vi|γ(f)vi). The unitary operator U is defined by Uh :=
∑

i∈I γ(h)vi. 2

7 Discrete and essential spectrum

7.1 Discrete and essential spectrum

Let X be a Banach space and A ∈ B(X ). We say that e ∈ spA belongs to the discrete spectrum of A if
it is an isolated point of spA and dim 1{e}(A) < ∞. The discrete spectrum is denoted by spd(A). The
essential spectrum is defined as

spessA := spA\spdA.

Assume now that H is a Hilbert space and A is an operator on H. Then

Theorem 7.1 Let A be self-adjoint and λ ∈ spA. Then
(1) λ ∈ spdA iff there exists ε > 0 such that dim 1[λ−ε,λ+ε](A) <∞.
(2) λ ∈ spess(A) iff for every ε > 0 we have dim 1[λ−ε,λ+ε](A) = ∞.

Theorem 7.2 Let A be normal and λ ∈ spA. Then
(1) λ ∈ spdA iff there exists ε > 0 such that dim 1B(λ,ε)(A) <∞.
(2) λ ∈ spess(A) iff for every ε > 0 we have dim 1B(λ,ε)(A) = ∞.

Remark 7.3 If A is a closed operator, then the definitions of discrete and essential spectrum remain
unchanged, as well Theorems 7.1 and 7.2.
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7.2 The mini-max and max-min principle

Let A be a bounded self-adjoint operator on a Hilbert space V. We define for n = 1, 2, . . .

µn(A) := inf{sup{(v|Av) : ‖v‖ = 1, v ∈ L} : L is an n-dim. subspace of V}.

Σ(A) := inf spess(A).

Theorem 7.4 Write µn, Σ for µn(A), Σ(A).
(1) (µn) is an increasing sequence.

(2) lim
n→∞

µn = Σ

(3) Let a ∈ R. Then
a ≤ µ1 ⇔ 1]−∞,a[(A) = 0;

µn < a ≤ µn+1 ⇔ 1]−∞,a[(A) = n;

Σ < a ⇔ 1]−∞,a[(A) = ∞.

Proof. For any (n + 1)-dimensional space L there exists an n-dimensional space L′ contained in L.
Clearly,

sup{(v|Av) : ‖v‖ = 1, v ∈ L′} ≤ sup{(v|Av) : ‖v‖ = 1, v ∈ L}.

Therefore, µn ≤ µn+1.
Let La := Ran 1]−∞,a[(A) be n-dimensional.
For some a0 < a, La = Ran 1]−∞,a0](A). Now

sup{(v|Av) : ‖v‖ = 1, v ∈ La} ≤ a0 < a.

Thus µn < a.
If L is (n + 1)-dimensional, then L ∩ L⊥a 6= {0}. Thus we can find normalized v ∈ L ∩ L⊥a . Now

v ∈ Ran 1[a,∞[(A), hence (v|Av) ≥ a. Thus

sup{(v|Av) : ‖v‖ = 1, v ∈ L} ≥ a.

Hence, a ≤ µn+1. 2

Theorem 7.5 (The Reyleigh-Ritz method) Let W be a linear subspace. Set AK := PWAPW
∣∣
W ,

where PW denotes the projector onto W. Then AW is a bounded self-adjoint operator and

µn(A) ≤ µn(AW).

Theorem 7.6 (1) Let A ≤ B. Then µn(A) ≤ µn(B).

(2) |µn(A)− µn(B)| ≤ ‖A−B‖.

Remark 7.7 The theorems of this subsection remain true if the operators are only bounded from below
(but not necessarily bounded). In this case, if v does not belong to the form domain of A, then we set
(v|Av) = ∞.

Notice also that if D is an essential domain for the quadratic form generated by A, then

µn(A) := inf{sup{(v|Av) : ‖v‖ = 1, v ∈ L ∩ D} : L is an n-dim. subspace of V}.

50



7.3 Singular values of an operator

Let A be a bounded operator on a Hilbert space V. We define for n = 1, 2, . . .

sn(A) := sup{inf{(‖Av‖ : ‖v‖ = 1, v ∈ L} : L n-dim. subspace of V}.

Clearly, for |A| := (A∗A)1/2,
sn(A) = sn(|A|) = −µn(−|A|),

and s1(A) = ‖A‖.

8 Compact operators

8.1 Finite rank operators

This subsection can be viewed as an elementary introduction to compact operators.

Definition 8.1 An operator K ∈ B(X ,Y) is called a finite rank operator iff dim RanK <∞.

Theorem 8.2 Let K ∈ B(X ,Y) be a finite rank operator. Then

dim RanK = dimX/KerK.

Proof. Let y1, . . . , yn be a basis in RanK. We can find x1, . . . , xn ∈ X such that Kxi = yi. Then
Span{x1, . . . , xn} ∩ KerK = {0}. Assume that z ∈ X. Then Kz =

∑
ciyi. Thus z −

∑
cixi ∈ KerK.

Hence z ∈ Span{x1, . . . , xn}+ KerK. 2

Theorem 8.3 Let K ∈ B(X ) be a finite rank operator. Then spK = sppK. Moreover, spessK = ∅ if
dimX <∞, otherwise spessK = {0}.

Proof. Using the fact that dimX/KerK is finite, we can find a finite dimensional subspace Z such that
X = KerK⊕Z. Z1 := Z+RanK is also finite dimensional. We have KZ1 ⊂ Z1. We can find a subspace
Z2 such that Z1 ⊕Z2 = X . Obviously, Z2 ⊂ KerK. 2

8.2 Compact operators on Banach spaces I

Let X , Y be Banach spaces.

Definition 8.4 K ∈ B(X ,Y) is called a compact operator iff for any bounded sequence x1, x2, . . . ∈ X
we can find a convergent subsequence from the sequence Kx1,Kx2, . . . ∈ Y.

Equivalent definition: if (X )1 denotes the unit ball in X , then (K(X )1)
cl is a compact set. The set of

compact operators from X to Y will be denoted B∞(X ,Y).

Theorem 8.5 (1) Let K be a compact operator. Let (xi)i∈I be a bounded net weakly convergent to x.
Then lim

i∈I
Kxi = Kx. (K is weak-norm continuous on the unit ball).

(2) Let K be a compact operator. Let (xn) be a sequence weakly convergent to x. Then lim
n→∞

Kxn = Kx.

(3) If A is bounded, K is compact, then AK and KA are compact.

(4) If Kn are compact and limn→∞Kn = K, then K is compact.

(5) If K is finite rank, then K is compact.
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Proof. (1) Let (xi)i∈I be a bounded net weakly convergent to x. Then w− limi∈I Kxi = Kx (because
K is bounded). Hence, if Kxi is convergent in norm, its only limit can be Kx.

Suppose that Kxi is not convergent. Then there exists a subnet xij
such that ‖Kxij

−Kx‖ > ε > 0.
By compactness, we can choose a subsubnet xijm

such that Kxijm
is convergent. But it can be convergent

only to Kx, which is impossible.
(3) is obvious, if we note that A maps a ball into a ball and a convergent sequence onto a convergent

sequence.
(4) Let x1, x2, . . . be a bounded sequence so that ‖xn‖ ≤ C. Below we will construct a double sequence

xn,k such that, for any n, xn+1,1, xn+1,2, . . . is a subsequence of xn,1, xn,2, . . . and

‖Kxn,m −Kxn,k‖ < (min(m, k, n))−1.

Eventually, the sequence xn,n is a subsequence of xn such that Kxn,n satisfies the Cauchy condition.
Suppose that we have constructed xn,m up to the index n. We can find N such that ‖K −KN‖ <
1

3C(n+1) . We put xn+1,m = xn,m for m = 1, . . . n. For m > n, we choose xn+1,m as the subsequence of
xn,m such that ‖KNxn+1,m −KNxn+1,k‖ < 1

3(n+1) for k,m > n. Then for m > n

‖Kxn+1,m −Kxn+1,k‖ ≤ ‖Kxn+1,m −KNxn+1,m‖+ ‖KNxn+1,m −KNxn+1,k‖

+‖KNxn+1,k −Kxn+1,k‖ ≤ 2C
C3(n+1) + 1

3(n+1) = (n+ 1)−1.

(5) follows by the compactness of the ball in a finite dimensional space RanK. 2

Note that B∞(X) is a closed ideal of B(X ).

8.3 Compact operators on Banach spaces II

In this subsection we prove some properties of compact operators on Banach spaces. They will be proved
again in the context of Hilbert spaces, so the reader interested only in Hilbert spaces can omit this
subsection.

Theorem 8.6 (Schauder) If K is compact, then K# is compact.

Let K ∈ B(X ,Y) be compact. We treat (Y#)1 (the unit ball in Y#) as a family of continuous
functions on X . It is equicontinuous on Y and bounded on (Y)1. Therefore, (Y#)1 is equicontinuous and
bounded on the compact metric space (K(X )1)

cl (where (X )1 is the unit ball in X ). Hence, by the Ascoli
Theorem, from every sequence vn ∈ (Y#)1 we can choose a subsequence vnk

uniformly convergent on
(K(X )1)

cl. Hence 〈K#vnk
, x〉 converges uniformly for x ∈ (X )1. Therefore, K#vnk

is norm convergent
in X#. 2

Theorem 8.7 (Riesz-Schauder) Let K be a compact operator. Then spessK = {0} if the space is
infinite dimensional and spessK = ∅ otherwise.

Lemma 8.8 spp(K)\{0} is a discrete set.

Proof. Let λn ∈ spp(K), n = 1, 2, . . ., λn → λ 6= 0, xn ∈ X , Kxn = λnxn. Let Mn = Span{x1, . . . , xn}.
Notice that Mn is a strictly increasing sequence of subspaces invariant for K. We can find a sequence of
vectors v1, v2, . . . such that vn ∈Mn, dist(vn,Mn−1) ≥ 1

2 and ‖vn‖ = 1. For m < n write

λ−1
n Kvn − λ−1

m Kvm = vn −
(
λ−1

m Kvm − λ−1
n (K − λn)vn

)
. (8.33)

We have Kvn ∈ Mm ⊂ Mn−1 and (K − λn)vn ∈ Mn−1. Hence the second term on the right of (8.33)
has the norm ≥ 1

2 . Thus λ−1
n Kvn does not contain a Cauchy subsequence. But it is a bounded sequence.

Hence K is not compact. 2
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Lemma 8.9 If z 6∈ sppK\{0}, then there exists c > 0 such that

‖(z −K)x‖ ≥ c‖x‖.

Proof. Let the sequence xn satisfy ‖xn‖ = 1, (z−K)xn → 0. Passing to a subsequence, we can suppose
that Kxn → y. Then zxn → y. We have 2 possibilities:

1) y 6= 0. Then Ky = zy. But this contradicts the assumption z 6∈ sppK.
2) y = 0. Then xn → 0, which contradicts ‖xn‖ = 1. 2

Lemma 8.10 spK = sppK ∪ sppK
# ∪ {0}.

Proof. Let z 6∈ sppK ∪ sppK
# ∪ {0}. Using Lemma 8.9 and the compactness of K#, we obtain

Ker(z −K) = Ker(z −K#) = {0}.

Hence (Ran (z−K))cl = (Ker(z−K#))an = X . Lemma 8.9 implies also that Ran (z−K) is closed, hence
Ran (z −K) = X . By Lemma 8.9, (z −K) has a bounded inverse. 2

Proof of Theorem 8.7 Let λ ∈ spK\{0}. Then λ is an isolated point of spK. Let γ be a closed curve
around λ that does not encircle 0. Then

1{λ}(K) = (2πi)−1
∫
γ

(z −K)−1dz = (2πi)−1
∫
γ

(
(z −K)−1 − z−1

)
dz

= (2πi)−1
∫
γ

(z −K)−1Kz−1dz

is compact. But a projection is compact iff it is finite dimensional. 2

8.4 Compact operators in a Hilbert space

Theorem 8.11 Let X , Y be Hilbert spaces and K ∈ B(X ,Y). TFAE:
(1) K is compact (i.e. (K(X )1)cl is compact).

(2) K maps bounded weakly convergent nets onto norm convergent sequences (K is weak-norm contin-
uous on the unit ball).

(3) K(X )1 is compact.

(4) Let (xn) be a sequence weakly convergent to x. Then lim
n→∞

Kxn = Kx.

(5) If |K| := (K∗K)1/2, then spess|K| ⊂ {0}.
(6) There exist orthonormal systems x1, x2, . . . ∈ X and y1, y2, . . . ∈ Y and a sequence of positive

numbers k1, k2, . . . convergent to zero such that

K =
∞∑

n=1

kn|yn)(xn|.

(7) There exists a sequence of finite rank operators Kn such that Kn → K.
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Proof. (1)⇒(2), by Theorem 8.5, is true even in Banach spaces.
(2)⇒(3). In a Hilbert space (X )1 is weakly compact. The image of a compact set under a continuous

map is compact.
(3)⇒(1) is obvious.
(2)⇒(4) is obvious.
(4)⇒(5). Suppose (5) is not true. This means that for some ε > 0, Ran 1[ε,∞[(|K|) is infinite

dimensional. Let x1, x2, . . . be an infinite orthonormal system in Ran 1[ε,∞[(A). Then xn goes weakly to
zero, but ‖Kxn‖ ≥ ε.

(5)⇒(6). Let x1, x2, . . . be an orthonormal system of eigenvectors of |K| with eigenvalues kn. Then
set yn := k−1

n Kxn.
(6)⇒(7). It suffices to set Kε := K1[ε,∞[(|K|). Then

‖K −Kε‖ = ‖|K|1[0,ε](|K|)‖ ≤ ε.

(7)⇒(1), by Theorem 8.5, is true for Banach spaces. 2

(1)⇒(6) is sometimes called the Hilbert-Schmidt Theorem.

Corollary 8.12 (Schauder) Let X , Y be Hilbert spaces and K ∈ B∞(X ,Y). Then K∗ ∈ B∞(Y,X ).

Proof. It follows immediately from Theorem 8.11 (7).

8.5 The Fredholm alternative

Theorem 8.13 (Analytic Fredholm Theorem) Let V be a Hilbert space, Ω ⊂ C is open and con-
nected. Let Ω 3 z 7→ A(z) ∈ B∞(V) be an analytic function. Let S := {z ∈ Ω : 1−A(z) is not invertible }
Then either
(1) S = Ω, or

(2) S is discrete in Ω. Moreover, for z ∈ S, Ker(1 − A(z)) 6= {0} and the coefficients at the negative
powers of the Laurent expansion of (1−A(z))−1 are of finite rank. In particular, the residuum is of
finite rank.

Proof. Let z0 ∈ Ω. We can find a finite rank operator F with ‖A(z0) − F‖ < 1/2. Let ε > 0 with
‖A(z)−A(z0)‖ < 1/2 for |z − z0| < ε. Thus ‖A(z0)− F‖ < 1 for |z − z0| < 1.

Set G(z) := F (1 + F −A(z))−1. We have

(1−G(z))(1 + F −A(z)) = 1−A(z).

Thus 1−A(z) is invertible iff 1−G(z) is invertible and Ker(1−A(z)) = {0} iff Ker(1−G(z)) = {0}.
Let P be the projector onto RanF . Set

G0(z) := G(z)P = PG(z)P,

G1(z) := G(z)(1− P ) = PG(z)(1− P ).

Then
1−G(z) = 1−G0(z)−G1(z) = (1−G1(z))(1−G0(z)),

and (1−G1(z))−1 = 1 +G1(z). Hence, 1−G(z) is invertible iff 1−G0(z) is and Ker(1−G(z)) = {0} iff
Ker(1−G0(z)) = {0}. Since G0(z) is an analytic function in a fixed finite dimensional space, 1−G0(z)
is invertible iff det(1−G0(z)) 6= 0 iff Ker(1−G0(z)) = {0}. Thus S = {z ∈ Ω : det(1−G0(z)) 6= 0}.

Now we have
(1−A(z))−1 = (1 + F −A(z))−1(1−G0(z))−1(1 +G0(z)).
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The first and third factor on the rhs are analytic in the neighborhood of z0. Suppose that the middle
term has a singularity at z0. Then it is a pole of the order at most dim RanF and all the coefficients at
the negative powers of its Laurent expansion are finite rank. 2

Corollary 8.14 (Riesz-Schauder) Let K be a compact operator on a Hilbert space. Then spessK = {0}
if the space is infinite dimensional and spessK = ∅ otherwise.

Proof. We apply the Analytic Fredholm Theorem to 1− z−1K. 2

8.6 Positive trace class operators

Let {vi}i∈I be an orthonormal basis of a Hilbert space V. Let A ∈ B(V) and A ≥ 0. Define

TrA :=
∑
i∈I

(vi|Avi). (8.34)

Theorem 8.15 (8.34) does not depend on the basis.

Proof. First note that if Aα ∈ B(V) is an increasing net, then∑
i∈I

(vi|Avi) = sup
α

∑
i∈I

(vi|Aαvi). (8.35)

Let {vi : i ∈ I} and {wj : j ∈ J} are orthonormal bases. Assume that c <
∑
i∈I

(vi|Avi). By (8.35),

we can find a finite subset J0 ⊂ J such that if P0 is the projection onto Span{wj : j ∈ J0}, then

c ≤
∑
i∈I

(vi|P0AP0vi).

Now ∑
i∈I

(vi|P0AP0vi) =
∑
i∈I

∑
j,k∈J0

(vi|wj)(wj |Awk)(wk|vi)

=
∑

j∈J0

(wj |Awj) ≤
∑
j∈J

(wj |Awj).
(8.36)

Above we used the fact that for any j, k∑
i∈I

|(vi|wj)(wj |Awk)(wk|vi)| ≤ ‖A‖,

which together with the finiteness of J0 imples that the second sum in (8.36) is absolutely convergent,
and also ∑

i∈I

(vi|wj)(wk|vi) = δj,k.

This shows ∑
i∈I

(vi|Avi) ≤
∑
j∈J

(wj |Awj).

Of course, we can reverse the argument. 2

We will write B1
+(V) for the set of A ∈ B+(V) such that TrA <∞.

Theorem 8.16 (1) If A,B ∈ B+(V), then Tr(A+B) = TrA+TrB. If λ ∈ [0,∞[, then TrλA = λTrA,
where 0∞ = 0.
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(2) Let B ∈ B(V,W). Then TrB∗B = TrBB∗.

(3) If A ∈ B1
+(V), and B ∈ B(W,V). Then B∗AB ∈ B1

+(W) and TrB∗AB ≤ ‖B‖2TrA.

(4) If A ∈ B1
+(V), then A is compact.

(5) Let (Ai i ∈ I) be an increasing net in B+(V) and A = lubAi. Then

TrA = sup{TrAi : i ∈ I}.

(6) TrA =
∑∞

n=1 sn(A).

Proof. (2) Let (vi) and (wj) be bases of V and W. Then

TrB∗B =
∑

i

∑
j(v|B∗wj)(wj |Bvi)

=
∑

j

∑
i(wj |Bvi)(vi|B∗wj) = TrBB∗,

where all the terms in the sum are positive, which justifies the exchange of the order of summation.
(3) By (2), we have TrB∗AB = TrA1/2BB∗A1/2. Besides A1/2BB∗A1/2 ≤ ‖B‖2A.
(4) If A has continuous spectrum, then there exists an infinite dimensional projector P and ε > 0

such that A ≥ εP . Then TrA ≥ εTrP = ∞.
Hence A has just point spectrum. We have TrA =

∑
i∈I

ai, where ai are eigenvalues of A (counting

their multiplicities). 2

8.7 Hilbert-Schmidt operators

For A ∈ B(V,W) set
‖A‖2 := (TrA∗A)

1
2 = (TrAA∗)

1
2 .

B2(V,W) denotes the set of operators with a finite norm ‖A‖2. Clearly,

‖A‖2 =

( ∞∑
n=1

sn(A)2
)1/2

.

If (vi)i∈I and (wj)j∈J are bases in V and W, then

‖A‖2 =
∑
i∈I

∑
j∈J

|(wj |Avi)|2. (8.37)

B2(V,W) is equipped with the scalar product

(A|B)2 =
∑
i∈I

∑
j∈J

(wj |Avi)(wj |Bvi), (8.38)

where we used (vi)i∈I and (wj)j∈J orthonormal bases in V and W.

Proposition 8.17 (8.38) is finite and does not depend on a choice of bases.

Proof. Clearly, (8.37) is the norm for (8.38). Hence the finiteness of(8.38) follows by the Schwarz
inequality. |(A|B)2| ≤ ‖A‖2‖B‖2.

Next note that
‖(A+ ikB)v‖2 ≤ 2‖Av‖2 + 2‖Bv‖2.
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Therefore,
‖(A+ ikB)‖22 ≤ ‖A‖22 + ‖B‖22 + .

Hence if A, B are Hilbert-Schmidt, then so are A+ ikB. Then we note that (8.38) equals

(A|B)2 :=
3∑

k=0

ik

4
Tr(A+ ikB)∗(A+ ikB), (8.39)

which is basis independent.

Remark 8.18 In the next subsection we extend the notion of trace and (8.39) will be written simply as
TrA∗B.

Theorem 8.19 (1) If A ∈ B2(V,W), then A is compact.

(2) B2(V,W) is a Hilbert space.

(3) If {vi}i∈I is a basis in V and {wj}j∈J is a basis in W, then |wj)(vi| is a basis in B2(V,W).

(4) B2(V,W) 3 A 7→ A∗ ∈ B2(W,V) is a unitary map.

(5) If A ∈ B2(V,W) and B ∈ B(W,X ), then BA ∈ B2(V,X ).

(6) If (X,µ) and (Y, ν) are spaces with measurs and V = B2(X,µ), W = B2(Y, ν), then every operator
A ∈ B2(H,K) has the integral kernel A(·, ·) ∈ B2(Y ×X, ν ⊗ µ), ie.

(w|Av) =
∫ ∫

w(y)A(y, x)v(x)dµ(y)dµ(x)

The transformation B2(V,W) 3 A 7→ A(·, ·) ∈ B2(Y ×X, ν ⊗ µ) that to an operator associates its
integral kernel is unitary.

Proof. (1) The operator A∗A is trace class, hence is compact. We can represent A∗A as

A∗A =
∞∑

j=1

bj |vj)(vj |,

with bj → 0.
If we set wj := Avj , then

A =
∞∑

j=1

aj |wj)(vj |,

with |aj |2 = bj . Hence, aj → 0.
Let us show (2) and (3). Set Eji := |wj)(vi|. We first check that it is an orthonormal system. If

A ∈ B2(V,W) is orthogonal to all Eji, then all its matrix elements are zero. Hence A = 0.
Then we check that if aji belongs to L2(J × I), then

∑
j∈J, i∈I ajiEji is the integral kernel of an

operator in B2(V,W). Hence, B2(V,W) is isomorphic to L2(J × I). Hence it is a Hilbert space and
{Eij : i ∈ I, j ∈ J} is its orthonormal basis. This proves (2) and (3), 2

Theorem 8.20 Suppose that f, g ∈ L∞(Rd) converge to zero at infinity. Then the operator g(D)f(x)
is compact.
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Proof. Let

fn(x) :=
{
f(x), |x| < n
0 |x| ≥ n,

gn(ξ) :=
{
g(ξ), |ξ| < n
0 |ξ| ≥ n,

g(D)f(x) = F∗g(x)Ff(x).

‖g(x)Ff(x)− gn(x)Ffn(x)‖ ≤ ‖(g(x)− gn(x))Ff(x)‖

+‖gn(x)F(f(x)− fn(x)‖ → 0.

It suffices to show the compactness of gn(x)Ffn(x). But its integral kernel equals

(2π)−
1
2 dgn(x)e−ixyfn(y),

which is square integrable . 2

8.8 Trace class operators

Lemma 8.21 Let A+, A
′
+ ∈ B1

+(V), A−, A′− ∈ B+(V) satisfy A+ −A− = A′+ −A′−. Then

TrA+ − TrA− = TrA′+ − TrA′−.

Proof. Clearly, A+ +A′− = A− +A′+ ∈ B+(V). Thus

TrA+ + TrA′− = Tr(A+ +A′−) = Tr(A− +A′+) = TrA− + TrA′+.

2

By Lemma 8.21, we can uniquely extend the definition of trace as a function with values in [−∞,∞]
to operators in Bsa(V) that admit a decomposition A = A+ − A−, where A+, A− ∈ B+(V) and either
B+ or B− belongs to B1

+(V), by setting

Tr(A+ −A−) := TrA+ − TrA−.

We define B1(V) := SpanB1
+(V). Clearly, B+(V) ∩B1(V) = B1

+(V).
Obviously, Tr is well defined and finite on B1(V).

Theorem 8.22 Let A ∈ B1(V). Then for any orthonormal basis (vi) in V,

TrA =
∑
i∈I

(vi|Avi), (8.40)

where the above series is absolutely convergent.

Proof. Let A = A+ − A−, where A+, A− ∈ B1
+(V). Then for any orthonormal basis

∑
i∈I(vi|A±vi)

is finite, hence absolutely convergent. Thus (8.40) is the sum of two absolutely convergent series, and
hence, absolutely convergent. 2

Theorem 8.23 B,C ∈ B2(V,W) implies B∗C ∈ B1(V) and (B|C)2 = TrB∗C = TrCB∗.
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Proof. We know that B + i−kC ∈ B2(V,W). Hence B∗C ∈ B1(V) follows immediately from (8.39).
(B|C)2 = TrB∗C = TrCB∗ also follows from (8.39).

Theorem 8.24 If A ∈ B1(V) and B ∈ B(V), then AB,BA ∈ B1(V) and

TrAB = TrBA.

Proof. It suffices to assume that A ∈ B1
+(V). A1/2 and BA1/2 belong to B2(V). Hence, using Theorem

8.23, we obtain

TrBA = Tr(BA1/2)A1/2 = TrA1/2(BA1/2)

= Tr(A1/2B)A1/2 = TrA1/2(A1/2B) = TrAB.

2

Theorem 8.25 TFAE
(1) A ∈ B1(V).

(2) |A| ∈ B1
+(V).

(3) There exist B,C ∈ B2(V,W) such that A = B∗C.

(4)
∞∑

n=1
sn(A) <∞.

(5) For any orthonormal basis (vi) in V, ∑
i∈I

|(vi|Avi)| <∞.

Proof. Let A = U |A| be the polar decomposition of A.
(1)⇒(2). Let A ∈ B1(V). Then U∗A = |A| ∈ B1(V). Since |A| ∈ B+(V), this also means that

A ∈ B1
+(V).

(1)⇐(2). Let A ∈ B(V) with A ∈ B1(V). Then A = U |A| shows that A ∈ B1(V).
(2)⇒(3). A = U |A|1/2|A|1/2 with U |A|1/2, |A|1/2 ∈ B2(V).
(2)⇐(3) is Theorem 8.23.
(1)⇒(5). Write A = A1 +iA1−A3− iA4, with Ai ∈ B1(V). We have

∑
(vi|Akvi) <∞. Thus (vi|Avi)

is a linear combination of 4 absolutely convergent series.
(1)⇐(5). First assume that A is self-adjoint. Then A = A+ − A− with A+A− = A−A+ = 0

and A+, A− ∈ B+(V). We have the decomposition V = Ran 1]−∞,0[A) ⊕ KerA ⊕ Ran 1]0,∞[A). Let
(v−1 , v

−
2 , . . . , v

0
1 , v

0
2 , . . . , v

+
1 , v

+
2 , . . .) be a basis that respects this decomposition. Then we compute that

∞ >
∑

ε=−,0,+

∑
i

|(vε
i |Avε

i )| = TrA+ + TrA−.

Thus A+, A− ∈ B1
+(V). Hence A ∈ B1(V).

If A is not necessarily self-adjoint, then consider ReA := 1
2 (A+A∗), A := 1

i2 (A−A∗). Then∑
|(vi|ReAvi)|+

∑
|(vi|ImAvi)| ≤ 2

∑
|(vi|Avi)| <∞

Thus (5) is satisfied for ReA, ImA, and hence ReA, ImA ∈ B1(V). But A = ReA+ iImA. 2

For A ∈ B1(V) we set

‖A‖1 := Tr|A| =
∞∑

n=1

sn(A).
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Theorem 8.26 (1) If A ∈ B1(V), B ∈ B(V), then

‖AB‖1 ≤ ‖A‖1‖B‖, ‖BA‖1 ≤ ‖A‖1‖B‖.

(2) B1(V) is a Banach algebra.

Proof. (1) LetBA = W |BA| be the polar decomposition ofBA andA = U |A| be the polar decomposition
of A. Note that BU |A|1/2 ∈ B2(V). Thus

Tr|BA| = TrW ∗BU |A|1/2|A|1/2| ≤ ‖W ∗BU |A|1/2‖2‖|A|1/2‖2.

Now
‖|A|1/2‖2 = (Tr|A|)1/2,

‖W ∗BU |A|1/2‖2 ≤ ‖W ∗BU‖‖|A|1/2‖2 ≤ ‖B‖(Tr|A|)1/2.

(2) Let us prove the subadditivity. Let A,B ∈ B1(V) and A+B = W |A+B| be the polar decompo-
sition of A+B. Then, using |A+B| = W ∗(A+B),

‖A+B‖1 = TrW ∗(A+B)

≤ |TrW ∗A|+ TrW ∗B| ≤ ‖W ∗‖Tr|A|+ ‖W ∗‖Tr|B| = Tr|A|+ Tr|B|.

Thus B1(V) is a normed space.
Using ‖A‖ ≤ ‖A‖1 we see, that (1) implies

‖AB‖1 ≤ ‖A‖1‖B‖1.

Thus B1(V) is a normed algebra.
Let An be a Cauchy sequence in the ‖ · ‖1 norm. Then it is also Cauchy in the ‖ · ‖ norm. Thus there

exists lim
n→∞

An =: A ∈ B(V). Let A−An = Un|A−An| be the polar decomposition of A−An. Let P be

a finite projection. Clearly, for fixed n, ‖Am − An‖1 is a Cauchy sequence and thus lim
m→∞

‖Am − An‖1
exists.

‖P |A−An|P‖1 = TrPU∗(A−An)P

= lim
m→∞

TrPU∗(Am −An)P ≤ lim
m→∞

‖Am −An‖1.

Since P was arbitrary,
‖A−An‖1 ≤ lim

m→∞
‖Am −An‖1 → 0.

Hence B1(V) is complete. 2

Theorem 8.27 Let x1, x2, . . . and y1, y2, . . . be sequences of vectors with
∞∑

n=1
‖xn‖2 < ∞,

∞∑
n=1

‖yn‖2 <

∞. Then
∞∑

n=1
|yn)(xn| is trace class.

Proof. Let e1, e2, . . . be an orthonormal system. Define A :=
∞∑

n=1
|xn)(en|, B :=

∞∑
n=1

|yn)(en|. Then

TrA∗A =
∑
‖xn‖2 and TrB∗B =

∑
‖yn‖2. Hence A,B are Hilbert-Schmidt. But C = BA∗. 2

60



8.9 Duality in operator spaces

Let V be a Hilbert space.

Theorem 8.28 For B ∈ B1(V) define ρ(B) ∈ B∞(V)# by

〈ρ(B)|A〉 := TrBA.

Then ρ : B1(V) → B∞(V)# is an isometric isomorphism.

Proof. It suffices to prove that ρ is onto. Let ψ ∈ B∞(V)#. Then ψ ∈ B2(V)#. Therefore, there exists
B ∈ B2(V) such that

ψ(A) = TrB∗A.

For any finite projection P and if A = U |A| is the polar decompoition of A, then

TrP |B|P = Tr|B|P = TrB∗UP = ψ(UP ) ≤ ‖ψ‖.

Hence Tr|B| ≤ ‖ψ‖. Thus B ∈ B1(V) and ψ = ρ(B∗). 2

Theorem 8.29 For A ∈ B(V) define π(A) ∈ B1(V)# by

π(A)|B〉 := TrAB, B ∈ B1(V).

Then π : B(V) → B1(V)# is an isometric isomorphism.

Proof. It suffices to prove that π is onto. Let φ ∈ B1(V)#. We define the sequilinear form

V × V 3 (w, v) 7→ φ
(
|v|(w|

)
∈ C.

Clearly, ‖|v)(w|‖1 = ‖v‖‖w‖. Thus the boundedness of φ means that∣∣φ(|v)(w|)∣∣ ≤ ‖ψ‖‖v‖‖w‖.

Hence, there exists a unique A ∈ B(V) such that

φ(|v)(w|) = (w|Av),

and φ = π(A). 2

8.10 Fredholm operators

Let V,W be Hilbert spaces.

Theorem 8.30 Let T ∈ B(V,W). TFAE:
(1) There exists a unique S ∈ B(W,V) such that TS = 1− P , where P is the projection on KerT ∗ and

dimP <∞.

(2) There exists S ∈ B(W,V) such that TS − 1 ∈ B∞(W).

(3) The image of T in B(V,W)/B∞(V,W) is right invertible.

(4) TV is closed and dim(TV)⊥ <∞.

If the above conditions are satisfied, then we say that T is right Fredholm. We say that T is left
Fredholm iff T ∗ is right Fredholm. We say that T is Fredholm iff it is left and right Fredholm.
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Theorem 8.31 T is Fredholm iff (TT ∗)1/2 is Fredholm.

If T is Fredholm, we define
indexT := dimT − dimT ∗ ∈ Z.

Theorem 8.32 (1) The set of Fredholm operators is open in B(V,W).

(2) Fredholm operators of a given index for a connected component of B(V,W).

(3) If T is Fredholm and K is compact, then T +K is Fredholm and index(T +K) = indexT .

(4) If T is Fredholm, then so is T ∗, and indexT ∗ = −indexT .

(5) If T, S are Fredholm, then so is TS, and indexTS = indexT + indexS.

Recall that B∞(V) is a closed ideal of B(V). Thus B(V)/B∞(V) is a C∗-algebra. and we have
the canonical ∗-homomorphism φ : B(V) → B(V)/B∞(V). It is called the Calkin algebra. Note that
Fredholm operators are mapped by φ onto the group of invertible operators in the Calkin algebra and
the index is a homomorphism of this group onto Z.
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