Operators on $L^2(\mathbb{R}^d)$

Jan Dereziński Department of Mathematical Methods in Physics Warsaw University Hoża 74, 00-682, Warszawa, Poland

Lecture notes, version of Jan. 2007

January 30, 2007

Contents

1	Convolutions					
	1.1	Introduction to convolutions	2			
	1.2	Modulus of continuity	2			
	1.3	The special case of the Young inequality with $\frac{1}{p} + \frac{1}{q} = 1$	3			
	1.4	Convolution by an L^1 function $\ldots \ldots \ldots$	3			
	$1.1 \\ 1.5$	The Young inequality	4			
2						
	2.1	Fourier transformation on $L^1 \cup L^2(\mathbb{R}^d)$	5			
	$\frac{2.1}{2.2}$	Tempered distributions on \mathbb{R}^d	5 7			
		•				
	2.3	Spaces of sequences	9			
	2.4	The oscillator representation of $\mathcal{S}(X)$ and $\mathcal{S}'(X)$	10			
	2.5	Convolution of distributions	12			
3	Sobolev inequalities and their consequences					
	3.1	The Hardy-Littlewood-Sobolev inequality	14			
	3.2	The Thomas-Fermi functional	15			
	3.3	Sobolev inequalities I	16			
	3.4	Sobolev inequalities II	17			
	3.5	Schrödinger operators	18			
			-			
4	Mo	mentum in one dimension	19			
	4.1	Momentum on the line	19			
	4.2	Sobolev spaces in one dimension	21			
	4.3	Momentum on the half-line	21			
	4.4	Momentum on an interval I	22			
	4.5	Momentum on an interval II	22			
	4.6	Momentum on an interval III	23			

5 Laplacian

5	Lap	placian	23
	5.1	Laplacian on the line	23
	5.2	Laplacian on the halfline I	24
	5.3	Laplacian on the halfline II	24
	5.4	Contact perturbations of the Laplacian as examples of an Aronszajn-Donoghue Hamiltonian	1 26
		5.4.1 Neumann Laplacian on a halfline	26
		5.4.2 Dirichlet Laplacian on a halfline	26
		5.4.3 Laplacian on $L^2(\mathbb{R}^d)$ with a delta potential $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	27
6	Ope	erators on a lattice	28
	6.1	Schrödinger operator on a lattice	28
	6.2	Harper's equation	29
	The	ese lecture notes are companions to "Bounded operators" and "Unbounded operators". We stu-	dy a

number of concrete and useful examples of bounded and unbounded operators.

1 Convolutions

Introduction to convolutions 1.1

In these notes X will denote the space \mathbb{R}^d equipped with the Lebesgue measure.

Let us recall two estimates, which we will often use, whose validity is not restricted to \mathbb{R}^d : The Hölder inequality Let $1 \le p, q \le \infty$, $\frac{1}{p} + \frac{1}{q} = 1$:

$$\int |f(x)g(x)| \mathrm{d}x \le \|f\|_p \|g\|_q$$

The generalized Minkowski inequality

$$\left(\int \mathrm{d}y \left| \int f(x,y) \mathrm{d}x \right|^p \right)^{\frac{1}{p}} \le \int \mathrm{d}x \left(\int |f|^p(x,y) \mathrm{d}y \right)^{\frac{1}{p}}$$

If g, h are functions on \mathbb{R}^d , then their convolution is formally defined by

$$g * h(x) := \int g(x-y)h(y) \mathrm{d}y,$$

provided this makes sense. In what follows we will give a number of conditions when the convolution is well defined.

1.2Modulus of continuity

Lemma 1.1 For $1 \le p < \infty$, $f \in L^p(X)$, set

$$\omega_{p,f}(y) := \left(\int |f(x+y) - f(x)|^p \mathrm{d}x\right)^{\frac{1}{p}};$$

and for $p = \infty$, $f \in C_{\infty}(\mathbb{R}^n)$

$$\omega_{\infty,f}(y) := \sup_{x} |f(x+y) - f(x)|.$$

Then $\omega_{p,f}(y)$ is bounded and

$$\lim_{y \to 0} \omega_{p,f}(y) = 0$$

Proof. The boundedness follows from the Minkowski inequality. In fact, $\omega_{p,f}(y) \leq 2||f||_p$.

The convergence to zero is obvious for $f \in C_{c}(\mathbb{R}^{n})$. But C_{c} is dense in L^{p} for $1 \leq p < \infty$ and in C_{∞} .

1.3 The special case of the Young inequality with $\frac{1}{p} + \frac{1}{q} = 1$

Theorem 1.2 Let $1 < p, q < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, $f \in L^p$, $g \in L^q$. Then

$$f * g \in C_{\infty}.$$

If $f \in L^1$, $g \in L^{\infty}$, then f * g is uniformly continuous.

Proof. By the Hölder inequality, f * g(x) is defined for all x and depends continuously on $f \in L^p(X)$ and $g \in L^q(X)$. Moreover,

$$f * g(x_1) - f * g(x_2)$$

= $\int (f(x_1 - y) - f(x_2 - y))g(y)dy$
 $\leq (\int |f(x_1 - y) - f(x_2 - y)|^p dy)^{\frac{1}{p}} ||g||_q$
= $\omega_{p,f}(x_1 - x_2)||g||_q.$

Hence f * g is uniformly continuous.

For $f \in C_{c}(X)$ obviously $f * g \in C_{c}(X)$. If $p, q < \infty$, then $C_{c}(X)$ is dense in $L^{p}(X)$, $L^{q}(X)$. Hence for such p, q, f * g belongs to the closure of $C_{c}(X)$ in $L^{\infty}(X)$, which is $C_{\infty}(X)$. \Box

1.4 Convolution by an L^1 function

Theorem 1.3 Let $g \in L^p(X)$ and $h \in L^1(X)$. Then g * h is well defined almost everywhewere and

$$||g * h||_p \le ||h||_1 ||g||_p.$$

Proof. In the generalized Minkowski inequality set $X = Y = \mathbb{R}^n$ and f(x, y) = h(y)g(x - y). \Box

Theorem 1.4 Let $\phi \in L^1(\mathbb{R}^n)$ and $\int \phi(x) dx = 1$. Set

$$\phi_{\epsilon}(x) := \epsilon^{-n} \phi(\epsilon^{-1}x), \ \epsilon > 0$$

Then

$$\lim_{\epsilon \to 0} \|f * \phi_{\epsilon} - f\|_{p} = 0, \quad f \in L^{p}(\mathbb{R}^{n}), \quad 1 \le p < \infty,$$
$$\lim_{\epsilon \to 0} \|f * \phi_{\epsilon} - f\|_{\infty} = 0, \quad f \in C_{\infty}(\mathbb{R}^{n}).$$

Proof.

$$f * \phi_{\epsilon}(x) - f(x) = \int (f(x - y) - f(x))\phi_{\epsilon}(y)dy.$$

$$\|f * \phi_{\epsilon}(x) - f(x)\|_{p}$$

$$\leq \int dy \left(\int |f(x - y) - f(x)|^{p}dx\right)^{\frac{1}{p}} |\phi_{\epsilon}(y)|$$

$$= \int \omega_{p,f}(y)\phi_{\epsilon}(y)dy = \int \omega_{p,f}(\epsilon y)\phi(y)dy \to_{\epsilon \to 0} 0.$$

1.5 The Young inequality

Theorem 1.5 Let $1 \le p, q, r \le \infty$, $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 2$, $f, g, h \in \mathcal{M}_+(X)$ (positive, measurable functions on X). Then

$$\int \int f(x)g(x-y)h(y)\mathrm{d}x\mathrm{d}y \leq C_{p,r,n} \|f\|_p \|g\|_q \|h\|_r.$$

Proof. Let $\frac{1}{p} + \frac{1}{p'} = 1$, $\frac{1}{q} + \frac{1}{q'} = 1$ and $\frac{1}{r} + \frac{1}{r'} = 1$. Set

$$\begin{aligned} \alpha(x,y) &:= f(x)^{p/r'} g(x-y)^{q/r'}, \\ \beta(x,y) &:= g(x-y)^{q/p'} h(y)^{r/p'}, \\ \gamma(x,y) &:= f(x)^{p/q'} h(y)^{r/q'}. \end{aligned}$$

Then

$$\int \int f(x)g(x-y)h(y)dxdy = \int \int f(x)^{p(2-\frac{1}{q}-\frac{1}{r})}g(x-y)^{q(2-\frac{1}{p}-\frac{1}{r})}h(y)^{r(2-\frac{1}{p}-\frac{1}{q})}$$
$$= \int \int f(x)^{p(\frac{1}{q'}+\frac{1}{r'})}g(x-y)^{q(\frac{1}{p'}+\frac{1}{r'})}h(y)^{r(\frac{1}{p'}+\frac{1}{q'})}$$
$$= \int \int \alpha(x,y)\beta(x,y)\gamma(x,y)dxdy \le \|\alpha\|_{r'}\|\beta\|_{p'}\|\gamma\|_{q'}$$

where in the last step we used the Hölder inequality noting that $\frac{1}{r'} + \frac{1}{p'} + \frac{1}{q'} = 1$. Finally,

$$\|\alpha\|_{r'} = (\int \int f(x)^p g(x-y)^q \mathrm{d}x \mathrm{d}y)^{1/r'} = \|f\|_p^{p/r'} \|g\|_q^{q/r'}$$

Corollary 1.6 If $\frac{1}{q} + \frac{1}{r} = 1 + \frac{1}{s}$, $h \in L^r(X)$, $g \in L^q(X)$, then for almost all x

$$y \mapsto g(x-y)h(y)$$

belongs to $L^1(X)$ and

$$g * h(x) = \int g(x - y)h(y) dy$$

belongs to $L^{s}(X)$ and

 $||g * h||_s \le ||g||_q ||h||_r.$ (1.1)

Proof. We know that for $f \in L^p(X)$, $\frac{1}{p} + \frac{1}{s} = 1$ we have

$$\int |f(x)| \mathrm{d}x \int |g(x-y)h(y)| \mathrm{d}y \le \|f\|_p \|g\|_q \|h\|_r < \infty.$$

Hence for a.a \boldsymbol{x}

$$|f(x)| \int |g(x-y)h(y)| dy < \infty.$$
$$\int |g(x-y)h(y)| dy < \infty.$$

Hence for a.a. \boldsymbol{x}

From

$$|\int f(x)g * h(x)dx| \le ||f||_p ||g||_q ||h||_r$$

we obtain (1.1). \Box

2 Fourier transformation and tempered distributions on \mathbb{R}^d

2.1 Fourier transformation on $L^1 \cup L^2(\mathbb{R}^d)$

For

$$f \in L^1(\mathbb{R}^d)$$

we define its Fourier transform as

$$\mathcal{F}f(\xi) = \hat{f}(\xi) := \int e^{-ix\xi} f(x) dx$$
$$\check{f}(x) := f(-x)$$
$$\tau_y f(x) := f(x-y)$$
$$f_{(a)}(x) := f(ax)$$

Theorem 2.1 (1) $\|\hat{f}\|_{\infty} \leq \|f\|_{1}$;

- (2) $\hat{f}(\xi) = \check{f}(\xi) = \int e^{ix\xi} f(x) dx.$
- (3) $\overline{\hat{f}} = \frac{\check{\tilde{f}}}{\bar{f}};$
- (4) $\hat{f}_{(a)}(x) = a^{-d} \hat{f}(a^{-1}x);$
- (5) $\widehat{\tau_y f}(\xi) = \mathrm{e}^{-iy\xi} \widehat{f}(\xi);$
- (6) $(f e^{i\eta})(\xi) = \hat{f}(\xi \eta).$

Example 2.2 (1) $f(x) = e^{-\frac{x^2}{2}}$, $\hat{f}(\xi) = (2\pi)^{\frac{n}{2}} e^{-\frac{x^2}{2}}$. (2) $f(x) = e^{-\epsilon x} x^{\alpha} \theta(x)$, $\hat{f}(\xi) = \frac{\Gamma(\alpha+1)}{(\epsilon+i\xi)^{\alpha+1}}$, $\operatorname{Re}\epsilon > 0$. (3) $f(x) = \chi_{[-1,1]}(x)$, $\hat{f}(\xi) = \frac{2\sin\xi}{\xi}$. (4) $f(x) = e^{-|x|}$, $\hat{f} = \frac{1}{1+\xi^2}$.

Theorem 2.3 (The Riemann-Lebesgue Lemma) If $f \in L^1$, then $\hat{f} \in C_{\infty}$.

Proof. We know that the Fourier transformation is continuous from L^1 to L^{∞} . C_{∞} is a closed subspace of L^{∞} .

Combinations of characteristic functions of intervals are dense in L^1 . Their Fourier transforms, which we computed explicitly, belong to C_{∞} . \Box

Theorem 2.4 Let $f, g \in L^1$. Then (1) $\int \hat{f}(\xi)g(\xi)d\xi = \int f(x)\hat{g}(x)dx$. (2) $(f\hat{g})\check{f} = \check{f} * g$. (3) $(f * g) = \hat{f}\hat{g}$. **Proof.** (2) For $f_{\eta}(x) = f(x)e^{ix\eta}$, we have $\hat{f}_{\eta}(\xi) = \check{f}(\eta - \xi)$. Hence

$$\int \hat{f}_{\eta}(\xi)g(\xi)\mathrm{d}\xi = \check{f} * g(\eta).$$

Besides,

$$\int f_{\eta}(x)\hat{g}(x)\mathrm{d}x = (h\hat{g})\check{(}\eta)$$

Therefore, it suffices to apply (1). \Box

Theorem 2.5 (Parseval) Let $g, \hat{g} \in L^1$. Then

$$\check{\hat{g}} = (2\pi)^d g.$$

Proof. Let

$$\phi_{\epsilon}(x) := \mathrm{e}^{-\frac{\epsilon x^2}{2}}.$$

We have

$$0 \le \phi_{\epsilon} \le 1, \quad \lim_{\epsilon \to 0} \phi_{\epsilon} = 1.$$

Using that $\hat{g} \in L^1$, by the Lebesgue Theorem we obtain

$$\phi_\epsilon \hat{g} \to \hat{g}$$

in the sense of L^1 . Therefore,

$$(\phi_{\epsilon}\hat{g})(x) \to \hat{\hat{g}}(x),$$

 $(\phi_{\epsilon}\hat{g})(x) \to \check{\hat{g}}(x),$

in the supremum norm. Moreover,

$$\int \phi(\xi) = (2\pi)^d,$$
$$\hat{\phi}_{\epsilon}(\xi) = \left(\frac{2\pi}{\epsilon}\right)^{\frac{d}{2}} e^{-\frac{\xi^2}{2\epsilon}}$$

Using that $g \in L^1$ we obtain

$$\hat{\phi}_{\epsilon} * g(x) \to (2\pi)^d g(x)$$

in the sense of L^1 . Finally, we use

$$\hat{\phi_{\epsilon}} * g = \check{\phi_{\epsilon}} * g = (\phi_{\epsilon} \hat{g})^{\hat{\varsigma}}.$$

Theorem 2.6 Let $f \in L^1$, $\hat{f} \ge 0$ and let f be continuous at 0. Then $\hat{f} \in L^1$ and we have

$$\int \hat{f}(\xi) \mathrm{d}\xi = (2\pi)^d f(0)$$

Proof. If ϕ_{ϵ} is as in the proof of the Parseval Theorem, then

$$\int \phi_{\epsilon}(\xi) \hat{f}(\xi) \mathrm{d}\xi = \int \hat{\phi}_{\epsilon}(x) f(x) \mathrm{d}x$$

The left hand side is increasing and converges to $\int \hat{f}(\xi) d\xi$. The right hand side goes to $(2\pi)^d f(0)$. By the Fatou Lemma, \hat{f} is integrable. \Box

Theorem 2.7 Let $f \in L^1 \cap L^2$. Then

$$\|\hat{f}\|_2 = (2\pi)^{\frac{d}{2}} \|f\|_2$$

Proof. The function $h := \check{f} * f$ belongs to L^1 as the convolution of functions from L^1 and continuous as the convolution of functions from L^2 . Besides,

$$\hat{h} = \left(\check{\overline{f}} * f\right)^{\hat{}} = \check{\overline{f}}\hat{f} = \bar{f}\hat{f} \ge 0.$$

Hence, by Theorem 2.6, $\hat{h} \in L^1$ and

$$(2\pi)^d h(0) = \int \hat{h}(\xi) \mathrm{d}\xi.$$

Finally,

$$(2\pi)^d \int |f(x)|^d \mathrm{d}x = (2\pi)^d h(0) = \int \hat{h}(\xi) \mathrm{d}\xi = \int |\hat{f}(\xi)|^2 \mathrm{d}\xi.$$

Let $f \in L^2$. Then for any sequence $f_n \in L^1 \cap L^2$ such that

$$\lim_{n \to \infty} f_n = j$$

in L^2 , there exists $\lim_{n\to\infty} \hat{f}_n = \hat{f}$. The operator

$$f \mapsto (2\pi)^{-\frac{d}{2}} \hat{f}$$

is unitary.

Theorem 2.8 If $f \in L^1$ and $xf \in L^1$, then $\hat{f} \in C^1$ and

$$\partial_{\xi}\hat{f}(\xi) = (xf)(\xi).$$

Proof. We use the theorem about differentiation of an integral depending on a parameter. \Box

2.2 Tempered distributions on \mathbb{R}^d

Typical spaces of functions (measures) on \mathbb{R}^d are

$$C_{\infty}(X), \quad L^p(X), \quad \mathrm{Ch}(X).$$

where Ch(X) denotes Borel complex charges of finite variation. We have

$$C^{\#}_{\infty}(X) = \operatorname{Ch}(X), \ L^{p}(X)^{\#} = L^{q}(X), \ p^{1} + q^{-1} + 1, \ 1 \le p < \infty.$$

We have a bilinear and sesquilinear forms

$$\langle a,b\rangle = \int a(x)b(x)\mathrm{d}x, \ (a,b) = \int \overline{a}(x)b(x)\mathrm{d}x.$$

Lemma 2.9

$$\|f\|_{\infty} \leq C\|(1+|x|)^{-p}f\|_{1} + C\|\partial_{x_{1}}\dots\partial_{x_{d}}f\|_{1}, \ p > d$$
$$\|f\|_{q} \leq C\|(1+|x|)^{-k}f\|_{p}, \ \frac{1}{q} < \frac{k}{d} + \frac{1}{p}.$$

Theorem 2.10 The following set does not depend on $1 \le p \le \infty$:

$$\bigcap_{\alpha,m>0} \{ f : \|\partial^{\alpha} (1+|x|^2)^{m/2} f\|_p < \infty \}.$$
(2.2)

The space $\mathcal{S}(\mathbb{R}^d)$ is defined as (2.2). It is a Frechet space. For the dual of $\mathcal{S}(\mathbb{R}^d)$ we will use the traditional notation $\mathcal{S}'(\mathbb{R}^d)$.

Example 2.11 Elements of $\mathcal{S}'(X)$ satisfying

$$|\langle v, \phi \rangle| \le C \|x^m \phi\|_{\infty}$$

have the form

$$\langle v,\phi\rangle = \int \phi(x) \mathrm{d}\mu$$

for a certain Borel charge μ for which there exists m such that $\mu(1+|x|)^{-m} \in Ch(X)$.

The operator ∂ is continuous on $\mathcal{S}(X)$. For $v \in \mathcal{S}(X)$ we define $\partial v \in \mathcal{S}'(X)$ by

$$\langle v, \partial \phi \rangle = -\langle \partial v, \phi \rangle.$$

Theorem 2.12 Any $v \in S'(X)$ has the form

$$\sum_{\alpha < N} \partial_x^{\alpha} \mu_{\alpha}$$

for some Borel charge μ such that for some m we have $\mu(1+|x|)^{-m} \in Ch(X)$.

Proof. For some α, β ,

$$\langle v, \phi \rangle \leq C \sum_{|\alpha|, |\beta| \leq N} \|x^{\alpha} \partial_x^{\beta} \phi\|_{\infty}.$$

Introduce the locally compact space

$$\tilde{X} = \prod_{|\alpha|, |\beta| \le N} X$$

and the map

$$\mathcal{S}(X) \ni \phi \mapsto j(\phi) = \sum_{|\alpha|, |\beta| \le N}^{\oplus} x^{\alpha} \partial^{\beta} \phi \in C_{\infty}(\tilde{X})$$

Any distribution v determines a bounded functional on $j(\mathcal{S}(X))$. By the Hahn-Banach Theorem, this functional can be extended to a bounded functional \tilde{v} on $C_{\infty}(\tilde{X})$. By the Riesz-Markov Theorem, there exists a finite Borel charge on \tilde{X} Such that

$$\tilde{v}(\phi_{\alpha,\beta}) = \sum_{|\alpha|,|\beta| \le N} \int \phi(x) \mathrm{d}\eta_{\alpha,\beta}(x).$$

Clearly, $\mathcal{S}(X) \subset L^1(X)$. Hence the Fourier transform is defined on $\mathcal{S}(X)$.

Theorem 2.13 If $\phi \in \mathcal{S}(X)$, then $\hat{\phi} \in \mathcal{S}(X)$.

Recall that for $\psi \in \mathcal{S}(X)$, $\phi \in \mathcal{S}(X)$ we have

$$\langle \psi, \hat{\phi} \rangle = \langle \hat{\psi}, \phi \rangle.$$

For $v \in \mathcal{S}'(X)$ we define

$$\langle \hat{v}, \phi \rangle := \langle v, \hat{\phi} \rangle, \ \phi \in \mathcal{S}(X)$$

Clearly, $L^1(X) \cup L^2 \subset \mathcal{S}'(X)$ and the Fourier transformation previously defined coincides with the presently defined on $L^1(X) \cup L^2$.

Theorem 2.14

$$\check{\hat{v}} = (2\pi)^d v, \quad v \in \mathcal{S}'(X), \tag{2.3}$$

2.3 Spaces of sequences

Below we list a couple of typical spaces of sequences indexed by \mathbb{Z}^d :

$$L^1(\mathbb{Z}^d) \subset L^p(\mathbb{Z}^d) \subset L^q(\mathbb{Z}^d) \subset C_\infty(\mathbb{Z}^d) \subset L^\infty(\mathbb{Z}^d), \ p \le q$$

We have

$$C_{\infty}(\mathbb{Z}^d)^{\#} = L^1(\mathbb{Z}^d), \quad L^p(\mathbb{Z}^d)^{\#} = L^q(\mathbb{Z}^d), \quad p^{-1} + q^{-1} = 1, \quad 1 \le p < \infty.$$

We have natural bilinear and sesquilinear forms:

$$\langle a|b\rangle = \sum a_n b_n, \ (a|b) = \sum \overline{a}_n b_n.$$

Lemma 2.15

$$\|a\|_p \le \|a\|_q, \ p \ge q,$$

$$\|a\|_q \le \|(1+n)^{-k}a\|_p, \ \frac{1}{q} < \frac{k}{d} + \frac{1}{p}$$

Theorem 2.16 The following set does not depend on $1 \le p \le \infty$:

$$\bigcap_{m>0} \{a : \|(1+|n|^2)^{m/2}a\|_p < \infty \}.$$

The above space is a Frechet space, which will be denoted $\mathcal{S}(\mathbb{Z}^d)$.

Theorem 2.17 The space dual to $\mathcal{S}(\mathbb{Z}^d)$, denoted $\mathcal{S}'(\mathbb{Z}^d)$, equals

$$\bigcup_{m>0} \{a : \|(1+|n|^2)^{-m/2}a\|_p < \infty \}.$$

Theorem 2.18 $\mathcal{S}(\mathbb{Z}^d)$ is dense in $\mathcal{S}'(\mathbb{Z}^d)$.

2.4 The oscillator representation of S(X) and S'(X)

For simplicity, we discuss $X = \mathbb{R}$.

Lemma 2.19

$$\lim_{n \to \infty} \left\| e^{ix\xi} e^{-\frac{x^2}{2}} - \sum_{j=0}^n \frac{(ix\xi)^j}{j!} e^{-\frac{x^2}{2}} \right\| = 0$$

Proof.

$$\left| e^{ix\xi} e^{-\frac{x^2}{2}} - \sum_{j=0}^n \frac{(ix\xi)^j}{j!} e^{-\frac{x^2}{2}} \right| \le \frac{\xi^{n+1} x^{n+1}}{(n+1)!} e^{-\frac{x^2}{2}}.$$

Hence the norm of the difference is estimated by

$$\int \frac{\xi^{2(n+1)} x^{2(n+1)}}{((n+1)!)^2} e^{-x^2} dx = \xi^{2(n+1)} \int_0^\infty \frac{s^{n+\frac{1}{2}} e^{-s} ds}{((n+1)!)^2} = \frac{\xi^{2(n+1)} \Gamma(n+\frac{1}{2})}{((n+1)!)^2}.$$

Theorem 2.20 Linear combinations of

$$x^{n} e^{-\frac{x^{2}}{2}}$$
 (2.4)

are dense in $L^2(\mathbb{R})$.

Proof. Let f be orthogonal to the space spanned by (2.4). Then for any ξ

$$\int f(x) \mathrm{e}^{ix\xi} \mathrm{e}^{-\frac{x^2}{2}} \mathrm{d}x = 0.$$

Hence, the Fourier transform of $fe^{-\frac{x^2}{2}}$ is zero. Therefore, f = 0 almost everywhere. \Box

.

Let

$$A^* := \frac{1}{\sqrt{2}} \left(x - \frac{\mathrm{d}}{\mathrm{d}x} \right), \ A := \frac{1}{\sqrt{2}} \left(x + \frac{\mathrm{d}}{\mathrm{d}x} \right)$$
$$\phi_n := \pi^{-\frac{1}{4}} (n!)^{-\frac{1}{2}} (A^+)^n \mathrm{e}^{-\frac{x^2}{2}} = (2^2 n!)^{-\frac{1}{2}} (-1)^n \pi^{-\frac{1}{4}} \mathrm{e}^{\frac{x^2}{2}} \partial_x^n \mathrm{e}^{-x^2}$$
$$N := A^* A + A A^* = x^2 + D^2.$$

Theorem 2.21 ϕ_n is an orthonormal basis obtained by the Gramm-Schmidt orthonormalization of $x^n e^{-\frac{x^2}{2}}$. They are eigenvectors of N and \mathcal{F} :

$$N\phi_n = \left(n + \frac{1}{2}\right)\phi_n, \quad \mathcal{F}\phi_n = i^n (2\pi)^d \phi_n.$$

Theorem 2.22 Suppose that for $v \in \mathcal{S}'(\mathbb{R})$

 $v_n := \langle v, \phi_n \rangle$

Then there exists m such that

$$|v_n| \le C(1+n)^m,$$

or, in other words, $(v_n) \in \mathcal{S}'(\mathbb{N})$. The map

$$\mathcal{S}'(\mathbb{R}) \ni v \to (v_n) \in \mathcal{S}'(\mathbb{N})$$

is an isomorphism. $v \in \mathcal{S}(\mathbb{R})$, iff

 $|v_n| \le C(1+n)^{-m}, \quad m = 0, 1, \dots$

The map

$$\mathcal{S}(\mathbb{R}) \ni v \to (v_n) \in \mathcal{S}(\mathbb{N})$$

is an isomorphism and

$$\mathcal{S}(\mathbb{R}) = \bigcap_{n=0}^{\infty} \operatorname{Dom}(N^n).$$

Proof. Clearly, the seminorms $||N^m \phi||$ can be estimated by linear combinations of seminorms $||\phi||_{\alpha,\beta,2}$. Hence,

 $\mathcal{S}(\mathbb{R}) \supset \cap_{n=0}^{\infty} \mathrm{Dom}(N^n).$

To show the inverse estimate note first that $\|\phi\|_{\alpha,\beta,2}$ can be bounded by

$$(\phi, A_1^{\natural} \dots A_n^{\natural} \phi),$$

where $A_i^{\natural} = A$ or $A_i^{\natural} = A^*$. After commuting we can estimate them by linear combinations

$$\begin{aligned} &(\phi A^k, A^{+m}\phi) \\ &\leq \frac{1}{2} \|A^{+k}\phi\|^2 + \frac{1}{2} \|A^{+m}\phi\|^2 \\ &\leq C \sum_{j=1}^{\max\{k,m\}} \|N^j\phi\|^2. \end{aligned}$$

Hence

$$\mathcal{S}(\mathbb{R}) \subset \cap_{n=0}^{\infty} \mathrm{Dom}(N^n).$$

Corollary 2.23 (The Schwartz Kernel Theorem) Every continuous bilinear functional

$$\mathcal{S}(X_1) \times \mathcal{S}(X_2) \ni (\phi, \psi) \mapsto T(\phi, \psi)$$

has the form

 $\langle T, \phi \otimes \psi \rangle$

for some $T \in \mathcal{S}'(X_1 \times X_2)$

Proof. We have

 $\langle T, \phi \otimes \psi \rangle = \sum t_{k,m} \phi_k \otimes \psi_m,$ $|t_{k,m}| \le (1+|k|)^n (1+|m|)^n.$

Hence,

where

$$|t_{k,m}| \le (1+|k|+|m|)^{2n}.$$

2.5 Convolution of distributions

Theorem 2.24 The following space does not depend on $1 \le p \le \infty$:

$$\bigcap_{\alpha} \bigcup_{m_{\alpha}} \{ f \in C^{\infty}(\mathbb{R}^d) : \| (1+|x|)^{-m_{\alpha}} D^{\alpha} f \|_p < \infty \}.$$

$$(2.5)$$

The space (2.5), which is an inductive limit of Frechet space, is denoted $\mathcal{O}(\mathbb{R}^d)$. Its dual space, for which we will use the traditional notation $\mathcal{O}'(\mathbb{R}^d)$, is called the space of rapidly decreasing distributions.

We have the inclusions

 $\mathcal{S} \subset \mathcal{O} \subset \mathcal{S}', \quad \mathcal{S} \subset \mathcal{O}' \subset \mathcal{S}'$

Example 2.25 If μ is a Borel charge and for any m

$$\int (1+|x|)^m |\mathrm{d}\mu|(x) < \infty,$$

then $\mu \in \mathcal{O}'$.

Clearly, if $f \in \mathcal{O}$, then

$$\mathcal{S} \ni \phi \mapsto f\phi \in \mathcal{S} \tag{2.6}$$

is continuous. For $v \in \mathcal{S}'$ we define $fv \in \mathcal{S}'$ as the adjoint of (2.6), that is

$$\langle v, f\phi \rangle = \langle fv, \phi \rangle.$$

 $\check{\phi}(x) := \phi(-x).$

The operator ∂ is continuous also on \mathcal{O} and \mathcal{O}' . For $\phi \in \mathcal{S}$ we define

Clearly,

$$\langle \psi, \check{\phi} \rangle = \langle \check{\psi}, \phi \rangle$$

For $v \in \mathcal{S}'$ we introduce

Note that for $\phi, \psi, \chi \in \mathcal{S}$ we have

 $\langle \chi, \psi * \phi \rangle = \langle \chi * \check{\psi}, \phi \rangle.$

 $\langle v, \check{\phi} \rangle = \langle \check{v}, \phi \rangle$

For $v \in \mathcal{S}', \psi \in \mathcal{S}$ we define

 $\langle v \ast \psi, \phi \rangle := \langle v, \check{\psi} \ast \phi \rangle.$

Theorem 2.26 For $v \in S'$, $\phi \in S$ we define

 $\phi_y(x) := \phi(x - y).$

v

Then

$$v * \phi(x) := \langle v, (\check{\phi})_{-x} \rangle.$$

and

$$*\psi \in \mathcal{O}.$$
 (2.7)

Proof. Let us show (2.7):

$$\begin{aligned} |\partial_x^{\alpha} v * \phi(x)| &= |\langle v | \partial_y^{\alpha} \check{\phi}_{-x} \rangle| \\ &\leq C \|y^n \partial_y^{\alpha+\gamma} \phi_{-x}\|_{\infty} \\ &\leq C (1+|x|)^n \|y^n \partial_y^{\alpha+\gamma} \phi\|_{\infty}. \end{aligned}$$

Hence we can extend the definition of the convolution as follows. Let $w \in S', v \in \mathcal{O}'$. Then

$$\langle v \ast w, \phi \rangle := \langle v, \check{w} \ast \phi \rangle, \ \phi \in \mathcal{S}.$$

Using the convolution we can easily show that \mathcal{S} is dense in \mathcal{S}' .

Theorem 2.27 If $v \in \mathcal{O}'$, then $\hat{v} \in \mathcal{O}$.

Proof. Note first that

$$\partial_{\xi}^{\beta} \hat{v}(\xi) = \langle v, x^{\beta} \mathrm{e}^{-\mathrm{i}\xi \cdot} \rangle.$$

We know that

$$|\langle v, \phi \rangle| \le \sum_{|\alpha| \le N} \|(1+x^2)^{-\frac{|\beta|}{2}} \partial_x^{\alpha} \phi\|_{\infty}.$$

Hence,

$$|\partial_{\xi}^{\beta} \hat{v}(\xi)| \leq \sum_{|\alpha| \leq N} |\xi|^{\alpha}.$$

Theorem 2.28

$$(v * w) = \hat{v}\hat{w}, \quad v \in \mathcal{S}', \quad w \in \mathcal{O}'$$

$$(2.8)$$

Proof. First prove (2.8) for $w \in S$. Let $\phi \in S$. Then

$$\begin{split} \langle (v * w), \phi \rangle \\ &= \langle v * w, \hat{\phi} \rangle \\ &= \langle v, \check{w} * \hat{\phi} \rangle \\ &= (2\pi)^{-d} \langle v, (\check{w} * \hat{\phi})^{\check{\lambda}} \rangle \\ &= (2\pi)^{-d} \langle \hat{v}, \hat{w} \hat{\phi} \rangle \\ &= \langle \hat{v}, \hat{w} \check{\phi} \rangle \\ &= \langle \hat{v}, \hat{w} \check{\phi} \rangle \\ &= \langle \hat{v} \hat{w}, \phi \rangle. \end{split}$$

Then we assume that $v \in \mathcal{S}', w \in \mathcal{O}'$ and we repeat the same reasoning. \Box

3 Sobolev inequalities and their consequences

3.1 The Hardy-Littlewood-Sobolev inequality

Let θ denote the Heaviside function, that is

$$\theta(t) := \begin{cases} 0 & t < 0, \\ 1 & t > 0. \end{cases}$$

Let $0 \leq \lambda \leq n$. Then

$$|x|^{-\lambda}\theta(|x|-1) \in L^p(X), \quad \infty \ge p > \frac{n}{\lambda},$$
$$|x|^{-\lambda}\theta(1-|x|) \in L^p(X), \quad 1 \le p < \frac{n}{\lambda}.$$

Theorem 3.1 $1 < p, r < \infty, \ 0 < \lambda < n, \ \frac{1}{p} + \frac{\lambda}{n} + \frac{1}{r} = 2, \ f, h \in \mathcal{M}_+(X).$ Then

$$\int \int f(x)|x-y|^{-\lambda}h(y)\mathrm{d}x\mathrm{d}y \leq C_{n,\lambda,r}||f||_p ||h||_r$$

Corollary 3.2 If $\frac{\lambda}{n} + \frac{1}{r} = 1 + \frac{1}{s}$, $h \in L^{r}(X)$, then for almost all x

$$y \mapsto |x - y|^{-\lambda} h(y)$$

belongs to $L^1(X)$ and

$$x \mapsto \int |x-y|^{-\lambda} h(y) \mathrm{d}y$$

belongs to $L^s(X)$ and for $g(x) = |x|^{-\lambda}$,

$$||g * h||_{s} \le C_{n,\lambda,r} ||h||_{r}.$$
(3.9)

Proof of Theorem 3.1 We will write $g(x) := |x|^{-\lambda}$. Set

$$v(a) := \int \mathbf{1}_{\{f > a\}}(x) \mathrm{d}x, \ w(b) := \int \mathbf{1}_{\{h > b\}}(x) \mathrm{d}x, \ u(c) := \int \mathbf{1}_{\{g > c\}}(x) \mathrm{d}x.$$

Note that

$$u(c) = C_n c^{-n/\lambda}, \quad u^{-1}(t) = \tilde{C}_n t^{-\lambda/n}.$$

We can assume that

$$1 = \|f\|_p^p = p \int_0^\infty a^{p-1} v(p) \mathrm{d}a, \quad 1 = \|h\|_r^r = r \int_0^\infty b^{r-1} w(b) \mathrm{d}b$$

Now

$$\begin{split} I &:= \int \int f(x)g(x-y)h(y)\mathrm{d}x\mathrm{d}y = \int \int \int \int 1_{\{f>a\}}(x)\mathbf{1}_{\{h>b\}}(y)\mathbf{1}_{\{g>c\}}(x-y)\mathrm{d}x\mathrm{d}y\mathrm{d}a\mathrm{d}b\mathrm{d}c\\ &= \int \int \int da\mathrm{d}b\mathrm{d}y\mathbf{1}_{\{h>b\}}(y)\int \int \mathrm{d}c\mathrm{d}x\mathbf{1}_{\{f>a\}}(x)\mathbf{1}_{\{g>c\}}(x-y)\\ &+ \int \int \int da\mathrm{d}b\mathrm{d}x\mathbf{1}_{\{f>a\}}(x)\int \int \mathrm{d}c\mathrm{d}y\mathbf{1}_{\{h>b\}}(y)\mathbf{1}_{\{g>c\}}(x-y). \end{split}$$

Now

$$\begin{split} \int \int \mathrm{d}c \mathrm{d}x \mathbf{1}_{\{f > a\}}(x) \mathbf{1}_{\{g > c\}}(x - y) &\leq \int \int \mathrm{d}c \mathrm{d}x \mathbf{1}_{\{f > a\}}(x) + \int \int \mathrm{d}c \mathrm{d}x \mathbf{1}_{\{g > c\}}(x - y) \\ &= v(a) \int_{0}^{u^{-1}(v(a))} \mathrm{d}c + \int_{u^{-1}(v(a))}^{\infty} u(c) \mathrm{d}c \\ &= v(a) u^{-1}(v(a)) + c_{n,\lambda}(u^{-1}(v(a)))^{1 - n/\lambda} \\ &= c_{n,\lambda} v(a)^{1 - \lambda/n}. \end{split}$$

Therefore,

$$I \leq c_{n,\lambda} \int_{\substack{w(b) \leq v(a) \\ w(b) \leq v(a)}} dadbw(b)v(a)^{1-\lambda/n} + c_{n,\lambda} \int_{\substack{w(b) \geq v(a) \\ w(b) \geq v(a)}} dadbv(a)w(b)^{1-\lambda/n} \\ = c_{n,\lambda} \int \int dadb \min\left(w(b)v(a)^{1-\lambda/n}, v(a)w(b)^{1-\lambda/n}\right) \\ \leq c_{n,\lambda} \int_{0}^{\infty} dav(a) \int_{0}^{a^{p/r}} dbw(b)^{1-\lambda/n} + c_{n,\lambda} \int_{0}^{\infty} dbw(b) \int_{0}^{b^{r/p}} dav(a)^{1-\lambda/n}$$

Now setting $m := (r-1)(1 - \lambda/n)$, we get

$$\begin{split} \int_0^{a^{p/r}} w(b)^{1-\lambda/n} \mathrm{d}b &= \int_0^{a^{p/r}} w(b)^{1-\lambda/n} b^m b^{-m} \mathrm{d}b \\ &\leq \left(\int_0^{a^{p/r}} w(b) b^{r-1} \mathrm{d}b \right)^{1-\lambda/n} \left(\int_0^{a^{p/r}} b^{-mn/\lambda} \mathrm{d}b \right)^{\lambda/n} \\ &\leq C \left(\int_0^\infty w(b) b^{r-1} \mathrm{d}b \right)^{1-\lambda/n} a^{p-1}. \end{split}$$

Hence

$$I \leq c_{n,\lambda,r} \int v(a) a^{p-1} \mathrm{d}a \left(\int_0^\infty w(b) b^{r-1} \mathrm{d}b \right)^{1-\lambda/n}$$

+ $c_{n,\lambda,r} \int_0^\infty w(b) b^{r-1} \mathrm{d}b \left(\int v(a) a^{p-1} \mathrm{d}a \right)^{1-\lambda/n} = 2c_{n,\lambda,r}$

3.2 The Thomas-Fermi functional

For $\rho \in \mathcal{M}_+(\mathbb{R}^3)$ we set

$$\mathcal{E}(\rho) := \frac{3}{5} \int \rho(x)^{5/3} \mathrm{d}x - \int \frac{z}{|x|} \rho(x) \mathrm{d}x + \frac{1}{2} \int \int \frac{\rho(x)\rho(y)}{|x-y|} \mathrm{d}x \mathrm{d}y.$$
$$E_N := \inf \left\{ \mathcal{E}(\rho) \ : \ \rho \in \mathcal{M}_+, \ \int \rho \mathrm{d}x = N \right\}.$$

Theorem 3.3 (1) $E_N > -\infty$

- (2) \mathcal{E} is finite for $\rho \in L^1 \cap L^{5/3}$.
- (3) The function $L^1 \cap L^{5/3}\rho \mapsto \mathcal{E}(\rho)$ is convex and continuous.

Proof. (1) For any c we can split $\frac{1}{|x|} = \frac{\theta(|x|-c)}{|x|} + \frac{\theta(-|x|+c)}{|x|} = f_1 + f_2$. The first term belongs to $\bigcap_{p>3} L^p$ and the second to $\bigcap_{p<3} L^p$. Now

$$\mathcal{E}(\rho) \ge c_1 \|\rho\|_{5/3}^{5/3} - z\|f_1\|_{\infty} \|\rho\|_1 \|f_2\|_{5/2} \|\rho\|_{5/3}.$$

By choosing c we can make $||f_2||_{5/2}$ as small as we wish. The function $c_1 t^{5/3} - c_2 t$ is bounded from below. To prove (2) we use

$$\int \int \frac{\rho(x)\rho(y)}{|x-y|} \mathrm{d}x \mathrm{d}y \le c \|\rho\|_{6/5} \le c \|\rho\|_1 + c \|\rho\|_{5/3}.$$

3.3 Sobolev inequalities I

Consider the operator

$$(-\Delta)^{-\frac{\alpha}{2}} = I_{\alpha}(D),$$

where $I_{\alpha}(\xi) = |\xi|^{-\alpha}$..

Lemma 3.4 Let $0 < \alpha < n$. Then the Fourier transform of I_{α} equals

$$\hat{I}_{\alpha}(x) = \pi^{\frac{n}{2}} 2^{n-\alpha} \frac{\Gamma\left(\frac{n-\alpha}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right)} |x|^{\alpha-n}.$$

Proof. We use the representation:

$$|\xi|^{-\alpha} = \frac{1}{\Gamma\left(\frac{\alpha}{2}\right)} \int_0^\infty e^{-s\xi^2} s^{\frac{\alpha}{2}} \frac{\mathrm{d}s}{s}.$$
(3.10)

It is well known that the Fourier transform of $e^{-s\xi^2}$ equals

$$\left(\frac{\pi}{s}\right)^{\frac{n}{2}} \mathrm{e}^{-\frac{\xi^2}{4s}}.$$

Hence

$$\hat{I}_{\alpha}(x) = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{\alpha}{2})} \int_{0}^{\infty} e^{-\frac{x^{2}}{4s}} s^{\frac{\alpha-n}{2}} \frac{\mathrm{d}s}{s}$$

$$= \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{\alpha}{2})} \int_{0}^{\infty} e^{-\frac{tx^{2}}{4}} t^{\frac{n-\alpha}{2}} \frac{\mathrm{d}t}{t}$$

$$= \pi^{\frac{n}{2}} 2^{n-\alpha} \frac{\Gamma(\frac{n-\alpha}{2})}{\Gamma(\frac{\alpha}{2})} |x|^{\alpha-n}.$$

Theorem 3.5 Let $0 < \alpha < n, 1 < p, r < \infty$, and $\frac{1}{p} + \frac{1}{r} = 1 + \frac{\alpha}{n}$. Then

$$\left(f|(-\Delta)^{-\frac{\alpha}{2}}h\right) \le c||f||_p ||h||_r.$$

Theorem 3.6 Let $0 < \alpha < n$, $1 < q, r < \infty$, and $\frac{1}{r} = \frac{1}{q} + \frac{\alpha}{n}$. Then

$$\|(-\Delta)^{-\frac{\alpha}{2}}h\|_{q} \le c\|h\|_{r}.$$

Corollary 3.7 For $n = 3, 4, \ldots, \frac{1}{2} = \frac{1}{q} + \frac{1}{n}$,

$$||g||_q^2 \le c_n \Big(g|(-\Delta)g\Big).$$

Proof. Set $g := (-\Delta)^{-\alpha/2}h$, $\alpha = 1$ and r = 2. \Box

Sobolev inequalities II $\mathbf{3.4}$

Consider the operator

$$(1-\Delta)^{-\frac{\alpha}{2}} = G_{\alpha}(D),$$

where $G_{\alpha}(\xi) = (1 + |\xi|^2)^{-\alpha/2}$.

Lemma 3.8 Let $\alpha > 0$. The Fourier transform of G_{α} , satisfies (1)~

$$G_{\alpha}(x) \ge 0$$

(2) For $|x| \to 0$

$$\hat{G}_{\alpha}(x) \leq \begin{cases} C(|x|^{-n+\alpha}), & 0 < \alpha < n \\ C(-\log|x|+1), & \alpha = n \\ C, & \alpha > n. \end{cases}$$

(3)

$$\hat{G}_{\alpha}(x) \in L^{1}(\mathbb{R}^{n}) \begin{cases} 1 - \frac{\alpha}{n} < \frac{1}{p} \leq 1, & 0 < \alpha < n \\ 0 < \frac{1}{p} \leq 1, & \alpha = n \\ 0 \leq \frac{1}{p} \leq 1, & \alpha > n. \end{cases}$$

Proof. We use the representation

$$(1+\xi^2)^{-\frac{\alpha}{2}} = \frac{1}{\Gamma\left(\frac{\alpha}{2}\right)} \int_0^\infty e^{-s(1+\xi^2)} s^{\frac{\alpha}{2}} \frac{\mathrm{d}s}{s}.$$
 (3.11)

.

It implies

$$\hat{G}_{\alpha}(x) = \frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{\alpha}{2}\right)} \int_{0}^{\infty} e^{-s - \frac{x^{2}}{4s}} s^{\frac{\alpha - n}{2}} \frac{\mathrm{d}s}{s}$$

Hence \hat{G}_{α} is positive. If $0 < \alpha < n$, then

$$\hat{G}_{\alpha}(x) \le I_{\alpha}(x).$$

This gives the first inequality in (2).

For $\alpha = n$

$$\int_0^\infty e^{-s - \frac{x^2}{s}} \frac{ds}{s}$$

$$\leq \int_0^{|x|} e^{-\frac{x^2}{s}} \frac{ds}{s} + \int_{|x|}^\infty e^{-s} \frac{ds}{s}$$

$$= 2 \int_{|x|}^\infty e^{-s} \frac{ds}{s}$$

$$= 2 \left(e^{-|x|} \log |x| + \int_{|x|}^\infty e^{-s} \log s ds \right)$$

Finally, for $\alpha > n$ the integrand in the formula for \hat{G}_{α} is integrable uniformly in x. This ends the proof of (2).

By the inversion formula for the Fourier transformation,

$$\int \hat{G}_{\alpha}(x) dx = (2\pi)^n (1+\xi^2)^{-\frac{\alpha}{2}} \Big|_{\xi=0}$$

Hence $\hat{G}_{\alpha} \in L^1$. Together with (2), this implies (3). \Box

Theorem 3.9 Let $1 \le p, r \le \infty$. We have the inequality

$$\left(f|(1-\Delta)^{-\frac{\alpha}{2}}h\right) \le c||f||_p ||h||_r$$

in the following cases:

Let n < α. For 1 ≤ ¹/_p + ¹/_r,
 Let α = n. For 1 ≤ ¹/_p + ¹/_r, except for the case p = r = 1,
 0 < α < n. For 1 ≤ ¹/_p + ¹/_r ≤ 1 + ^α/_n except for p = 1, r = ⁿ/_α and p = ⁿ/_α, r = 1.

Theorem 3.10 Let $1 \le q, r \le \infty$. We have the inequality

$$\|(1-\Delta)^{-\frac{\alpha}{2}}h\|_q \le c\|h\|_r$$

in the following cases:

- (1) If $n < \alpha$, for $0 \le \frac{1}{q} \le \frac{1}{r} \le 1$.
- (2) If $\alpha = n$, for $0 \le \frac{1}{q} \le \frac{1}{r} \le 1$ except for the case $\frac{1}{r} = 1$, $\frac{1}{q} = 0$,
- (3) If $0 < \alpha < n$, for $0 \le \frac{1}{q} \le \frac{1}{r} \le \frac{1}{q} + \frac{\alpha}{n}$, except for $\frac{1}{q} = 0$, $\frac{1}{r} = \frac{\alpha}{n}$ and $\frac{1}{q} = 1 \frac{\alpha}{n}$, $\frac{1}{r} = 1$.

Theorem 3.11 The inequality

$$\|g\|_q^2 \le c(g|(1-\Delta)g)$$

is valid in the following cases:

- (1) If n = 1, for $2 \le q \le \infty$.
- (2) If n = 2, for $2 \le q < \infty$
- (3) If $n \ge 3$, for $2 \le q \le 2n/(n-2)$.

3.5 Schrödinger operators

Theorem 3.12 We have

$$\left(g|(-\Delta+V(x))g\right) \ge -c||g||^2$$

in the following cases:

- (1) If n = 1, for $V_{-} \in L^{1} + L^{\infty}$.
- (2) If n = 2, for $V_{-} \in L^{t} + L^{\infty}$, 1 < t.
- (3) If $n \ge 3$, for $V \in L^{n/2} + L^{\infty}$.

Proof. Consider eg. (1). It is enough to assume that $V \leq 0$. Let $V_{\infty} = \max(R, V), V_1 = V - V_{\infty}$. We have

$$(g|(-\Delta+V)g) \ge \frac{1}{c} ||g||_{\infty}^{2} - C||g||_{2}^{2} - ||V_{1}||_{1} ||g||_{\infty}^{2}$$

By choosing R big enough we can make $||V_1||_1$ small enough. \Box

Theorem 3.13

$$-\Delta + \frac{c}{|x|^2} \ge 0$$

iff $c \ge -\frac{(n-2)^2}{4}$. Otherwise it is unbounded from below.

Proof. First consider n = 1. Then

$$(f|Hf) = (f|(-\partial_x^2 - \frac{1}{4x^2})f) = ||(\partial_x - \frac{1}{2x})f||^2 \ge 0.$$

This proves \Leftarrow .

To prove \Rightarrow we first note that if $f_{\lambda}(x) := \lambda^{\frac{n}{2}} f(\lambda x)$, then

$$(f_{\lambda}|Hf_{\lambda}) = \lambda^2(f|Hf).$$

Thus to prove that H is not bounded from below, it is enough to find f with (f|Hf) < 0, which is easy. To get the case of the general n, we use the spherical coordinates:

$$-\Delta = -\partial_r^2 - \frac{n-1}{r}\partial_r - \frac{\Delta_\omega}{r^2},$$

where Δ_{ω} is the Laplace-Beltrami operator on the sphere, which is negative. Now, setting $\phi(r,\omega) = r^{(n-1)/2}\psi(r,\omega)$,

$$\begin{split} &\int \psi(r,\omega)r^{n-1}(-\partial_r^2 - \frac{n-1}{r}\partial_r)\psi(r,\omega)\mathrm{d}r\mathrm{d}\omega \\ &= \int \overline{\phi}(r,\omega)\Big(-(\partial_r - \frac{n-1}{2r})^2 - \frac{n-1}{r}(\partial_r - \frac{n-1}{2r})\Big)\phi(r,\omega)\mathrm{d}r\mathrm{d}\omega \\ &= \int \overline{\phi}(r,\omega)\Big(-\partial_r^2 + \frac{(n-2)^2}{4r^2} - \frac{1}{4r^2})\Big)\phi(r,\omega)\mathrm{d}r\mathrm{d}\omega. \end{split}$$

4 Momentum in one dimension

4.1 Momentum on the line

The equation

$$U(t)f(x) := f(x-t), \quad f \in L^2(\mathbb{R}), \quad t \in \mathbb{R}$$

defines a unitary strongly continuous group on $L^2(\mathbb{R})$. Let the momentum operator D be defined by

$$U(t) = e^{-itD}.$$

Theorem 4.1 (1) D is a self-adjoint operator.

(2) The integral kernel of $(z - D)^{-1}$ equals

$$R(z, x, y) = \begin{cases} -\mathrm{i}\theta(x - y)\mathrm{e}^{iz(x - y)}, & \mathrm{Im}z > 0, \\ +\mathrm{i}\theta(y - x)\mathrm{e}^{iz(x - y)}, & \mathrm{Im}z < 0. \end{cases}$$

where θ is the Heavyside function

(3) $\text{Dom}D \subset C_{\infty}(\mathbb{R})$ and $\text{Dom}D \ni f \mapsto f(x) \in \mathbb{C}$ is a continuous functional.

(4) $\{f \in L^2(\mathbb{R}) \cap C^1(\mathbb{R}) : f' \in L^2(\mathbb{R})\} \subset \text{Dom}D \text{ and for } f \text{ in this space}$

$$Df(x) := \frac{1}{i} \partial_x f(x). \tag{4.12}$$

,

(5) If $f \in \text{Dom}D$ and $Df \in C(\mathbb{R})$, then $f \in C^1(\mathbb{R})$ and (4.12) Is true.

(6) $C^{\infty}_{c}(\mathbb{R})$ is an essential domain of D.

(7) $\operatorname{sp} D = \mathbb{R}$.

(8) $\operatorname{sp}_{\mathbf{p}} D = \emptyset$.

(9) If $f \in \text{Dom}D$ and f = 0 on]a, b[, then Df = 0 on]a, b[.

Proof. (2) For Im z > 0

$$(z-D)^{-1} = -\mathrm{i} \int_0^\infty \mathrm{e}^{\mathrm{i}zt} U(t) \mathrm{d}t.$$

Hence

$$(z-D)^{-1}f(x) = -\mathrm{i}\int_0^\infty \mathrm{e}^{\mathrm{i}zt}f(x-t)\mathrm{d}t = -\mathrm{i}\int_{-\infty}^\infty \mathrm{e}^{\mathrm{i}(x-y)z}\theta(x-y)f(y)\mathrm{d}y.$$

For Imz < 0 we can use

$$(z - D)^{-1*} = (\overline{z} - D)^{-1}.$$

(3) Dom $D = \text{Ran}(i - D)^{-1}$. Now $(i - D)^{-1}$ is the convolution with $-i\theta(x)e^{-|x|}$, which belongs to $L^2(\mathbb{R})$. The convolution of two $L^2(\mathbb{R})$ functions belongs to $C_{\infty}(\mathbb{R})$.

(4) First let $f \in C^1_c(\mathbb{R})$. Then

$$t^{-1}(f(x+t) - f(x)) = t^{-1} \int_{x}^{x+t} f'(y) \mathrm{d}y.$$

f' is uniform continuous. Hence we will find $t_0 > 0$ such that for $|y_1 - y_2| < t_0$, we have $|f'(y_1) - f'(y_2)| < \epsilon$. Therefore, for $|t| < t_0$

$$|t^{-1}(f(x+t) - f(x)) - f'(x)| < \epsilon$$

Using the compactness of the support of f we obtain that $t^{-1}(f(x+t) - f(x)) - f'(x) \to 0$ in $L^2(\mathbb{R})$. Thus $C_c^1(\mathbb{R}) \subset \text{Dom}D$ and (4.12) is true on this subspace.

If $f \in L^2(\mathbb{R}) \cap C^1(\mathbb{R})$ and $f' \in L^2(\mathbb{R})$, then choose $j \in C_c^{\infty}(\mathbb{R})$ such that j = 1 on a neighborhood of zero. Set $j_r(x) := j(x/r)$. Then $j_r f \in C_c^1$, hence $Dj_r f = -i\partial_x j_r f$. We easily check that $j_r f \to f$ and $Dj_r f \to -i\partial_x f$ in $L^2(\mathbb{R})$. Hence, by the closedness of D we get $Df = -i\partial_x f$. (5) Let $f \in Dem D$, $a \in C(\mathbb{R})$ and Df = a. Let $x \in \mathbb{R}$, $x \ge 0$. Set h := 1.

(5) Let $f \in \text{Dom}D$, $g \in C(\mathbb{R})$ and Df = g. Let $x \in \mathbb{R}$, r > 0. Set $h := 1_{[x,x+r]}$. Then

$$\begin{aligned} t^{-1}(h|U(t)f - f) &= t^{-1} \int_{x-t}^{x+r-t} f(y) \mathrm{d}y - t^{-1} \int_{x}^{x+r} f(y) \mathrm{d}y \\ &= -t^{-1} \int_{x+r-t}^{x+r} f(y) \mathrm{d}y + t^{-1} \int_{x-t}^{x} f(y) \mathrm{d}y \to -f(x+r) + f(x). \end{aligned}$$

Therefore

$$\mathbf{i}(h|g) = \mathbf{i} \int_{x}^{x+r} g(y) \mathrm{d}y = -f(x+r) + f(x).$$

Hence, using the continuity of g,

$$\lim_{r \to 0} \frac{f(x+r) - f(x)}{r} = -\mathrm{i}g(x).$$

(7) Let $k \in \mathbb{R}$. Consider $f_{\epsilon,k} = \sqrt{\pi\epsilon} e^{-\epsilon x^2 + ikx}$. Then $||f_{\epsilon,k}|| = 1$, $f_{\epsilon,k} \in \text{Dom}D$ and $(k-D)f_{\epsilon,k} \to 0$ as $\epsilon \to 0$. Hence $k \in \text{sp}D$.

(8) Suppose that $f \in \text{Dom}D$ and Df = kf. Clearly, $f \in \text{Dom}D^2$. Hence, by Theorem 4.2, $f \in C^1(\mathbb{R})$ and $Df = -i\partial_x f = kf$. It is well known that the only solution is $f = ce^{ikx}$, which does not belong to $L^2(\mathbb{R})$.

(9) is obvious for $f \in C^1_c(\mathbb{R})$. It extends by density.

4.2 Sobolev spaces in one dimension

Let $L^2_{\alpha}(\mathbb{R})$ be the scale of spaces associated with D. This means in particular, that $L^2_n(\mathbb{R}) = \text{Dom}D^n$.

Theorem 4.2 $L^2_{n+1}(\mathbb{R}) \subset C^n(\mathbb{R})$ and $L^2_{n+1}(\mathbb{R}) \ni f \mapsto f^{(j)}(x)$ for $j = 0, \ldots, n-1$ are continuous functionals depending continuously on $x \in \mathbb{R}$.

Proof. We use induction. The step n = 0 was proven in Theorem 4.1 (3).

Suppose that we know that $L^2_{n+1}(\mathbb{R}) \subset C^n(\mathbb{R})$. Let $f \in L^2_{n+2}(\mathbb{R})$. Then $(i - D)f = g \in L^2_{n+1}(\mathbb{R})$. Clearly, $L^2_{n+2}(\mathbb{R}) \subset L^2_{n+1}(\mathbb{R})$ hence $f \in C^n(\mathbb{R})$. Likewise, $g \in C^n(\mathbb{R})$, by the induction assumption. Now $Df = -g + if \in C^n(\mathbb{R})$. Hence, by Theorem 4.1 (5) $f \in C^{n+1}(\mathbb{R})$. \Box

Define

$$L^2_{n,\min}([0,\infty[):=\{f\in L^2_n(\mathbb{R})\ :\ f(x)=0,\ x<0\}$$

Define $L^2_{n,\min}(]-\infty,0]$ in a similar way.

Theorem 4.3 (1) $L^2_{n,\min}([0,\infty[) \text{ is orthogonal to } L^2_{n,\min}(]-\infty,0]).$

(2) The codimension of

$$L_{n,\min}^2(]-\infty,0]) \oplus L_{n,\min}^2([0,\infty[))$$
 (4.13)

equals n.

(3) (4.13) equals

{
$$f \in L_n^2(\mathbb{R})$$
 : $f^{(j)}(0) = 0, \ j = 0, \dots, n-1$ }.

- (4) D maps $L^2_{n,\min}([0,\infty[) \text{ into } L^2_{n-1,\min}([0,\infty[).$
- (5) $L_{n+1,\min}([0,\infty[) \subset L_{n,\min}([0,\infty[)$
- (6) $L^2_{0,\min}([0,\infty[) = L^2([0,\infty[).$

We define

$$L^2_{n,\max}([0,\infty[):=L^2_n(\mathbb{R})\ominus L^2_{n,\min}(]-\infty,0]).$$

Theorem 4.4 (1) $L^2_{n,\min}([0,\infty[) \text{ is a subspace of } L^2_{n,\max}([0,\infty[) \text{ of codimension } n.$

(2) $L^2_{n,\min}([0,\infty[) equals$

$$\{f \in L^2_{n,\max}([0,\infty[) : f^{(j)}(0) = 0, j = 0, \dots, n-1)\}.$$

- (3) D maps $L^2_{n,\max}([0,\infty[) \text{ into } L^2_{n-1,\max}([0,\infty[).$
- (4) $L_{n+1,\max}([0,\infty[) \subset L_{n,\max}([0,\infty[)$
- (5) $L^2_{0,\max}([0,\infty[) = L^2([0,\infty[).$

4.3 Momentum on the half-line

Define D_{\max} as an operator on $L^2([0,\infty[)$ equal to the restriction of D to $L^2_{1,\max}([0,\infty[)$. Likewise, define D_{\min} as an operator on $L^2([0,\infty[)$ equal to the restriction of D to $L^2_{1,\min}([0,\infty[)$.

Theorem 4.5 (1) $D_{\min} \subset D_{\max}$, $D^*_{\min} = D_{\max}$, $D^*_{\max} = D_{\min}$

(2) The operators D_{\min} and $-D_{\max}$ are m-dissipative (in particular, they are closed); the operator D_{\min} is hermitian.

(3) $\operatorname{sp}_{p}D_{\max} = {\operatorname{Im} z > 0}, \quad \operatorname{sp}_{p}D_{\min} = \emptyset;$

$$D_{\max} e^{izx} = z e^{izx}, \quad e^{izx} \in \text{Dom}D_{\max}, \quad \text{Im}z > 0,$$
 (4.14)

- (4) $\operatorname{sp} D_{\max} = \{\operatorname{Im} z \ge 0\}, \operatorname{sp} D_{\min} = \{\operatorname{Im} z \le 0\};$
- (5) The integral kernels of $(z D_{max})^{-1}$ and $(z D_{min})^{-1}$ are equal

$$R_{\max}(z, x, y) = i\theta(y - x)e^{iz(x-y)}, \text{ Im}z < 0.$$

$$R_{\min}(z, x, y) = -i\theta(x - y)e^{iz(x-y)}, \text{ Im}z > 0.$$

(6) The semigroups generated by these operators:

$$e^{itD_{\max}}f(x) = f(x+t), \quad t \ge 0.$$
$$e^{-itD_{\min}}f(x) = \begin{cases} f(x-t), & x \ge t \ge 0.\\ 0, & t > x, \end{cases}$$

4.4 Momentum on an interval I

We define $L^2_{n,\max}([-\pi,\pi])$ and $L^2_{n,\min}([-\pi,\pi])$ modifying in the obvious way the definitions of Subsection 4.2.

Define D_{max} as an operator on $L^2([-\pi,\pi])$ equal to the restriction of D to $L^2_{1,\max}([-\pi,\pi])$. Likewise, define D_{\min} as an operator on $L^2([-\pi,\pi])$ equal to the restriction of D to $L^2_{1,\min}([-\pi,\pi])$.

Theorem 4.6 (1) $D_{\min} \subset D_{\max}, D^*_{\min} = D_{\max}, D^*_{\max} = D_{\min}$

- (2) The operators D_{\min} and D_{\max} are closed; the operator D_{\min} is hermitian.
- (3) $\operatorname{sp}_{p}D_{\max} = \mathbb{C}, \quad \operatorname{sp}_{p}D_{\min} = \emptyset;$ $D_{\max}e^{izx} = ze^{izx}, \quad e^{izx} \in \operatorname{Dom}D_{\max}, \quad z \in \mathbb{C},$
- (4) $\operatorname{sp} D_{\max} = \mathbb{C}, \operatorname{sp} D_{\min} = \mathbb{C};$

4.5 Momentum on an interval II

Let $\kappa \in \mathbb{C}$. Let the operator D_{κ} on $L^2([-\pi,\pi])$ be defined as the restriction of D_{\max} to

$$Dom D_{\kappa} = \{ f \in L^2_{1,\max}([-\pi,\pi]) : e^{i2\pi\kappa} f(-\pi) = f(\pi) \}.$$

Theorem 4.7 (1) $D_{\kappa}^* = D_{\overline{\kappa}}, \quad D_{\kappa} = D_{\kappa+1}.$

- (2) $D_{\min} \subset D_{\kappa} \subset D_{\max}$.
- (3) Operators D_{κ} are closed and for $\kappa \in \mathbb{R}$ self-adjoint.
- (4) $\operatorname{sp} D_{\kappa} = \operatorname{sp}_{\mathrm{p}} D_{\kappa} = \mathbb{Z} + \kappa,$

$$D_{\kappa} \mathrm{e}^{\mathrm{i}(n+\kappa)x} = (n+\kappa)\mathrm{e}^{\mathrm{i}(n+\kappa)x}, \ n \in \mathbb{Z}.$$

(5) The integral kernel of $(z - D_{\kappa})^{-1}$ equals

$$R_{\kappa}(z,x,y) = \frac{1}{2\sin\pi(z-\kappa)} \left(e^{-i(z-\kappa)\pi} e^{iz(x-y)} \theta(x-y) + e^{i(z-\kappa)\pi} e^{iz(x-y)} \theta(y-x) \right).$$

(6) The group generated by iD_{κ} equals

$$e^{itD_{\kappa}}\phi(x) = e^{i\pi n\kappa}\phi(x+t), \quad (2n-1)\pi < x+t < (2n+1)\pi.$$

(7) The operators D_{κ} are similar to one another up to an additive constant:

$$\mathrm{Dom}D_{\kappa} = \mathrm{e}^{\mathrm{i}\kappa x}\mathrm{Dom}D_{0}, \quad D_{\kappa} = \mathrm{e}^{\mathrm{i}\kappa x}D_{0}\mathrm{e}^{-\mathrm{i}\kappa x} + \kappa.$$
(4.16)

(4.15)

4.6 Momentum on an interval III

Let the operator $D_{\pm i\infty}$ on $L^2([-\pi,\pi])$ be defined as the restriction of D_{\max} to

Dom
$$D_{\pm i\infty} = \{ f \in L^2_{1,\max}([-\pi,\pi]) : f(\pm\pi) = 0 \}.$$

Theorem 4.8 (1) $D^*_{\pm i\infty} = D_{\mp i\infty}$.

- (2) $D_{\min} \subset D_{\pm i\infty} \subset D_{\max}$.
- (3) The operators $D_{\pm i\infty}$ are closed.
- (4) $\operatorname{sp} D_{\pm i\infty} = \emptyset$.
- (5) The integral kernel of $(z D_{\pm i\infty})^{-1}$ equals

$$R_{\pm i\infty}(z, x, y) = \pm i e^{i z(x - y \pm \pi)} \theta(\pm y \mp x), \quad z \in \mathbb{C}.$$

(6) $\pm iD_{\pm i\infty}$ generate the semigroups of contractions for $t \ge 0$:

$$\mathrm{e}^{\pm \mathrm{i}t D_{\mathrm{i}\infty}} f(x) = \begin{cases} f(x\pm t), & |x\pm t| \le \pi, \\ 0 & |x\pm t| > \pi. \end{cases}$$

5 Laplacian

5.1 Laplacian on the line

The operator D^2 on $L^2(\mathbb{R})$ will be denoted $-\Delta$. Thus $\text{Dom}(-\Delta) = L_2^2(\mathbb{R})$.

Theorem 5.1 (1) $-\Delta$ is a positive self-adjoint operator.

- (2) $\operatorname{sp}(-\Delta) = [0, \infty[.$
- (3) The integral kernel of $(k^2 \Delta)^{-1}$, for Rek > 0, equals

$$R(k, x, y) = \frac{1}{2k} \mathrm{e}^{-k|x-y|}.$$

(4) The integral kernel of $e^{t\Delta}$ equals

$$K(t, x, y) = (4\pi t)^{-\frac{1}{2}} e^{-\frac{(x-y)^2}{4t}}.$$

- (5) $\operatorname{sp}_{\mathbf{p}}(-\Delta) = \emptyset$.
- (6) $\{f \in C^2(\mathbb{R}) \cap L^2(\mathbb{R}) : f', f'' \in L^2(\mathbb{R})\}$ is contained in $\text{Dom}(-\Delta)$ and on this set

$$-\Delta f(x) = -\partial_x^2 f(x).$$

(7) $C^{\infty}_{c}(\mathbb{R})$ is an essential domain of $-\Delta$.

Proof. (3) Let $\operatorname{Re} k > 0$. Then

$$(ik - D)^{-1}(x, y) = -i\theta(x - y)e^{-k|x - y|}, \quad (-ik - D)^{-1}(x, y) = i\theta(y - x)e^{-k|x - y|}.$$

Now

$$(k^{2} - \Delta)^{-1} = (ik - D)^{-1}(-ik - D)^{-1}$$

= $(-2ik)^{-1} ((ik - D)^{-1} - (-ik - D)^{-1}).$ (5.17)

The integral kernel of (5.17) equals $(2k)^{-1}e^{-k|x-y|}$.

(4) We have

$$\mathrm{e}^{t\Delta} = (2\pi\mathrm{i})^{-1} \int_{\gamma} (z - \Delta)^{-1} \mathrm{e}^{tz} \mathrm{d}z,$$

where γ is a contour of the form $e^{-i\alpha}]0, \infty[\cup e^{i\alpha}[0,\infty[$ bypassing 0, where $\pi/2 < \alpha < \pi$. Hence

$$e^{t\Delta}(x,y) = (2\pi i)^{-1} \int_{\tilde{\gamma}} e^{-k|x-y| + tk^2} dk$$

where $\tilde{\gamma}$ is a contour of the form $e^{-i\alpha/2}[0,\infty[\cup e^{i\alpha/2}[0,\infty[$. We put k=iu and obtain

$$e^{t\Delta}(x,y) = (2\pi i)^{-1} \int_{-\infty}^{\infty} e^{-iu|x-y|-tu^2} idu$$

5.2 Laplacian on the halfline I

Define $-\Delta_{\max}$ as an operator on $L^2([0,\infty[)$ equal to the restriction of $-\Delta$ to $L^2_{2,\max}([0,\infty[)$. Likewise, define $-\Delta_{\min}$ as an operator on $L^2([0,\infty[)$ equal to the restriction of $-\Delta$ to $L^2_{2,\max}([0,\infty])$.

Theorem 5.2 (1) $-\Delta_{\min}^* = -\Delta_{\max}, \quad -\Delta_{\min} \subset -\Delta_{\max}.$

- (2) The operators $-\Delta_{\min}$ and $-\Delta_{\max}$ are closed and $-\Delta_{\min}$ is hermitian.
- (3) $\operatorname{sp}_{p}(-\Delta_{\max}) = \mathbb{C} \setminus [0, \infty[, \operatorname{sp}_{p}(-\Delta_{\min})] = \emptyset$ $-\Delta_{\max} e^{ikx} = k^{2} e^{ikx}, \ \operatorname{Im} k > 0, \quad e^{ikx} \in \operatorname{Dom}(-\Delta_{\max}).$
- (4) $\operatorname{sp}(-\Delta_{\max}) = \mathbb{C}, \operatorname{sp}(-\Delta_{\min}) = \mathbb{C}.$
- (5) $-\Delta_{\min} = D_{\min}^2$, $-\Delta_{\max} = D_{\max}^2$.

5.3 Laplacian on the halfline II

Let $\mu \in \mathbb{C} \cap \{\infty\}$,

$$Dom(-\Delta_{\mu}) = \{ f \in L^2_{2,max}([0,\infty[) : \mu f(0) = f'(0) \}.$$
(5.18)

(If $\mu = \infty$, these are the Dirichlet boundary conditions, that means f(0) = 0, if $\mu = 0$, these are the Neumann boundary conditions, that means f'(0) = 0). Let $-\Delta_{\mu}$ be the restriction of $-\Delta_{\max}$ to (5.18).

Define also the form δ_{μ} as follows. If $\mu \in \mathbb{R}$, then $\text{Dom}\delta_{\mu} = L^2_{1,\max}([0,\infty[)$ and

$$\delta_{\mu}(f,g) := \mu \overline{f(0)}g(0) + \int \overline{f'(x)}g'(x)\mathrm{d}x.$$

For $\mu = \infty$, we set $\text{Dom}\delta_{\infty} := L^2_{1,\min}([0,\infty[)$ and

$$\delta_{\infty}(f,g) := \int \overline{f'(x)} g'(x) \mathrm{d}x.$$

Theorem 5.3 (1) $-\Delta_{\min} \subset -\Delta_{\mu} \subset -\Delta_{\max}$.

$$(2) -\Delta^*_{\mu} = -\Delta_{\overline{\mu}}.$$

(3) The operator $-\Delta_{\mu}$ are generators of groups. For $\mu \in \mathbb{R} \cup \{\infty\}$ it is self-adjoint.

(4)
$$\operatorname{sp}_{p}(-\Delta_{\mu}) = \begin{cases} \{-\mu^{2}\}, & \operatorname{Re}\mu < 0; \\ \emptyset, & \operatorname{otherwise}; \\ -\Delta_{\mu}e^{\mu x} = -\mu^{2}e^{\mu x}, & \operatorname{Re}\mu < 0, & e^{\mu x} \in \operatorname{Dom}(-\Delta_{\mu}). \end{cases}$$

(5) $\operatorname{sp}(-\Delta_{\mu}) = \begin{cases} \{-\mu^{2}\} \cup [0, \infty[, & \operatorname{Re}\mu < 0, \\ -\Delta_{\mu}e^{\mu x} = -\mu^{2}e^{\mu x}, & e^{\mu x} \in \operatorname{Dom}(-\Delta_{\mu}). \end{cases}$

(6) $-\Delta_0 = D^*_{\max} D_{\max}, \quad -\Delta_\infty = D^*_{\min} D_{\min}.$

- (7) The forms δ_{μ} are closed and associated with the operator $-\Delta_{\mu}$.
- (8) Let $\operatorname{Re} k > 0$. The integral kernel of $(k^2 \Delta_{\mu})^{-1}$ is equal

$$R_{\mu}(k, x, y) = \frac{1}{2k} e^{-k|x-y|} + \frac{1}{2k} \frac{(k-\mu)}{(k+\mu)} e^{-k(x+y)},$$

in particular, for the Dirichlet boundary conditions,

$$R_{\infty}(z, x, y) = \frac{1}{2k} e^{-k|x-y|} - \frac{1}{2k} e^{-k(x+y)},$$

and for the Neumann boundary conditions

$$R_0(k, x, y) = \frac{1}{2k} e^{-k|x-y|} + \frac{1}{2k} e^{-k(x+y)}.$$

(9) The semigroups $e^{t\Delta_{\mu}}$ have the integral kernel

$$K_{\mu}(t,x,y) = (4\pi t)^{-\frac{1}{2}} e^{-\frac{(x-y)^2}{4t}} + (2\pi)^{-1} \int_{-\infty}^{\infty} \frac{iu - \mu}{iu + \mu} e^{-iu(x+y) - tu^2} du,$$

In particular, in the Dirichlet case

$$K_{\infty}(t,x,y) = (4\pi t)^{-\frac{1}{2}} e^{-\frac{(x-y)^2}{4t}} - (4\pi t)^{-\frac{1}{2}} e^{-\frac{(x+y)^2}{4t}},$$

and in the Neumann case

$$K_0(t, x, y) = (4\pi t)^{-\frac{1}{2}} e^{-\frac{(x-y)^2}{4t}} + (4\pi t)^{-\frac{1}{2}} e^{-\frac{(x+y)^2}{4t}}$$

The semigroup $e^{t\Delta_{\mu}}$ for $\mu \in \mathbb{R}$ can be used to describe the diffusion with a sink or source at the end of the halfline.

Note that for positive μ , $e^{t\Delta_{\mu}}$ preserves the pointwise positivity. If $p_t = e^{t\Delta_{\mu}} p_0$, 0 < a < b, then

$$\partial_t \int_a^b p_t(x) dx = p'(b) - p'(a).$$
$$\partial_t \int_0^a p_t(x) dx = p'(a) - \mu p(0).$$

Thus at 0 there is a sink of p with the rate μ .

Contact perturbations of the Laplacian as examples of an Aronszajn-5.4**Donoghue Hamiltonian**

Neumann Laplacian on a halfline 5.4.1

On $L^2([0,\infty[))$ we define the cosine transform

$$U_{\mathrm{N}}f(k) := \pi^{-1/2} \int \cos kx f(x) \mathrm{d}x, \quad k \ge 0.$$

Note that U_N is unitary and $U_N^2 = 1$. Let Δ_N be the Laplacian on $L^2([0, \infty[)$ with the Neumann boundary condition. Clearly,

$$-U_{\rm N}\Delta_{\rm N}U_{\rm N}^* = k^2.$$

Let $|\delta\rangle$ be the quadratic form given by

$$(f_1|\delta)(\delta|f_2) = \overline{f}_1(0)f_2(0),$$

Note that in the literature it is also denoted by δ (and thus is interpreted as a "potential").

Let (1) denote the functional on $L^2([0,\infty[)$ given by

$$(1|g) = \int g(k) \mathrm{d}k.$$

Using $\delta(x) = \pi^{-1} \int_0^\infty \cos kx dx$ we deduce that

$$U_{\rm N}|\delta)(\delta|U_{\rm N}^*=\pi^{-1}|1)(1|.$$

Then

$$U_{\rm N} \left(-\Delta_{\rm N} + \lambda |\delta\rangle(\delta| \right) U_{\rm N}^* = k^2 + \lambda \pi^{-1} |1\rangle(1)$$

is an example of an Aronszajn-Donoghue Hamiltonian of type II.

5.4.2 Dirichlet Laplacian on a halfline

On $L^2([0,\infty[))$ we define the sine transform

$$U_{\rm D}f(k) := \pi^{-1/2} \int \sin kx f(x) \mathrm{d}x, \ k \ge 0.$$

Note that $U_{\rm D}$ is unitary and $U_{\rm D}^2 = 1$

Let $\Delta_{\rm D}$ be the Laplacian on $L^2([0,\infty[)$ with the Dirichlet boundary condition. Clearly,

$$-U_{\rm D}\Delta_{\rm D}U_{\rm D}^* = k^2$$

Using $-\delta'(x) = \pi^{-1} \int_0^\infty \sin kx dx$ we deduce that

$$U_{\rm D}|\delta')(\delta'|U_{\rm D}^* = \pi^{-1}|k)(k|.$$

Here $|\delta'\rangle\langle\delta'|$ is the quadratic form given by

$$(f_1|\delta')(\delta'|f_2) = \overline{f}_1'(0)f_2'(0),$$

and (k) is the functional on $L^2([0,\infty[)$ given by

$$(k|g) = \int kg(k) \mathrm{d}k.$$

Thus

$$U_{\rm D} \left(-\Delta_{\rm D} + \lambda |\delta')(\delta'| \right) U^* = k^2 + \lambda \pi^{-1} |k\rangle (k|$$

is an example of an Aronszajn-Donoghue Hamiltonian of type III.

5.4.3 Laplacian on $L^2(\mathbb{R}^d)$ with a delta potential

On $L^2(\mathbb{R}^d)$ we consider the unitary operator $U = (2\pi)^{d/2} \mathcal{F}$, where \mathcal{F} is the Fourier transformation. Note that U is unitary.

Let Δ be the usual Laplacian. Clearly,

$$-U\Delta U^* = k^2.$$

Let $|\delta\rangle\langle\delta|$ be the quadratic form given by

$$(f_1|\delta)(\delta|f_2) = \overline{f}_1(0)f_2(0).$$

Note that again it can be also denoted by δ (and thus is interpreted as a "potential"). Let (1| denote the functional on $L^2(\mathbb{R}^d)$ given by

$$(1|g) = \int g(k) \mathrm{d}k.$$

Using $\delta(x) = (2\pi)^{-d} \int_0^\infty e^{ikx} dx$ we deduce that

$$U|\delta)(\delta|U^* = (2\pi)^{-d}|1)(1|.$$

Now

$$U\left(-\Delta + \lambda|\delta\right)(\delta|) U^* = k^2 + \lambda(2\pi)^{-d}|1)(1|$$

is an example of an Aronszajn-Donoghue Hamiltonian of type II, for d = 1 (as we have already seen). For d = 2, 3, on the other hand, it is an Aronszajn-Donoghue Hamiltonian of type III (so we need to renormalize λ). In dimension $d \ge 4$ we cannot use the renormalization procedure. This is reflected in the following theorem:

Theorem 5.4 Consider $-\Delta$ on $C_c^{\infty}(\mathbb{R}^d \setminus \{0\})$

- (1) It has the defficiency index (2,2) for d = 1.
- (2) It has the defficiency index (1,1) for d = 2,3.
- (3) It is essentially self-adjoint for $d \ge 4$.
- (4) Its Friedrichs extension equals $\Delta_{\rm D}$ for d = 1.
- (5) Its Friedrichs extension equals Δ for $d \geq 2$.

The Laplacian in d dimensions written in spherical coordinates equals

$$\Delta = \partial_r^2 + \frac{d-1}{r}\partial_r + \frac{\Delta_{\rm LB}}{r^2},$$

where Δ_{LB} is the Laplace-Beltrami operator on the sphere. For $d \geq 2$, the eigenvalues of Δ_{LB} are -l(l+d-2), for $l = 0, 1, \ldots$ For D = 1 instead of the Laplace-Beltrami operator we consider the parity operator with the eigenvalues ± 1 . We will write l = 0 for parity +1 and l = 1 for parity -1. Hence the radial part of the operator is

$$\partial_r^2 + \frac{d-1}{r}\partial_r - \frac{l(l+d-2)}{r^2}.$$

The indicial equation of this operator reads

$$\lambda(\lambda + d - 2) - l(l + d - 2) = 0$$

It has the solutions $\lambda = l$ and $\lambda = 2 - l - d$.

For $l \ge 2$ only the solutions behaving as r^l around zero are locally square integrable, the solutions behaving as r^{2-1-d} have to be discarded. For l = 0, 1 we have the following possible square integrable behaviors around zero:

$$\begin{vmatrix} l = 0 & l = 1 \\ \hline d = 1 & r^0, r^1 & r^0, r^1 \\ d = 2 & r^0, r^0 \ln r & r^1 \\ d = 3 & r^0, r^{-1} & r^1 \\ d \ge 4 & r^0 & r^1 \end{vmatrix}$$

In particular, in dimension d = 2, apart from the usual Laplacian we have a family of self-adjoint extensions of the operator considered in (5.4) with the behavior of elements in the domain in zero given by $c\ln(r/a)$. In dimension d = 3, apart from the usual Laplacian we have an analogous family with $c(1 - \frac{a}{r})$. The parameter a is called the *scattering length*.

6 Operators on a lattice

6.1 Schrödinger operator on a lattice

Fix a real function $\mathbb{Z} \ni n \mapsto V_n$ and define the operator H on $l^2(\mathbb{Z})$

$$(Hf)_n = f_{n-1} + f_{n+1} + V_n f_n.$$

H is called a discrete Schrödinger operator.

Assume in addition that $V_{n+q} = V_n$. Then we can partly diagonalize H by applying the Fourier transformation. More precisely, define

$$\mathcal{F}: l^2(\mathbb{Z}) \to L^2\left(\mathbb{Z}_q \times [0, (2\pi)/q]\right)$$

by setting

$$(\mathcal{F}f)_k(\theta) := \sqrt{q/(2\pi)} \sum_{t=-\infty}^{\infty} f_{k+q+t} \mathrm{e}^{-\mathrm{i}\theta(qt+k)}.$$

Clearly, the inverse transformation equals

$$(\mathcal{F}^*f)_{k+qt} = \sqrt{q/(2\pi)} \int_0^{(2\pi)/q} f_k(\theta) \mathrm{e}^{\mathrm{i}\theta(qt+k)} \mathrm{d}\theta.$$

For $\theta \in [0, \frac{2\pi}{q}]$, introduce the operator H_{θ} on $L^2(\mathbb{Z}_q)$ by

$$(H_{\theta}f)_k := \mathrm{e}^{-\mathrm{i}\theta} f_{k-1} + \mathrm{e}^{\mathrm{i}\theta} f_{k+1} + V_k f_k.$$

Theorem 6.1 We have $(\mathcal{F}H\mathcal{F}^*f)(\theta) = H_{\theta}f(\theta)$ for almost all θ . and hence

$$\operatorname{sp} H = \bigcup_{\theta \in [0, \frac{2\pi}{q}]} \operatorname{sp} H_{\theta}$$

This implies in particular, that the spectrum will typically consist of k disjoint bands.

6.2 Harper's equation

Let $\alpha \in [0, 2\pi[$. Consider the operator H_{α} on $l^2(\mathbb{Z}^2)$

$$(H_{\alpha}f)_{n,m} = f_{n-1,m} + f_{n+1,m} + e^{-in\alpha}f_{n,m-1} + e^{in\alpha}f_{n,m+1}.$$

Note that this operator describes a particle on a 2-dimensional lattice in a magnetic field with flux α through a unit cell.

Introduce the unitary operator $\mathcal{F}: l^2(\mathbb{Z}^2) \to L^2(\mathbb{Z} \times [0, 2\pi[)$ given by

$$(\mathcal{F}f)_n(\phi) := \frac{1}{\sqrt{2\pi}} \sum_m f_{n,m} \mathrm{e}^{-\mathrm{i}m\phi}$$

with the inverse given by

$$(\mathcal{F}^*f)_{n,m} = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} f_n(\phi) \mathrm{e}^{\mathrm{i}m\phi} \mathrm{d}\phi.$$

For $\alpha, \phi \in [0, 2\pi[$ introduce the operator $H_{\alpha,\phi}$ (called sometimes Harper's operator)

 $(H_{\alpha,\phi}f)_n = f_{n-1} + f_{n+1} + 2\cos(\alpha n + \phi)f_n.$

Theorem 6.2 We have, for almost all ϕ , $(\mathcal{F}H_{\alpha}\mathcal{F}^*f)(\phi) = H_{\alpha,\phi}f(\phi)$. Hence

$$\operatorname{sp} H_{\alpha} = \bigcup_{\phi \in [0, 2\pi[} \operatorname{sp} H_{\alpha, \phi}.$$

The spectrum of H_{α} plotted as the function of α yields the famous Hofstadter butterfly. One can show that for irrational ϕ the spectrum of $H_{\alpha,\phi}$ does not depend on ϕ and is singular continuous.

References

- [LL] Lieb, E., Loss, M.: Analysis, AMS 1997
- [Ka] Kato, T.: Perturbation theory for linear operators, Springer 1966
- [RS1] Reed, M., Simon, B.: Methods of Modern Mathematics, vol. 1, Academic Press 1972
- [RS2] Reed, M., Simon, B.: Methods of Modern Mathematics, vol. 4, Academic Press 1978
- [SW] Stein, E., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, 1971
- Albeverio S., Kurasov P.: Singular perturbations of differential operators, Cambridge Univ. Press, (2000)
- [2] Aronszajn N.: On a problem of Weyl in the theory of singular Sturm-Liouville equations, Am. J. Math. 79 (1957) 597-610
- [3] Berezin F.A., Faddeev L.D.: *Remark on the Schrödinger equation with singular potential*, Dokl. Akad. Nauk. SSSR, 137 (1961) 1011-1014
- [4] Donoghue W.: On the perturbation of spectra, Comm. Pure App. Math. 18 (1965) 559-579

- [5] Friedrichs K.O.: *Perturbation of Spectra in Hilbert Space*, American Mathematical Society, Providence, (1965)
- Kiselev A., Simon B.: Rank one perturbations with infinitesimal coupling, J. Funct. Anal., 130(2) (1995) 345-356
- [10] Schweber, S.S.: An Introduction to relativistic Quantum Field Theory, Harper and Row (1962)