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Unbounded operators is a relatively technical and complicated subject. To my knowledge,
in most mathematics departments of the world it does not belong to the standard curricu-
lum, except maybe for some rudimentary elements. Most courses of functional analysis limit
themselves to bounded operators, which are much cleaner and easier to discuss.

Of course, in physics departments unbounded operators do not belong to the standard
curriculum either. However, implicitly, they appear very often in physics courses. In fact, many
operators relevant for applications are unbounded.

These lecture notes grew out of a course “Mathematics of quantum theory” given at Faculty
of Physics, University of Warsaw. The aim of the course was not only to give a general theory

of unbounded operators, but also to illustrate it with many interesting examples.
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Chapter 1

Unbounded operators on Banach spaces

1.1 Relations

One of the problems with unbounded operators is that they are not true operators. In order
to avoid confusion, it is helpful to begin with a reexamination the concepts of functions and

relations.

Let X,Y be sets. R is called a relation iff R C Y x X. We will also write R : X — Y.



(Note the inversion of the direction). An example of a relation is the identity

Ix :={(z,z) : z€ X} C X xX.

Introduce the projections
Y XX 3 (y,z) =»ay(y,z) ==y €Y,

Y XX 3 (y,z) » rx(y,x) =2 € X,

and the flip
Y x X3 (y,z)=71(y,2):=(z,y) € X XY

The domain of R is defined as Dom R := wx R, its range is Ran R = my R, the inverse of R is
definedas R"':=7RC X xY. If S C Z x Y, then the superposition of S and R is defined
as

SoR:={(z,2) € Zx X : Jyey (2,y) €5, (y,x) € R}.



If Xy C X, then the restriction of R to X is defined as

R

= RNY xX,.
Xo

If, moreover, Yy C Y, then
R

=RN YbXXo.
Xo—)YO

We say that a relation R is injective, if mx(RN{y} x X) is one-element for any y € Ran R.
We say that R is surjective if Ran R =Y.
We say that a relation R is coinjective, if my (RNY x{x}) is one-element for any = € Dom R.

We say that R is cosurjective if Dom R = X.

Proposition 1.1.1 a) If R, S are coinjective, then so is S o R.
b) If R, S are cosurjective, then so does S o R.

In a basic course of set theory we learn that a coinjective cosurjective relation is called a
function. One also introduce many synonims of this word, such as a transformation, operator,

map, etc.



To speak about ubounded operators we will need a more general concept. A coinjective

relation will be called a partial transformation (or a partial operator, etc).

We also introduce the graph of R:
GrR:={(z,y) e X xY : (y,z) € R}.

Strictly speaking Gr R = 7R. The difference between Gr R and R lies only in their syntactic
role.
Note that the order Y x X is convenient for the definition of superposition. However, it is

not the usual choice. In the sequel, instead of writing (y,x) € R, we will write y = R(x) or
(z,y) € GrR.

A superposition of partial transformations is a partial transformation. The inverse of a partial

transformation is a partial transformation iff it is injective.

A transformation (sometimes also called a total transformation) is a cosurjective partial

transformation. The composition of transformations is a transformation.

We say that a transformation R is bijective iff it is injective and surjective. The inverse of



a transformation is a transformation iff it is bijective.

Proposition 1.1.2 [et RC X xY and S C Y x X be transformations such that Ro S = 1y
and So R = 1x. Then S and R are bijections and S = R~.
1.2 Linear partial operators

Let X', ) be vector spaces.

Proposition 1.2.1 (1) A linear subspace V C X @) is a graph of a certain partial operator
iff (0,y) € V implies y = 0.

(2) A linear partial operator A is injective iff (x,0) € Gr A implies © = 0.

From now on by an “operator” we will mean a “linear partial operator’. To say that

A: X — Y is a true operator we will write Dom A = X or that it is everywhere defined.



For linear operators we will write Az instead of A(x) and AB instead of Ao B. We define

the kernel of an operator A:
KerA := {r € Dom A : Az = 0}.

Suppose that A, B are two operators X — ). Then by A + B we will mean the obvious
operator with domain Dom A N Dom B.

1.3 Closed operators

Let X', Y be Banach spaces. Recall that X & ) can viewed as a Banach space equipped with

a horm
Gz )l = [l =+ [lyll-

Actually, we can use also any other norm p on R? and replace this with p(||z]],]|y]). In

particular, in the case of Hilbert spaces it is more appropriate to use the norm

Iz, )2 = Vel + [y 1>



Anyway, all these norms are equivalent and the convergence (z,,v,) — (x,y) is equivalent to

Tp —7 X, Yp — VY.

Theorem 1.3.1 Let A: X — Y be an operator. The following conditions are equivalent:
(1) GrA is closed in X & ).
(2) If x;, —» x, x, € Dom A and Az, — y, then x € Dom A and y = Ax.

(3) Dom A with the norm
]l = [l ]l + [|Azf]

is a Banach space.

Proof. The equivalence of (1), (2) and (3) is obvious, if we note that
DomA >z +— (x,Ax) € Gr A

is a bijection. O

Definition 1.3.2 An operator satisfying the above conditions is called closed.



Theorem 1.3.3 If A is closed and injective, then so is A~

Proof. Theflprt: X®Y — Y @& X is continuous. O

Proposition 1.3.4 If A is a closed operator, then KerA is closed.

1.4 Bounded operators

We will say that A : X — ) is bounded iff there exists ¢ such as
| Az]| < el (1.4.1)

The infimum of ¢ on the right of (1.4.1) is called the norm of A and is denoted by ||A|. In

other words,
| Al == sup | Az||. (1.4.2)

|z||=1, z€Dom A

B(X,Y) will denote all bounded everywhere defined operators from X to V.

Proposition 1.4.1 A bounded operator A is closed iff Dom A is closed.



If A: X — ) is closed, then A € B(Dom A,)).

Let us quote without a proof a well known theorem:

Theorem 1.4.2 (Closed graph theorem) Let A : X — ) be a closed operator with
Dom A = X. Then A is bounded.

Proposition 1.4.3 Let £ be a densely defined linear form. The following conditions are equiv-

alent:

(1) € is closed.
(2) & is everywhere defined and bounded.
(3) € is everywhere defined and Ker¢ is closed.

1.5 Closable operators

Theorem 1.5.1 Let A: X — Y be an operator. The following conditions are equivalent:

(1) There exists a closed operator B such that B D A.



(2) (Gr A) is the graph of an operator.
(3) (0,y) € (GrA)Y = y=0.
(4) (z,) € Dom A, x, — 0, Az,, — y implies y = 0.
Definition 1.5.2 An operator A satisfying the conditions of Theorem 1.5.1 is called closable.

If the conditions of Theorem 1.5.1 hold, then the operator whose graph equals (Gr A)% is
denoted by A® and called the closure of A.

Proof of Theorem 1.5.1 To show (2)=-(1) it suffices to take as B the operator A< Let
us show (1)=>(2). Let B be a closed operator such that A C B. Then (Gr A)® c (Gr B)! =
GrB. But (0,y) € GrB = y =0, hence (0,y) € (Gr A)? = y=0. Thus (Gr A)< is the

graph of an operator. O

As a by-product of the above proof, we obtain
Proposition 1.5.3 If A is closable, B closed and A C B, then A% C B.

Proposition 1.5.4 Let A be bounded. Then A is closable, Dom A = (Dom A) and || AY|| =
1Al



Proposition 1.5.5 If A is a closable operator, then (KerA)® C KerA®

Example 1.5.6 Let V be a subspace in X and xq € X\V. Define the linear functional w such
that Domw = V + Cxg, Kerw = V and (w|xg) = 1. Then w is closable iff xg & V. In

particular, if V' is dense, then w is nonclosable.

1.6 Essential domains

Let A be a closed operator. We say that a linear subspace D is an essential domain of A iff D

is dense in Dom A in the graph topology. In other words, D is an essential domain for A, if

()" =

Theorem 1.6.1 (1) If A€ B(X,)), then a linear subspace D C X is an essential domain
for A iff it is dense in X (in the usual topology).

(2) If A is closed, has a dense domain and D is its essential domain, then D is dense in X.

(2) follows from the following fact:



Proposition 1.6.2 Let V C X be Banach spaces with ||z||x < ||z||y. Then a dense subspace

inV is dense in X .

1.7 Perturbations of closed operators

Definition 1.7.1 Let B, A: X — ). We say that B is bounded relatively to A iff Dom A C

Dom B and there exist constants a, b such that
|Bz|| < a||Az|| +b||z]|, =z € Dom A. (1.7.3)

The infimum of a satisfying (1.7.3) is called the A-bound of B. If Dom A ¢ Dom B the
A-bound of B is set 4+00.

In other words: the A-bound of B equals

ai; :=inf  sup | Bz
C>Om€DomA\{0} HA'CUH + CH.%'H

In particular, if B is bounded, then its A-bound equals 0.



If A is unbounded, then its A-bound equals 1.
In the case of Hilbert spaces it is more convenient to use the following condition to define

the relative boundedness:

Theorem 1.7.2 The A-bound of B equals

/2
. | B2 )
a; = inf  sup ( : 1.7.4
nf 5\ T+ e (L.74)

Proof. For any € > 0 we have

(JAz[]? + S|z lI”)?* < ||Az]| + ¢]|=]]
< ((1—|—€2)HASCH2+02(1—1—6_2)H£UH2>§.

U
Theorem 1.7.3 Let A be closed and let B be bounded relatively to A with the A-bound less

than 1. Then A+ B with the domain Dom A is closed. All essential domains of A are essential

domains of A + B.



Proof. We know that
|Bx|| < al|Az|| + bf|x|

for some a < 1 and 0. Hence
1(A+ B)z| + =l < (1 +a)||Az] + (1 + )|z
and
(1 = a)|Az] + llz|| < Az — [ Bz|| + (1 + b)[[=]| < [[(A+ B)zl| + (1 + b)|z]-
Hence the norms ||Az|| + ||z|| and ||[(A + B)x|| + ||z|| are equivalent on Dom A. O

In particular, every bounded operator with domain containing Dom A is bounded relatively
to A.

Proposition 1.7.4 Suppose that X = ). Then we have the following seemingly different



definition of the A-bound of B:

e | Bz||
a; := inf inf  sup :
neCc>0 z€Dom A\{0} H(A - N)xH + CHl’”

Proof. It suffices to note that

[Az]| + cllzll < (A = p)all + (1 + )]

O

Theorem 1.7.5 Suppose that A,C are two operators with the same domain Dom A =
Dom C' = D satisfying
(A = C)z|| < a(||Az|| + [|Cz]) + bl|]]

for some a < 1. Then

(1) A is closed on D iff C' is closed on D.



(2) D is an essential domain of A% iff it is an essential domain of C'.
Proof. Define B:=C — A and F(t) := A+ tB with the domain D. For 0 <t < 1, we have
|Bz| < a([[Az]| + [|C|]) + bf|]]
= a([(F(@t) = tB)x|| + [[(F(t) + (1 — 1) B)x[]) + bl[z]]
< 2a|[F(t)z| + al| Bz]| + bz

Hence

2a
Bzl < ——||F(t
| xl\_l_a\l (t)x] +

Therefore, if [s| < % and t,t + s € [0, 1], then F(t + s) is closed iff F(t) is closed. O

]

1.8 Invertible unbounded operators

Let A be an operator from X to ).

Definition 1.8.1 We say that an operator A is invertible (or boundedly invertible) iff A~ €



B(Y,X).

Note that we do not demand that A be densely defined. However, if A is invertible, then
necessarily Ran A = ).

The following criterion for the invertibility is obvious:

Proposition 1.8.2 Let C € B(Y,X) be such that RanC' C Dom A and AC = 1. Then A
is invertible and C' = A~

Theorem 1.8.3 (Closed range theorem) Let A be closed. Suppose that for some ¢ > 0
|Az|| > c||z||, = € Dom A. (1.8.5)
Then Ran A is closed. If Ran A =Y, then A is invertible and
JATH < (1.8.6)

Proof. Lety, € Ran A and y, — y. Let Ax,, = y,. Then z,, is a Cauchy sequence. Hence

there exists lim,,_,, x,, := x. But A is closed, hence Az = y. Therefore, Ran A is closed. O



Corollary 1.8.4 For an operator A, suppose that for some ¢ > 0 (1.8.5) holds.
(1) Let A be closable. Then (1.8.5) holds for A% as well.

(2) Let A be closed and Ran A be dense in Y. Then A is invertible and ||A7Y| < ¢

Theorem 1.8.5 Let A be invertible and Dom B D Dom A.
(1) B has the A-bound less than |[BA™L||.

(2) If||BA7Y| < 1, then A+ B with the domain Dom A is closed, invertible and

(A+B)! = i(—l)jA‘l(BA‘l)j.

J=0

Proof. By the estimate
|Bz| < |BA™'||[|Az|l, = € Dom A,

we see that B has the A-bound less than or equal to ||[BA™!||. This proves (1).



Assume now that ||[BA™!|| < 1. Let

Then lim C),, =: (' exists.

n—oo

Let y € Y. Clearly, lim C,y = Cy.
n—00
(A+ B)Coy =y + (=1)"(BA™)"y = y.

But A+ B is closed, hence C'y € Dom(A + B) and (A+ B)Cy =y. By Prop. 1.82, A+ B
is invertible and C = (A+ B)™!. O

Theorem 1.8.6 Let A and C' be invertible and Dom C D Dom A. Then

cl-Atlt=ctAa-0)A™".

Proposition 1.8.7 (1) Let B: X — Y be closed and bounded. Let A :Y — Z be closed.



Then AB is closed.

(2) Let C : Y — Z be closed and invertible. Let A: X — Y be closed. Then C'A is closed.

1.9 Spectrum of unbounded operators

Let A be an operator on X'. We define the resolvent set of A as
rsA:={z€C : z1— A isinvertible }.

We define the spectrum of A as spA := C\rsA.

We say that © € X is an eigenvector of A with eigenvalue A € C iff x € Dom A, x # 0
and Ar = Az. The set of eigenvalues is called the point spectrum of A and denoted sp,A.
Clearly, sp,A C spA.

Let C U {oco} denote the Riemann sphere (the one-point compactification of C). The
extended resolvent set is defined as rs™ A := rsA U {oo} if A € B(X) and rs®™'A := 134, if



A is unbounded. The extended spectrum is defined as
sp™A = CU {oo}\rs™ A.

If Ae B(X), we set (oo — A)"t =0.

Theorem 1.9.1 (1) IfrsA is nonempty, then A is closed.
(2) If zy € rSA, then {z |z = 20l < |[(z0 — A7} C rsA.
(3) lI(z — A)1 | > (dlist(z,spA))”"

(4) If A is bounded, then {|z| > ||A||} is contained in rsA.
(5) sp™*A is a compact subset of C U {o0}.
(6) If \, u € tsA, then

(Zl — A)_l — (22 — A>_1 = (ZQ — Zl)(Zl — A>_1<ZQ — A)_l.

(7) If z € rsA, then
—(z—A)t=—(z- A%



1

A)~ s analytic on rs™" A.

(

— A)”
— A)~! cannot be analytically extended to a larger subset of C U {cco} than rs®™t(A).

A) £ 0

(
Ran (z — A)™! does not depend on z € rsA and equals Dom A.

V
zZ

)
)
(10) sp™
(11)
)

(12) Ker(z — A)~! = {0}.

Proof. (1): If A € rs(A), then A — A is invertible, hence closed. A — A is closed iff A is
closed.

(2): For |z — 20| < ||(z0 — A) 7|71, we have ||(z — 29)(20 — A)"!|] < 1 Hence we can apply
Theorem 2.

By (2), dist(zo,spA) > [|(z0 — A)7!||71. This implies (3).

(4): We check that i 2z "1 A" is convergent for |z| > ||A|| and equals (z — A)~%.

n=0

(5): By (2), sp™ANC = spA is closed in C. For bounded A, sp***'A is bounded by (4).
For unbounded A, oo € sp™ A. So in both cases, sp™'A is closed inin C N {oc}.
(6) follows from Thm 1.8.6. Note that it implies the continuity of the resolvent.



(7) follows from (6).

(8) follows from (7).

(9) follows from (3).

(10): For bounded A, (z — A)~! is an analytic function tending to zero at infinity. Hence
it cannot be analytic everywhere, unless it is zero, which is impossible. For unbounded A,
0o € sp™tA.

(11) and (12) follow from (6). O

Proposition 1.9.2 Suppose that 1sA is non-empty and Dom A is dense. Then Dom A? is

dense.

Proof. Let z € rsA. (2 — A)~! is a bounded operator with a dense range and Dom A is
dense. Hence (z — A)"'Dom A is dense. A(z—A)"'Dom A = (z—A)"'ADom A C Dom A
Hence (z — A)"!Dom A C Dom A2. O

Theorem 1.9.3 Let A and B be operators on X with A C B, A # B. Then rsA C spB,
and hence rsB C spA.



Proof. Let A € rsA. Let x € Dom B\ Dom A. We have Ran (A — A) = X, hence there
exists y € Dom A such that (A — A)y = (A — B)x. Hence (A — B)y = (A — B)z. Hence
A ZrsB. O

1.10 Functional calculus

Let K C CU{oco} be compact. By Hol(K) let us denote the set of analytic functions on a
neighborhood of K. It is a commutative algebra.

More precisely, let ﬁz)/l(K) be the set of pairs (f, D), where D is an open subset of CU{oc0}
containing K and f is an analytic function on D. We introduce the relation (fi, D1) ~ (f2, D)
iff fi = f2 on a neighborhood of K contained D; N Dy. We set Hol(K) := ﬁ\o/l(K)/ ~,

Definition 1.10.1 Let A be an operator on X and f € Hol(sp™ A). Let v be a contour in a

domain of f that encircles sp®™' A counterclockwise. We define

FA) = /(z — A f(2)dz (1.10.7)

©2mi



Clearly, the definition is independent of the choice of the contour.

Note that if spA®™' is the whole Riemann sphere (or equivalently spA = C), then the

functional calculus is trivial, since Hol(CU{oo}) coincides with constant functions.
Theorem 1.10.2
Hol(sp™'A) 5 f +— f(A) € B(X) (1.10.8)
is a linear map satisfying
(1) fg(A) = (A)Q(A)f
(2) 1(A) =
(3) If A€ B(X), then id € Hol(sp™'A) forid(z) = z and id(A) = A.
(4)

4) I f(2) :=> 0" faz" is an analytic function defined by a series absolutely convergent in

a disk of radius greater than srA, then

n=0



(5) (Spectral mapping theorem). spf(A) = f(sp™*A)
(6) g € Hol(f(sp™ A)) = go f(A) = g(f(A4)),
(1) IF (AN < ey asup.e, [f(2)]-

Proof. It is obvious that 1(A) = 1. From the formula

(z— A1 = Z 2"EAM 2| > sr(A),
n=0

we get that id(A) = A.

It is clear that f — f(A) is linear. Let us show that it is multiplicative. Let f1, fo €

Hol(spA). Choose a contour 7, around the contour 7, both in the domains of f; and fs.
(271)~ f fi(z1)(z1 — A) _1d21f f2(22)(22 — A)~td 2
@mi)2 [, [, filz) falze) (21 = A) 7 = (22 = A)7Y) (22 — 21) dand e
(27mi)~ f fi(z1)(z1 — A) 7tz fw 29 — 21) L fa(29)d2e
+(27i)~ f fa(29) (29 — A)td 2 f%(zl — 29) L f1(21)d21.



But
f%(zl — 29) " fi(z1)dz =0,

f%(ZQ — Zl)_lfQ(ZQ)dZQ = 27Tif2(21).
Thus
fi(A) fo(A) = frf2(A). (1.10.9)

Let us prove the spectral mapping theorem. First we will show
spf(A) C f(sp™A). (1.10.10)

If 1 & f(sp™tA), then the function z — f(2) —pu # 0 on sp™*A. Therefore, z — (f(2) —p)~}
belongs to Hol(sp®™'A). Thus f(A) — u is invertible and therefore, u & spf(A). This implies
(1.10.10).

Let us now show

spf(A) D f(sp™A). (1.10.11)

Let 1 € spf(A). This clearly implies that f(A) — u is invertible.



If 11 does not belong to the image of f, then of course it does not belong to f(sp®™'A). Let
us assume that g = f(A). Then the function

2 g(2) = (f(2) —p)(z = A)

belongs to Hol(sp™*A). Hence g(A) is well defined as an element of B(X). We check that
g(A)(f(A) — fO) = (A=A Hence A & sp™*A. Thus u & f(spA). Consequently,
(1.10.11) holds.

Let us show now (6). Notice that if w & f(sp™*A), then the function z — (w — f(z)) ! is

analytic on a neighborhood of

(w—fA) " = — [(w= ()" (= 4)dz.

v



We compute

g(f(A))

s J- 9(w)(w — f(A)) " dw

= @ S5 [, 9(w)(w = f(2)) 71 (z — 4) ' dwdz
= oz o (2 = A) 7z [ g(w)(w — f(2))dw
= o= [ 9(f(2)(z — A)1dz.

1.11 Spectral idempotents

Let Q be a subset of B € CU{co}. Q will be called an isolated subset of B, if QN (B\Q) = 0
and Q9N (B\Q) = 0 (or Q is closed and open in the relative topology of B).

If B is in addition closed, then €2 is isolated iff both € and (B\Q)9 are closed in CU{co}.

Let © be an isolated subset of sp®™'A. It is easy to see that we can find open non-intersecting



neighbohoods of 2 and sp™*A\Q. Hence

1o(:) 1 z belongs to a neighborhood of (2,
Q\R) =
0 =z belongs to a neighborhood of sp™'A\(Q.

defines an element of Hol(sp™A).
Clearly, 17, = 1. Hence 1o(A) is an idempotent.
If v is a counterclockwise contour around € outside of sp®** A\ then

To(A) = —— /(z — Ay lds

27

This operator will be called the spectral idempotent of the operator A onto ().
Spext (A‘Ran 1Q(A)) — SpeXtA N <.
If Q; and Q5 are two isolated subsets of sp®™*A, then

]191 (A) ]192 (A) - ]191092 (A)



1.12 Examples of unbounded operators

Example 1.12.1 Let I be an infinite set and (a;);e; be an unbounded complex sequence. Let
Co(I) be the space of sequences with a finite number of non-zero elements. For 1 < p < o0

we define the operator
LP(I) D Co(I) 3 x— Az € LP(I)

by the formula

(We can use C(I) instead of LP(I), then p = oo in the formulas below). Then the operator

A is unbounded and non-closed. Besides,

spp(A) ={a; : i€},
spA = C.



The closure of A has the domain
Dom A% := {(z;)ier € LP(I) : > ;e |aimi]? < oo} (1.12.12)

We then have

spp(AY) ={a; : i€},

spAY = {a; : i€ I}
To prove this let D be the rhs of (1.12.12) and x € D. Then there exists a countable set I, such
that i ¢ I, implies z; = 0. We enumerate the elements of Iy: iy,iy,.... Define 2" € Cy(I)
setting ZUZ = x;, for j < n and xj = 0 for the remaining indices. Then lim, ., " = x and
Az = Au. Hence, {(z, Az) : € D} C (Gr A)<.

If 2" belongs to (1.12.12) and (2", Az") — (z,y), then ' — x; and a;x] = (Ax"); — y;.
Hence y; = a;x;. Using that y € LP(I) we see that x belongs to (1.12.12).

Example 1.12.2 et p ' + ¢ =1, 1 < p < 0o and let (w;);c; be a sequence that does not



belong to L(I). Let Cy(I) be as above. Define

LP(I) D Co(1) 3 x — (w|zx) = szwz cC.

el

Then (w| is non-closable.

|w; |7

It is sufficient to assume that I = N and define v}' := T T 1< n, v =0,1>n.
Then (w|v™) =1 and ||v"||, = > 1, |wi|q)_$ — 0. Hence (0,1) belongs to the closure of
the graph of the operator.

1.13 Pseudoresolvents

Definition 1.13.1 Let Q2 C C be open. Then the continuous function
Q32— R(z) € B(X)

is called a pseudoresolvent if

R(Zl) — R(ZQ) = (ZQ — Zl)R(Zl)R(ZQ) (11313)



Evidently, if A is a closed operator and €2 C rsA4, then Q > 2z — (2 — A) ™! is a pseudoresolvent.
Proposition 1.13.2 Let Q@ > 2z — R, (z) € B(X) be a sequence of pseudoresolvents and
R(z) :=s— 7711_)1@;10 R,(z). Then R(z) is a pseudoresolvent.
Theorem 1.13.3 Let Q2 5 2z — R(z2) € B(X) be a pseudoresolvent. Then

(1) R := Ran R(z) does not depend on z € Q.

(2) N :=KerR(z) does not depend on z € .

(3) R(z) is an analytic function and

d 2
gR(z) = —R(2)".

(4) R(z) is a resolvent of a certain operator iff N = {0}. The domain of this operator equals
R.
Proof. Let us prove (4)<. Fix z; € Q. If N = {0}, then every element of R can be uniquely
represented as R(z1)z, v € X. Define AR(z1)x := —x + 21 R(21)x. By formula (1.13.13) we
check that the definition of A does not depend on z;. O
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Chapter 2

One-parameter semigroups on Banach spaces

2.1 (M, p)-type semigroups
Let X be a Banach space.

Definition 2.1.1 [0, 00[> t — W(t) € B(X) is called a strongly continuous one-parameter

semigroup iff

(1) W(0) = 1;



(2) W(t)W (ta) = W(t1 + ta), t1,t2 € [0, 00];
(3) 11\2% Wtr =z ¢ €X;
(4) for some ty > 0, [[W(t)|| < M, 0 <t <t.

Remark 2.1.2 Using the Banach-Steinhaus Theorem one can show that (4) follows from the

remaining points.

Theorem 2.1.3 Let W (t) e a strongly continuous semigroup. Then

(1) Besides, there exist constants M, (3 such that
W) < Me; 2.11)
(2) [0,00[xX > (t,z) — W (t)x € X is a continuous function.

Proof. By (4), for t < nty, we have ||W(t)|| < M™. Hence, |
Therefore, (2.1.1) is satisfied.

W(t)|| < M exp(ilog M).



Let t,, — t and z,, — z. Then
W (tn)zn — W(@)zl| < |[W(ta)zn — W(tn)z|| + [[W(tn)z — W(t)z|]

< MePh ||z, — x| + MeP™ D || W (|t — t,))z — x|

We say that the semigroup W (t) is (M, 3)-type, if the condition (2.1.1) is satisfied.
Clearly, if W (t) is (M, 3)-type, then W (t)e ! is (M, 0)-type. Since W (0) = 1, no semi-
groups (M, 3) exist for M < 1.

2.2 Generator of a semigroup

If W (t) is a strongly continuous one-parameter semigroup, we define

Dom A := {x € X : there exists %1\1(% t YW (t)x — )}



The operator A with the domain Dom A is defined by the formula

N -1 _
Az = 11\1(%75 (W(t)x — x).

A will be called the generator of W (¢). In the following theorem we show that an operator

cannot be the generator of more than one semigroup.

If W (t) is the semigroup generated by A, then we will write T (t) =: !4,

Theorem 2.2.1 (1) A is a closed densely defined operator;
(2) W(t)Dom A C Dom A and W (t)A = AW (t),

(3) If W1(t) and Ws(t) are two different semigroups, then their generators are different.

Proof of Theorem 2.2.1 (2). Let x € Dom A. Then

1%%5—1(14/(3) — W (t)z = W(t) 11{% s HW(s) — 1o = W(t)Ax. (2.2.2)

Hence the limit of the left hand side of (2.2.2) exists. Hence W (t)x € Dom A and AW (t)x =
W(t)Az. O



Lemma 2.2.2 For x € X put

t
Bix = t_1/ W (s)xds.
0

Then
(1) s— %I\H(% B, =1.
(2) BiW(s) = W(s)B:.
(3) For x € Dom A, AByx = B;Ax.
(4)

4) If z € X, then Byx € Dom A,

ABiz =t '(W(t)x — ).

(5) Iflimp g ABx exists, then v € Dom A and the limit equals Azx.

Proof. (1) follows by

t
B —zx=t" / (W(s)x —x)ds — 0.
0 t\0

(2.2.3)



(2) is obvious. (3) is proven as Theorem 2.2.1 (2). To prove (4) we note that
uw ' (W(u) = 1)Bir =t {(W(t) — 1)B,x §>O t YW (t)r — ).
(5) follows from (4). O

Proof of Theorem 2.2.1 (1) The density of Dom A follows by Lemma 2.2.2 (1) and (3).

Let us show that A is closed. Let x, — x and Az, — y. Using the boundedness of
n—od n—od
B:A = AB; we get
Byy = lim B;Ax, = lim ABx, = AB;x.

n—oo n—oo

Hence
y = ltlfgl By = lgfgl AByzx. (2.2.4)

By Lemma 2.2.2 (5), x € Dom A and (2.2.4) equals Az. O

Proposition 2.2.3 Let W (t) be a semigroup and A its generator. Then, for any x € Dom A



there exists a unique solution of

0, 00[> £ — 2(t) € Dom A, %x(t) — Az(t), 2(0) = (2.2.5)

(for t = 0 the derivative is right-sided). The solution is given by x(t) = W (t)x.

Proof. Let us show that x(t) := W (t)x solves (2.2.5), both for the left and right derivative:

uw Wt +we—-Wtz) = WHu ' (W) —1)x u_¢(>) W(t)Ax = AW (t)z,

uw Wt —u)r —W(t)r) = Wt —wu ' (W(u) — 1) —M>J W(t)Ax = AW (t)z, 0<u<t.

Let us show now the uniqueness. Let x(t) solve (2.2.5). Let y(s) := W(t — s)z(s). Then

d
ds”
Hence y(s) does not depend on s. At s =t it equals z(t), and at s = 0 it equals W (t)x. O

(s) =W(t—s)Azx(s) — AW (t — s)z(s) =0

Proof of Theorem 2.2.1 (3) By Prop. 2.2.3 (2), W (t) is uniquely determined by A on
Dom A. But W (t) is bounded and Dom A is dense, hence W (t) is uniquely determined. O



2.3 Omne-parameter groups

Definition 2.3.1 R >t — W (t) € B(X) is called a strongly continuous one-parameter group

iff
(1) W(0)=1
(2) W(tl)W(tg) = W(?fl + tg), t1,t € R;
B) limW(t)xr =z, x € X;
t—0
(4) for some ty > 0, |[W(t)|| < M, |t] < tp.

Each 1-parameter group R > ¢ — W (t) consists of two semigroups:
0,003 t+— W(t), [0,00[>t— W(-t).

If A is the generator of the former, then —A is the generator of the latter.
Conversely, if both A and —A generate semigroups, then they can be combined to form a

group.



2.4 Norm continuous semigroups

Theorem 2.4.1 (1) If A € B(X), then R 5> z — e = 3" L A" is a norm continuous
n=0
group and A is its generator.

(2) If a one-parameter semigroup W (t) is norm continuous, then its generator is bounded.

Proof. (1) follows by the functional calculus.

Let us show (2). W (t) is norm continuous, hence }in% By = 1. Therefore, for 0 < t < tg
f—
1B -1 <1

Hence B; is then invertible.

We know that for x € Dom A

t~ Y (W (t) — 1)x = B;Ax.



For 0 <t <ty we can write this as
Az =t B Y (W(t) — 1)z

Hence ||Az| < ¢||z||. O

2.5 Essential domains of generators

Theorem 2.5.1 Let W (t) be a strongly continuous one-parameter semigroup and let A be
its generator. Let D C Dom A be dense in X and W (t)D C D, t > 0. Then D is dense in

Dom A in the graph topology—in other words, D is an essential domain of A.
Lemma 2.5.2 (1) Forz € X, ||Bix||poma < (Ct~1 + 1)||z||;
(2) For x € Dom A, limyg || Bix — z||[poma = 0,
(3) W(t) is a strongly continuous semi-group on Dom A equipped with the graph norm.

(4) If D is a closed subspace in Dom A invariant wrt W (t), then it is invariant also wrt B,.



Proof. (1) follows by Lemma 2.2.2 (3).

(2) follows by Lemma 2.2.2 (1) and because B(t) commutes with A.

(3) follows from the fact that W (t) is a strongly continuous semigroup on X, preserves
Dom A and commutes with A.

To show (4), note that B;x is defined using an integral involving W (s)x. W (s)z depends
continuously on s in the topology of Dom A, as follows by (3). Hence this integral (as Rie-
mann's integral) is well defined. Besides, B;x belongs to the closure of the space spanned by
Wi(s)r,0<s<t. O

Proof of Theorem 2.5.1. Let + € DomA, x, € D and z,, — x in X. Let D be he

n—oo

closure of D in Dom A. Then Bz, € D, by Lemma 2.5.2 (4). By Lemma 2.5.2 (1) we have
Hthn - thHDomA S CtHxn - CUH
Hence B,z € D. By Lemma 2.5.2 (2)

| B:x — x||pom a — 0.
£10



Hence, = € D. O

2.6 Operators of (M, g)-type

Theorem 2.6.1 Let A be a densely defned operator. Then the following conditions are

equivalent:

(1) [B,00][C 1rs(A) and

(e =A™ < Mlz—-5]"", m=1,2,..., zeR, z>pf

(2) {z€C : Rez > p} Crs(A) and

|(z—A)™|| < M|Rez—p|™, m=1,2,..., z€C, Rez > .

Proof. It suffices to prove (1)=(2). Let (1) be satisfied. It suffices to assume that § = 0.



Let z =x +1iy. Then fort >0
(z—A)™ =(x+t—A)"A+ (iy—t)(x+t—A)~H™

= St — Ay — ) ( - ) |

Jj=0 J

—m A —m
Using the fact that ‘ ( _ ) ‘ = (—1)/ ( . > we get
J J

Iz = Ay < MY Ja+ o7 (<1 iy — of < _]?” )

Jj=0

_ m liy—t) "

=M(x+t—|iy—t)™ — Mx™™.
t—o0

Definition 2.6.2 We say that an operator A is (M, [3)-type, iff the conditions of Theorem



2.6.1 are satisfied.

Obviously, if A is of (M, 3)-type, then A — ( is of (M, 0)-type.

2.7 The Hille-Philips-Yosida theorem

Theorem 2.7.1 IfW(t) is a semigroup of (M, [3)-type, then its generator A is also of (M, [3)-
type. Besides,
(z— A = / e "W (t)dt, Rez > B.
0

Proof. Set -
R(z)x ::/ e AW (t)xdt.
0



Let y = R(z)x. Then

u” (W(u) — D)y
= —u_leZ“/ e MW (t)adt +u (e — 1) / e W (t)xdt :>0 —T + zy.
0 0 u

Hence y € Dom A and (z — A)R(2)z = x.
Suppose now that x € Ker(z — A). Then z; := ¢’z € Dom A satisfies %xt = Ax;. Hence

xy = W (t)x. But ||z¢]| = |||, which is impossible.

/ / At (4 oot dE - - - db

|(z —A)~™ S/ / Me=G=AtFtu)qy, .. dt, = M|z — B]™™

By the formula

we get the estimate



Theorem 2.7.2 If A is an operator of (M, [3)-type, then it is the generator of a semigroup
of (M7 5)—1.'_)/,06.

To simplify, let us assume that 5 = 0 (which does not restrict the generality). Then we
" -n
e =s— lim (]l — —A) ,
n—oo n

t —n
o (n - _A> z
n

have the formula

t2
< MEHA%H, z € Dom A*.

Proof. Set

Let us first show that
s—limV,(t) = 1. (2.7.6)



To prove (2.7.6) it suffices to prove that

S— hﬁ)l(]l —sA) T =1 (2.7.7)

We have (1 —sA)™1 — 1 = (s} — A)"tA. Hence for z € Dom A
(1= sA) e —af| < Ms™|| Az,

which proves (2.7.7).

Let us list some other properties of V,,(¢): for Ret > 0, V,,(t) is holomorphic, ||V,.(t)|| < M

and .
d t \"
—V,t)=A|1—--A .
dtv() ( n )



To show that V,,(t)x is a Cauchy sequence for z € Dom(A?), we compute

Vi) x — Vi (t)r = limgo Vi(t — s)Viu(s)z — limgy Vi, (8 — 5)Viu(s)z

= limew f:

— limyp [ ( —V(t = 8)Vin(s) + Vit — s)vng(s))x
—limeo [ (2 52) (1= 52A) T (1= 2a) T A2

n m n

- %Vn(t — $)Vim(s)z

Hence for x € Dom(A?)
[Va(O)z = Vin(t)al| < [[A%]| [y |2 — 52| M2ds

m/ 2

By the Proposition 1.9.2, Dom(AQ) is dense in X. Therefore, there exists a limit uniform on
[O,to]
s— lim V,(t) =: W(t),

n—oo

which depends strongly continuously on ¢.



Finally, let us show that W (¢) is a semigroup with the generator A. To this end it suffices

to show that for x € Dom A

d
WOz = AW (). (2.7.8)

But x € Dom A

A) _IVn(s)azds

S
n

t+u
Vot +u)z = Vn(t)$+/ A(]l—
t
Hence passing to the limit we get
t+u
Wt +u)x=W((t)x + / AW (s)zds.
t

This implies (2.7.8). O

2.8 Semigroups of contractions and their generators

Theorem 2.8.1 Let A be a closed operator on X. Then the following conditions are eqiva-

lent:



(1) A is a generator of a semigroup of contractions, i.e. ||| < 1,t > 0.
(2) The operator A is of (1,0)-type.
(3) 10, 00[C rs(A) and
(=AD" <pus neR, u>0,
(4) {z€ C : Rez >0} Crs(A) and

[(z— A) 7Y < |Rez|™!, z€C, Rez > 0.

Proof. The equivalence of (1) and (2) is a special case of Theorems 2.7.1 and 2.7.2. The

implications (2)=-(3) and (2)=>(4) are obvious, the converse implications are easy. O
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Chapter 3

Unbounded operators on Hilbert spaces

3.1 Graph scalar product

Let V, W be Hilbert spaces. Let A : )V — W be an operator with domain Dom A. It is natural

to treat Dom A as a space with the graph scalar product
(v1|v2) 4 = (v1]ve) + (Avy|Avy).

Clearly, Dom A is a Hilbert space with the graph scalar product iff A is closed.



3.2 The adjoint of an operator

Definition 3.2.1 Let A : YV — W have a dense domain. Then w € Dom A*, iff the functional
Dom A 3 v — (w|Av)
is bounded (in the topology of V). Hence there exists a unique y € V such that
(w|Av) = (y|lv), v e V.
The adjoint of A is then defined by setting
A*w =y.

Theorem 3.2.2 Let A:V — W have a dense domain. Then
(1) A* is closed.
(2) Dom A* is dense in W iff A is closable.
(3) (Ran A)* = KerA*.



(4) Dom A N (Ran A*)* D KerA.

Proof. Let j: VAW - WDV, j(v,w) := (—w,v). Note that j is unitary. We have
Gr A* = j(Gr A)* .

Hence Gr A* is closed. This proves (1).

Let us prove (2).
w € (Dom A*)* < (0,w) € (Gr A*)* = j(Gr A)*+

& (w,0) € (GrA)*H = (Gr A



Proof of (3):
w € KerA* & (A*wlv) =0, veV

& (A*wlv) =0, v € Dom A
& (w|Av) =0, v € Dom A

& w € (Ran A)*.

Proof of (4)
vEKerd < (w|Av) =0, weW

= (w|Av) =0, w &€ Dom A*
& (A*wlv) =0, w € Dom A*
& v € (Ran A%t
Theorem 3.2.3 Let A:V — W be closable with a dense domain. Then

(1) A* is closed with a dense domain.

(2) A" = (A",



@) (A7) = A
(4) (Ran A)* = KerA*. Hence A* is injective iff Ran A is dense.

(5) (Ran A*)* = KerA. Hence A is injective iff Ran A* is dense.

Proof. (1) was proven in Theorem 3.2.2.

To see (2) note that
Cr A* = j(Gr A)* = j((Gr A+ = Gr A%,
To see (3) we use
Gr (A7) =7 (j(Gr A)*) " = (GrA)* = (GrA).

(4) is proven in Theorem 3.2.2.

To prove (5) note that in the second line of the proof of Theorem 3.2.2 (4) we can use the
fact that Dom A* is dense in W to replace = with <. O



3.3 Inverse of the adjoint operator

Theorem 3.3.1 Let A be densely defined, closed, injective and with a dense range. Then
(1) A is densely defined, closed, injective and with a dense range.

(2) A* is densely defined, closed, injective and with a dense range.

(3) (A7)~ = (A7)~

Proof. (1) and (2) sum up previously proven facts.

To prove (3), recall the maps 7,7 : VO W — W d V. We have
GrA* =j(Gr A, GrA!'=7(GrA).

Hence
CrA™" = j(r(GrA))* = 771(j(Gr A)*) = Gr A* L.

g

Theorem 3.3.2 Let A:V — W be densely defined and closed. Then the following conditions



are equivalent:

(1) A is invertible.
(2) A* is invertible.

(3) For some ¢ > 0, ||Av|| > c||v]|, v € V and ||A*w]|| > c||v|], w € W.

Proof. (1)=(2). Let A be invertible. Then A~1 € B(W, V). Hence, A~'* € B(V,W).
Clearly, the assumptions of Theorem 3.3.1 are satisfied, and hence A*~! = A~!*_ Therefore,
AL e B(y,w).
(1)«<=(2). A* is also densely defined and closed. Hence the same arguments as above apply.
It is obvious that (1) and (2) imply (3). Let us prove that (3)=(1). ||A*v|| > c||v|| implies
that KerA* = {0}. Hence (Ran A)! is dense. This together with ||Av| > c||v|| implies that
Ran A = W, and consequently, A is invertible. O

Theorem 3.3.3 Let A:V — W be densely defined and closed. Then sp™'(A) = spet(A*).



3.4 Numerical range and maximal operators

Definition 3.4.1 Let T be an operator on V. The numerical range of T is defined as
Num7 :={(v|]Tv) € C : v eV, |v|]| =1}
Theorem 3.4.2 (1) In a two-dimensional space the numerical range is always an elipse
together with its interior.
(2) Num T is a convex set.

(3) Num(aT + 1) = aNum(7T) + .
(4) Num7* = Num 7.

(5) Num(7' + S) € Num T + Num S.

Proof. (1) We write T' = Ty + i1], where TR, T are self-adjoint. We diagonalize T1. Thus

lo1 192
a phase factor we can guarantee that t1o = 97 is real.

ti1 t 7
if [ 1412 ] is the matrix of 7', then t15 = t9;. By multiplying one of the basis vectors with



Now T’ is given by a matrix of the form

1 0 Al v 0
c +
01 TN 0 —v

Any normalized vector up to a phase factor equals v = (cos a, €' sin a) and

+1

(v|Tv) — ¢ = Xcos 2a + pcos ¢ sin 2« + iy cos 2a =": = + . (3.4.1)
Now it is an elementary exercise to check that x + iy are given by (3.4.1), iff they satisfy
(yz — Ay)* + pPy® <At
(2) follows immediately from (1). O

Theorem 3.4.3 (1) ||(z — T)v|| > dist(z, NumT7)|v||, v € DomT.
(2) If T is a closed operator and z € C\(NumT)%, then z — T has a closed range.
(3) If z € rsT\NumT, then ||(z —T)7 | < |dist(z, NumT)|~,
(4) Let A be a connected component of C\(NumT)<. Then either A C spT or A C rsT.



Proof. To prove (1), take z ¢ (Num7)“. Recall that NumT is convex. Hence, replacing
T wih oT + 3 we can assume that z = iv and 0 € (Num7)? C {Imz < 0}. Thus
v = dist(iv, NumT') and

iy = T)|]* = (Tv|Tv) —iv(v|[Tv) +iv(Tv|v) + |[v*||lv]?
= (Tv|Tv) — 2vIm(v|Tv) + |[v]?||v|?
> [vP|lv]].

(1) implies (2) and (3).
Let zg € rsT\Num7'. By (3), if » = dist(zg, NumT), then {|z — 29| < r} C rsT. This
proves (4). O

Definition 3.4.4 An operator T is called maximal, if spT’ C (Num7')<..

Clearly, if T' is a maximal operator, and z ¢ (NumT), then

|(z = T)7| < (dist(z, NumT)) .



If T" is bounded, then T is maximal.

Theorem 3.4.5 Suppose that T is an operator and for any connected component A; of
C\(NumT) we choose \; € A;. Then the following conditions are necessary and sufficient

for T' to be maximal

(1) For all i, \; & spT,;

(2) T is closable and for all i, Ran (A\; —T') = V.

(3) T is closed and for all i, Ran (A\; — T') is dense in V.
(4) T is closed and for all i, Ker(\; — T*) = {0}.

If K is a closed convex subset of C, then C\K is either connected or has two connected

components.



3.5 Dissipative operators

Definition 3.5.1 We say that an operator A is dissipative iff
Im(v|Av) <0, v € Dom A.
Equivalently, A is dissipative iff NumA C {Imz < 0}.
Definition 3.5.2 A is maximally dissipative iff A is dissipative and spA C {Imz < 0}.

Theorem 3.5.3 Let A be a densely defined operator. Then the following conditions are

equivalent:

(1) —iA is the generator of a strongly continuous semigroup of contractions.

(2) A is maximally dissipative.
Proof. (1) =(2) We have

Re(v]e™v) < |(vle™0)| < o]



Hence
Im(v|Av) = Re(v| —1iAv)

— Relim¢! —itA) — lv]|2) < 0.
e lim ((v]e ) — [Jo]|?) <

Hence A is dissipative.
We know that the generators of contractions satisfy {Rez > 0} C rs(—iA4).
(2)=-(1) Let Rez > 0. We have

[ollll(z +1A)v]| = [(v|(z +14)v)]
> Re(v|(z +1iA4)v) > Rez|v|*.
Hence, noting that z € rs(—iA), we obtain ||(z +14)7!|| < Rez~!. Therefore, —iA is an

operator of the type (1,0). O

Theorem 3.5.4 Let A be dissipative. Then the following conditions are equivalent:
(1) A is maximally dissipative.

(2) A is closable and there exists zy with Imzy > 0 and Ran (29 — A) = V.



(3) A is closed and there exists zy with Imzy > 0 and Ran (29 — A) dense in V.

(4) A is closed and there exists zy with Imzy, > 0 and Ker(zy — A*) = {0}.

3.6 Hermitian operators

Definition 3.6.1 An operator A : V — V is hermitian iff
(Awlv) = (w|Av), w,v € Dom A.
Equivalently, A is hermitian iff NumA C R.
If in addition A is densely defined, then it is hermitian iff A C A*.
Remark 3.6.2 In a part of literature the term “symmetric” is used instead of “hermitian”.

Theorem 3.6.3 Let A be densely defined and hermitian. Then A is closable. Besides, one

of the following possibilities is true:
(1) spA C R.
(2) spA = {Imz > 0}.



(3) spA = {Imz < 0}.
(4) spA =C.

Proof. A is closable because A C A* and A* is closed. O

Theorem 3.6.4 Let A be a densely defined operator. Then the following conditions are
equivalent:
(1) —iA is the generator of a strongly continuous semigroup of isomettries.

(2) A is hermitian and spA C {Imz < 0}.

Proof. (1)=-(2): For v € Dom A4,
0 = Oy(e u)e ) .= —i(Av|v) +i(v|Av).
t=
Hence A is hermitian.
Isometries are contractions. Hence, by Thm 2.8.1, spA C {Imz < 0},
(2)=(1): By Thm 3.4.3, ||(z +iA)7!|| < |Rez|™!, Rez > 0. Hence, by Thm 2.8.1, e74 is

the generator of a strongly continuous contractive semigroup.




For v € Dom A,
0 = 9y (e ule ")

—itAUHQ — itA

Hence, for v € Dom A, ||e |v]|%. In other words, e™*4 is a group of isometries. O

Theorem 3.6.5 Let A be hermitian. Then the following conditions are equivalent:
(1) spA C {Imz < 0}.
(2) There exists zy with Imzy > 0 and Ran (zg — A) = V.
(3) A is closed and there exists zy with Imzy > 0 and Ran (zp — A) dense in V.
(4)

4) A is closed and there exists zy with Imzy > 0 and Ker(zy — A*) = {0}.

3.7 Self-adjoint operators

Definition 3.7.1 Let A be a densely defined operator on V. A is self-adjoint iff A* = A.

In other words, A is self-adjoint if for w € W there exists y € V such that

(y|v) = (w]Av), v € Dom A,



then w € Dom A and Aw =y.

Theorem 3.7.2 Every self-adjoint operator is hermitian and closed. If A € B(V) , then it is

self-adjoint iff it is hermitian.

Theorem 3.7.3 Fix z with £Imzy > 0. Let A be hermitian. Then the following conditions

are necessary and sufficient for A to be self-adjoint:

(1) spA C R.

)
3) Ran (z4 — A) = V.

4) A is closed and Ran (zo — A) is dense in V.
5) A is closed and Ker(zy — A*) = {0}.

Theorem 3.7.4 Let zy € R. Let A be hermitian and zy ¢ NumA. Then the following

conditions are sufficient for A to be self-adjoint:

(1) 2o & spA.



(2) Ran (2 — A) = V.
(3) A is closed and Ran (zg — A) is dense in V.
(4) A is closed and Ker(zy — A*) = {0}.

Theorem 3.7.5 (Stone Theorem) Let A be an operator. Then the following conditions are

equivalent:

(1) iA is the generator of a strongly continuous group of unitary operators.

(2) A is self-adjoint.

Proof. To prove (1)=-(2), suppose that R — U(t) is a strongly continuous unitary group.
Let —iA be its generator. Then [0,00[> t +— U(t),U(—t) are semigroups of contractions with
the generators iA and —iA. By Theorem 3.7.5, A is hermitian and spA C R. Hence A is
self-adjoint.

(2)=(1): By Theorem 3.7.5 +iA generate semigroups of isometries 4. Clearly, e*4 is

the inverse of eT4. Hence these isometries are unitary. O



3.8 Spectral theorem

Definition 3.8.1 Recall that B € B(V) is called normal if B*B = BB*.

Let us recall one of the versions of the spectral theorem for bounded normal operators.

Let X be a Borel subset of C. Let M(X) denote the space of measurable functions on X
with values in C. For f € M(X) we set f*(z) := f(x), z € X. In particular, the function
X 2 z+—id(z) := z belongs to M(X).

L>°(X) will denote the space of bounded measurable functions on X.

Theorem 3.8.2 Let B be a bounded normal operator on' V. Then there exists a unique linear
map
L*(spB) > [ — [(B) € B(V)
such that 1(B) = 1,id(B) = B, fg(B) = f(B)g(B),
fB)" = f(B), |f(B)|l <sup|f],
if f, — f pointwise and | f,,| < c then s— nlggl() fu(B) = f(B).
Above, all functions f, f,, g € L>(spB).



Theorem 3.8.3 Let B be a bounded normal operator B. Let f € M(spB). Set

Dom(f(B)) = {veV : sup|/fu(B)v] < oo}.
Then for v € Dom B there exists the limit
F(B = lim fu(B),
n—oo

which defines a closed normal operator.

Let now A be a (possibly unbounded) self-adjoint operator on V.

Theorem 3.8.4 Then U := (A +1i)(A —1i)"! is a unitary operator with

spU = (sp™ A +1)(sp™A —i) L.



Proof. Using the fact that A is hermitian, for v € Dom A we check that
(A +i)v|]* = ||Av|]* + ||v]|*.

Therefore, (A £1i) : Dom A — V are isometric. Using Ran (A +1) = ) we see that they are
unitary. Hence so is (A +1)(4 —1i)7".

The location of the spectrum of U follows from

-1

(=) = (A=) =) (A—iGE (- 1))

U is unitary, hence normal. If f is a measurable function on spA, we define

where g(z) = f(i(z +1i)(z — 1)71).



Theorem 3.8.5 The map
M(spA) > f — f(A) € B(V)

is linear and satisfies 1(A) = 1, id(A) = A, fg(A) = f(A)g(A),

fA) = f(A), [[f(A)] <sup|f],
where f,g € M(spA),

Definition 3.8.6 A possibly unbounded densely defined operator A is called normal if Dom A =
Dom A* and
| Av||* = |[A*0||, v € Dom A.

One can extend Thm 3.8.5 to normal unbounded operators in an obvious way.

Proposition 3.8.7 Let A be normal. Then the closure of the numerical range is the convex

hull of its spectrum.

Proof. We can write A = [ AdE()), where E()\) is a spectral measure. Then for ||v|| = 1,
(v|Av) is the center of mass of the measure (v|dE(A\)v). O



3.9 Essentially self-adjoint operators

Definition 3.9.1 An operator A : V — V is essentially self-adjoint iff A% is self-adjoint.

Theorem 3.9.2 (1) Every essentially self-adjoint operator is hermitian and closable.
(2) A is essentially self-adjoint iff A* is self-adjoint.

Theorem 3.9.3 Let A be hermitian. Fix zy € C with +£Imz, > 0. Then the following

conditions are necessary and sufficient for A to be essentially self-adjoint:
(1) Ran (24 — A) and Ran (z— — A) are dense in V.
(2) Ker(z; — A*) = {0} and Ker(z_ — A*) = {0}.

Theorem 3.9.4 Let A be hermitian. Let zy € R\NumA. Then the following conditions are

sufficient for A to be essentially self-adjoint:
(1) Ran(zg — A) is dense in V.
(2) Ker(zg — A*) = {0}.



3.10 Rigged Hilbert space

Let V be a Hilbert space with the scalar product (+|-). Suppose that T is a self-adjoint operator
on YV with T" > ¢y > 0. Then Dom T can equipped with the scalar product

(Tv|Tw), v,w € DomT

is a Hilbert space embedded in V. We will prove a converse construction, that leads from an
embedded Hilbert space to a positive self-adjoint operator.

Let V* denote the space of bounded antilinear functionals on 1. The Riesz lemma says that
V* is a Hilbert space naturally isomorphic to V.

Suppose that W is a Hilbert space contained and dense in V. We assume that for ¢y > 0
(w|w)w > co(w|w), weW. (3.10.2)

Of course, W* is also a Hilbert naturally isomorphic to YW. However, we do not want to use
this isomorphism.
Let J : W — V denote the embedding. By (3.10.2), it is bounded. Clearly J* : V —



W* (where we use the identification V ~ V*). We have KerJ* = (RanJ)* = {0} and
(Ran J*)* = KerJ = {0}. Hence J* is a dense embedding of V in W*. Thus we obtain a

triplet of Hilbert spaces, sometimes called a rigged Hilbert space

W cycWw

Theorem 3.10.1 There exists a unique positive injective self-adjoint operator T' on ) such
that DomT = W and

(’wl‘wz)w = (Twl\ng), w1, Wy € W. (3103)

Proof. Without loss of generality we will assume that ¢y = 1.

Forv eV, w € W, we have

|(wlv)] < flwllllv]l < floflwllv]]



By the Riesz lemma, there exists A : V — W such that
(wlv) = (w[Av)w,

We treat A as an operator from V to V. A is bounded, because

|4v]|* < || Av|ly = (Av|Av)w = (Avjv) < [[Av]l[jv].

A is positive, (and hence in particular self-adjoint) because
(Av|v) = (Av|Av)w > 0.
A has a zero kernel, because Av = 0 implies
0 = (w]Av)y = (wlv), v € Dom W,

and WV is dense.

(3.10.4)



Thus T := A~/2 defines a positive self-adjoint operator > 1. We have
(wly)w = (w|T?), weW, y&DomT?=RanA.
Using the lemma below, with two embedded Hilbert spaces W and Dom 7" having a common
dense subspace Dom T, we obtain W = Dom T and the equality (3.10.3). O
Lemma 3.10.2 Let W, W_ be two Hilbert spaces embedded in a Hilbert space V. Suppose
that their norms satisfy

lwll < flwlly, weWy, flwll < flwll-, weW-.

Let D C W, NW_ be dense both in W, and in W_. Suppose || - ||+ = || - |- in D. Then
Wy =W_and ||+ =|-I-.

Proof. Let w, € W,. There exists (w,) C D such that ||w, — w;|+ — 0. This implies
lwn — w]] = 0.

Besides w;,, is Cauchy in W_ Hence there exists w_ € W_ such that ||w, — w_||- — 0.



This implies ||w, —w_|| — 0. Hence w; = w_. Besides, |w ||+ = lim ||w,||+ = lim ||w,||- =

lw—|[-

Thus W, C W_ and in W, the norm || - || coincides with the norm || - ||-. O

By functional calculus for self-adjoint operators we can define S := T2. Clearly, T = /S
and
(v]Sw) = (vjw)y, v e DomVS, we Doms§.

We will say that the operator S is associated with the sesquilinear form (-|-)yy.

3.11 Polar decomposition

Let A be a densely defined closed operator. Let S+ 1 be the positive operator associated with

the sesquilinear form
(Av|Aw) + (v|w), v,w € Dom A.

Theorem 3.11.1 § = A*A.



In order to prove this theorem, introduce Vi = (1+ 7)™V and V_; = (1 + T)V, so that
Vi = Dom A and V_; = V{. Denote by A(j) the operator A treated as an operator Vi — V.
Clearly, A(l) is bounded, and so is A>(k1) YV = V.

Proposition 3.11.2 (1) DomA* ={v eV : Ajv eV}

(2) On Dom A* the operators A* and Aj,, coincide.
(3) DomT? = {v € Dom A : Av € Dom A*}
(4) Forv € DomT?, T?v = A*Av.

Proof. (1). Let w € V. We have
w € Dom A* < |(w]Av)| < C||v]|, v € Dom A. (3.11.5)
But Dom A =V and (w|Av) = (A{jjw[v). Hence, (3.11.5) is equivalent to
[(Apwlv)| < Cfjv]|, v € Dom A, (3.11.6)

which means Az‘l)w e V.



In the proof of (3) we will use the operators T{;) and T defined analogously as Ay and

A’(kl). We have

In fact, for v, w € V,

(w|T(yTayw) = (Tayw|Tpyw) = (Agw]|Agw) = (w[AfyAa)w).

Now
Dom7? = {veV : T7yTayv € V} by spectral theorem
= {veVr + AHAgv € V} by (3.11.7)
= {veV : Agp e Dom A} by (1).
U

Theorem 3.11.3 Let A be closed. Then there exist a unique positive operator |A| and a
unique partial isometry U such that KerU = KerA and A = U|A|. We have then RanU =



Ran A<,

Proof. The operator A*A is positive. By the spectral theorem, we can then define
|A] :== VA*A.
On Ran |A| the operator U is defined by
U |Alv := Awv.
It is isometric, because
IAJ* = (]| AJPv) = (v]A"Av) = || Av]P?,

and correctly defined. We can extend it to (Ran | A|)“ by continuity. On Ker|A| = (Ran |A])9,
we extend it by putting Uv = 0. O



3.12 Scale of Hilbert spaces I

Let A be a positive self-adjoint operator on V with A > 1. We define the family of Hilbert

spaces V,, a € R as follows.
For a > 0, we set V, := Ran A7 = Dom A® with the scalar product
(v|w)y == (v]A%w).

Clearly, for 0 < o < 8 we have the embedding V, D V3.
For oo <0 we set V, :=V*_, If a < 3 <0 we have a natural inclusion V, D V3.
Note that we have the identification )V = V*, hence both definitions give V, = V.
Thus we obtain
Vo D Vg, forany a < 5. (3.12.8)

Note that for < 0 V is embedded in V,, and for v, w € V

(v|w)a = (v]A*w).



Moreover, V is dense in V,,.
Sometimes we will use a different notation: A=Y =YV/,.
By restriction or extension, we can reinterpret the operator A” as a unitary operator

Al ATV = ATV,

If B is a self-adjoint operator, then we will use the notation (B) := (1 + B?)Y/2. Clearly, B

gives rise to a bounded operator
B(a) : (B)‘O‘V — (B)‘a“V.

Thus every self-adjoint operator can be interpreted in many ways, depending on 5 we choose.

The standard choice corresponding to 3 =1
Byy:Dom B = (B)™'V -V

can be called the “operator interpretation”.



Another interpretation is often useful:
Buys) : (B)V2V = (B)!V,

the “form interpretation”. One often introduces the form domain Q(B) := (B)~'/2V. We

obtain a sesquilinear form

Q(B) x Q(B) 3 (v,w) = (v| By yw).

3.13 Scale of Hilbert spaces II

We will write A > 0 if A is positive, self-adjoint and KerA = {0}. One can generalize the
definition of the scale of spaces A“V to the case A > 0.

Set V, := Ranllj (4), V- := Ranll;(A). Let AL := A b Then Ay > 1 and
A~ > 1. Hence we can define the scales of spaces ALV, A%V = (A:l)_O‘V_, a € R. We

set
APV = A%V, @ A%V (3.13.9)



If A is not bounded away from zero, then the scale (3.13.9) does not have the nested property
(3.12.8). However, for any a, 8 € R, A*V N A%V is dense in A®V. Again, we have a family

of unitary operators

Al P AV = AP

3.14 Complex interpolation

Let us recall a classic fact from complex analysis:

Theorem 3.14.1 (Three lines theorem) Suppose that a function {0 < Rez < 1} 2 z —

f(z) € C is continuous, bounded, analytic in the interor of its domain, and satisfies the bounds

IA

|/ (is)]
f(1+is)] < a1, s€eR. (3.14.10)

Co,

Then
If(t+is)| <cy'ch, tel0,1], s€R. (3.14.11)



Theorem 3.14.2 [et A > 0onV, B > 0 on W. Consider an operator C : VN A7V —
W N B~ that satisfies

[Col| < collvl],
|BCo|| < alldv]l, veVnATY.

IA

(In other words, C' is bounded as an operator V — W with the norm < ¢, and A7ly —» B~y
with the norm < c¢1.) Then, for 0 <t <1,

|B'Col|| < g 'ct||Alv]], (3.14.12)
and so C' extends to a bounded operator
C: A7V = B7'W,

with the norm < ¢j~'cl.



Proof. Let w e WN B W and v € VN A~1V. The vector valued functions z — B*w and
z + A*v are bounded on {0 < Rez < 1}, and hence so is

f(z) == (B*w|CA*v)

We have

=
=
i
A

< collwllffvll,

FA+is)] < alwllv], seR.

Hence,
)] < o ' lwll[oll, ¢ € 0,1].

This implies (3.14.12), by the density of WN B~'W. O



3.15 Relative operator boundedness

Let A be a closed operator and B an operator with Dom B D Dom A. Recall that the
(operator) A-bound of B is

1
: 1B )2
a1 := inf sup ( : 3.15.13

' v>0 420, veDom A HAUH2+V2HUH2 ( )

In a Hilbert space
1Av[? + 22 [[ol|* = [[(A*A + 1) 0%

Therefore, (3.15.13) can be rewritten as
ay = inf || B(A"A + V272 (3.15.14)
v>

If, moreover, A is self-adjoint, then, using the unitarity of (A2 + VQ)_l/z(:i:iV — A), we can
rewrite (3.15.14) as
a = 1% |B(iv — A)7Y. (3.15.15)



Using Prop. 1.7.4 we obtain
a; = inf ||B(z—A)7!. (3.15.16)

z€rsA

Theorem 3.15.1 (Kato-Rellich) Let A be self-adjoint, B hermitian. Let B be A-bounded
with the A—bound < 1. Then

(1) A+ B is self-adjoint on Dom A.
(2) If A is essentally self-adjoint on D, then A + B is essentially self-adjoint on D.

Proof. Clearly, A+ B is hermitian on Dom A. Moreover, for some v, ||B(£iv — A)7 | < 1.
Hence, iv — A — B and —iv — A — B are invertible. O

3.16 Relative form boundedness

Assume first that A is a positive self-adjoint operator. Let B be a bounded operator from
Dom A2 = (14 A)~Y/2V to (1+ A)'/?V. Note that B defines a bounded quadratic form on
Q(B) = (1+ A)~Y2Y

Q(B) 3 u,v +— (u|Bv).



Let us assume that this form is hermitian, that is

(u|Bv) = (v|Bu).

Definition 3.16.1 We say that B is form-bounded relatively to A iff there exist constants a,
b such that
|(v|Bv)| < a(v]|Av) + b(v|v), v € Dom A2, (3.16.17)

The infimum of a satisfying (3.16.17) is called the A-bound of B.

In other words: the A-form bound of B equals

> } (v| Bv)
as :=1in up :
>0 epom a1/2\ [0y (V[AV) + c(v]v)

This can be rewritten as
az = inf [|(A + ) \PB(A+c) .
c>

Theorem 3.16.2 A is a positive self-adjoint operator. Let B have the form A-bound less



than 1. Then

R(:u) ‘= Z(,UJ — A)_l/Q((M — A)_l/QB(/L _ 14)—1/2)17'(1u . A)_1/2

7=0
is convergent for large negative ;1. Moreover, R(z) is a resolvent of a self-adjoint bounded

from below operator, which will be called the form sum of A and B and denoted, by the abuse
of notation, A+ B. We have Dom |A + B|z = Dom |A]z.

We can generalize the concept of the form boundedness to the context of not necessarily
positive operators as follows. Let A be a self-adjoint operator. Let B be a bounded operator
from (A)~1/2V to (A)Y/?V. We assume that the form given by B is hermitian.

Definition 3.16.3 The improved form A-bound of B is

dy = inf |[(A—p)®+ 02 TB((A—p)®+ 7)1 (3.16.18)

v>0,u



(3.16.18) can be rewritten as

ay = inf |[(u+iv—A)2B(u+iv — A)72|. (3.16.19)

v>0,u

Theorem 3.16.4 Let A be a self-adjoint operator. Let B have the improved A-form bound
less than 1. Then there exists open subsets in the upper and lower complex half-plane such

that the series
— Z 1/2 A)_1/2B(z o A)_l/Q)j(z - A)_1/2
7=0

is convergent. Moreover, R(z) is a resolvent of a self-adjoint operator, which will be called the

form sum of A and B and denoted, by the abuse of notation, A + B.

The form boundedness is stronger than the operator boundedness. Indeed, suppose that B

is a hermitian operator on V with Dom B D Dom A and

IB((A—w?+ %) <a



This means that B is bounded as an operator ((A — )+ VQ)_l/QV — )V and as an operator
VY — ((A — ,u)2 + 1/2)1/2V, in both cases with norm < a. By the complex interpolation, it is
bounded as an operator ((A — p)? + uz)_1/4V — (A= p)?+ V2)1/4V with norm < a. In
particular, we have a}, < a;, where a; is the operator A-bound and a is the improved form
A-bound.

3.17 Self-adjointness of Schrodinger operators

The following lemma is a consequence of the Holder inequality:

Lemma 3.17.1 Let 1 < p,q < o0 and ]% +% = % Then the operator of multiplication by
V € LP(R?) is bounded as a map LY(R?) — L"(R?) with norm equal to ||V ||,.

The following two lemmas follow from the Hardy-Littlewood-Sobolev inequality:

Lemma 3.17.2 The operator (1 — A)~! is bounded from L*(R?) to LY(R?) in the following

cases:

(1) Ford=1,2,3 if£ <1 <1
00 q



(2) Ford=4if L <1<

(3) Ford>5if3 -5 <. <3

Lemma 3.17.3 The operator (1 — A)~z is bounded from L2(RY) to L4(R%) in the following

cases:

1 1 1
1 1 1
(3) FordZSif%—égég%

Proposition 3.17.4 Let V € L? + L>(R?),where
(1) ford =1,2,3, p =2,
(2) ford=4,p>2,
d
(3) ford > 5, p = 3.

Then the —A-bound of V' is zero. Hence —A + V (z) is self-adjoint on Dom(—A).



Proof. We need to show that

lim V(z)(c—A)"' =0, (3.17.20)

cC—0

where (3.17.20) is understood as an operator on L?(RY).
For any € > 0 we can write V = V. +V},, where V,, € L*(R?), V,, € LP(R?) and ||V, ||, < e.

Now
V() (c—A)" = V(o) (c— A+ Vy(z) (e — A)

The first term has the norm < ||V ||.cc™!. Consider the second term. Let

1+11
q p 2

V(@) a2 = ||Vl < € and [[(c — A)fa ;.|| is uniformly finite for ¢ > 1 by Lemma 3.17.3.
U

Proposition 3.17.5 Let V € L? + L>®(RY),where



(1) ford=1, p=1,
(2) ford=2,p>1,

d
(3) ford >3, p=3.

Then the form —A-bound of V' is zero. Hence —A + V (x) can be defned in the sense of the
form sum with the form domain Dom(y/—A).

Proof. We need to show that

lim (¢ — A)"Y2V (z)(c — A)"V2 =0, (3.17.21)

c—00

where (3.17.21) is understood as an operator on L?(R%). For any € > 0 we can write V =
Ve + V,, where V. € L>(R?), V,, € LP(R?) and ||V} ]|, < e. Now

(c—= A2V (@) (c— AV = (e = A) V2V (x)(c— A2
+([Vo(@)[2(e = A)72) sgnVy (@) [V ()2 (c — A) V2.



The first term has the norm < ||V |l«c™!. Consider the second term. Let

12 1
g p 2
11V (@) Pty 2| = VIVallo < Ve and [[(e = A) 27, || is uniformly finite for ¢ > 1 by

Lemma 3.17.3. O
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Chapter 4

Positive forms

4.1 Quadratic forms

Let V, W be complex vector spaces.

Definition 4.1.1 a is called a sesquilinear form on YW x V iff it is a map

WxV 3 (wv)— alw,v) €C



antilinear wrt the first argument and linear wrt the second argument.

If A € C, then X can be treated as a sesquilinear form A(w,v) := A(wl|v). If a is a form,

then we define Aa by (Aa)(w,v) := Aa(w,v). and a* by a*(v,w) := a(w,v). If a; and ay are
forms, then we define a; + ay by (a; + as)(w,v) := a1 (w, v) + ag(w, v).
Suppose that ¥V = W. We will write a(v) := a(v,v). We will call it a quadratic form. The

knowledge of a(v) determines a(w,v):

a(w,v) = i (a(w +v) +ia(w —iv) — a(w — v) — ia(w + iv)) . (4.1.1)

Suppose now that V, W are Hilbert spaces. A form is bounded iff

a(w, v)| < Cllw|[|[v]].

Proposition 4.1.2 (1) Let a be a bounded sesquilinear form on YW x V. Then there exists
a unique operator A € B(V, W) such that

a(w,v) = (w|Av).



(2) If A€ B(V,W), then (w|Av) is a bounded sesquilinear form on WV x V.

Proof. (2) is obvious. To show (1) note that w — a(w|v) is an antilinear functional on W.

Hence there exists n € W such that a(w,v) = (w|n). We put Av := .

Theorem 4.1.3 Suppose that D, Q are dense linear subspaces of V,VV and a is a bounded
sesquilinear form on D x Q. Then there exists a unique extension of a to a bounded form on
Y x W.

4.2 Sesquilinear quasiforms

Let V, W be complex spaces. We say that t is a sesquilinear quasiform on W x V iff there
exist subspaces Dom;t C W and Dom, t C V such that

Domjt x Dom,t 3 (w,v) — t(w,v) € C

is a sesquilinear map. From now on by a sesquilinear form we will mean a sesquilinear quasiform.

We define a form t* with the domains Dom t* := Dom, t, Dom, t* := Dom; t, by the formula



t'(v,w) ;= t(w,v). If t; are ty forms, then we define t; + to with the domain Dom;(t; +t) :=
Dom, t; N Dom; t1, Dom, () +t2) := Dom, t; NDom, t; by (t; +t2)(w, v) := t;(w, v) +t3(w, v).
We write t; C to if Domyt; C Domyty, Dom, t; C Dom, ty, and t;(w,v) = to(w,v), w €

Dom; t1, v € Dom, ;.

From now on, we will usually assume that YW = V and Dom;t = Dom, t and the latter

subspace will be simply denoted by Dom t. We will then write t(v) := t(v,v), v € Dom t.

The numerical range of the form t is defined as
Numt := {t(v) : v € Domt, |jv|| = 1}.

We proved that Numt is a convex set.

With every operator 1" on V we can associate the form
t(w,v) = (w|Tv), w,v € DomT.

Clearly, Numt; = Num7'. If T is self-adjoint, we will however prefer to associate a different

form to it, see Theorem 4.5.1.



The form t is bounded iff Numt is bounded. Equivalently, [t(v)]| < c||v]]?.
t is hermitian iff Numt C R. An equivalent condition: t(w,v) = t(v, w).

A form t is bounded from below, if there exists ¢ such that

Numt C {z : Rez > c}.

A form tis positive if Numt C [0, oo[. In this section we develop the basics of the theory of

positive forms.

Note that many of the concepts and facts about positive forms generalize to hermitian
bounded from below forms. In fact, if t is bounded from below hermitian, then for some ¢ € R

we have a positive form t + c. We leave these generalizations to the reader.

4.3 Closed positive forms

Let s be a positive form.



Definition 4.3.1 We say that s is a closed form iff Dom s with the scalar product
(w|v)s := (s + 1)(w,v), w,v € Doms, (4.3.2)
is a Hilbert space. We will then write ||v||s := \/(v[v)s.
Clearly, the scalar product (4.3.2) is equivalent with
(s +¢)(w,v), w,v € Doms,
for any ¢ > 0.

Theorem 4.3.2 The form s is closed iff for any sequence (v,) in Doms, if v, — v and

s(v, —vy) — 0, then v € Doms and s(v, —v) — 0.
Example 4.3.3 Let A be an operator. Then
(Aw]Av), w,v € Dom A,

is a closed form iff A is closed.



4.4 Closable positive forms

Let s be a positive form.

Definition 4.4.1 We say that s is a closable form iff there exists a closed form s, such that
s C 851.
Theorem 4.4.2 (1) The form s is closable < for any sequence (v,) C Doms, if v, — 0
and s(v, — vy,) — 0, then s(v,) — 0.
(2) If s is closable, then there exists the smallest closed form s, such that s C s,. We will
denote it by s

(3) Nums is dense in Nums®

Proof. (1) = follows immediately from Theorem 4.3.2.

To prove (1) <, define s; as follows: v € Dom s, iff there exists a sequence (v,,) C Dom s
such that v, — v and 5(v, — v,,) — 0. From 5(v,) < (1/5(v1) + v/5(v, — v1))? it follows
that (s(vy,)) is bounded. From [s(v,) — §(vm)| < v/8(vy — vi) (v/5(vs) + /8(vy)) it follows

that (s(v,)) is a Cauchy sequence. Hence we can set s1(v) := lim s(v,,)
n—o00




To show that the definition is correct, suppose that (w,) € Doms, w, — v and s(w, —
W) — 0. Then s(v, — w, — (v, — wy)) = 0 and v, — w,, — 0. By the hypothesis we get
s(v, —w,) — 0. Hence, Tllgglos(vn) = Jirgos(wn) Thus the definition of s; does not depend
on the choice of the sequence v,,. It is clear that s, is a closed form containing s. Hence s is

closable.

To prove (2) note that the form s; constructed above is the smallest closed form containg
s. 0O

Example 4.4.3 Let A be an operator. Then
(Aw|Av), w,v € Dom A,
is closable iff A is a closable operator. Then
(A%w|A%), w,v € Dom A%

Is its closure.

Definition 4.4.4 We say that a linear subspace Q is an essential domain of the form s if



cl
)=
OxQ

(s

4.5 Operators associated with positive forms

Let S be a self-adjoint operator. We define the form s as follows:
s(v,w) := (|S|Y?v|sgn(9)|S|"*w), v,w € Doms := Dom |S|*/2.
We will say that s is the form associated with the operator S.

Theorem 4.5.1 (1) NumS is dense in Nums.

(2) If S is positive, then s is a closed positive form and Dom S is its essential domain.

The next theorem describes the converse construction. It follows immediately from Thm

3.11.2.

Theorem 4.5.2 (Lax-Milgram Theorem) Let s be a densely defined closed positive form.



Then there exists a unique positive self-adjoint operator S such that

s(v,w) == (SY?v|SY?w), v,w € Doms := Dom S*/?.

Proof. By Thm 3.10.1 applied to Dom s there exists a positive self-adjoint operator 1" such

that
s(v,w) := (Tv|Tw), v,w € Doms := DomT.

We set S :=T2. O

We will say that S is the operator associated with the form s.

4.6 Perturbations of positive forms

Theorem 4.6.1 Let t; and ty be positive forms.
(1) t, + to is also a positive form.

(2) If t; and ty are closed, then t; + t5 is closed as well.



(3) Ift; and ty are closable, then t; + ty is closable as well and (t; + t5)® C ! + 5.

Definition 4.6.2 Let p, t be hermitian forms. Let t be positive. We say that p is t-bounded

iff Domt C Dom p and
[p(v)]

b:=inf sup < 00.
>0 yepom t H(V) + ¢||v]|?

The number b is called the t-bound of p.

Theorem 4.6.3 Let t be positive and let p be t-bounded with the t-bound < 1. Then
(1) The form t+ p (with the domain Domt) is bounded from below.

(2) tis closed < t +p is closed.
(3) t is closable <> t + p is closable, and then Dom(t + p)® = Dom t°'.

Proof. Let us prove (1). For some b < 1, we have
(t+p)(v) = tv) = |p(v)| = (1= b)t(v) —cllv]* (4.6.3)

This proves that t + p is bounded from below.



To see (2) and (3), note that (4.6.3) and
(1+b)t(v) +cllof|* = (t+p)(v)

prove that the norms || - ||¢ and || - ||+ are equivalent. O

4.7 Friedrichs extensions
Theorem 4.7.1 Let T be a positive densely defined operator. Then the form
t(w,v) := (w|Tv), w,v € Domt:=DomT

is closable.

Proof. Suppose that w,, € DomT, w, — 0, lim t(w, —w,;)=0. Then

Nn,M—+00




For any ¢ > 0 there exists N such that for n,m > N we have t(w, — w,,) < €. Besides,

lim (w,,|Tw,) = 0. Therefore, for n > N,

m—0o0

[t(wn)| < elt(wn)|'.

Hence t(w,) — 0. O

Thus there exists a unique postive self-adjoint operator T™" associated with the form .

The operator T is called the Friedrichs extension of 7.

Clearly, Dom T is then essential form domain of 7. However in general it is not an essential

operator domain of T"". The theorem says nothing about essential operator domains.

For example, consider any open 2 C R?. Note that C>°(Q) is dense in L%(Q2). The equation

(f] - Ag) = / V@ Vg(z)dz, feCXQ)

shows that —A on C°(£2) is a positive operator. Its Friedrichs extension is called the laplacian

on () with the Dirichlet boundary conditions.



If V' is any positive bounded from below function we can consider A + V() and define its

Friedrichs extension.



6¢1



Chapter 5

Non-maximal operators

5.1 Defect indices

If V is a finite dimensional Hilbert space and V), V; its two subspaces such that V; NV, = {0},

then we have the following obvious inequalities:
dim V; 4+ dim V, dim V,

dimy, < dimVy,
dimV, < dim Vi

IA

IA



If dim) = oo, then clearly the first inequality loses its interest. However the other two

inequalities, which are still true, may be interesting.

Let A be an operator on a Hilbert space V.

Theorem 5.1.1 dim Ran (2 — A)* = dim Ker(z — A*) is a constant function on connected

components of C\(NumA).

Proof. Let us show that if |z — 21| < dist(z, NumA), then
Ran (2 — A) N Ran (z; — A)* = {0}. (5.1.1)
Let w € Ran (z — A). Then there exists v € Dom A such that
w=(z—A)w

|, where ¢ = (dist(z,NumA))_l. If moreover, w € Ran(z — A)+ =

and [jv|| < c||w



Ker(z; — A*), then
0=((z1 — A)wlv)

= (w|(z — A)v) + (21 — 2)(w|v)
= [wll* + (2 — 21) (wlv).
But
wll* + (21 = 2)(w|v)| > (1 = |21 = z[e) Jw]|* > 0,

which is a contradiction and completes the proof of (5.1.1).
Now (5.1.1) implies that dim Ran (z — A)* < dimRan (2; — A)*. O

5.2 Extensions of hermitian operators

Let A be closed hermitian.

Theorem 5.2.1 The so-called defect indices of A

ny = dimKer(z — A*), z € C4



do not depend on z. Then A possesses a self-adjoint extension iff n,. = n_. Moreover, one of

the following possibilities is true:

(1) NumA # R.

(i) spA C R, ny =n_ =0 and A is self-adjoint.
(ii)) spA=C, ny. =n_ > 0.

(2) NumA = R.

(i) spA C R, ny =n_ =0, A is self-adjoint.

)

(ii) spA = {Imz > 0}, ny >0, n_ =0, A is not self-adjoint.

(iii) spA = {Imz < 0}, ny =0, n_ > 0, A is not self-adjoint.
)

(iv) spA=C, ny >0, n_ >0, A is not self-adjoint.

Proof. The existence of self-adjoint extensions for n, = n_ follows from Theorem 5.2.3.

The remaining statements are essentially a special case of Theorem 5.1.1. O



Definition 5.2.2 Define on Dom A* the following scalar product:
(v|w) g4+ :== (v]w) + (A*v|A*w)
and the following antihermitian form:
[v|w]as == (A"v|w) — (v|A*w).
The A*—closedness and the A*—orthogonality is defined using the scalar product (-|) 4.

Theorem 5.2.3 (1) Every closed extension of A is a restriction of A* to an A*—closed

subspace in Dom A* containing Dom A.

(2)
Dom A* = Dom A @ Ker(A* +1) & Ker(A" — i)

and the components in the above direct sum are A*-closed, A*—orthogonal and

(wo ®wy Gw_|vg D vy Dv_)a = (wolve) + (Awp|Avg) + 2(w|vy) + 2(w-|v-),

[wo ® wy Bw_|vg B vy o] = 2i(wy|vy) — 2i(w_|v_).



Proof. (1) is obvious. In (2) the A*—orthogonality and the A*—closedness are easy.

Let w € Dom A* and
w L4« Dom A @ Ker(A* +1).

In particular, for v € Dom A we have
0= (A"w|A™) + (w|v) = (A"w|Av) + (w|v).
Hence A*w € Dom A* and
A" A*w = —w.

Therefore,
(A" +1) (A" —i)w = 0.

Thus
(A" —i)w € Ker(A" +1i). (5.2.2)



If y € Ker(A* +1), then
i(y|(A" —)w) = (A'y[A™w) + (y|w) = (y|w)a =0

In particular, by (5.2.2) we can set y = (A* —i)w. We get w € Ker(A* —1i). O

Dom A belongs to the kernel of the antisymmetric form [-, -] 4. Therefore, in what follows

we restrict this form to
Viet := Ker(A* +1) @ Ker(A* —1).

We will write

ZP = {U € Vief - [Z,U]A* =0, z € Z}
We will say that a subspace Z of Vs is A*—isotropic iff [-|-] 4« vanishes on Z and A*-Lagrangian
if ZPr = Z,

Every A*—closed subspace of V containing Dom A is of the form Dom A @& Z, where

Z C Vyet. If
ACBC A",



then the subspace Z corresponding to B will be denoted by Zp.

Theorem 5.2.4 (1) We have
ZB* — (ZB)per.

(2) B is hermitian iff Zp is A*—isotropic iff there exists a partial isometry U : Ker(A*+i) —
Ker(A* — i) such that

Z . ={w, ®Uw; : wy € RanU*U}.

(3) B is self-adjoint iff Zp is A*-Lagrangian iff there exists a unitary U : Ker(A* +1i) —
Ker(A* — i) such that

Z = {U)_|_ P UU)_|_ Wy - Ker(A* + 1)}

5.3 Extension of positive operators

(This subsection is based on unpublished lectures of S.L.Woronowicz).



Theorem 5.3.1 LetV =V, DV, and

By B
By Bn

B:

be an operator in B(V) with By invertible. Then B is positive iff By; > 0, By = Bj, and
By > By Byy' Bo.

Proof. Let vy € Vy, v1 € Vy. For v, = [ ‘0 . Then
v

1

0 < (v|Bv) = (v9Boovo) + (vo|Bo1v1) + (v1|Biovo) + (v1|Bi1v1)
= (vo|(Boo — Bo1Bi1 Bio)vo) + HBl_ll/QBmUo + 311{2111||2
This proves =.

Let us prove <=. The necessity of By; > 0 is obvious. Given vy, we can choose v; =
—Bl_llBlovo. This shows that Byy — BmBﬁlBlO has to be positive. O



Suppose that G is hermitian, positive and closed. We would like to describe its positive

self-adjoint extensions. Thus we are looking for positive self-adjoint H such that G C H.

The operator G + 1 is injective and has a closed range.

Define V; := RanG and set

Vo= Vi, sothat V =V, ® V. Let A € B(V1,V) be the left inverse of G + 1. We can write

it as
A
A - 01
An
We are looking for a bounded operator
B
(1+H) '=B=|""
By

that extends A and 0 < B < 1. Clearly,
5.3.1,

By
loo — Boo >

Vv

By By{' Buo,
Boi (13 — B11)_1B10-



Thus we can choose any By € B(),) satisfying
Too — Ao (L — A11) " Afy > Boo > An A Ay

This condition has two extreme solutions: The smallest Ay A} Aj; yields the largest extension,
called the Friedrichs extension H¥*. The largest Moo — A1 (141 — All)_lA&, gives the smallest
positive extension, called the Krein extension HX*. We have the following formula for both

extensions:

(1+ H™)7!
(A2 4 A A7) (A2 + A ALY,

1—(1+H*)™!

( (11 — Amn) V2 Aor(lyy — App)~ 12 )((]111 - 1411)1/2 — Ap1 (Mg — A11)_1/2)*~



Ji!



Chapter 6

Aronszajn-Donoghue Hamiltonians and their

renormalization

6.1 Construction

Recall that the operators (h| and |h) are defined by

H > v (hlv:= (hlv) € C,
(6.1.1)
Csaw |h)a :=aheH.



In particular, |h)(h| equals the orthogonal projection onto h times ||h||?.

Let Hy be a self-adjoint operator on H, h € H and A € R.
Hy, = H()—I—)\‘h)(m, (612)

is a rank one perturbation of Hy. We will call (6.1.2) the Aronszajn Donoghue Hamiltonian.

We would like to describe how to define the Aronszajn-Donoghue Hamiltonian if / is not

necessarily a bounded functional on H. It will turn out that it is natural to consider 3 types of
h:

LheH, ILhe(H)*H\H, 1L he (H)H\ (H)'*H, (6.1.3)

where (Hy) := (1 + H2)Y2.

Clearly, in the case | H) is self-adjoint on Dom Hy. We will see that in the case Il one
can easily define H) as a self-adjoint operator, but its domain is no longer equal to Dom H,.
In the case Ill, strictly speaking, the formula (6.1.2) does not make sense. Nevertheless, it

is possible to define a renormalized Aronszajn-Donoghue Hamiltonian. To do this one needs



to renormalize the parameter \. This procedure resembles the renormalization of the charge
in quantum field theory. In this case usually the parameter A\ looses its meaning, so we will
abandon the notation H). Instead, one can label the Hamiltonian by various parameters, which

we will put in brackets.

Lemma 6.1.1 /n Case | with X\ # 0, the resolvent of H equals

= (2= Ho)™" = g(2)"'( = Ho)"'[h)(hl(z — Ho) ™", (6.1.4)
where
g(2) = =X+ (h|(z — Hy) " 'h). (6.1.5)
defined for z ¢ spH,.
Proof. We have

R(z) = (z = Ho)™" = AR(2)[h)(h|(z — Ho)™
— Az — Ho) Y ) (h|R(2). (6.1.6)



Hence the range of (6.1.6) is C(z — Hy) 'h, and the kernel is {(z — Hp)'h}+. Therefore,
(6.1.6) has the form
—g(2)7'(z — Ho) "' |h)(h[(z — Ho)™! (6.1.7)

for some complex function g(z). Thus it remains to determine g(z) in (6.1.4). We insert
(6.1.4) into

Az — Ho)'|h)(h|R(z) = —g(2)~"(z — Ho)"'[h)(h|(z — Ho) ",
and we obtain the formula for g, sometimes called Krein's formula. O

For A = 0, clearly
Ro(2) = (z — Hy) ™. (6.1.8)

The following theorem describes how to define the Aronszajn-Donoghue Hamiltonian also in

cases |l and IlI:

Theorem 6.1.2 Assume that:
(A) h € (H))'?H, A € RU{oc}. Let R\(z) be given by (6.1.8) or (6.1.4) with g\(z) given



by (6.1.5),
or
(B) h € (Ho)H, v € R. Let R(z) be given by (6.1.4) where g(,(z) is the solution of

{ 0.90)(=) = — (hl(= — Ho)™2h),
gy (@) + g (1)) = 7.

Then, for z € C\spH, such that g(z) # 0

(6.1.9)

(1) z — R(2) is a pseudoresolvent (a function with values in bounded operators that fulfill

the first resolvent formula);
(2) KerR(z) = {0}, unless h € H and \ = oo,
(3) Ran R(z) is dense in H, unless h € H and A\ = oo,
(4) R(2)" = R(Z).
Hence, except for the case h € H, A = 00, there exists a unique densely defined self-adjoint

operator H such that R(z) is the resolvent of H.

The initial condition in (6.1.9) can be called the renormalization condition. It is easy to solve



(6.1.9) obtaining
9i(2) =7+ (R|((z = Ho) ™' + Ho(1 + H) " )h).

If g(8) =0 and S & spHy, then H has an eigenvalue at 3, and the corresponding eigenpro-
jection is
sy (H) = (R|(8 — Ho)~*h)~ (B — Ho) ' [h)(h[(B — Ho) ™"

In Case | and Il the function RU {co} 2 A — H, is increasing.
In Case Il we rename Hj as H ().
6.2 Cut-off method

Another way to define H for the case h € (Hy)H is the cut-off method. For A > 0 we define
]’LA = ]][—A,A](HO) h, (6210)

where 1j_, )(Hp) is the spectral projection for Hj onto [-A, A] C R. Note that hy € H.



We fix the running coupling constant by
A=+ (halHo(1+ HY) thy)
and set the cut-off Hamiltonian to be
Hy := Hy+ A |ha)(hyl- (6.2.11)
Then the resolvent for H, is given by
Ra(2) = (z — Ho) ' — ga(2) (2 = Ho) M ha)(ha|(z — Hy) 7Y, (6.2.12)

where
ga(2) == ="+ (hal(z — Ho) 'hy) - (6.2.13)

Note that A4 is chosen in such a way that the renormalization condition 3 (ga (i) + ga(—1i)) = 7.

holds. The cut-off Hamiltonian converges to the renormalized Hamiltonian:

Theorem 6.2.1 Assume that h € (Hy)H. Then lim Ry(z) = R(z2).

k—o0



6.3 Extensions of hermitian operators

Let Hy be as above and h € (Hy)H\H. (Thus we consider jointly Case Il and Ill.) Define
H i, to be the restriction of Hj to

Dom(Hyyin) := {v € Dom(Hy) = (Hy) 'H : (h|v) = 0}.

Then H,,;, is a closed densely defined Hermitian operator. Set H,.x := H. . Then

Dom(Hyax) = Span(Dom HoU{(z) — HO)_lh}),
where zy € rsHj. Note that Ker(H .« £ 1) is spanned by
vy = (i — Hy) 'h.
Thus the indices of defect of Hy, are (1,1).

The operators H . described in the previous subsection are self-adjoint extensions of Hy;y.



To obtain H, it suffices to increase the domain of H, by adding the vector

v+ (h|Ho(1+ HZ)"'h)

Ot (h|Ho(1+ H3)th)
v —i(h|(1+ Hg) " 'h)

v+ i(h|(1+ HZ)"'h)

(i — Ho) (i + Ho) ',

If H, has an eigenvalue § outside of spHy, then instead we can add the vector

(B — Hpy) 'h.

6.4 Positive H

Let us consider the special case Hy > 0.

We can define the positive form §,,;, associated with H;,:

hmin(vav) = (UIHminU) = (U‘HOU>7
v € Dom(huyin) := Dom Hpyy = {v € Dom(Hy) : (hlv) = 0}.

In Case Il and Ill the form b, is densely defined.

Clearly, g is analytic on C\[0, 0o]|. g restricted to | — 0o, 0[ is a decreasing function (in all



cases |, Il and I11). Therefore, H can possess at most one negative eigenvalue.

We distinguish subcases of Cases I, Il and IlI
Case | iff h € H;

Case la iff A € Dom Ho_l/2;
Case Ib iff 1 & Dom H, />,

Case Il iff h € (14 Ho)'/?H, h & H;

Case lla iff (14 Hy)"2h € Dom(1 + HO)1/2H0—1/2;
Case b iff (1+ Hy) *2h & Dom(1 + H()>1/2H0_1/2.

Case Il iff h € (14 Ho)H, h & (1 + Hy)'?*H;

Case llla iff (1+ Hy) 'h € Dom(1 + Ho)"/?H, '/;
Case lllb iff (1+ Hy) "h & Dom(1 + Hy)2H, .



In Case la and lla we set
M i= —(h|Hy'h) ™. (6.4.14)

Note that Ak, is negative. (In all other cases one could interpret (h|H,'h) as +oc, and
therefore one can then set Ak, := 0). We have

lim g(z) =-A"1 g(0)= A"+ A\l

T——00

Therefore, H) is positive for Ax, < A < 0o. For A < A\k;, H) has a single negative eigenvalue
B, which is the solution of
Ah|(Hy — B)'h) = —1. (6.4.15)

In Case lla H),. is the Krein extension of Hy,;, and H is the Friedrichs extension.
In Case |Ib and Ilb we have
lim g(x) = -\ g(0) = —c0.

T——00

H) is positive for 0 < A < co. For A < 0, H) has a single negative negative eigenvalue 3,
which is the solution of (6.4.15). In Case IIb Hj is the Krein extension of H;, and Hy is its



Friedrichs extension.

In Case Il we will use several kinds of parameters, always putting them in brackets. In

particular, it is natural to rename Hy and call it H(y,). It is the Friedrichs extension of Hy;y.
In Case llla we have
lim g(x) =00, g¢(0) =: 7,
T—>—00

where 7 is a finite real number that can be used to parametrize H, so that
9(z) = v — (h|(Ho—2)""Hy'h) 2.

H,, is an increasing function of 7. It is positive for 0 < 7q. It has a single negative eigenvalue
at [ solving

Yo = (h|(Hy = B)" Hy 'h) .
The Krein extension corresponds to vy = 0.

In Case lllb
lim g(z) =00, ¢(0)=—oc.

T——00



A natural way to parametrize the Hamiltonian is by g(z;) for some fixed zy €] — 00, 0], say
v-1 := g(—1). This yields

9(2) = 71— (hl(Ho—2)""(Ho+1)"'h) (2 + 1).

H is an increasing function of y_; on R U {oc}. The Krein extension is H ., (and coincides
with the Friedrichs extension).
H, ,) has a single negative eigenvalue (3 for all 7_; € R. [ is an increasing function of v_;.
If we use the cut-off method in Case Ill, then A\ " 0. Thus we should think of A as

infinitesimally small negative.



Gq1



Chapter 7

Friedrichs Hamiltonians and their

renormalization

7.1 Construction

Let Hy be again a self-adjoint operator on the Hilbert space . Let e € R and h € H. The

following operator on the Hilbert space C & H is often called the Friedrichs Hamiltonian:

e (Al
n ] (7.1.1)




We would like to describe how to define the Friedrichs Hamiltonian if A is not necessarily a

bounded functional on H. It will turn out that it is natural to consider 3 types of h:

LheH, ILhe(H)*H\H, 1L hec (H)H\ (H)'*H, (7.1.2)

Clearly, in the case | GG is self-adjoint on C & Dom H,. We will see that in the case Il one
can easily define GG as a self-adjoint operator, but its domain is no longer C & Dom Hy. In
the case lll, strictly speaking, the formula (7.1.1) does not make sense. Nevertheless, it is
possible to define a renormalized Friedrichs Hamiltonian. To do this one needs to renormalize

the parameter €. This procedure resembles the renormalization of mass in quantum field theory.

Let us first consider the case h € H. As we said earlier, the operator G with Dom G =
C & Dom Hj is self-adjoint. It is well known that the resolvent of G can be computed exactly.

In fact, for z ¢ spH, define the analytic function

f(2) =€+ (h|(z — Hy) " 'h). (7.1.3)



Then for z € C\spHy, f(z) # z the resolvent Q(z) := (z — G) ! is given by

0 0
Q) = | (o Hy)! ] (7.1.4)
+( B f( ))—1 1 (M(Z - ]{0)71
(2 — Ho)~'h) (2 — Ho) '[R)(h|(z — Ho)™

Theorem 7.1.1 Assume that:
(A) h € (H))'/?H, e € R. Let Q(z) be given by (7.1.4) with f(z) defined by (7.1.3),

or

(B) h € (Hy)H, v € R. Let Q(z) be given by (7.1.4) with f(z) defined by

{ 0.f(2) = — (hl(z = Ho)*h), (7.1.5)

3(fQ) + f(=1) =
Then for all z € C\spHy, f(z) # z :

(1) Q(z) is a pseudoresolvent;



(2) KerQ(z) = {0},
(3) RanQ(z) is dense in C® H,;

(4) Q)" = Q7).
Therefore, there exists a unique densely defined self-adjoint operator G such that Q(z) =

(z—G)L

Proof. Let z € C\spHy, f(z) # z. It is obvious that ()(z) is bounded and satisfies (4). We
easily see that both in the case (A) and (B) the function f(z) satisfies

f(z21) = f(22) = —(21 = 22)(h|(21 — Ho) ™' (22 — Ho) ' |). (7.1.6)

Direct computations using (7.1.6) show the first resolvent formula.

Let (o, f) € C @ H be such that (o, f) € Ker@Q(z). Then

0= (== () (o + (hl(z = Ho)™'f). (7.17)

0= (2= Ho)'f + (2= Ho) 'z = f(2) 7} (a+ (Wl(z = H) ') (T18)



Inserting (7.1.7) into (7.1.8) we get 0 = (2 — Hy)"'f and hence f = 0. Now (7.1.7) implies
a =0, so KerQ(z) = {0}.

Using (2) and (4) we get (Ran Q(2))* = KerQ(2)* = KerQ(z) = {0}. Hence (3) holds.
O

It is easy to solve (7.1.5):

f(2) = v+ (hl((z = Ho)™" + Ho(1 + Hg)~")h)
» (7.1.9)

=7t (h‘(%z—f}o_)?i—Ho) N Z(Z—Ho)(—i—Ho))h)

7.2 The cut-off method

Let h € (Hyp)H and v € R. We can also use the cut-off method. For all A > 0 we define hy
as in (6.2.10), that is hy := L A)(Ho) h,. We set

€A =Y+ (hA‘Ho(l + Hg)flhA).



For all A > 0, the cut-off Friedrichs Hamiltonian

Gy = [ A (hA]

|ha)  Ho

is well defined and we can compute its resolvent, Q4 (2) := (z — Gy) ™ :

Oalz) = 8 (z — ?LIO)_l
tz-ne)
where

1 (ha|(z — Hy) ™t

(z = Ho) '|ha) (2 — Ho)~'ha)(hal(z — Ho) ™!

fa(2) == er + (hal(z — Hp) thy).

(7.2.10)

(7.2.11)

Note that €, is chosen such a way that the following renormalization condition is satisfied:

S(fa@) + fa(=1) = 1.



Theorem 7.2.1 Assume that h € (Hy)H. Then klim Qr(2) = Q(z), where Q(z) is given by
—00
(7.1.4) and f(z) is given by (7.1.9). If Hy is bounded from below, then klim €A = 00.
—00

Proof. The proof is obvious if we note that lim |[(z — Hy) 'h — (2 — Hy) thy|| = 0 and

k—o00
lim fu(=) = f(2). O

Thus the cut-off Friedrichs Hamiltonian is norm resolvent convergent to the renormalized

Friedrichs Hamiltonian.

7.3 Eigenvectors and resonances

Let 8 & spHy, If 3 = f(8) =0 then G has an eigenvalue at 5. The corresponding eigenpro-

jection equals

. B 9 -1 1 (h|(6 - HO)_l
= G Q=TI iy (5 - s e — ) ]

It may happen that C\spH, 3 z — f(z) extends to an analytic multivalued function accross

some parts of spHy. Then so does the resolvent (2 — G)~! sandwiched between a certain class



of vectors, in particular, between

(w](z— G)'w) = (= — ()"

It may happen that we obtain a solution of

f(B) =5

(7.3.12)

in this non-physical sheet of the complex plane. This gives a pole of the resolvent called a

resonance.

Suppose that we replace h with Ak and € with €y + A2a and assume that we have Case | or

[l with \ small.

Then if ¢y & spH(, we have an approximate expression for the eigenvalue for small A:

ex = €0 + N+ N2 (h|(eg — Ho)'h) + O(XY).

If ¢g € spHy, then the eigenvalue typically disappears and we obtain an approximate formula



for the resonance:

ex = eo+ Na+ N (h|(e +i0 — Hy) *h) + O\
= €+ Na + N(h|P(eg — Ho)'h) — Nim(h|6(Hy)h) + O(\Y).

Suppose now that ¢y = 0. Then we have the weak coupling limit:

%(Me—ié%) = exp (—ita + it(h|P(Hy ')h) — tw(h|6(Ho)h)) .

7.4 Dissipative semigroup from a Friedrichs Hamiltonian

Consider L*(R), e ¢ R, A € C and

Hyv(k) := kv(k), ve L*R), kcR.



Then R 3 k +— 1(k) = 1 does not belong to (Hy)'/2L?*(R), however it belongs to (Hy)L*(R).
We will see that

G:[ ¢ AU (7.4.13)

A1) H,

is a well defined Friedrichs Hamiltonian without renormalizing A, even though it is only type
1.

Set 15(k) := Nj_5 a)(k). We approximate (7.4.13) by
A(1
Gro | Al (7.4.14)
Allp)  Ho

Note that (7.4.14) has a norm resolvent limit, which can be denoted (7.4.13). In fact,

e —im|A? Imz >0,
e +im|A]? Imz < 0.

A—)OOA Z—k

—A
f(2) =€+ lim A dk = {



If w is the distinguished vector (7.3.12), then

(w|(z— @) 'w) = (z—exin|A)™", =£Imz >0,

s s _ 2
(w\e 1tGw) — o id || |t|
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Chapter 8

Momentum in one dimension

8.1 Distributions on R

The space of distributions on R is denoted D'(R). Note that L] .

Proposition 8.1.1 (1) Let g € L{ (R). Then

loc

(R) € D'(R).

(8.1.1)



is a continuous function and f' = g, where we use the derivative in the distributional

Sense.

(2) Ifg € LP(R) with 1 < p, then g € Li. (R) and so f(x) defined in (8.1.1) is a continuous

loc

function.

(3) If f € CY(R), then f' in the classical and ditributional sense coincide.

6 will denote the Heavyside function.

8.2 Momentum on the line

Consider the Hilbert space L*(R).

The equation
Ut)f(x):= fx—t), fel*R), teR,

defines a unitary strongly continuous group.



The momentum operator p is defined by on the domain
Domp = {f € L*(R) : f € L*(R)}

by 1
pf(z) == -0,f(z), f € Domp.

i

Its graph scalar product is

Theorem 8.2.1 (1) U(t) =e '
(2) p is a self-adjoint operator.
(3) C°(R) is an essential domain of p.

(4) spp =R, sp,p = 0.

(8.2.2)



(5) The integral kernel of (2 — p)~! equals

—i0(z — y)e*= ¥ Imz > 0,
+if(y — 2)e*@ ) Imz < 0.

R(z,z,y) = {

Proof. (1): Let A be the generator, f € Dom A. Then for any ¢ € C°(R)

GA9) U~ ) = 1 [ (G0 -3 i@~ [T

Therefore, Af = —f’ in the distributional sense.
Let f € L?, g:= f' € L% Then f € C(R) and

1 1 [ .
(e 0- 1@ =1 [ alwdy=sirg o (523
r—t
. 1/t7 y e [_t7 0]7 . .
where we j; = and (8.2.3) is understood in the L? sense. Therefore,

0 Yy Q/ [—t,O]-
f € Dom p.



(3): C=(R) is a dense subspace of L*(R) left invariant by U(t). Therefore, it is an essential
domain.
(5): For Imz >0

Hence

0.9]

(2 =p) " flz) = —i /OO ¢ fz —t)dt = —i/_ TGz — ) f(y)dy.

0 00

For Imz < 0 we can use
(z—p) " =@EF-p "

(4): Let k € R. Consider f.;, = /mee= ¥ Then ||f.xll = 1, for € Domp and
(k—p)fexr — 0 as e — 0. Hence k € spp.

Suppose that f € Domp and pf = kf. Clearly, f € Dom p?. Hence, by Theorem 9.1.1,
f € CYR) and pf = —id,f = kf. It is well known that the only solution is f = ce'**, which
does not belong to L*(R). O



Proposition 8.2.2 (1) Domp C C(R) and Domp > f — f(x) € C is a continuous

functional.
(2) If f € Domp and pf € C(R), then f € C'(R) and (8.2.2) is true in the classical sense.

(3) If f € Domp and f =0 on|a,b|, then pf =0 on ]a, b.

Proof. (1): Domp = Ran(i — p)~!. Now (i — p)~! is the convolution with —if(z)e !,
which belongs to L?(R). The convolution of two L?(R) functions belongs to C,.(R).

(2) Let f € Domp, g € C(R) and pf = g. Let z € R, » > 0. Set h := 1}, ;4,. Then

U f— ) =t [ )y — ! ff”f(y)dy
=t~ lfﬂj”tf Wdy+t" [, fy)dy = —f(z +7) + f(2).

where we used the continuity of f. Therefore

(hlg) =1 [ " W)y = —f+ 1) + (@),



Hence, using the continuity of g,

(3) is obvious for f € C}(R). It extends by density. O

Proposition 8.2.3 (1) The spaces

{f € Domp : f(z)=0, x <0}, (8.2.4)
{f € Domp : f(x)=0, x> 0}. (8.2.5)

are mutually orthogonal in Dom p.

(2) The orthogonal complement of the direct sum of (8.2.4) and (8.2.5) is spanned by e~1*!,

Proof. (2): We easily check the orthogonality of e=1*l to (8.2.4) and (8.2.5).
Let f € L}(R). Set fi(z):= 0(xx)(f(z) — f(0)e ). Then

f(x) = f0)e ™+ f-(2) + fi(x).



8.3 Momentum on the half-line

Consider the Hilbert space L*(]0, oo).
Define the semigroups
U_(t)f(z) = f(z+1), t>0.

flx—1t), x>t>0.
U () f(x) == @t

Define ppax by

Pmaxf (T) = %@Cf(x), f € Dom puay := {looff : f € Domp}.

Note that the graph scalar product of py.x is

(F19)puse = /0 ) (f(@)g(z) + F(2)d (x))dz.

(8.3.6)



Define the operator p,.i, as the restriction of p..x to the domain
Dom pyiy == {f € Domp : f(x) =0, x < 0}.

(In the definitions of Dom py,. and Dom pp,;, we used concepts defined in the space L*(R),

however it is easy to see that both are subspaces of L*([0, 0ol).)

Theorem 8.3.1 (1) We have U, (t) = e and U_,(t) = e Pwin,

(2) Pmin C Pmax D = Pmaxs Piax = Pmin, the operators pyin and —ppax are m-dissipative

(in particular, they are closed); the operator py, is hermitian.

(3) Dom pyiy is a subspace of Dom py,.y of codimension 1 and its orthogonal complement is

spanned by 1}y o((z)e™".
(4) C([0, 00[) is an essential domain of py., and C°(]0, 0ol) is an essential domain of Py .
(5) SPPmax = SPpPmax = {Imz > 0}, sppmin = {Imz < 0}, sp,pmin = 0,

Pmax€™’ = 26 ¥ € Dom ppay, Imz > 0; (8.3.7)



(6) The integral kernels of (z — puax) ' and (2 — pmin) ' are equal

Ruax(z,2,y) = i0(y — 2)e** ¥ Imz < 0.

Ruin(z,z,y) = —if(x — y)eiz(m*y), Imz > 0.

8.4 Momentum on an interval I

Consider the Hilbert space L*([—, 7]).

Define punax as an operator with domain

Dom prax == {1z~ f : f € Domp}

and .
pmaxf(x) = Taxf(x)u f € Dompmax-

(8.4.8)



Note that the graph scalar product for pyay is

| " (F@e(x) + @ (2))de. f.g € Dom pu.

-7

Define the operator p,in as the restriction of p;,.x to the domain
Dom pyiy :={f € Domp : f(z)=0, = & — 7, «[}.
Theorem 8.4.1 (1) Neither py.x nor pmin generate a semigroup.

(2) Pmin C Pmaxs Pipin = Pmaxs Piuax = Pmin; the operators pui, and pua.x are closed, the

operator puyi, is hermitian.

(3) C°°([—m,7]) is an essential domain of py.x and CX°(] — 7, [) is an essential domain of

Pmin-
(4) SPPmax = Spppmax — C; SPPmin = (Cr Spppmin — ®:

pmaxeizx = Zeizx’ A C, (849)



8.5 Momentum on an interval 11

Let x € C. Define the family of groups on L?([—m,7]) by
U.t)p(z) = *™p(x —t), —2n—)r<z—t<—2n+1)m, ncZ
Let the operator p,. be defined as the restriction of p.. to

Dom p, = {f € Dom ppay : €™ f(—7) = f(m)}.

Theorem 8.5.1 (1) U,(t) = e i~
(2) |Us(t)]] = ™% 27(n — 1) < t < 27wn, n € Z.

(3) The semigroup [0, 0[> t +— U,(t) is of type (1,0) for Imx < 0 and of type (™% Tmk)
for Imrk > 0.

(4) pt =Dy, Pk = Du+1;  Pmin C Px C Dmax- Operators p, are closed. For k € R they

are self-adjoint.

(5) {f € C®([-m,m]) : e?™f(—m) = f(m)} is an essential domain of p,..



(6) SPPr = SPpPr = 7+ K,

pﬁei(n—i—n)x _ (n + K)ei(n—k/i)m’ newz.

(7) The integral kernel of (z — p,)~! equals

1

RK(Z7$7y) - 2811,17_‘_(

— Ii) (e—i(z—n)weiz(x—y)e(x o y) + ei(z—m)weiz(ﬂc—y)e(y o I’)) '

(8) The operators p,; are similar to one another up to an additive constant:

KT

Dom p,, = €"* Dompy, p. = "“ppe " + k. (8.5.10)

8.6 Momentum on an interval II1

Define the contractive semigroups on L?([—m, 7]):

fle+t),  Jz+tl <,
0 |z +t| > .

Ue(t)f(z) := {



fle=1), |e—t[<m,
0 |z —t| >

U, () f(z) = {

Let the operator pi,, be defined as the restriction of p., to
Dom piine = {f € Dom ppax : f(Em) = 0}.

Theorem 8.6.1 (1) U, (t) = e+~ and U_,(t) = e tP-ix,
(2) Piine = Peicos Pmin C Piico C Pmax. Operators pis, are closed.
(3) sPPtice = 0.
(4) The integral kernel of (2 — piiss) ' equals

Riino(z, 2,y) = £ie*0VEFg9(+y T 1), 2z € C.
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Chapter 9

Laplacian

9.1 Sobolev spaces in one dimension

For a € R let {p) ®L*(R) be the scale of Hilbert spaces associated with the operator p. It is

called the scale of Sobolev spaces. We will focus in the case @ € N.
Theorem 9.1.1 (1)

(n) "LAR)={f e I’(R) : [ e L(R)}.



(2) {p)"L*(R) ¢ C"'(R) and (p)™L*R) > f +— fU(z) forj = 0,...,n — 1 are

continuous functionals depending continuously on x € R.

Proof. We use induction. The step n = 1 was proven before.

Suppose that we know that (p) " L?(R) C C™(R). Let f € (p)~""*VL2(R). Then (i—p)f =
g € (p) "L*(R). Clearly, (p) " 'L*(R) C (p) "L*(R), hence f € C" (R). Likewise,
g € C"1(R), by the induction assumption. Now pf = —¢g +if € C"}(R). Hence, by Prop.
822 (2) f € C"(R). O

9.2 Laplacian on the line

Define the form ? by

2(f.g) == / Fl)g (2)de, f.g€ Domd := (p) ' L*(R).



The operator p? on L?(R) will be denoted —A. Thus

~Af() = —02f(x), f € Dom(~A) = (p)2LX(R).

Theorem 9.2.1 (1) —A is a positive self-adjoint operator.

(2) sp,(—A) = 0.
(3) sp(=A) = [0, 00[.

(4) The integral kernel of (k* — A)~1, for Rek > 0, is

1
R(k,z,y) = ﬂe_’”_y'.

(5) The integral kernel of !> is

_(z—p)?

K(t,x,y) = (4nt) 2e =

(6) The form 0 is closed and associated with the operator —A.



() {f € C3(R)NL*R) : f',f" € L*(R)} is contained in Dom(—A) and on this set

~Af(x) = —0;f ().
(8) C*(R) is an essential domain of —A.

Proof. (4) Let Rek > 0. Then

(ik — p) Yz, y) = —i0(x — y)e M (—ik —p) Yz, y) = i0(y — x)e Fl*=v,

Now
(k* = A)~ = (ik —p)~H(—ik —p)!
= (=2ik)" " ((ik—p) ' = (ik—p)7").
The integral kernel of (9.2.1) equals (2k) e =¥l
(5) We have

(9.2.1)

e = (27i) 7! /(z — A)~te*dz,

v



where 7y is a contour of the form 7|0, oo[Ue'*[0, co[ bypassing 0, where 7/2 < o < 7. Hence

ez y) = (27i)~! / oMy +1I g
Y

where 7 is a contour of the form e='*/2[0, co[Ue'®/2[0, co[. We put k = iu and obtain

¢]

ez, y) = (27ri)_1/ e eyt qy

—00

9.3 Laplacian on the halfline 1

Consider the space L?([0, 0c[). Define —Ap.x by

—Apaxf = _ag%f7 J/ € Dom ( - Amax) = {]I[O,OO[f : fe <p>_2L2(R)}.



Likewise, define —A\ i, as the restriction of —A .« to
Dom (— Apin) = {f € (p) °L*(R) : f(z)=0, z <O0}.

(Both Dom ( — Amax) and Dom ( — Amin) are defined using the space L?(R). It is easy to
see that they are contained in L%([0, oc).)

Theorem 9.3.1 (1) —Al. = —Anax, —Apin € —Apax.
(2) The operators — A, and — Ay are closed and — A, is hermitian.

(3) Spp(_Amax) = (C\[O, OO[, Spp(—Amin) =0

—Apae™ = B2 Imk > 0, e e Dom(—Aax)-

(4) Sp(_Amax) — CI Sp(_AInjn) - C

(5) —Apin = (pmin)zr —Apax = (pmax)Q.



9.4 Laplacian on the halfline 11

Let 1 € CU{oo}. Let —A, be the restriction of —A,x to
Dom(—A,) = {f € Dom(—Ap.) : wf(0) = f(0)}. (9.4.2)

(If i = oo, these are the Dirichlet boundary conditions, that means f(0) = 0, if u = 0, these
are the Neumann boundary conditions, that means f'(0) = 0).

Define also the form 0, as follows. If © € R, then

0,(f,9) == nf(0)g(0) + /mg’(w)dx, f.g € Dom?d,, := Dom pypas.

For 1 = o0,
0. (f.9):= [ Fl@lg(a)de. f.g € Domd.. i= Dom s,
Theorem 9.4.1 (1) —Anpin € —A, C —Apax.

(3) The operator —A,, is a generator of a group. For ;1 € RU {oco} it is self-adjoint.



2
—p°f, Rep <0;
(4) Spp(_A,U) = { } .
0, otherwise;

—A et = —p%et” Rep <0, €% € Dom(—A,).

{—p?}U0,00[, Reu <0,
(5) sp(~A,) =
' [0, oo, otherwise.

(6) _AO = prnaxpmaXa _Aoo - p;kninpmin-
(7) The formsd,, are closed and associated with the operator —A,,.

(8) Let Rek > 0. The integral kernel of (k* — A,)~! is equal

I L (k—p) _
R.(k — — o HFle—yl L =\ P —k(z+y)
/J/( 7x7y) le +2k (k"‘/,t)e )

in particular, for the Dirichlet boundary conditions,

o 1 —klz—yl 1 —k(xz+y)
Roo(z7$7y) - 2]{6 2ke )



and for the Neumann boundary conditions

_ 1 —k|z—y| 1 —k(z+vy)
Ro(k,x,y) = T + T :

(9) The semigroups e« have the integral kernel

00 :
1U JY 402
e iu(z+y)—tu d’U,,

1 (@—y)? _
K,(t,z,y) = (4nt)"2e” © + (2m) 1/ T

In particular, in the Dirichlet case

(z—y)2  (zt+w)?

at —(47Tt)_%e it

Kuo(t,z,y) = (4rt) e

and in the Neumann case

(.r—y)2 1 (-T-H/)z

a4 (47rt)_§e &

Ko(t,,y) = (4mt) 2e”
The group el*®« for ;1 € RU{oo} describes a quantum particle with a potential well or bump

at the end of the halfline.
The semigroup e'®+ for 1 € R describes the diffusion with a sink or source at the end of the



halfline. Note that e’ preserves the pointwise positivity. If p; = e"®#py, 0 < a < b, then
b
815/ pi(x)dx = p'(b) — p'(a).

&AZM@thﬁﬂ—M@)

Thus at 0 there is a sink of p with the rate pu.

9.5 Neumann Laplacian on a halfline with the delta potential

On L?([0, co[) we define the cosine transform

Uxf(k) = 7_1/2/ coskz f(x)dz, k>0,
0

Note that Uy is unitary and UZ = 1.
Let Ay be the Laplacian on L?([0, oo[) with the Neumann boundary condition. Clearly,

—UxANUY = K2



Let |§)(J] be the quadratic form given by
(f118) (8] f2) = f1(0) f2(0),
Note that it can be formally written as
| T@baigta)ds,

and thus is interpreted as a “potential”.

Let (1] denote the functional on L?([0, co[) given by

(Ulg) = | glk)ak.
0
Using 6(z) = m ! [, cos kadz we deduce that
Ux|8)(0|Ux = 7 [1)(1].

Then
Ux (—Ax + M6 (0]) U = k2 + M 1) (1)



is an example of an Aronszajn-Donoghue Hamiltonian of type llIb, because

/1dk—oo / k2dk<oo / Lk = o
0

9.6 Dirichlet Laplacian on a halfline with the ¢’ potential

On L%([0, 00[) we define the sine transform

Upf(k) = w—1/2/ sin kz f (z)dz, k> 0.
0

Note that Up is unitary and U3 = 1
Let Ap be the Laplacian on L?([0, o) with the Dirichlet boundary condition. Clearly,

—UpApUjy = k.
Using —0'(x) = n ! [, sin kadx we deduce that

Upld")(8'|Up, = 7~ ") (K.



Here |§")(0| is the quadratic form given by

(f118)(& f2) = £1(0) £3(0),

and (k| is the functional on L?([0, oo[) given by

(lg) = / " kg(k)d.

Thus
Up (—Ap + N6 U* = k> + A k) (k|

is an example of an Aronszajn-Donoghue Hamiltonian of type llla, because

00 ]{72 o0 ]62 o0 ]{72
dk = ——dk < ——dk < 0.
/0 L+ R % / I+ k22 = / I+ )R =




9.7 Laplacian on L*(R?) with the delta potential

On L?(RY) we consider the unitary operator U = (27)%2F, where F is the Fourier transfor-

mation. Note that U is unitary.

Let A be the usual Laplacian. Clearly,

—UAU* = k2.

Let |§)(J] be the quadratic form given by

(f116)(8] f2) = f1(0)f2(0).

Note that again it can be also written as

| F@b@g(os,



and thus is interpreted as a “potential’. Let (1| denote the functional on L?(R?) given by

(tlg) = [ gty
Using 6(z) = (27)™ [ e**dx we deduce that
U|5)(8|U* = (2m)~1)(1].

Consider
U(=A4 N6 (S)U* = k* + X(2m) "4 |1)(1]

as an example of an Aronszajn-Donoghue Hamiltonian. We compute:

A
d=1
/1+k2<oo<:) :

A
/m<0® ~ d:1,2,3,

dk
/k2(1+k2)<00® 3



Thus

(1) for d = 1 it is of type llb, so it can be defined in the form sense using the parameter \

(as we have already seen),
(2) for d = 2 it is of type Illb. It can be renormalized.
(3) for d=3 it is of type Illa. It can be renormalized.

(4) for d > 4 there is no nontrivial renormalization procedure.
Consider dimension d = 2. Let us compute the resolvent for z = —p?. We have
2y 2 2\—1 -1
9(=p") = v+ @ - DAHo+p") (Ho+1)"[1)

A3k
— _ 2—1 / — — 1 2'
7 1+(p ) (k2+p2)(k2+1) Y 1+7T np

), where K| is the Oth

MacDonald function, we obtain the following expression for the integral kernel of (p? + H)™!:

Ko(plx|) Ko(ply|)
y_1+7mlnp?

Using that the Fourier transform of k —» kg#ﬂﬂ equals x — 27 Ky(p|x

2m Ko(plr —y|) +

(9.7.3)



1/27’(‘

In the physics literature one usually introduces the parameter a = e~ called the scattering

length. There is a bound state K(|z|/a) with eigenvalue —a 2.

Note that
{fe(@d—-ATLARY) : f(0)=0} (9.7.4)

is a closed subspace of (1 — A)"!L?%(R?). The domain of H is spanned by (9.7.4) and
(—a™? = A)7H1), (9.7.5)

which isin L?(R?)\ (1—A)"1L?(IR?). In the position representation (9.7.5) is z — 27 Ky (|z|/a)
Around r ~ 0 we have the asymptotics Ky(r) ~ —log(r/2) — . Therefore, the domain of H
contains functions that behave at zero as C'(log(|z|/2a) + 7).

Consider dimension d = 3. Let us compute the resolvent for z = —p?. We have

g(=p*) = o+ (1|(Ho +p*) "Hy (1)

o [ e
= Y% p (k2+p2)k2 = 7 p



Using that the Fourier transform of & — L equals z — 27?2%‘?, we obtain the following

K2p?
expression for the integral kernel of (p* + H)™':

e~ Plz—yl e Plrlg=plyl
2T + : 9.7.6
o=l * 200+ )l 70
In the physics literature one usually introduces the parameter a = —(47v,) ™! called the scat-
tering length.
{fe(@d—-ANTLARY : f(0)=0} (9.7.7)
is a closed subspace of (1 — A)"!L?*(R?). The domain of H is spanned by (9.7.7)
(ae™* —1)(i — A)7HD) + (ae ™4 +1)(—i — A)7H1) (9.7.8)

2 exp(e™/*|x])
] '

Hamiltonian with the scattering length a has the domain whose elements around zero behave

as C(1 — a/|zl).

In the position representation (+i — A)71|1) equals z + 27 Therefore, the



For a > 0 there is a bound state <" with eigenvalue —a=2. To get the domain, instead

2]
of (9.7.8), we can adjoin this bound state to (9.7.7).
Note that the Hamiltonian is increasing wrt vy €] — oo, 00]. It is also increasing wrt a
separately on [—o0,0] and |0, 00]. At 0 the monotonicity is lost. a = 0 corresponds to the

usual Laplacian.

The following theorem summarizes a part of the above results.

Theorem 9.7.1 Consider —A on C*(R%\{0})
(1) It has the defficiency index (2,2) for d = 1.

2) It has the defficiency index (1,1) ford = 2, 3.

3) It is essentially self-adjoint for d > 4.

For d = 2 its Friedrichs and Krein extension is —/\.

(2)
(3)
(4) For d =1 its Friedrichs extension is —Ap and its Krein extension is —A.
(5)
(6)

6) For d = 3 its Friedrichs extension is —/\ an its Krein extension corresponds to a = .



Let us sketch an alternative approach. The Laplacian in d dimensions written in spherical
coordinates equals
a—ops g A—EB,
r r
where Ayp is the Laplace-Beltrami operator on the sphere. For d > 2, the eigenvalues of Arp
are —=l(l +d—2), for | = 0,1,.... For d = 1 instead of the Laplace-Beltrami operator we
consider the parity operator with the eigenvalues +1. We will write [ = 0 for parity +1 and

[ =1 for parity —1. Hence the radial part of the operator is

—1 —2
g A=l W+d=2)

" r r2

The indicial equation of this operator reads
AA+d—=2)—1l(l+d—-2)=0.

It has the solutions A =/land A =2 -1 — d.

l

For [ > 2 only the solutions behaving as r* around zero are locally square integrable, the

solutions behaving as 7271~ have to be discarded. For [ = 0,1 we have the following possible



square integrable behaviors around zero:

[=0 |I=1|1>2
d=1| Ot |9 ¢l ——
d=2{r"7"Inr| ! rt
d=3| r0r71 rl r!
d>4 70 rl rt

In dimension d = 1 in both parity sectors we have non-uniqueness of boundary conditions.

In dimensions d = 2,3 this non-uniqueness appears only in the spherically symmetric sector.

There is no nonuniqueness in higher dimensions.



9.8 Approximating delta potentials by separable potentials

Set 15 (k) := L A (|k]). The Laplacian with a delta potential can be conveniently approximated

by a separable potential
A

(2m)
In dimension d = 1 and d = 2 (9.8.9) has a (single) negative bound state iff A < 0.

~A+

| 1a)(1a]. (9.8.9)

Clearly, in dimension d = 1 (9.8.9) converges to —A + A\J in the norm resolvent sense for
all A e R.

It is easy to check that
—A = (v + mlog(1+ A%) 1y (14 (9.8.10)

converges to —A(, ) for all v_; € R,
In dimension d = 3 (9.8.9) has a (single) negative bound state for all # < —(Mdm)7L 1t

is easy to check that
—A = (Yo +4mA) T [13)(14] (9.8.11)



converges to —A, for all 79 € R.
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Chapter 10

Orthogonal polynomials

First we discuss some basic general facts about orthogonal polynomials. Then we will classify
the so called classical orthogonal polynomials, that is orthogonal polynomials that are eigefunc-
tions of a certain second order differential operator. We will show that all classical orthogonal

polynomials essentially fall into one of the following 3 classes:



(1) Hermite polynomials H,,(x) = (_7l¥ez“”‘”28$eﬂ”2 , which form an orthogonal basis in L2(R,e™*")

and satisfy
(07 — 220, + 2n)H,(z) = 0.

(2) Laguerre polynomials L%(z) = Le"@%e “2"** | which form an orthogonal basis in
L*(]0, 0o[,e~*z®) for a > —1 and satisfy

(20* + (v + 1 — 2)0, +n)L%(z) = 0.

3) Jacobi polynomials PoA(z) = EL (1 — 2)—2(1 + )7 Pon(1 — 2)*™(1 + )5, which
(3) poly " i

2np!

form an orthogonal basis in L2(] — 1, 1[, (1 — 2)%(1 4+ x)”) for a, 3 > —1 and satisfy

(1=2%)07+ (B —a—(a+ B+2)2)d, + n(n+a+ +1)Py(x) = 0.

An important role in the proof is played by unbounded operators. More precisely, we use the

fact that eigenvectors of hermitian operators with distinct eigenvalues are orthogonal.



Note that the proof is quite elementary — it has been routinely used in courses for physics
students of 2nd year of University of Warsaw. In particular, one does not need to introduce
the concept of a self-adjoint or essentially self-adjoint operator: one can limit oneself to the
concept of a hermitian operator, which is much less technical and acceptable for students

without sophisticated mathematical training.

10.1 Orthogonal polynomials

Let —0o < a < b < 0o0. Let p > 0 be a fixed positive integrable function on Ja, b[ called a
weight. Let x denote the generic variable in R.

We will denote by Pol the space of complex polynomials of the real variable. We assume
that

b
/|:U|”p(:1:)d3:<oo, n=0,1,.... (10.1.1)

Then Pol is contained in L*([a, b], p).

2

The monomials 1, x, 22, ... form a linearly independent sequence in L?([a, ], p). Applying



the Gram-Schmidt orthogonalization to this sequence we obtain the orthogonal polynomials
Py, P, P, .... Note that deg P, = n. There exist a simple criterion that allows us to check

whether this is an orthogonal basis.

Theorem 10.1.1 Suppose that there exists € > 0 such that

b
/ e?lp(z)dr < oo.

Then Pol is dense in L*([a, b], p). Therefore, Py, Py, ... form an orthogonal basis of L*([a, b], p).

Proof. Let h € L*([a,b], p). Then for [Imz| <

£
2

|=

1

/ab p(z)h(z)e*?|dz < (/abp(x)e“"f”'dx) 2 </ab p(w)Ih(a:)|2dx> i < oo

Hence, for |[Imz| < 5 we can define



Fis analytic in the strip {z € C : |Imz| < §}. Let (2"|h) =0, n =0,1,.... Then

L p)

— = (0" [ " plaih(ads = (i) (a"}1) =0

z=0

But an analytic function vanishing with all derivatves at one point vanishes in its whole (con-

nected) domain. Hence F' = 0 in the whole strip, and in particular on the real line. Hence

h = 0. Applying the inverse Fourier transformation we obtain A = 0.

Therefore, there are no nonzero vectors orthogonal to Pol. O

10.2 Reminder about hermitian operators

In this chapter we will need some minimal knowledge about hermitian operators. In order to

make it essentially self-contained, we recall that an operator A is hermitian if
(w|Av) = (Aw|v), v,w € Dom A.

Theorem 10.2.1 Let A be a hermitian operator.



(1) If v € Dom A is its eigenvector with eigenvalue \, that is Av = \v, then A € R.
(2) If \y # Xy are its eigenvalues with eigenvectors vy and vy, then vy is orthogonal to v,.
Proof. To prove (1), we note that
Mov|v) = (v]Av) = (Avjv) = A(v|v).

then we divide by (v|v) # 0.
Proof of (2):

()\1 — )\2)(1}1‘02) = (A”Ul‘vg) — (U1|A”U2) = (U1|AU2) — (/Ul‘A'UQ) = 0.

Remark 10.2.2 In finite dimension we can always find an orthonormal basis consisting of
eigenvectors of a hermitian operators. In infinite dimension this is not always the case. If it

happens then the operator is essentially self-adjoint.



10.3 2nd order differential operators

A general 2nd order differential operator without a Oth order term can be written as
C :=o(2)0% 4+ 7(2)0,, (10.3.2)

for some functions o(x) and 7(x).

It is often convenient to rewrite C in a different form. Let p(z) satisfy

o(x)p'(x) = (r(x) — o'(x))p(x). (10.3.3)
We have then
C = p(x) '0pp(x)o(x)0,. (10.3.4)
The form (10.3.4) of the operator C is convenient for the study of its hermiticity.

To simplify the exposition, in the remaining part of this subsection we will assume that a = 0
and b = oo, which will illustrate the two possible types of endpoints. The generalization to

arbitrary a < b will be obvious.



Theorem 10.3.1 Assume (10.1.1). Suppose also that

(1) p and o are real differentiable functions on |0, 00| and p > 0;

(2) at the boundaries of the interval we have

a(0)p(0) = 0,
lim o(x)p(x)|z]" = 0, n=0,1,2,....

T—00

Then C as an operator on L*([0, co[, p) with domain Pol is hermitian.



Proof.

ics) = / " p(@)5(@)p(a) Buo ()pl()0n f (x)da

R

= lim [ g(2)0s0(x)p(2)0: f(x)dx

= Jim g @) - fim [ @5 @)p@)0n ()i

= — lim ¢'(z)p(x)o(x)f(x)] + lim (Opp(x)o(2)0,9(2)) f(x)da

B /ooop(as)<p<x>—1axa<x>p<x>axg<x>>f<x>da: = (Calf).

Self-adjoint operators of the form (10.3.4) are often called Sturm-Liouville operators.



10.4 Hypergeometric type operators

We are looking for 2nd order differential operators whose eigenfunctions are polynomials. This

restricts severely the form of such operators.

Theorem 10.4.1 Let
C:=0(2)0? +7(2)0. +n(z) (10.4.5)

Suppose there exist polynomials Py, Py, P» of degree 0, 1,2 respectively, satisfying

CP, = \,P,.

Then
(1) o(2) is a polynomial of degree < 2,
(2) 7(2) is a polynomial of degree < 1,

(3) n(z) is a polynomial of degree < 0 (in other words, it is a number).

Proof. CPy=n(z)P,, hence degn = 0.



CP, = 7(2)P{ +nPy, hence degt < 1.

CPy,=o0(z)P) 4+ 7(2)Py(2) + nP,, hence dego < 2. O

Clearly, the number 1 can be included in the eigenvalue. Therefore, it is enough to consider

operators of the form
C :=0(2)0* +7(2)0., (10.4.6)

where dego < 2 and deg7 < 1. We will show that for a large class of (10.4.6) there exists
for every n € N a polynomial P, of degree n that is an eigenfunction of (10.4.6).

The eigenvalue equation of (10.4.6), that is equations of the form
(0(2)02 + 7(2)0. + \) f(2) = 0,

will be called hypergeometric type equations. Solutions of these equations will be called hyper-

geometric type functions. Polynomial solutions will be called hypergeometric type polynomials.



10.5 Generalized Rodrigues formula

Some of the properties of hypergeometric type polynomials can be introduced in a unified way.

Let p satisfy
0(2)0:p(2) = (7(2) — 0'(2)) p(2). (10.5.7)

Note that p can be expressed by elementary functions.

Let us fix 0. We will however make explicit the dependence on p. The operator C(p) can

be written as

Clp) = p'(2)0:0(2)p(2)0: (10.5.8)
= 0.p (2)0(2)0.p(2) — 7'+ 0”. (10.5.9)

The following is a generalization of the Rodrigues formula, originally given in the case of



Legendre polynomials:
(10.5.10)

o (20280 ()0l

1
p_l(z)/ o"(z +t)p(z +t)t " tdt, (10.5.11)
[0+]

2mi
Theorem 10.5.1 P, is a polynomial, typically of degree n, more precisely its degree is given
as follows:

(1) If 6" =1 =0, then deg P, = 0.

2) Ifo” £0and -2 +1=misa positive integer, then
ag
n, n=20,1,...,m;

deg P, =
n—m-—1, n=m+1m+2,....

(3) Otherwise, deg P,, = n.



We have

7

nt’ +n(n — 1)%)Pn(p; z), (10.5.12)
n+1)Pi1(pot; 2), (10.5.13)

2

(0(2)02 + 7(2)0.) Palp; ) =
(0(2)0. +7(2) = 0'(2)) Pulp; 2) =

0.P,(p;z) = (T' + (n — 1)%) P, 1(po; z), (10.5.14)
plz +1o(2)) = it"Pn(pa"; 2). (10.5.15)
p(2) ~

Proof. Introduce the following creation and annihilation operators:

At(p) = 0(2)0. +7(2) = p~(2)D.p(2)(2),
A- = 0,.



Note that

Hence

Therefore, if C(po™)Fy = A\oFp, then

C(p) A*(p)--- AT (po" ) Fy

7

- ()‘o +n7' +n(n — 1)%)A+(p) - At (po™ ) Fy.



Using

we obtain
At(p)-- At (po" Ry = p(2) 10 p(2)0" (2) Fo(2).

Take Fyy = 1, for which Ay = 0. We then obtain (10.5.12). O



10.6 Classical orthogonal polynomials as eigenfunctions of a Sturm-Liouville

operator

We are looking for —oo < a < b < oo and weights Ja,b[> = — p(x) with the following
properties: There exist polynomials Fy, Py, ... satisfying deg P, = n which form an orthogonal
basis of L*(]a,b[, p) and are eigenfunctions of a certain 2nd order differential operator C :=

o(x)0? + 7(x)0,, that is, for some )\, € R
(o(2)02 + 7(2)0; + Ay) Pu(z) = 0. (10.6.16)

In particular, we want C to be hermitian on Pol.

We know that one has to satisfy the following conditions:

(1) For any n € N
b
/ p(x)|z|"dz < oo, (10.6.17)

which guarantees that Pol C L?(Ja, [, p).

(2) o has to be a polynomial of degree at most 2 and 7 a polynomial of degree at most 1.



(See Thm 10.4.1).

(3) The weight p has to solve

o(x)p'(x) = (7(x) — o'(x))p(z), (10.6.18)

to be positive, o has to be real. (See Thm 10.3.1 (1)),

(4) We have to check the boundary conditions

(i) If an endpoint, say, a is a finite number, we check whether p(a)o(a) = 0.

(ii) If an endpoint is infinite, say a = —oo, then

lim |z|"o(z)p(x) =0, n=0,1,2,....

T——00
(see Thm 10.3.1 (2).)

We will find all weighted spaces L?(]a, b[, p) satisfying the conditions (1)-(4). It will turn



out that in all cases the condition
b
/ el p(z)dz < oo (10.6.19)

for some ¢ > 0 will hold, which will guarantee that we obtain an orthogonal basis (see Thm
10.1.1).

We will simplify our answers to standard forms
(1) by changing the variable z +— ax + 3 for o # 0;
(2) by dividing (both the differential equation and the weight) by a constant.

As a result, we will obtain all classical orthogonal polynomials.

10.7 Classical orthogonal polynomials for dego = 0

We can assume that o(z) = 1.
If deg 7 = 0, then
C = (‘95 + cO,.



It is easy to discard this case.

Hence degT = 1. Thus
C =0; + (ay + b)d,.

Let us set x = \;.24 (y + g) We obtain
C=0°+220,, a>0; (10.7.20)
C=0*—220, a<0. (10.7.21)

2

Thus p(x) = e

+22

o(x)p(x) = e is never zero, hence the only possible interval is | — oo, col.

X

If a > 0, we have p(x) =e * which is impossible because of (4ii).

If & < 0, we have p(z) = e™*" and the interval | — 0o, 00| is admissible, and even satisfes

(10.6.19). We obtain Hermite polynomials



10.8 Classical orthogonal polynomials for dego =1

We can assume that o(y) = v.

If deg 7 =0, then
C= y@j + c0,
Such a C always decreases the degree of a polynomial. Therefore, if P is a polynomial and

CP = AP, then A = 0. Hence P(x) = 27 °. Therefore, we do not obtain polynomials of all

degrees as eigenfunctions.

Thus deg 7 = 1. Hence, for b #£ 0,
Y0, + (a+ by)d,. (10.8.22)
After rescaling, we obtain the operator:
C=—20*+(—a—1+2)0,.

We compute: p = 2% *. p(z)o(z) = 2*Te ™ is zero only for z = 0 i o > —1. The



interval [—o0, 0] is eliminated by (4ii). The interval [0, o] is admissible for « > —1, and even

it satisfies 10.6.19. We obtain Laguerre polynomials.

10.9 Classical orthogonal polynomials for dego = 2,

o has a double root

We can assume that o(z) = 22

If 7(0) =0, then
C = 2°07 + cx0,.

2

x™ are eigenfunctions of this operator, but the weight p(x) = x° = is not good.

Let us assume now that 7(0) # 0. After rescaling we can suppose that
T(x) =1+ (y+2)z.

This gives p(z) = e +2?. The only point where p(z)o(z) = e #2272 can be zero is z = 0.

Hence the only possible intervals are | — 0o, 0] and |0, co[. Both are eliminated by (4ii).



10.10 Classical orthogonal polynomials for dego = 2,

o has two roots

If both roots are imaginary, it suffices to assume that o(z) = 1 + x2. We can suppose that
7(z) = a+ (b+2)x. Then p(z) = et®ctane(1 4 22)> 5(x)p(x) is nowhere zero and therefore
the only admissble interval is [—00, co]. This has to be rejected, because limy,_,, p()|2|"(1+
1?) = oo for large enough n.

Thus we can assume that the roots are real. It suffices to assume that o(z) = 1 — 2°. Let
T(@)=pf-a—-(a+f-2)z,
which corresponds to the operator
(1—-2%)0:+ (B—a— (a+ 8 —2)zd,,

We obtain p(z) = |1 — x|P|1 + z|®. (4ii) eliminates the intervals | — oo, —1[ and |1, 0].
There remains only the interval [—1, 1], which satisfies (4i) for ., 3 > —1. We obtain Jacobi

polynomials.
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Chapter 11

Homogeneous Schrodinger operators

This chapter is partly based on the joint work with V.Georgescu and L.Bruneau. Some of the

results (in particular (11.3.6)) were obtained independently by Pankrashkin and Richard.

11.1 Modified Bessel equation



The modified Bessel equation has the form
(220% + 20. — 2> — m*)v(z) = 0.

It is equivalent to the homogeneous Schrodinger equation with energy —1

For m € C\{...,—3,—2, —1} we define the modified Bessel function [,,(z) as the unique

solution of the modified Bessel equation satisfying

Z\™m 1
Ln(2) ~ (—) ——_ z~0
G ~3) Tmrn °
Form=...,—3,—2,—1, we extend this definition by continuity in m. It turns out that

I(z)=1_,, meZ.

We define the Macdonald or Basset function as the unique solution of the modified Bessel



equation satisfying, for |argz| > m — ¢,

We have the relations

K_(2) = Kn(2) = (Im(2) — In(2)), (11.1.1)

In(2) = —(Kn(e2) — ™K, (2)). (11.1.2)

As x — 0, we have

Ko(z) ~ g =y i m=0 (11.1.3)
@ (%)m if Rem > 0;
Hom) (zym if Rem < 0.



From a single solution we can generate a whole ladder of solutions:

zZ

Gaz)nz—m]m(z) = T (2).

(1(92)” M n(2) = 2T n(2),

Z

Analoguous identities hold for K, (2).

For m = +1 (and hence for all m € Z+1) the modified Bessel and the MacDonald functions

can be expressed in terms of elementary functions:

~

~

&

I
N

| o
~_

@,

=

=

N



11.2 Standard Bessel equation

Replacing z with +iz in the modified Bessel equation leads to the standard Bessel equation:
(220% + 20. + 2* —m*)v(z) = 0.

It is equivalent to the homogeneous Schrodinger equation with energy 1

N

222 (202 4 20. + 2> —m®) 2~

1
= 8§+(1/4—m2)§+1.

For m € C\{...,—3,—2,—1} we define the Bessel function J,,(z) as the unique solution
of the Bessel equation satisfying

I (2) ~ (g)m m, z ~ 0.

Form = ..., —3,—2,—1, we extend this definition by continuity in m. It turns out that

Tn(2) = (=) T, m € 7.



It is simply related to the modified Bessel function:

m

Jn(2) = 72, (Fiz).

There are two Hankel functions. They can be defined as the unique functions satisfying the

following asymptotic formulas are true for —m + 4§ < argz < 27 — 4, d > 0:

HY
lim —— w2 g
U4

H (2
lim - m ) — = 1.
Z—> 00 (l)i e_izengﬂ'_’_%
Tz

Both are analytic continuations of the MacDonald function — one to the lower and the other
to the upper part of the complex plane:

+2 i m
HE(z) = T2 K, (Fiz),
i

Kn(z) = :l:%eiim”Hi(:l:iz).



Note the identities
H*
Im(2) = 5 (H}(2) + H,,(2)) ,
To(2) = 5 (" H} (2) + e " (2))

Hi(Z) _ iie¢m”iJm(z)—iJ,m(z)

sin mm )

() = =T HE (2),

From a single solution we can generate a whole ladder of solutions:

Gaz) () = A (2),
1 \" o
(—;@) 2T (2) = 27" " Tpan(2).

Analogous identities hold for HX(z).

For m = %1 (and hence for all m € Z~+1) the modified Bessel and the MacDonald functions



can be expressed in terms of elementary functions:

) CoS 2,
TZ
2
)
2
=)

(==
) = (
(

11.3 Homogeneous Schrodinger operators

Let U, be the group of dilations on L2[0, oo, that is (U, f)(z) = e7/?f(e"x). We say that an
operator A is homogeneous of degree v if U, AU = e "7 A.

Let D := %(xp + px) denote the generator of dilations, so that U, = e ™.



For ¢ € C consider the differential expression
Loi=—0*4 (=1/4+c)z 2 (11.3.4)

Clearly (11.3.4) is homogeneous of degree —2.
Let L™ and L™ be the minimal and maximal operators associated to it in L?(0,00). That

means, L™ is the closure of L. on C]0, oo[, and
Dom(L™>*) = {f € D'[0,00[ : L.f € L*0, o0[}.

It is clear that L™™ and L™ are closed operators homogeneous of degree —2, L™ is hermitian
for real ¢ and
(chnin)* _ L%nax7 chnin C Llcnax_

We choose £ € C*(R,) such that £ = 1 on [0,1] and 0 on [2,00[. If m is a complex

number we set
Cm(x) _ $1/2+mf(aj).

Proposition 11.3.1 (,, is square integrable if and only if Rem > —1, and then it belongs to



Dom L75*. For Rem > 1, ¢, belongs also to Dom an,bign, otherwise it does not.

For Re(m) > —1, we define H,, to be the operator L™4* restricted to Dom(L™") + C(,.
We will see that the family of operators m — H,, possesses very good properties. The main
tool in its investigation is its resolvent, which can be computed explicitly.

Theorem 11.3.2 (1) The operators H,, are homogeneous of degree —2
(2) H,, = L™» = [ jff Rem > 1.
(3) For any Re(m) > —1 we have sp(H,,) = [0, oo[.
(4) Let A € C\[0,00[. Set R,,(\;x,y) to be the integral kernel of (\ — H,,)"'. Then for
Rek > 0 we have

VYL, (kx) K, (ky) if =<y,
VYL, (ky) K (kx) it x>y,

where 1,,, is the modified Bessel function and K,, is the MacDonald function.

)

Rm(_k2; Ly y) - {

(5) The resolvent (\—H,,)™! is an analytic function of m for Rem > —1. AsRem approaches

—1, its norm blows up.



(6) We have H}, = Hy. In particular, H,, is self-adjoint and positive iff m is real.

In the following theorem we describe the self-adjoint extensions of L™ for various real values

of c.
Theorem 11.3.3 (1) If 1 < ¢, then L™ = [ = H, with m = /c is self-adjoint. In
particular, H,, is essentially self-adjoint on C'°]0, ool.

(2) If0 < ¢ < 1, then a subspace of Dom L™ complementary to Dom L™" s spanned by
Cm and (_,, withm = \/c. Self-adjoint extensions are obtained by adjoining to Dom L™®

cos aCyy, + sin al_y,.

Among them we have H,,, which is the Friedrichs extension of chnin, and H_,,,, which is

its Krein extension.

(3) A subspace of Dom LI complementary to Dom L¥™" s spanned by (y and log x(.

Self-adjoint extensions are obtained by adjoining to Dom L™

cos ap + sin o log x (.



Among them there is H, which is both a Friedrichs and Krein extension of Lglm.

(4) If ¢ < 0, then a subspace of Dom L™ complementary to Dom L™ js spanned by (i
and (_i; with k = \/—c. Self-adjoint extensions are obtained by adjoining to Dom L™

e Cir, +e (i
H_y, and Hy. are non-self-adjoint extensions of L™,

Theorem 11.3.4 (1) 0<m <m'= H,, < Hy,.
NO<m<1=H., <H,.
3) If0 <argm < 7/2, then Num(H,,) ={z : 0 <argz < 2argm}.

4) If = /2 < argm < 0, then Num(H,,) = {z : 2argm < argz < 0}.

(2)
(3)
(4)
(5) If m/2 < |argm| < m, then Num(H,,) = C.

In the following theorem we show how to compute various quantities closely related to the

operators H,,. We restrict ourselves to the case of real m.



Theorem 11.3.5 (1) For 0 < a < b < oo, the integral kernel of i, ;)(H,,) is

Vb
sy (o) (2, y) = /f TG I () Jon (Rl

where J,,, is the Bessel function.

(2) Let F,, be the operator on L*|0, oc] given by

Fm: flx H/ (k) VEka f(z)da (11.3.5)

Up to an inessential factor, JF,, is the so-called Hankel transformation. JF,, is a unitary

involution on L*|0, co] diagonalizing H,,, more precisely
N

It satisfies F,,e’ = e P F  for allt € R.



(3) If m,k > —1 are real then the wave operators associated to the pair H,,, H}, exist and

Q:I: — lim eithefitHk _ e:l:i(m—k)w/mefk
m.k t—=4o00
- =r(D
= eil(m_k)ﬂ/z—:k(( D))- (11.3.6)
where s
[(™5H)

(4) The scattering operator for the pair (H,,, H},) is a scalar operator Sy, = e™"=*)1,

11.4 Factorization

For each complex number « let A, be the differential expression

~

A, = —i0, + i2
x



acting on distributions on R, . lts restriction to C°]0, 00| is a closable operator in L?[0, oo
whose closure will be denoted A™®. This is the minimal operator associated to A,. The

maximal operator A2 associated to A, is defined as the restriction of A, to Dom(AN™) :=
{f € L2[0,00] : Aqf € L0, c0[}.

The following properties of the operators A™™ and A™#* are easy to check:

(i) Anin C Amax

(i) (Aim)* = A% and (AR™)* = AmX,

(iii) AM and AMaX are homogeneous of degree —1.



Proposition 11.4.1 (1) We have A™" = AN jf and only if |[Rea| > 1/2.
(2) Let Reaw > —1/2. Then

(i) rs(AR*) = C_.
(ii) The map o — AX** s holomorphic in the region Reav > —1/2.

(iii) If Reaw > 0 then 1AM js the generator of a C°-semigroup of contractions

(1) Let Rea < 1/2. Then

(i) rs(AM™) = C,.
(i) The map o — A™" js holomorphic in the region Rea < 1/2.

(iii) if Rea < 0 the operator —iA™™ js the generator of a C°-semigroup of contractions



m =1 H,, = AT/g.,.mAl/Q—i—m = AT/Q_mAl/Q—ma H& = Q(Hm),
H,, = anlizn = L%,
0<m<l Hy=Ajp Ao = (AR,) A2, HY = Q(H,),
H,, is the Friedrichs ext. of L™,
m =10 Hy, = A’{/QAl/Q, Hj + C¢y dense in Q(H,),
Hj is the Friedrichs and Krein ext. of L{)nm;
“l<m <0 Hy = (AmE,) A H} + CG, = Q(H,y),

H,, is the Krein ext. of Lg}j;l.

In the region —1 < m < 1 (which is the most interesting one), it is quite remarkable that

for strictly positive m one can factorize H,, in two different ways, whereas for m < 0 only one

factorization appears.

As an example, let us consider the case of the Laplacian —9?, i.e. m* = 1/4. The operators



H,y 5 and H_; 5 coincide with the Dirichlet and Neumann Laplacian respectively. One usually
Puin and H_y )5 = P, Puax, Where Py, and P denote the

max

factorizes them as H, ), = Py,
usual momentum operator on the half-line with domain H}[0, co[ and H'[0, oo| respectively.
The above analysis says that, whereas for the Neumann Laplacian this is the only factorization
of the form S*S with S homogeneous, in the case of the Dirichlet Laplacian one can also

factorize it in the rather unusual following way

Hijy = (Puin + ix_l)* (Pmin + ix_l) :

11.5 H,, as a holomorphic family of closed operators

The definition (or actually a number of equivalent definitions) of a holomorphic family of
bounded operators is quite obvious and does not need to be recalled. In the case of unbounded
operators the situation is more subtle.

Suppose that © is an open subset of C, H is a Banach space, and © 3> 2z — H(z) is a

function whose values are closed operators on . We say that this is a holomorphic family



of closed operators if for each zy € O there exists a neighborhood © of z;, a Banach space
IC and a holomorphic family of injective bounded operators Oy > z — A(z) € B(K,H) such
that Ran A(z) = D(H(z)) and

©p 3z H(2)A(2) € B(K,H)

is a holomorphic family of bounded operators.

We have the following practical criterion:

Theorem 11.5.1 Suppose that {H(z)}.co is a function whose values are closed operators
on H. Suppose in addition that for any z € © the resolvent set of H(z) is nonempty.
Then z — H(z) is a holomorphic family of closed operators if and only if for any zy € ©
there exists A € C and a neighborhood ©g of zy such that A € rs(H(z)) for z € Oy and
z+ (H(z) — A\)~t € B(H) is holomorphic on ©y.

The above theorem indicates that it is more difficult to study holomorphic families of closed

operators that for some values of the complex parameter have an empty resolvent set.



It is interesting to note that =,,(D) is a unitary operator for all real values of m and
= YD)z %Z,,(D) (11.5.7)

is a function with values in self-adjoint operators for all real m. Z=,,(D) is bounded and
invertible also for all m such that Rem # —1,—2,.... Therefore, the formula (11.5.7) defines
an operator for all {m | Rem # —1,—2,...} UR. Clearly, for Rem > —1, this operator
function coincides with the operator H,, studied in this paper. Its spectrum is always equal to
[0,00[ and it is analytic in the interior of its domain.

One can then pose the following question: does this operator function exetnd to a holomor-

phic function of closed operators on the whole complex plane?
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