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1 General concepts

In this section we discuss the basic axioms of topological spaces. Special classes of topological spaces
will be considered in next sections. We assume that the reader is familiar with basic intuitions about
topological spaces and will easily fill in missing proofs. We provide only some proofs that are related to
the concept of the net and subnet, which are less intuitive.

1.1 Open and closed sets

(X, T ) is a topological space iff X is a set and T ⊂ 2X satisfies
(1) ∅, X ∈ T ;

(2) Ai ∈ T , i ∈ I, ⇒ ∪
i∈I

Ai ∈ T ;

(3) A1, . . . , An ∈ T ⇒
n
∩

i=1
Ai ∈ T .

Elements of T are called sets open in X. We will call T “a topology”.
A set A ⊂ X is called closed in X iff X\A is open.
If T , S are topologies on X, then we say that T is weaker than S iff T ⊂ S.
If T = 2X , then we say that T is discrete.
If T = {∅, X}, then we say that T is antidiscrete.
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1.2 Basis and subbasis of a topology

We say that B ⊂ 2X is a covering of X (or covers X) iff ∪
A∈B

A = X

Let (X, T ) be a topological space. Let B ⊂ 2X . We say that B is a basis of a topology T iff T equals
the family of unions of elements of B. Clearly, every basis is a covering of X.

Theorem 1.1 Let H ⊂ 2X . Then the following conditions are equivalent:
(1) the family of finite intersections of elements of H is a basis of T ;

(2) T is the least topology containing H and H covers X.

(3) T = ∩T ′ where T ′ runs over all topologies containing H and H covers X.

If H satisfies one of the above conditions, then it is called a subbasis of T .

1.3 Neighborhoods

Let x ∈ X. We say that A ⊂ X is a neighborhood of x, if there exists an open U such that x ∈ U ⊂ A.
We say that Vx ⊂ 2X is a basis of neighborhoods of x iff all element of Vx are neighborhoods of x and
for any neighborhood U of x there exists V ∈ Vx such that V ⊂ U .

1.4 Convergence

The set with a relation (I,≤) is called a directed set iff
(1) i ≤ j, j ≤ k ⇒ i ≤ k,

(2) i ≤ j, j ≤ i ⇒ i = j,

(3) for any i, j there exists k such that i ≤ k and j ≤ k.
(Some authors omit (2)).

A net in X is a directed set (I,≤) together with a map I 3 i 7→ xi ∈ X. We will write (xi)i∈I .
Let (yj)j∈J be another net.We will say that it is a subnet of (xi)i∈I iff

(1) There exists a map J 3 j 7→ i(j) ∈ I such that for any i ∈ I there exists j ∈ J such that for any
j1 ∈ J if j1 ≥ j, then i(j1) ≥ i;

(2) xi(j) = yj , j ∈ J .
(It is not necessary to assume that j 7→ i(j) is increasing).

We say that a net (xi)i∈I is convergent to x ∈ X, iff for any neighborhood U of x there exists iU ∈ I
such that if i ≥ iU , then xi ∈ U .

Theorem 1.2 If (xi)i∈I is a net convergent to x, then any of its subnets is convergent to x.

1.5 Interior and closure

Theorem 1.3 Let A,C ⊂ X. Then the following conditions are equivalent:
(1) C is the smallest closed set containing A;

(2) C = ∩C ′ where C ′ runs over all closed sets containing A;

(3) Let x ∈ X. Then x ∈ C iff for any neighborhood U of x we have U ∩A 6= ∅.
(4) For any x ∈ X choose a basis of neighborhoods of x, denoted Vx . Then x ∈ C iff for any V ∈ Vx

we have V ∩A 6= ∅.
(5) C is the set of all limits of convergent nets in A.
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Proof. (4)⇒(5) Suppose that for any V ∈ Vx we can find xV ∈ V \A. Note that Vx is a directed set.
Hence (xV )V ∈Vx is a net. Clearly, xV → x. 2

If the above conditions are satisfied then we say that C is the closure of A and we write C = Acl.

Theorem 1.4 Let A,B ⊂ X. Then the following conditions are equivalent:
(1) B is the largest open set contained in A;

(2) B = ∪B′ where B′ runs over all open sets contained in A;

(3) Let x ∈ X. Then x ∈ B iff there exists a neighborhood U of x such that U ⊂ A;

(4) For any x ∈ X choose a basis of neighborhoods of x, denoted Vx. Then x ∈ B iff there exists a
V ∈ Vx such that V ⊂ A.

(5) Let x ∈ X. Then x ∈ B iff for any net (xi)i∈I in X convergent to x there exists i0 ∈ I such that for
i ≥ i0 we have xi ∈ A;

If the above conditions are satified, then B is called the interior of A and is denoted A◦.
Clearly, A◦ = X\(X\A)cl

Example 1.5 Consider the index set I and the spaces Xi := {0, 1} with the discrete topology. Consider
X := ×

i∈I
Xi and let A ⊂ X. Elements of X can be labelled by subsets of I: in fact, if J ⊂ I, then xJ

i := 1

for i ∈ J and xJ
i = 0 otherwise. Let Xfin be the set of sequences xJ with a finite J . Then the closure of

Xfin equals X. In fact, if J ⊂ I then we take the directed set 2J
finof finite subsets of J , then (xK)K∈2J

fin

converges to xJ .

1.6 Dense sets

We say that Y ⊂ X is dense iff Y cl = X.

Theorem 1.6 Let Y be dense in X and W open in X. Then W cl = (W ∩ Y )cl.

Theorem 1.7 Let Y ⊂ X. TFAE (the following are equivalent):
(1) Y is open in Y cl.

(2) Y = A ∩B for A open and B closed.

Proof. (1)⇒(2). Take B := Y cl.
(1)⇐(2). Clearly, Y ⊂ Y cl ⊂ B. Hence, Y = A ∩ Y cl. Therefore, Y is open in Y cl. 2

If the conditions of Theorem 1.7 are satisfied, we say that Y is locally open in X.

1.7 Cluster points of a net

Theorem 1.8 Let (xi)∈I be a net and x ∈ X. Then the following conditions are equivalent:
(1) For any neighborhood U of x and i ∈ I there exists j ≥ i such that xj ∈ U ;

(2) There exists a basis of neighborhoods Vx such that for any U ∈ Vx and i ∈ I there exists j ≥ i such
that xj ∈ U .

(3) There exists a subnet (xj)j∈J convergent to x;

(4) x belongs to
∩

i∈I
{xj : j ≥ i}cl.
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If x satisfies the above conditions, then we say that it is a cluster point of the net (xi)i∈I .
Proof. (2)⇒(3) Let J := {(j, U) ∈ I × Vx : xj ∈ U}. We write (j1, U1) ≤ (j2, U2) iff j1 ≤ j2 and
U1 ⊃ U2.
Step 1. J is directed.

In fact, let (j1, U1), (j2, U2) ∈ J . There exists i ∈ I such that j1 ≤ i, j2 ≤ i. There exists U ∈ Vx such
that U ⊂ U1 ∩ U2. There exists j ∈ I such that i ≤ j and xj ∈ U . Thus (j, U) ∈ J , (j1, U1) ≤ (j, U),
j2, U2) ≤ (j, U).
Step 2. Define J 3 (j, U) 7→ j ∈ I, xj,U := xj . It is a subnet.

In fact, let i ∈ I, U ∈ Vx. There exists j ∈ I with j ≥ i and xj ∈ U . Thus (j, U) ∈ J . Now if
(j, U) ≤ (j1, U1), then j ≤ j1, and hence i ≤ j1.
Step 3. xj,U is convergent to x.

In fact, let U ∈ Vx. There exists j ∈ I with xj ∈ U . Thus (j, U) ∈ J . Now if (j, U) ≤ (j1, U1), then
x(j1,U1) = xj1 ∈ U1 ⊂ U . 2

1.8 Continuity

Let X, Y be topological spaces and f : X → Y .

Theorem 1.9 Let x0 ∈ X. TFAE:
(1) For any neighborhood V of f(x0), f−1(V ) is a neighborhood of x0;
(2) There exists a basis Vx0 of neighborhoods of x0 and a basis of neighborhoods Wf(x0) of f(x0) such

that for any W ∈ Wf(x0) there exists V ∈ Vx0 with V ⊂ f−1(W ).
(3) For any net (xi)i∈I converging to x0, the net (f(xi))i∈I converges to f(x0).

We say that f is continuous at x0 iff the conditions of the above theorem hold.

Theorem 1.10 TFAE:
(1) The function f is continuous at every x ∈ X;
(2) For any open set V ∈ Y , f−1(V ) is open.
(3) For any closed set V ∈ Y , f−1(V ) is closed.
(4) There exists a subbasis B in Y such that the preimages of elements of B are open in X.

We say that f is continuous iff the conditions of the above theorem hold.
The set of continuous functions from X to Y is denoted C(X, Y ). We will write

C(X) := C(X, C), C+(X) := C(X, [0,∞[).

Note that C(X) and C(X, R) are commutative complex/real algebras.
Let X, Y be topological spaces. Let p : X → Y be a continuous map. Then p# : C(Y ) → C(X)

defined by
(p#f)(x) := f(p(x)), x ∈ X (1.1)

is a unital homomorphism of commutative algebras.
We can also introduce Cbd(X) consisting of bounded elements of C(X). For f ∈ Cbd(X) we set

‖f‖∞ := sup
x∈X

|f(x)|. It is a norm and Cbd(X) becomes a C∗-algebra. Note that if p is as above, then p#

maps Cbd(Y ) into Cbd(X) and is a continuous ∗-homomorphism.

Theorem 1.11 p# is injective ⇐ p has a dense image.

If Y ⊂ X, Then we define

CY (X) := {f ∈ C(X) : f = 0 on Y }.

Clearly, CY (X) = CY cl(X), so it is enough to consider closed subsets Y . CY (X) is an ideal in C(X).
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1.9 Semicontinuity

Theorem 1.12 Let X be a topological space and f : X → [−∞,∞]. TFAE:
(1) For any t ∈ R, f−1(]t,∞]) is open.

(2) For any t ∈ R, f−1([−∞, t]) is closed.

(3) If (xi) is a net in X convergent to x, then f(x) ≤ lim inf
i

f(xi).

If the above conditions are satisfied, then we say that f is lower semicontinuous. We say that it is
upper semicontinuous iff −f is lower semicontinuous. Let C lsc(X, [−∞,∞]), Cusc(X, [−∞,∞]) denote
the spaces of lower and upper semicontinuous function on X.

Theorem 1.13 (1) C lsc(X, [−∞,∞]) is stable under addition and multiplication by positive numbers.

(2) The supremum of any family of lower semicontinuous functions is lower semicontinuous.

(3) The infimum of a finite family of lower semicontinuous functions is lower semicontinuous.

(4) The uniform limit of a sequence of lower semicontinuous functions is lower semicontinuous.

1.10 Basic constructions

If Y ⊂ X, and (X, T ) is a topological space, then

{A ∩ Y : A ∈ T }.

is a topology on Y called the relative topology on Y .
If (Xi, Ti)i∈I is a family of disjoint topological spaces, then ∪

i∈I
Xi is equipped with a natural topology

{ ∪
i∈I

Ai : Ai ∈ Ti}.

If (Xi, Ti)i∈I is a family of topological spaces, then we define the product topology on the Cartesian
product Π

i∈I
Xi as the topology with the subbasis

{
n
∩

j=1
π−1

i (Ui) : Ui ∈ Ti, i ∈ I},

where πi : X → Xi are the canonical projections.
Let (xj) be a net in Π

i∈I
Xi. Then xj → x iff πi(xj) → πi(x) for any i ∈ I.

Let Vi,xi be a basis of neighborhoods of xi ∈ Xi. Let x = (xi) ∈ Π
i∈I

Xi has basis of neighborhoods

consisting of Π
i∈I

Ai, where all Ai = Xi except for a finite number satisfying Ai ∈ Vi,xi

2 Compactness

2.1 Compact spaces

Let X be a topological space and Y ⊂ X. S ⊂ 2X is called a covering of Y if Y ⊂
⋃

U∈S U . S0 is called
a subcovering of S if it is a covering contained in S.

A family R ⊂ 2X is called centered iff any finite subfamily of R has a non-empty intersection.

Theorem 2.1 TFAE
(1) Every covering S of X by open sets contains a finite subcovering;
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(2) Every centered family R ⊂ 2X of closed set has a non-empty intersection;

(3) Every net in X has a cluster point.

Proof. 1.⇔2. The condition 1. can be reformulated as follows. If S is a family of open sets in X such
that for any finite subfamily S0 we have ∪

U∈S0
U 6= X, then ∪

U∈S
U 6= X. Since the complements of open

sets are closed, we immediately get 2.
2.⇒3. Set

Fi := {xj : i ≤ j}cl, i ∈ I.

The family {Fi : i ∈ I} is a centered family of closed sets. Thus ∩
i∈I

Fi is nonempty. But this is the set

of cluster points of (xi)i∈I .
2.⇐3. Let R be a centered family of closed sets. Consider the index set Σ consisting of finite subsets

of R ordered by inclusion. For any σ := {F1, . . . , Fn} ∈ Σ we choose xσ ∈
n
∩

j=1
Fj . Then, by (3), (xσ)σ∈Σ

has a cluster point x ∈ X.
Let F ∈ R. Let U be a neighborhood of x. Then there exists σ ∈ Σ such that σ = {F1, . . . , Fn},

F ≤ {F1, . . . , Fn} and xσ ∈ U . One of F1, . . . , Fn equals F , hence xσ ∈
n
∩

j=1
Fj ⊂ F . Hence F ∩ U 6= ∅.

Thus, x ∈ F cl. But F is closed. Thus x ∈ F . Consequently, x ∈ ∩
F∈R

F . 2

A space satisfying the above conditions is called compact.
A subset of a topological space is called precompact if its closure is compact.

Theorem 2.2 If f : X → Y is a continuous function and X is compact, then f(X) is compact.

Proof. If S is a covering of f(X) by open sets, then {f−1(A) : A ∈ S} is a covering of X by open sets.
We can choose a finite S1 ⊂ S, such that {f−1(A) : A ∈ S1} is a covering of X. Using the fact that
ff−1(A) = A, we see that S1 is a covering of f(X) 2

Theorem 2.3 Every closed set of a compact space is compact.

Proof. Let A be a closed set in a compact space X. If (xi)i∈I is a net in A then we can choose a subnet
(xi(j))j∈J convergent in X. Since A is closed, its limit belongs to A. 2

Theorem 2.4 If (Xi)i∈I is a family of disjoint compact spaces, then ∪
i∈I

Xi is compact iff I is finite.

Theorem 2.5 (Tikhonov) If (Xi)i∈I is a family of topological spaces, then Π
i∈I

Xi is compact iff, for

every i ∈ I, Xi is compact.

Theorem 2.6 (Dini) If X is compact, fn, f ∈ C(X, R), fn+1 ≥ fn , f = sup fn, then fn → f
uniformly.

Clearly, every finite topological space is compact.

2.2 Proof of Tikhonov’s theorem

Let W ⊂ 2X we say that W is of a finite type iff
(1) ∅ ∈ W;

(2) A ∈ W ⇔ for any finite B ⊂ A, B ∈ W.
The following lemma follows from the axiom of choice:
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Lemma 2.7 (Teichmüller-Tukey lemma) Let W be of a finite type and A ∈ W. Then there exists
M ∈ W that contains A and is maximal wrt ⊂.

Lemma 2.8 Let R0 ⊂ 2X be a centered family. Then there exists a centered family containing R0 which
is maximal wrt ⊂.

Proof. We note that the class of centered families in 2X is of the finite type and then apply Lemma 2.7.
2

Lemma 2.9 Let R ⊂ 2X be a centered family maximal wrt ⊂. Then
(1) A1, . . . , Ak ∈ R ⇒ A1 ∩ · · · ∩Ak ∈ R;

(2) A0 ∩A 6= ∅, A ∈ R ⇒ A0 ∈ R

Proof. 1. We easily see that if R is centered, A1, . . . , Ak ∈ R, then R∪ {A1 ∩ · · · ∩Ak} is centered.
2. If R is centered, satisfies 1. and A0 ∩A 6= ∅, A ∈ R, then we easily see that R∪ {A0} is centered.

2

Proof of Theorem 2.5 Let R0 be a centered family of closed subsets of X := ×
i∈I

Xi. Let πi : X → Xi

be the coordinate projections. Let R be a maximal centered family of subsets of X containing R0. For
any i ∈ I

{πi(A)cl : A ∈ R}.

is a centered family of closed subsets of Xi. Hence there exists xi ∈ ∩
A∈R

πi(A)cl. We will show that

x := (xi)i∈I ∈ ∩
A∈R0

A.

Let A ∈ R. Let Wi be a neighborhood of xi in Xi. We have πi(A)∩Wi 6= ∅. Hence π−1
i (Wi)∩A 6= ∅.

By Lemma 2.9 2., π−1
i (Wi) ∈ R. By Lemma 2.9 1., if i1, . . . , in is a finite subset of I, then

n
∩

j=1
π−1

ij
(Wij

)

belongs to R. Thus
A ∩

n
∩

j=1
π−1

ij
(Wij ) 6= ∅.

Hence x ∈ Acl. In particular, if A ∈ R0, then x ∈ A 2

2.3 One-point compactificaton

Definition 2.10 Let X be a topological space. Then XAl := X ∪ {∞} is called the one-point or Alexan-
drov compactification of X if it is equipped with the following topology: A ⊂ XAl is open in XAl, iff A∩X
is open in X and if ∞ ∈ A, then there exists a compact K ⊂ X such that A = (X\K) ∪ {∞}.

Theorem 2.11 For any space X, its one-point compactification XAl is compact. X is dense in XAl iff
X is not compact.

Proof. Let S be an open covering of XAl. Then there exists A0 ∈ S such that ∞ ∈ A0. Since A0 is
open, there exists a compact K ⊂ X such that A ⊃ X\K. Let

S ′ :=
{
A ∩X : A ∈ S

}
.

Then S ′ covers X and hence also K. We can choose a finite subcovering A1 ∩X, . . . , An ∩X of K. Then
A0, A1, . . . , An is finite subcovering of XAl. 2
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Definition 2.12 Let X be a topological space. Cc(X) is the set of continuous functions with a compact
support. C∞(X) is the set of of continuous functions on X such that for any ε > 0 there exists a compact
K ⊂ X such that |f(x)| ≤ ε on X\K.

C∞(X) can be identified with
{f ∈ C(XAl) : f(∞) = 0}.

Thus C∞(X) is a maximal ideal in C(XAl).
Cc(X) is dense in C∞(X).
Let X, Y be topological spaces and p : X → Y . We say that p is proper if the preimage of a compact

set is compact.
Note that the composition of proper maps is proper.

Theorem 2.13 Let X, Y be topological spaces and p : X → Y be continuous. TFAE:
(1) p is proper.

(2) p can be extended to a continuous map p : XAl → Y Al by setting p(∞) = ∞.

(3) p# maps C∞(Y ) into C∞(X).

(4) p# maps Cc(Y ) into Cc(X).

Example 2.14 Let X be a discrete space. Consider the space XAl. Let A ⊂ XAl. Then Acl = A if A is
finite and Acl = A ∪ {∞} otherwise.

3 Separation axioms

One can argue that the general definition of a topological space considered in the previous section is too
general and admits many pathological examples of no practical value. To my experience, in applications to
functional analysis all topological spaces are the so-called Tikhonov or T3 1

2
spaces. Especially important

in applications are normal or T4 spaces, which is a smaller class. These two concepts belong to a chain
of axioms that go under the name of separation axioms. In this section we discuss various separation
axioms. One can argue that for practical purposes we could limit ourselves just to the concept of a
Tikhonov and normal space. Nevertheless, for aesthetical, historical and pedagogical reasons we describe
the whole chain of axioms from T0 to T4. We find that a discussion of these axioms is quite a charming
intellectual exercise, even if it is essentially useless (except for T3 1

2
and T4 spaces).

The separation axioms are ordered from the weakest T0 to the strongest T4, with the exception of
the pair T2 1

2
and T3, which are not comparable with one another: not every T3 space is T2 1

2
, and, to my

knowledge, not every T2 1
2

space is T3. The name T2 1
2
-space has been introduced by us and we did not

see this class of spaces discussed in the literature.

3.1 T0 spaces

We say that a space X is T0 iff for any distinct x, y ∈ X there exist an open U such that x ∈ U and
y 6∈ U , or y ∈ U and x 6∈ U .

3.2 T1 spaces

We say that a space X is T1 iff for any distinct x, y ∈ X there exist an open U such that x ∈ U and
y 6∈ U .

Theorem 3.1 X is T1 iff all 1-element subsets of X are closed..

9



Theorem 3.2 If X is a T1 space C ⊂ X is compact and y ∈ X\C, then there exists an open sets U ⊂ X
such that

C ⊂ U, y 6∈ U.

Clearly, every T1 space is T0.

3.3 T2 or Hausdorff spaces

X is a T2 or Hausdorff space iff for any distinct x1, x2 ∈ X there exist disjoint open sets A1, A2 such that
x1 ∈ A1 and x2 ∈ A2;

Theorem 3.3 TFAE
(1) X is T2.

(2) Every net converges to at most one point.

(3) The diagonal {(x, x) : x ∈ X} is closed in X ×X

Clearly, every T2 space is T1.

Theorem 3.4 If X is Hausdorff and Y ⊂ X is compact, then Y is closed.

Proof. Let (xi)i∈I be a net in Y convergent to x ∈ X. Y is compact, hence it possesses a cluster point
in Y . Since X is Hausdorff, the cluster point is only one and equals x. Hence x ∈ Y . 2

Theorem 3.5 If X is Hausdorff and C,D ⊂ X are compact and disjoint, then there exist disjoint open
sets U, V ⊂ X such that

C ⊂ U, D ⊂ V.

Proof. Step 1 We will show that if C is compact and x ∈ X\C, then we will find disjoint open U, V
such that x ∈ U and C ⊂ V .

For any y ∈ C we will find open disjoint sets Uy, Vy such that x ∈ Uy, y ∈ Vy. Then {Vy : y ∈ C} is

an open covering of C. Let {Vy1 , . . . , Vyn
} be its finite subcovering. Then U :=

n
∩

i=1
Uyi

, V :=
n
∪

i=1
Vyi

has

the property we are looking for.
Step 2 Let C, D be compact. For any x ∈ D we will find disjoint open Ux, Vx such that x ∈ Ux,

C ⊂ Vx. Now {Ux : x ∈ D} is an open covering of D. Let {Ux1 , . . . , Uxn
} be its finite subcovering

U :=
n
∪

i=1
Uxi

, V :=
n
∩

i=1
Vxi

has the property described in the theorem. 2

3.4 T2 1
2

spaces

Let X be a T1 space. We wil call it a T2 1
2

space iff for any distinct x1, x2 ∈ X there exists f ∈ C(X)
such that f(x1) 6= f(x2).

Clearly, every T2 1
2

space is T2.

Theorem 3.6 Let X be a T2 1
2

space and C,D ⊂ X are compact and disjoint. Then there exists f ∈
C(X, [0, 1]) such that f = 0 on C and F = 1 on D.

Theorem 3.7 Let X, Y be T2 1
2

space and p : X → Y be continuous. Then

10



(1) p# is surjective ⇒ p is injective.

(2) p# is injective ⇐ the range of p is dense.

Proof. (1) ⇒ Let p be not injective. Let x1, x2 ∈ Y with p(x1) = p(x2). Then (p#f)(x1) = f(p(x1)) =
f(p(x2)) = (p#f)(x2). But there exist g ∈ C(X) such that g(x1) 6= g(x2). Hence g 6∈ p#(C(Y )) and thus
p# is not surjective.

(2) ⇐ follows from Theorem 1.11. 2

Theorem 3.8 Let X be a topological space. Define

Z := Π
f∈C(X,[0,1])

[0, 1].

Define J : X → Z by J(x) :=
(
f(x) : f ∈ C(X, [0, 1])

)
. Clearly, J is continuous. Moreover, J is

injective iff X is T2 1
2
.

3.5 T3 or regular spaces

Let X be a T1 space. It is called a T3 or regular space iff for any closed C ⊂ X and x ∈ X\C there exist
disjoint open sets U,W such that x ∈ U and C ⊂ W .

Clearly, every T3 space is T2.

Theorem 3.9 X is a T3 space iff for every x ∈ X the family of closed neighborhoods of x is a basis of
neighborhoods of x.

Theorem 3.10 If X is Hausdorff and C,D ⊂ X are disjoint, C is compact and D is closed, then there
exist disjoint open sets U, V ⊂ X such that

C ⊂ U, D ⊂ V.

Theorem 3.11 Let A ⊂ X be dense and Y be a T3 space. Let f : A → Y . Then there exists a
continuous map f̃ : X → Y extending f iff for any net (xi) in A convergent to x ∈ X there exists
limi f(xi). f̃ is then uniquely defined.

Proof. For x ∈ X set f̃(x) := limi f(xi) where (xi) is a net convergent to x. It is easy to see that the
definition is correct.

Let us show that f̃ is continuous. Let x ∈ X and let W be a closed neighborhood of f̃(x) in Y . There
exists an open neighborhood U of x in X such that f(U ∩ A) ⊂ W . For any z ∈ U , Let (zi) be a net in
V ∩A convergent to z.

f̃(z) = lim f(zi) ⊂ f(V ∩A)cl ⊂ W cl ⊂ W.

But closed neighborhoods form a basis of neighborhoods of f̃(x). 2

3.6 T3 1
2
, Tikhonov or completely regular spaces

Let X be a T1 space. It is called a T3 1
2
, Tikhonov or completely regular space iff for any closed C ⊂ X

and x ∈ X\C there exists f ∈ C(X) such that f(x) = 0 and f = 1 on C.
Clearly, every T3 1

2
space is T3 and T2 1

2
.

11



Theorem 3.12 Let X be a T3 1
2

space and C,D ⊂ X are disjoint, C is compact and D is closed. Then
there exists f ∈ C(X, [0, 1]) such that f = 0 on C and F = 1 on D.

Theorem 3.13 Let X be Tn for 0 ≤ n ≤ 3 1
2 and Y ⊂ X. Y is Tn for 0 ≤ n ≤ 3 1

2 .

Theorem 3.14 Let (Xi)i∈I be a family of disjoint topological spaces. Then, for 0 ≤ n ≤ 3 1
2 , ∪

i∈I
Xi is

Tn iff all Xi are Tn.

Theorem 3.15 Let (Xi)i∈I be a family of topological spaces. Then, for 0 ≤ n ≤ 3 1
2 , Π

i∈I
Xi is Tn iff all

Xi are Tn.

Theorem 3.16 Let X, J : X → Z be as in Theorem 3.8. Then J is a homeomorphism onto J(X) iff
X is Tikhonov.

Theorem 3.17 Let (X, T ) be a topologigal space. TFAE:
(1) X is Tikhonov.

(2) X is homeomorphic to a subset of Π
i∈I

[0, 1].

(3) If S is the weakest topology such that elements of C(X) are continuous, then S = T .

Theorem 3.18 Let X, Y be Tikhonov spaces and p : X → Y continuous. Then
(1) p# is surjective ⇒ p is injective.

(2) p# is injective iff the range of p is dense.

Proof. (1) follows from Theorem 3.7.
(2) ⇒ Let p(X) be not dense. Let y0 ∈ Y \p(X)cl. Then there exists f ∈ C(Y ) such that f = 0 on

p(X)cl and f(y0) 6= 0. Thus p#f = 0. Hence p# is not injective.
(2) ⇐ follows from Theorem 1.11. 2

Theorem 3.19 Let X be Tikhonov and f ∈ C lsc
+ (X). Then

f = sup{g ∈ C(X) : g ≤ f}.

3.7 T4 or normal spaces

Let X be a T1 space. We say that X is a T4 or normal space iff for any disjoint closed sets C1, C2 ⊂ X
there exist disjoint open U1, U2 ⊂ X such that

C1 ⊂ U1, C2 ⊂ U2;

Theorem 3.20 Let X be a T1 space. TFAE:
(1) X is normal.

(2) For any closed set C and open set W containing C, there exists an open set U such that C ⊂ U and
U cl ⊂ W .

(3) For any closed set C and open set W containing C, there exist open sets U1, U2, . . . such that
C ⊂

∞
∪

i=1
Ui and U cl

i ⊂ W .

(4) Let C1, . . . , Cn ⊂ X be disjoint and closed. Then there exist open disjoint U1, . . . , Un such that
Cj ⊂ Uj, j = 1, . . . , n;

12



(5) Let C,D ⊂ X closed disjoint. Then there exists f ∈ C+(X) such that f = 0 on C and f = 1 on D.

(6) Let A1, . . . , An ⊂ X be open and C ⊂
⋃n

j=1 Aj closed. Then there exist hj ∈ C+(X), j = 1, . . . , n
such that supp hj ⊂ Aj and

n∑
j=1

hj = 1 on C.

Remark 3.21 The implication (1)⇒(5) is called Urysohn’s lemma.

Proof. (1)⇔(2)⇒(3) is obvious.
(3)⇒(1). Let C, D be closed. Applying (3) to C, X\D we obtain sets U1, U2 . . . satisfying

C ⊂
∞
∪

i=1
Ui, U cl

i ∩D = ∅.

Applying (3) to D, X\C we obtain sets V1, V2, . . . satisfying

D ⊂
∞
∪

i=1
Vi, V cl

i ∩ C = ∅.

Set
Gi := Ui\

i
∪

j=1
V cl

j , Hi := Vi\
i
∪

j=1
U cl

j .

They are open and satisfy Gi ∩ Hj = ∅ for all i, j. Hence U :=
∞
∪

i=1
Gi and V :=

∞
∪

i=1
Hi are disjoint.

Clearly, they are open and C ⊂ U , D ⊂ V .
(1)⇒(5) We first prove by induction that for all θ = p2−n with 0 ≤ p ≤ 2n we can find an open set

Uθ such that C ⊂ Uθ, U cl ⊂ X\D and θ1 ≤ θ2 implies U cl
θ1
⊂ Uθ2 . For n = 1, 2 . . . we set

fn :=
2n∑

p=1

2−n1Up2−n .

The limit f := limn→∞ fn exists and defines a continuous function satisfying the required properties.
(5)⇒ (6) We construct the sequence kj ∈ C(X) such that

k1 = 1 on C, supp k1 ⊂
⋃n

j=1 Aj ,

. . . ,

kj+1 = 1 on supp kj\Aj , supp kj+1 ⊂
⋃n

i=j+1 Ai,

. . . ,

kn+1 = 0.

We put
hj = kj(1− kj+1).

We see that
supp hj ⊂ Aj .

We prove by induction that
h1 + . . . + hj + kj+1 = 1 on C.

2
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Theorem 3.22 (Tietze) If X is normal, C ⊂ X is a closed subset and f ∈ C(C, R), then there exists
f̃ ∈ C(X, R), which is an extension of f and sup |f | = sup f̃ .

Proof. It suffices to assume that f(C) ⊂ [−1, 1]. The sets A1 = f−1([−1,−1/3]) and B1 = f−1([1/3, 1])
are disjoint and closed in X. Hence, there exists g1 ∈ C(X, [−1/3, 1/3]), such that g1 = −1/3 on A1 and
g1 = 1/3 on B1. Note that ‖g1‖ ≤ 1/3 and ‖g1|C − f‖ ≤ 2/3.

We repeat the same construction to f − g1 obtaining a function g2. We iterate this. Thus we obtain
a sequence of functions g1, g2, . . . such that ‖gn‖ ≤ 2n−13−n and ‖

∑n
j=1 gj |C − f‖ ≤ 2n3−n. Then we set

f̃ :=
∑∞

j=1 gj . 2

4 Compact and locally compact Hausdorff spaces

From the point of view of C∗-algebras, the most important classes of topological spaces are compact
Hausdorff and locally compact Hausdorff spaces.

4.1 Compact Hausdorff spaces

Theorem 4.1 If f : X → Y is continuous and injective, X is compact Hausdorff and Y is Hausdorff,
then

f−1 : f(X) → X

is continuous.

Proof. Let F be closed in X. Then it is compact. So f(F ) is compact. Since Y is Hausdorff, f(F ) is
closed in Y . So f(F ) is closed in f(X).

Since f is injective, f(F ) = (f−1)−1(F ). Thus the preimages of closed sets wrt f−1 are closed. So
f−1 is continuous. 2

Theorem 4.2 Let (X, T ) be a compact Hausdorff space.
(1) If S is a topology weaker than T and Hausdorff, then S = T ;

(2) If S is a topology stronger than T and compact, then S = T .

Proof. Let id denote the identity map from (X, T ) to (X,S).
(1) Let S be Hausdorff and weaker than T . Then id is continuous. By Theorem 4.1, id−1 is continuous

as well. Hence S = T .
(2) Let S be compact and stronger than T . Then it is necessarily Hausdorff. Besides, id−1 is

continuous. By Theorem 4.1, so is id. Hence, S = T . 2

Theorem 4.3 Every compact Hausdorff space is normal.

Proof. Let C, D be disjoint closed sets in X. Then they are compact. Hence we can apply Theorem
3.5. 2
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4.2 Real continuous function on a compact Hausdorff space

Theorem 4.4 Let X, Y be compact Hausdorff spaces and let p : X → Y be continuous. Then
(1) p# is surjective iff p is injective.

(2) p# is injective iff p is surjective.

(3) p# is bijective iff p is bijective (in this case it is homeomorphic).

Proof. (1)⇒. follows by theorem 3.7.
(1)⇐. Let p be injective. p is a bijection from X to p(X). Hence it has a continuous inverse. Let

g ∈ C(Y ). We can define f0 on p(X) by f0(y) := g(p−1y). f0 is continuous on. By Tietze’s theorem, we
can extend it to a continuous function f on Y . Then p#f = g. Hence p# is surjective.

(2)⇒. follows by Theorem 3.18
(2)⇐. follows by Theorem 1.11. 2

Theorem 4.5 Let X be a compact Hausdorff space.
(1) Let Y be a closed subset of X. Then CY (X) is a closed ideal of C(X).

(2) Let N be a closed ideal of C(X). Set

Y := ∩
F∈N

F−1(0).

Then Y is closed and N = CY (X).
(3)

C(X)/CY (X) 3 F + CY (X) 7→ F
∣∣∣
Y
∈ C(Y )

is an isometric ∗-homomorphism.

Proof. (1) is obvious.
(2) Let N be a closed ideal.
Let F ∈ N. Then {F 6= 0} ⊂ X\Y . Therefore, Y is closed and

N ⊂ CY (X).

Let F ∈ CY (X). For any x ∈ X, we can find Gx ∈ C(X) with Gx ≥ 0, Gx(x) > 0 and
(i) if x ∈ Y , then supp Gx ⊂ {|F | < ε},
(ii) if x 6∈ Y , then Gx ∈ N.
Clearly, {Gx > 0} is an open cover of X. We can find a finite subcobver indexed by x1, . . . , xn. Set

G :=
n∑

j=1

Gxj
.

Then G(x) > 0 x ∈ X. Set

H := G−1
n∑

xj∈Y

Gxj
.

Then 0 ≤ H ≤ 1 and

1−H = G−1
n∑

xj∈X\Y

Gxj
∈ N.
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Now
F = (1−H)F + HF,

where (1−H)F ∈ N and ‖HF‖∞ < ε. Using the fact that N is closed and ε > 0 arbitrary, we see that
F ∈ N. Thus

N ⊃ CY (X),

which ends the proof of (2).
Let F0 ∈ C(X) and f := F0

∣∣∣
Y

. Clearly,

‖F0 + CY (X)‖ = inf
{
‖F‖∞ : F ∈ C(X) : f = F

∣∣∣
Y

}
≥ ‖f‖∞.

Let f ∈ C(Y ). By the Tietze theorem, there exists F ∈ C(X) such that f := F
∣∣∣
Y

. Let ε > 0 and

U := {|F | < ‖f‖∞ + ε}. Then U is open and contains Y . We will find G ∈ C(X) such that 0 ≤ G ≤ 1,
G = 1 on Y and {G 6= 0} ⊂ U . Then ‖FG‖∞ ≤ ‖f‖∞ + ε and FG

∣∣∣
Y

= f . Hence

inf
{
‖F‖∞ : F ∈ C(X) : f = F

∣∣∣
Y

}
≤ ‖f‖∞.

2

4.3 Locally compact spaces

Definition 4.6 X is locally compact iff every point in X has a compact neighborhood.

Clearly, every compact space is locally compact.

Theorem 4.7 (1) Every closed subset of a locally compact space is locally compact;

(2) Every open subset of a locally compact Hausdorff space is locally compact Hasdorff.

Proof. (1) Let F be a closed set of a locally compact space X. Let x ∈ F and let K be a compact
neighborhood of x in X. Then K ∩ F is a compact neighborhood of x in F .

(2) Let U be an open subset of a locally compact Hausdorff space X. Let x ∈ U and let K be a
compact neighborhood of x in X. Then K\U is closed in K, hence compact. Applying Theorem 3.5
to disjoint compact sets {x} and K\U we will find disjoint sets A, B open in X such that x ∈ A and
K\U ⊂ B. Then K\B is a compact neighborhood of x in U . 2

Theorem 4.8 (1) Let X be Hausdorff and Y ⊂ X be locally compact. Then Y is open in Y cl.

(2) Let X be locally compact Hausdorff. Then Y ⊂ X is locally compact iff Y is dense in Y cl.

Proof. (1) It suffices to assume that Y is dense in X. Let x ∈ X. There exists U ⊂ Y open in Y such
that x ∈ U and U cl ∩ Y is compact (U cl ∩ Y is the closure of U in Y ). Now U ⊂ U cl ∩ Y and U cl ∩ Y is
closed in X (because it is compact). Hence U cl ⊂ U cl ∩ Y , or U cl ⊂ Y .

There exists W ⊂ X open in X such that U = Y ∩W . By Theorem 1.6,

W cl = (W ∩ Y )cl = U cl ⊂ Y.

Hence, x belongs to the interior of Y .
(2) follows from (1) and Theorem 4.7 2
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Theorem 4.9 Let X be a topological space. Its one-point compactification XAl is Hausdorff iff X is a
Hausdorff locally compact space.

Proof. ⇐ Let x ∈ X. Let K be a compact neighborhood of x. Then there exists a set U ⊂ K open in
X such that x ∈ U . Then U and V := XAl\K are disjoint sets open in XAl with x ∈ U and ∞ ∈ V .

⇒. Suppose that x ∈ X. Let U, V be disjoint open subsets of XAl such that x ∈ U and ∞ ∈ V . Then
there exists a compact K ⊂ X such that K ⊃ X\V . Thus K is a compact neighborhood of x. 2

Theorem 4.10 (Tietze for locally compact Hausdorff spaces) If X is locally compact Hausdorff,
C ⊂ X is closed and f ∈ C∞(C), then there exists f̃ ∈ C∞(X), which is an extension of f and ‖f‖ = ‖f̃‖.

Proof. Consider the one-point compactification XAl of X. We have two cases:
If C is compact, then we argue as follows. XAl is normal, and C is closed in X. Hence there exists a

function g ∈ C(X, [0, 1]) such that g = 1 on C and 0 on ∞. By the Tietze Theorem for normal spaces,
there exists f1 ∈ C(XAl, R) extending f . Then we set f̃ := f1g.

If C is not compact, then we extend f to F ∈ C(C ∪{∞}, R) by setting F (∞) = 0. Clearly, C ∪{∞}
is compact, hence closed in XAl. By the Tietze theorem, we can extend F to a function F̃ ∈ C(XAl).
Then we restrict F̃ to X. 2

Theorem 4.11 Every locally compact Hausdorff space is Tikhonov.

Proof. Let X be a locally compact Hausdorff space. Then XAl is compact Hausdorff, hence Tikhonov.
But a subset of a Tikhonov space is Tikhonov. 2

Theorem 4.12 Consider the discrete spaces X and Y , where X is infinite countable and Y is infinite
uncountable. Then XAl× Y Al is Hausdorff compact, hence Z := XAl× Y Al\{(∞,∞)} is locally compact
Hausdorff. Consider the closed subsets A := X × {∞} and B := {∞} × Y . Then there do not exist
disjoint open sets U and V such that A ⊂ U and B ⊂ V . Thus Z is not normal

Proof. Let U contain X × {∞} and be open in Z. For x ∈ X, let πx be the injection of Y Al onto
XAl × Y Al sending y to (x, y). Then π−1

x (U) =: Ux is open in Y Al. We have ∞ ∈ Ux, hence Y \Ux is
finite. Therefore, ∪

x∈X
(Y \Ux) is countable. So, W := ∩

x∈X
Ux = Y \ ∪

x∈X
(Y \Ux) is uncountable. Now,

X ×W ⊂ U . Clearly, {∞} ×W ⊂ (X ×W )cl. Therefore, ∅ 6= {∞} ×W ⊂ {∞} × Y ∩ U cl. 2

4.4 Algebra of continuous functions on a locally compact Hausdorff space

Theorem 4.13 Let X be a locally compact Hausdorff space. Let ρ : C∞(X) → C∞(X) be a linear map.
Then TFAE:
(1) There exists f ∈ Cbd(X) such that

ρ(g) = fg, g ∈ C∞(X).

(2) For any g1, g2 ∈ C∞(X)
ρ(g1g2) = g1ρ(g2).

Proof. (1)⇒(2) is obvious.
(2)⇐(1). First note that if g(x) = 0, then ρ(g)(x) = 0. In fact, we can write g = g1g2 with g2(x) = 0

and ρ(g)(x) = ρ(g1)(x)g2(x) = 0. Therefore, f(x) := ρ(g)(x) with g ∈ C∞(X), g(x) = 0, defines a unique
function on X
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If U is a precompact open set, we easily check that f is continuous on U . Hence, it is continuous on
X.

If f is not bounded, then we can find a sequence of disjoint open sets U1, U2, . . . and points xi ∈ Ui with
f(xi) →∞. Then we find gi ∈ C(X, [0, 1]) with suppgi ⊂ Ui and gi(xi) = 1. Set g :=

∑∞
j=1(f(xj))−1gj .

Then g ∈ C∞(X) and ρ(g) 6∈∈ C∞(X), which is a contradiction. 2

Remark 4.14 In the algebraic language, Cbd(X) is the multiplier algebra of C∞(X).

Let (fi) be a net in Cbd(X) and f ∈ Cbd(X). We say that fi converges to f in the strict topology
if for any g ∈ C∞(X), gfi converges to gf uniformly. In other words, Cbd(X) is equipped in the locally
convex topology given by the family of seminorms pg(f) := ‖fg‖ for g ∈ C∞(X).

Theorem 4.15 Let X be locally compact Hausdorff. Then C∞(X) is dense in Cbd(X) in the strict
topology.

Proof. Let f ∈ Cbd(X). Let K be the family of compact subsets of X ordered by inclusion. For any
K ∈ K, we can find gK ∈ C∞(X) such that gK = 1 on K and 0 ≤ gK ≤ 1. We claim that the net
(fgK)K∈K converges to f . In fact, let h ∈ C∞(X). For any ε > 0, let Kε := {|h| > ε}. Then Kε is
compact and for K ∈ K, K ⊃ Kε we have

‖(fgK − f)h‖∞ ≤ ε‖f‖∞.

2

Theorem 4.16 Let X, Y be locally compact Hausdorff spaces and p : X → Y be continuous.
(1) p# is strictly continuous from Cbd(Y ) to Cbd(X).

(2) p#(C∞(Y ))C∞(X) is strictly dense in p#(C∞(Y )).

(3) p is injective ⇔ p#(C∞(Y )) is strictly dense in Cbd(X).

Proof. (1) Let g ∈ C∞(X), 0 ≤ g ≤ 1 and Kn := {|g| ≥ 2−n}. Clearly, Kn is compact, and hence so is
p(Kn). Therefore, there exists hn ∈ C∞(Y ) such that 0 ≤ hn ≤ 1, hn = 1 on p(Kn). Set

h(y) :=
∞∑

n=1

2−nhn(y).

We will show that
g(x) ≤ h(p(x)), x ∈ X. (4.2)

If x ∈ X\Kn−1, then g(x) ≤ 2−n+1. If x ∈ Kn, then 2−n+1 =
∞∑

j=n

2−j ≤ h(p(x)). Hence for x ∈

Kn\Kn−1,
g(x) ≤ 2−n+1 ≤ h(p(x)).

Now {x : g(x) 6= 0} =
∞
∪

n=1
Kn\Kn−1, (where K0 = ∅). Hence (4.2) is true. This shows that for any

g ∈ C∞(X) satisfying 0 ≤ g ≤ 1 we can find h ∈ C∞(Y ) such that

‖gp#(f)‖∞ ≤ ‖hf‖∞,

which implies the strict continuity of p#.
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(2) Let f ∈ C∞(Y ), Let (gK)K∈K be the net in C∞(X) defined in the proof of Theorem 4.15. We
will show that p#(f)gK converges strictly to p#(f).

Let h ∈ C∞(X) and Kε := {|h| ≥ ε}. Then for Kε ⊂ K,

‖(gKf ◦ p− f ◦ p)h‖∞ ≤ ε‖f‖∞.

(3)⇐. Suppose that p is not injective. Then for some distinct x1, x2 ∈ X, we have p(x1) = p(x2).
There exists h ∈ C∞(X) such that h(x1) = 0 and h(x2) = 1. There exists also g ∈ C∞(X) such that
g(x1) = g(x2) = 1, because {x1, x2} is a compact set. Thus

gh(x1) = 0, gh(x2) = 0.

Now if (fi) is a net in C∞(Y ), then

g(x1)fi ◦ p(x1) = g(x2)fi ◦ p(x2).

Thus gfi ◦ p does not converge to gh.
(3)⇒. Assume that p is injective. Let h ∈ Cbd(X). Let K be compact. Then p has a continuous

inverse from p(K) to K. So, h ◦ p−1
∣∣∣
p(K)

is continuous. So it can be extended to a function fK ∈ C∞(Y )

with
‖fK‖∞ =

∥∥∥h ◦ p−1
∣∣∣
p(K)

∥∥∥
∞
≤ ‖h‖∞.

Now let g ∈ C∞(X) and Kε := {|g| ≥ ε}. Then Kε is compact. If Kε ⊂ K, then ‖(fK ◦ p− h)g‖∞ ≤
ε2‖h‖∞. 2

Theorem 4.16 (3) is due to D. Ellwood.

4.5 Commutative C∗-algebras

Let us recall the famous Gelfand theory.
Let A be a commutative C∗-algebra. A linear map φ : A → C is called a character iff φ 6= 0,

φ(AB) = φ(A)φ(B). Let Char(A) denote the set of characters of A. For any A ∈ A, let Â : Char(A) → C
be defined by

Â(φ) := φ(A)

We equip Char(A) with the weakest topology such that Â are continuous.

Theorem 4.17 Let A be a commutative C∗-algebra. Then
(1) Char(A) is locally compact Hausdorff.

(2) A 3 A 7→ Â ∈ C∞(Char(A)) is a ∗-isomorphism.

(3) Char(A) is compact Hausdorff iff A is unital iff C∞(Char(A)) = C(Char(A)).

Let X be an arbitrary topological space. Then Cbd(X) and C∞(X) are commutative C∗-algebras. If
x ∈ X, then we set φx(f) := f(x). Clearly, φx is a character both on Cbd(X) and C∞(X).

Theorem 4.18 X 3 x 7→ φx ∈ Char(Cbd(X)) is a continuous map. It is a homeomorphism iff X is
compact Hausdorff (and then Cbd(X) = C(X)).

Theorem 4.19 X 3 x 7→ φx ∈ Char(C∞(X)) is a continuous map. It is a homeomorphism iff X is
locally compact Hausdorff.
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4.6 Morphisms of commutative C∗-algebras

Let X, Y be compact Hausdorff spaces. Let π : C(Y ) → C(X) be a unital ∗-homomorphism. x ∈ X will
be identified with the character φx ∈ Char(X), thus we will write x(g) for g(x), where g ∈ C(Y ). Set

p(x)(f) := x ◦ π(f), f ∈ C(Y ).

Then p(x) is a character on C(Y ), and thus an element of Y . (It is nonzero, because p(x)(1) = 1).

Theorem 4.20 The map p : X → Y is continuous and, in the notation of (1.1), π = p#.

Remark 4.21 By the above theorem the category of compact spaces with continuous maps as morphisms
is isomorphic to the category of commutative C∗-algebras with ∗-homomorphisms if we reverse the direc-
tion of arrows.

Now let X, Y be locally compact Hausdorff spaces. Recall that C∞(Y )un denotes the algebra C∞(Y )
with the adjoined unit, which can be identified with C(Y ∪ {∞}).

Let π : C∞(Y ) → Cbd(X) be a ∗-homomorphism. We can extend π to a unital homomorphism
πun : C∞(Y )un → Cbd(X) by setting

πun(f + λ) := π(f) + λ, f ∈ C∞(Y ), λ ∈ C.

For any x ∈ X we set
pun(x)(g) := x(π ◦ g), g ∈ C∞(Y ).

Theorem 4.22 pun : X → Y ∪ {∞} is continuous and πun = p#
un. Moreover, TFAE:

(1) pun(X) ⊂ Y , so that if we set p := pun

∣∣∣
X

, then π = p#
∣∣∣
C∞(Y )

.

(2) π(C∞(Y ))C∞(X) is dense in C∞(X).

Proof. (1)⇐(2). Suppose that pun(x0) = ∞ for some x0 ∈ X. Let g ∈ C∞(Y ). Then π#(g)(x0) =
g ◦ pun(x0) = 0. Hence for any h ∈ C∞(X), π#(g)(x0)h(x0) = 0.

Thus if f ∈ C∞(X) with f(x0) 6= 0, then f does not belong to the closure of π(C∞(Y ))C∞(X). 2

Remark 4.23 The above theorem suggests a natural category of C∗-algebras advocated by S. L. Woronow-
icz.

4.7 Stone-Čech compactification

Let X be a topological space. We denote by XStČ the set of all characters of Cbd(X). By the Gelfand
Theorem, XStČ is a compact Hausdorff space. We have the continuous map

X 3 x 7→ πx ∈ XStČ,

where πx(f) := f(x).

Theorem 4.24 Let X be Tikhonov.
(1) x → πx is a homeomorphism onto its image and the image is dense in XStČ.

(2) If Y is a compact Hausdorff space and ρ : X → Y is a continuous map, then there exists a unique
continuous extension of ρ to a map ρStČ : XStČ → Y .
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4.8 The Stone-Weierstrass Theorem

Let A be a family of functions on X. We say that it separates points of X iff for any distinct x1, x2 ∈ X
there exists f ∈ A such that f(x1) 6= f(x2).

If A is a family of complex valued functions on X, we say that A is self-adjoint if f ∈ A implies f ∈ A.

Theorem 4.25 (Stone-Weierstrass) Let X be a compact Hausdorff space
(1) Let A ⊂ C(X, R) be a closed algebra that contains constants and separates points. Then it is

uniformly dense in C(X, R).
(2) Let A ⊂ C(X) be a closed complex self-adjoint algebra that contains constants and separates points.

Then it is uniformly dense in C(X).

Define t+ := 1
2 (t + |t|).

Lemma 4.26 There exists a sequence of polynomials pn such that pn(t) → t+ uniformly on [−1, 1] and
pn(0) = 0.

Proof. For any ε > 0, s 7→ (ε2 + s)1/2 is analytic in the disc |s − 1
2 | < 1

2 + ε2. Hence, there exists
a sequence qn of polynomials converging to (ε2 + s)1/2 uniformly on [0, 1]. Hence qn(t2) converges to
(ε2 + t2)1/2 uniformly on [−1, 1]. But (ε2 + t2)1/2 − ε converges to |t| uniformly on [−1, 1] as ε → 0. 2

Lemma 4.27 Let X be a topological space and let A be a closed subalgebra of C(X). Then f, g ∈ A
implies min(f, g),max(f, g) ∈ A.

Proof. It suffices to assume that |f |, |g| ≤ 1/2. We have max(f, g) = f + (g − f)+ and |g − f | ≤ 1 Let
pn be a sequence of the previous lemma. Then pn(g − f) → (g − f)+ uniformly. 2

Proof of Theorem 4.25. (1) Let f ∈ C(X, R) and ε > 0. Let x, y ∈ X. Using the fact that A separates
points x and y and constants belong to A we see that there exists gxy ∈ A such that

gxy(x) = f(x), gxy(y) = f(y).

Define the sets

Uxy := {z ∈ X : f(z) < gxy(z) + ε}, Vxy := {z ∈ X : gxy(z) < f(z) + ε}.

Note that x, y ∈ Ux,y ∩ Vx,y.

For fixed x and variable y, the open sets Uxy cover X. We can find y1, . . . yn such that X =
n
∪

k=1
Uxyk

.

By Lemma 4.27, gx :=
n

max
k=1

gxyk
∈ Acl. Clearly, f < gx + ε. Moreover, gx(z) < f(z) + ε for z ∈ Wx :=

n
∩

k=1
Vxyk

, which is an open neighborhood of x. Varying x we obtain a covering of X by open sets Wx.

We take a finite subcover labelled by x1, . . . , xm. Now g :=
m

min
j=1

gxj satisfies g− ε < f < g + ε. Therefore,

g ∈ Acl.
(2) Let ReA := {Ref : f ∈ A}. Using Ref = 1

2 (f + f) we see that ReA ⊂ A. Using the fact that
A is stable wrt multiplication by complex numbers we see that A = ReA + iReA. We check that ReA
satisfies the assumptions of (1). Thus ReA = C(X, R). 2

Theorem 4.28 (Stone-Weierstrass for locally compact Hausdorff spaces) Let X be a locally com-
pact Hausdorff space.
(1) Let A ⊂ C∞(X, R) be a real closed algebra that separates points of X and for every x ∈ X there

exists f ∈ A with f(x) 6= 0. Then A is uniformly dense in C∞(X, R).
(2) Let A ⊂ C∞(X) be a complex closed self-adjoint algebra that separates points of X and for every

x ∈ X there exists f ∈ A with f(x) 6= 0. Then A is uniformly dense in C∞(X).
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5 Connectedness

5.1 Arcwise connected spaces

We say that X is arcwise connected iff for any x0, x1 ∈ X there exists a continuous map γ : [0, 1] → X
with γ(0) = x0, γ(1) = x1.

Theorem 5.1 Let f : X → Y be continuous and X arcwise connected. Then so is f(X).

Theorem 5.2 Let Y1, Y2 be arcwise connected subsets of X and Y1 ∩ Y2 6= ∅. Then Y1 ∪ Y2 is arcwise
connected.

Theorem 5.3 Let (Xi)i∈I be a family of arcwise connected spaces Then Π
i∈I

Xi is arcwise connected.

5.2 Connected spaces

Let X be a topological space. We say that X is connected iff the only closed open subsets of X are ∅
and X.

Theorem 5.4 Every arcwise connected space is connected.

Theorem 5.5 Let f : X → Y be continuous and X connected. Then so is f(X).

Theorem 5.6 Let (Yi)i∈I be connected subsets of X. Suppose that for any partition I = I1∪ I2 we have
∪

i∈I1
Yi ∩ ∪

i∈I2
Yi 6= ∅. Then ∪

i∈I
Yi is connected.

Theorem 5.7 Let (Xi)i∈I be a family of connected spaces Then Π
i∈I

Xi is connected.

Theorem 5.8 Let Y ⊂ X be connected. Then any set A such that Y ⊂ A ⊂ Y cl is connected.

5.3 Components

Let X be a topological space. Let x0, x1 ∈ X.
(1) We will write x0 ∼arc x1 iff there exists a continuous map γ : [0, 1] → X such that γ(0) = x0 and

γ(1) = x1.

(2) We will write x0 ∼ x1 iff there exists a connected subset Y ⊂ X such that x0, x1 ∈ Y .

(3) We will write x0 ∼q x1 iff for any Y ⊂ X closed open in X, x1 ∈ Y implies x2 ∈ Y .
We easily see that ∼, ∼q and ∼arc are equivalence relations.
We introduce the following definition:

(1) An equivalence class of ∼arc is called an arcwise connected component of X. It is a connected set.

(2) An equivalence class of ∼ is called a connected component of X.

(3) An equivalence class of ∼q is called a quasicomponent of X. It is also a closed connected set.
Clearly, every arcwise connected component is contained in a connected component, which is contained

in a connected quasicomponent.

Theorem 5.9 Let x ∈ X.
(1) The arcwise connected component of x is the union of arcwise connected subsets of X containing x.

(2) The connected component of x is equal to the union of connected subsets of X containing x.
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(3) The quasicomponent of x is the intersection of subsets closed open in X containing x.

Theorem 5.10 (1) An arcwise connected component is arcwise connected.

(2) A connected component is closed connected.

(3) A quasicomponent is closed.

(4) If X is compact Hausdorff, then connected components and quasicomponents coincide.

Proof. (4) Let X be compact and let Y be a quasicomponent. Y is closed in X, hence compact Hausdorff.
Let Y = A1 ∪ A2 be a partition into subsets closed open in Y . A1, A2 are closed in Y , hence compact
Hausdorff. Hence, they are closed in X. By the normality of X, there exist disjoint sets U1, U2 open in
X such that A1 ⊂ U1, A2 ⊂ U2.

Let (Fi)i∈I be the family of sets closed open in X such that Y ⊂ Fi. Now (X\Fi)i∈I , together with
the open set U1 ∪ U2 is an open covering of X. Hence we can choose a finite family F1, . . . Fn such that
X\F1, . . . , X\Fn and U1 ∪ U2 cover X. This means that F :=

n
∩

i=1
Fi ⊂ U1 ∪ U2. But Y ⊂ F and F is

closed open. Now F ∩ U1 and F ∩ U2 are closed open and disjoint.
By the definition of the quasicomponent, any set closed open in X and intersecting Y has to contain

Y . We have two closed open disjoint sets F ∩U1 and F ∩U2 whose union contains Y . Thus, one of them,
say, the latter, has an empty intersection with Y . Thus, Y ⊂ F ⊂ U1. Hence Y ⊂ U1. This means that
Y = A1. Hence Y is connected. 2

6 Countability axioms and metrizability

6.1 Countability axioms

Theorem 6.1 Let X be a topological space. Then TFAE
(1) X has a countable basis.

(2) X has a countable subbasis.

If the above condions are satisfied, then we say that X satisfies the second axiom of countability or
is 2nd countable.

X satisfies the first axiom of countability or is 1st countable if every point has a countable basis of
neighborhoods.

We say that X is separable iff there exists in X a countable dense subset.

Theorem 6.2 If X is 2nd countable, then it is separable and 1st countable.

Theorem 6.3 (1) Every subset of a separable space is separable.

(2) Every open subset of a 1st countable space is 1st countable.

(3) Every open subset of a 2nd countable space is 2nd countable.

Theorem 6.4 (1) If (Xn)n∈N is a sequence of disjoint 2nd countable spaces, then ∪
n∈N

Xn is 2nd count-

able.

(2) If (Xn)n∈N is a sequence of disjoint separable spaces, then ∪
n∈N

Xn is separable.

(3) If (Xi)i∈I be a sequence of disjoint 1st countable spaces, then ∪
i∈I

Xi is 1st countable .

23



Theorem 6.5 (1) If (Xn)∈N is a sequence of nonempty topological spaces, then Π
n∈N

Xn is 1st countable

iff, for every n ∈ N, Xn is 1st countable

(2) If (Xn)∈N is a sequence of nonempty topological spaces, then Π
n∈N

Xn is 2nd countable iff, for every

n ∈ N, Xn is 2nd countable

(3) If (Xn)∈N is a sequence of nonempty topological spaces, then Π
n∈N

Xn is separable iff, for every n ∈ N,

Xn is separable.

6.2 σ-compact spaces

We say that X is σ-compact if it is a countable union of compact spaces.
A subset of a topological space is called σ-precompact if its closure is σ-compact.

Theorem 6.6 If X is σ-compact, then:
(1) From every open covering of X we can choose a countable subcovering.

(2) Every closed subset of X is σ-compact

Theorem 6.7 Every locally compact, σ-compact Hausdorff space is normal.

Proof. Let E, F be disjoint closed subsets of X.
Step 1 There exists a countable open covering {A1, A2, . . .} of E such that Acl

i ∩ F = ∅. In fact, for
any x ∈ E we will find an open Ax such that x ∈ Ax and Acl

x ∩ F = ∅. Since E is σ-compact, we can
choose a countable subcovering.

Step 2 There exists a countable open covering {B1, B2, . . .} of F such that Bcl
i ∩ E = ∅.

Step 3 We set
Ãn := An\ ∪

k≤n
Bcl

k , B̃n := Bn\ ∪
k≤n

Acl
k .

Then Ãn and B̃m are disjoint for any n, m.
Step 4 We set

A :=
∞
∪

n=0
Ãn, B :=

∞
∪

n=0
B̃n.

Then A, B are disjoint open subsets of X satisfing E ⊂ A and F ⊂ B. 2

Theorem 6.8 Let X be a locally compact Hausdorff space.
(1) C∞(X) is separable ⇔ X is 2nd countable.

(2) If X is 2nd countable, then X is σ-compact.

6.3 Sequences

A sequence is a net with the index set equal to N. If (xi) is a sequence, then (yj) is a subsequence of (xi)
iff there exists an increasing map N 3 j 7→ i(j) ∈ N such that xi(j) = yj . Note that not every subnet of a
sequence is a subsequence.

Let X be a topological space and A ⊂ X. The sequential closure of A is denoted as Ascl and is defined
as the set of limits of all convergent sequences contained in A. Clearly, A ⊂ Ascl ⊂ (Ascl)scl ⊂ Acl, but
we may have proper inclusions.

We say that A is sequentially closed iff A = Ascl.
We say that a topological space X is Fréchet iff for any A ⊂ X we have Acl = Ascl.
We say that the space X is sequential iff any A ⊂ X is closed iff it is sequentially closed.
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Theorem 6.9 Consider the conditions
(1) X is 1st countable;

(2) X is Fréchet;

(3) X is sequential.
Then we have (1)⇒(2)⇒(3).

Let X, Y be topological spaces. We say that f : X → Y is sequentially continuous iff for any
convergent sequence (xn) in X we have limn→∞ f(xn) = f(x), where lim

n→∞
xn = x.

Theorem 6.10 If X is sequential, then f : X → Y is continuous iff it is sequentially continuous.

6.4 Metric and metrizable spaces

Let (X, d) be a metric space. The topology whose basis equals

{K(x, r) : x ∈ X, r > 0}

is called the topology generated by the metric. A topology T is metrizable iff there exists a metric such
that T is generated by the metric.

Theorem 6.11 Let X be a metric space.
(1) {K(x, 1/n) : n ∈ N} is a basis of neighborhoods of x. Thus metric spaces are 1st countable.

(2) If Y is a dense subset in X, then

{K(y, 1/n) : y ∈ Y, n ∈ N}

is a basis of the topology. Thus a metric space is separable iff it is 2nd countable.

Theorem 6.12 Every metrizable space is normal.

Proof. Let C,D ⊂ X be closed and disjoint. For any x ∈ C there exists rx > 0 such that K(x, r)∩D = ∅.
Set

U :=
⋃

x∈C

K(x, rx/3).

Similarly we construct V . Clearly, U and V are open and disjoint. 2

Theorem 6.13 Let X be a metrizable space. Then every closed set is δ-open.

Proof. Let C be closed. Define

Cn := {x ∈ X : d(x,C) < 1/n}.

Then Cn are open and

C =
∞⋂

n=1

Cn.

Hence C is a δ-open set. 2
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6.5 Basic constructions in metric spaces

If (X, d) is a metric space and d̃ := d(d + 1), then (X, d̃) is a metric space with a metric bounded by 1.
If Y is a subset of a metric space, then clearly Y is a metric space.
If (Xi,di) is a family of disjoint metric spaces, then we can equip ∪

i∈I
Xi with the metric

d(xi, yj) :=
{

di(xi, yj)(d(xi, xj) + 1)−1, i = j,
, i 6= j.

If (X, dX), (Y,dY ) are metric spaces d((x1, y1)(x2, y2)) := dX(x1, x2) + dY (y1, y2) defines a metric on
X × Y .

If (Xn,dn) is a countable family of metric spaces, then X := Π
n∈N

Xn is a metrizable space where the

metric can be chosen as

d(x, y) :=
∑
n=1

2−n dn(xn, yn)
dn(xn, yn) + 1

.

Theorem 6.14 Let X be a topological space. TFAE:
(1) X can be embedded in Π

n∈N
[0, 1].

(2) X is metrizable and 2nd countable.

(3) X is normal and 2nd countable.

(4) X is regular and 2nd countable.

Proof. (1)⇒(2)⇒(3)⇒(4) is clear.
Let us prove (4)⇒(3). Let X be regular and 2nd countable. Let us check Theorem 3.20 (3). Let

C ⊂ X be closed, W ⊂ X open and C ⊂ W . For every x ∈ C there exists open Ux such that x ∈ Ux and
U cl

x ⊂ W . We can find Vx in the basis such that x ∈ Vx ⊂ Ux. Since the basis is countable, the family of
sets {Vx : x ∈ X} is countable. It clearly covers C.

It remains to prove (3)⇒(1). 2

7 Completeness and complete boundedness

7.1 Completeness

Let X be a metric space. We say that a sequence (xn) in X is a Cauchy sequence iff for any ε > 0 there
exists N such that for n, m > N we have d(xn, xm) < ε. In other words, limn,m→∞ d(xn, xm) = 0.

Theorem 7.1 (1) Every convergent sequence is a Cauchy sequence.

(2) Every Cauchy sequence is bounded.

(3) If (xn) is a Cauchy sequence and it has a subsequence convergent to y, then (xn) itself is convergent
to y.

(4) Every uniformly continuous function transforms a Cauchy sequence into a Cauchy sequence.

We say that X is complete iff every Cauchy sequence is convergent.

Theorem 7.2 (1) Let X be complete and let A be a closed subset of X. Then A is complete.

(2) Let A be a complete subset of a metric space X. Then A is closed in X.

(3) If X, Y are complete, then so is X ∪ Y .
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(4) If X, Y are complete, then so is X × Y .

(5) If Xn are complete for n ∈ N, then so is Π
n∈N

Xn.

Let X, Y be metric spaces. A function p : X → Y is called uniformly continuous if for any ε > 0 there
exists δ > 0 such that if d(x1, x2) < δ, then d(p(x1), p(x2)) < ε. Clearly, every uniformly continuous
function is continuous.

p : X → Y is called an isometry iff d(p(x1), p(x2)) = d(x1, x2). Clearly, every isometry is uniformly
continuous.

Theorem 7.3 Let X, Y be complete spaces and X0 a dense subset of X. Let F0 : X0 → Y be a uniformly
continuous map, then there exists a unique continuous function F : X → Y such that F

∣∣
X0

= F0. F is
uniformly continuous. If F0 is isometric, then so is F .

Proof. If x ∈ X, then there exists a sequence (xn) in X0 converging to x. (xn) is a Cauchy sequence
and F is uniformly continuous, hence (F (xn)) is Cauchy. Because of the completeness of Y , (F (xn)) is
convergent to y ∈ Y . We set F (x) := y. Then we check that the definition does not depend on the choice
of a sequence. 2

Theorem 7.4 Let X be a metric space Then
(1) There exists a complete metric space Xcpl and an isometric map π : X → Xcpl such that π(X) is

dense in Xcpl.

(2) If Y is a complete space and F : X → Y a uniformly continuous map, then there exists a unique
continuous function F cpl : Xcpl → Y such that F cpl ◦ π = F . F cpl is uniformly continuous. If F is
isometric, then so is F cpl.

(3) If X is a subset of a complete space Z, then there exists a unique bijective isometry ρ : Xcl → Xcpl

such that ρ
∣∣
X

= π.

Proof. (1) Let M be the set of Cauchy sequences in X. We introduce in M the relation

(xn) ∼ (yn) ⇔ lim
n→∞

d(xn, yn) = 0.

We check that ∼ is an equivalence relation. We define

Xcpl := M/ ∼ .

We define in M
dM((xn), (yn)) := lim

n→∞
d(xn, yn).

We check that dM is well defined and is compatible with the relation ∼. We define

dcpl([(xn)], (yn)]) := dM((xn), (yn)).

We define
π(x) := [(x)],

where (x) denotes the constant sequence equal to x. Clearly, π is an isometry.
If (xn) ∈M, then limn→∞ π(xn) = [(xn)]. Hence, π(X) is dense in Xcpl.
(2) is a reformulation of Theorem 7.3. 2

In what follows we will treat X as a subset of Xcpl. If X is embedded in a complete space, we will
identify Xcpl with Xcl.
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7.2 Uniform convergence

Theorem 7.5 Let X be a topological space and Y be a metric space. Then
(1) if fn ∈ C(X, Y ) and fn → f uniformly, then f ∈ C(X, Y ).

(2) equipped with the metric min(sup(d(f(x), g(x)) : x ∈ X), 1), C(X, Y ) becomes a metric space.

(3) If Y is complete, then C(X, Y ) is complete.

7.3 Sequential compactness

We say that a set X is sequentially compact if from every sequence in X we can choose a convergent
subsequence.

Theorem 7.6 Every closed set of a sequentially compact space is sequentially compact.

Theorem 7.7 If (Xi)i∈I is a family of disjoint sequentially compact spaces, then ∪
i∈I

Xi is sequentially

compact iff I is finite.

Theorem 7.8 If (Xn)∈N is a (countable) family of nonempty topological spaces, then Π
n∈N

Xn is sequen-

tially compact iff, for every n ∈ N, Xn is sequentially compact.

7.4 Compactness in metric spaces

Theorem 7.9 If X is metrizable, then it is compact iff it is sequentially compact.

Theorem 7.10 If X is metric and compact then it is bounded and complete.

Theorem 7.11 Y ⊂ Rn is compact iff it is closed and bounded.

Let X be a metric space. We say that X is completely bounded iff for any ε > 0 there exist
x1, . . . , xn ∈ X such that X ⊂

n
∪

i=1
K(xi, ε)

Theorem 7.12 TFAE:
(1) X is completely bounded.

(2) Xcpl is compact.

7.5 Equicontinuity

Let X be a topological space and (Y,d) a metric space. Let A ⊂ C(X, Y ). We say that A is equicontinuous
iff for every ε > 0 and x ∈ X, there exists a neighborhood Vx,ε of x such that for every f ∈ A

y ∈ Vx,ε ⇒ d(f(x), f(y)) < ε.

Theorem 7.13 Let X be a topological space and (Y,d) a metric space. Let (fn) be an equicontinuous
sequence in C(X, Y ).
(1) Suppose that fn is pointwise convergent to f . Then f is continuous.

(2) Suppose that fn is pointwise convergent on a dense set and Y is complete. Then fn is convergent
on the whole X (and by (1) its limit is continous).
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Proof. (1) Let ε > 0 and x ∈ X. We can find a neighborhood Vx,ε of x such that x′ ∈ Vx,ε implies
d(fn(x), fn(x′)) < ε. We have limn→∞ d(fn(x), fn(x′)) = d(f(x), f(x′)) ≤ ε.

(2) Let x ∈ X. For any ε > 0 we can fnd x′ ∈ Vx,ε/3 such that lim
n→∞

fn(x′) exists. Thus there exists

N such that for any n, m > N we have d(fn(x′), fm(x′)) < ε/3 Then

d(fn(x), fm(x)) ≤ d(fn(x), fn(x′)) + d(fn(x′), fm(x′)) + d(fm(x′), fm(x)) < ε.

Thus fn(x) satisfies the Cauchy condition. 2

Theorem 7.14 (Ascoli) Suppose that X is a compact space. Let A ⊂ C(X) satisfy the following
conditions
(1) for any x ∈ X, sup{|f(x)| : f ∈ A} < ∞.

(2) A is equicontinuous
Then A is completely bounded in C(X).

Proof. Let ε > 0. The family Vx,ε covers X hence we can choose a finite subcover labelled by x1, . . . xn.
We define p : A → Cn by p(f) := (f(x1), . . . , f(xn)). Then the image of p is bounded, hence completely
bounded. This means that there exist f1, . . . , fm ∈ A such that every p(f) is at a distance less than ε
from p(fk).

Now let f ∈ A. There exists fk with |f(xi)− fk(xi)| < ε. There exists i such that x ∈ Vxi,ε. Hence

|f(x)− f(xi)| < ε, |fk(x)− fk(xi)| < ε.

Therefore, |f(x)−fk(x)| < 3ε for all x ∈ X. Thus the balls with centers at f1, . . . , , fm and radii 3ε cover
A. 2

7.6 Uniform eqicontinuity

Let (X, D), (Y,d) be metric spaces. We say hat A ⊂ C(X, Y ) is uniformly equicontinuous iff for every
ε > 0, there exists δ > 0 such that for every x ∈ X and f ∈ A

D(x, y) < δ ⇒ d(f(x), f(y) < ε.

Theorem 7.15 Let X completely bounded and (fn) a uniformly equicontinuous sequence of functions
X → Y convergent pointwise to f . Then fn is convergent uniformly to f .

Proof. Let ε > 0. We can find δ > 0 such that D(x, x′) < δ implies d(fn(x), fn(x′)) < ε/3.

Let x1, . . . , xk be a family in X such that X ⊂
k
∪

i=1
K(xi, δ). We can find N such that for i = 1, . . . , k

and n, m > N d(fn(xi), fm(xi)) < ε/3. Now if x ∈ K(xi, δ), then

d(fn(x), fm(x) ≤ d(fn(x), fn(xi)) + d(fn(xi), fm(xi)) + d(fm(xi), fm(x)) < ε.

Thus fn is Cauchy sequence in the uniform metric. We know that fn → f pointwise. Hence, fn → f
uniformly. 2
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