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Unbounded operators is a relatively technical and complicated subject. To my knowledge,

in most mathematics departments of the world it does not belong to the standard curricu-

lum, except maybe for some rudimentary elements. Most courses of functional analysis limit

themselves to bounded operators, which are much cleaner and easier to discuss.

Of course, in physics departments unbounded operators do not belong to the standard

curriculum either. However, implicitly, they appear very often in physics courses. In fact, many

operators relevant for applications are unbounded.

These lecture notes grew out of a course “Mathematics of quantum theory” given at Faculty

of Physics, University of Warsaw. The aim of the course was not only to give a general theory

of unbounded operators, but also to illustrate it with many interesting examples.





Chapter 1

Unbounded operators on Banach spaces

1.1 Relations

One of the problems with unbounded operators is that they are not true operators. In order

to avoid confusion, it is helpful to begin with a reexamination the concepts of functions and

relations.

Let X, Y be sets. R is called a relation iff R ⊂ Y × X. We will also write R : X → Y .
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(Note the inversion of the direction). An example of a relation is the identity

1lX := {(x, x) : x ∈ X} ⊂ X ×X.

Introduce the projections

Y ×X 3 (y, x) 7→ πY (y, x) := y ∈ Y,

Y ×X 3 (y, x) 7→ πX(y, x) := x ∈ X,

and the flip

Y ×X 3 (y, x) 7→ τ(y, x) := (x, y) ∈ X × Y.

The domain of R is defined as DomR := πXR, its range is RanR = πYR, the inverse of R is

defined as R−1 := τR ⊂ X × Y . If S ⊂ Z × Y , then the superposition of S and R is defined

as

S ◦R := {(z, x) ∈ Z ×X : ∃y∈Y (z, y) ∈ S, (y, x) ∈ R}.



If X0 ⊂ X, then the restriction of R to X0 is defined as

R
∣∣∣
X0

:= R ∩ Y×X0.

If, moreover, Y0 ⊂ Y , then

R
∣∣∣
X0→Y0

:= R ∩ Y0×X0.

We say that a relation R is injective, if πX(R∩{y}×X) is one-element for any y ∈ RanR.

We say that R is surjective if RanR = Y .

We say that a relation R is coinjective, if πY (R∩Y×{x}) is one-element for any x ∈ DomR.

We say that R is cosurjective if DomR = X.

Proposition 1.1.1 a) If R, S are coinjective, then so is S ◦R.

b) If R, S are cosurjective, then so does S ◦R.

In a basic course of set theory we learn that a coinjective cosurjective relation is called a

function. One also introduce many synonims of this word, such as a transformation, operator,

map, etc.



To speak about ubounded operators we will need a more general concept. A coinjective

relation will be called a partial transformation (or a partial operator, etc).

We also introduce the graph of R:

GrR := {(x, y) ∈ X × Y : (y, x) ∈ R}.

Strictly speaking GrR = τR. The difference between GrR and R lies only in their syntactic

role.

Note that the order Y ×X is convenient for the definition of superposition. However, it is

not the usual choice. In the sequel, instead of writing (y, x) ∈ R, we will write y = R(x) or

(x, y) ∈ GrR.

A superposition of partial transformations is a partial transformation. The inverse of a partial

transformation is a partial transformation iff it is injective.

A transformation (sometimes also called a total transformation) is a cosurjective partial

transformation. The composition of transformations is a transformation.

We say that a transformation R is bijective iff it is injective and surjective. The inverse of



a transformation is a transformation iff it is bijective.

Proposition 1.1.2 Let R ⊂ X×Y and S ⊂ Y ×X be transformations such that R◦S = 1lY

and S ◦R = 1lX . Then S and R are bijections and S = R−1.

1.2 Linear partial operators

Let X ,Y be vector spaces.

Proposition 1.2.1 (1) A linear subspace V ⊂ X ⊕Y is a graph of a certain partial operator

iff (0, y) ∈ V implies y = 0.

(2) A linear partial operator A is injective iff (x, 0) ∈ GrA implies x = 0.

From now on by an “operator” we will mean a “linear partial operator”. To say that

A : X → Y is a true operator we will write DomA = X or that it is everywhere defined.



For linear operators we will write Ax instead of A(x) and AB instead of A ◦B. We define

the kernel of an operator A:

KerA := {x ∈ DomA : Ax = 0}.

Suppose that A,B are two operators X → Y . Then by A + B we will mean the obvious

operator with domain DomA ∩DomB.

1.3 Closed operators

Let X ,Y be Banach spaces. Recall that X ⊕ Y can viewed as a Banach space equipped with

a norm

‖(x, y)‖1 := ‖x‖+ ‖y‖.

Actually, we can use also any other norm p on R2 and replace this with p(‖x‖, ‖y‖). In

particular, in the case of Hilbert spaces it is more appropriate to use the norm

‖(x, y)‖2 :=
√
‖x‖2 + ‖y‖2.



Anyway, all these norms are equivalent and the convergence (xn, yn)→ (x, y) is equivalent to

xn → x, yn → y.

Theorem 1.3.1 Let A : X → Y be an operator. The following conditions are equivalent:

(1) GrA is closed in X ⊕ Y .

(2) If xn → x, xn ∈ DomA and Axn → y, then x ∈ DomA and y = Ax.

(3) DomA with the norm

‖x‖A := ‖x‖+ ‖Ax‖.

is a Banach space.

Proof. The equivalence of (1), (2) and (3) is obvious, if we note that

DomA 3 x 7→ (x,Ax) ∈ GrA

is a bijection. 2

Definition 1.3.2 An operator satisfying the above conditions is called closed.



Theorem 1.3.3 If A is closed and injective, then so is A−1.

Proof. The flip τ : X ⊕ Y → Y ⊕X is continuous. 2

Proposition 1.3.4 If A is a closed operator, then KerA is closed.

1.4 Bounded operators

We will say that A : X → Y is bounded iff there exists c such as

‖Ax‖ ≤ c‖x‖. (1.4.1)

The infimum of c on the right of (1.4.1) is called the norm of A and is denoted by ‖A‖. In

other words,

‖A‖ := sup
‖x‖=1, x∈DomA

‖Ax‖. (1.4.2)

B(X ,Y) will denote all bounded everywhere defined operators from X to Y .

Proposition 1.4.1 A bounded operator A is closed iff DomA is closed.



If A : X → Y is closed, then A ∈ B(DomA,Y).

Let us quote without a proof a well known theorem:

Theorem 1.4.2 (Closed graph theorem) Let A : X → Y be a closed operator with

DomA = X . Then A is bounded.

Proposition 1.4.3 Let ξ be a densely defined linear form. The following conditions are equiv-

alent:

(1) ξ is closed.

(2) ξ is everywhere defined and bounded.

(3) ξ is everywhere defined and Kerξ is closed.

1.5 Closable operators

Theorem 1.5.1 Let A : X → Y be an operator. The following conditions are equivalent:

(1) There exists a closed operator B such that B ⊃ A.



(2) (GrA)cl is the graph of an operator.

(3) (0, y) ∈ (GrA)cl ⇒ y = 0.

(4) (xn) ⊂ DomA, xn → 0, Axn → y implies y = 0.

Definition 1.5.2 An operator A satisfying the conditions of Theorem 1.5.1 is called closable.

If the conditions of Theorem 1.5.1 hold, then the operator whose graph equals (GrA)cl is

denoted by Acl and called the closure of A.

Proof of Theorem 1.5.1 To show (2)⇒(1) it suffices to take as B the operator Acl. Let

us show (1)⇒(2). Let B be a closed operator such that A ⊂ B. Then (GrA)cl ⊂ (GrB)cl =

GrB. But (0, y) ∈ GrB ⇒ y = 0, hence (0, y) ∈ (GrA)cl ⇒ y = 0. Thus (GrA)cl is the

graph of an operator. 2

As a by-product of the above proof, we obtain

Proposition 1.5.3 If A is closable, B closed and A ⊂ B, then Acl ⊂ B.

Proposition 1.5.4 Let A be bounded. Then A is closable, DomAcl = (DomA)cl and ‖Acl‖ =

‖A‖.



Proposition 1.5.5 If A is a closable operator, then (KerA)cl ⊂ KerAcl

Example 1.5.6 Let V be a subspace in X and x0 ∈ X\V . Define the linear functional w such

that Domw = V + Cx0, Kerw = V and 〈w|x0〉 = 1. Then w is closable iff x0 6∈ Vcl. In

particular, if V is dense, then w is nonclosable.

1.6 Essential domains

Let A be a closed operator. We say that a linear subspace D is an essential domain of A iff D
is dense in DomA in the graph topology. In other words, D is an essential domain for A, if(

A
∣∣∣
D

)cl

= A.

Theorem 1.6.1 (1) If A ∈ B(X ,Y), then a linear subspace D ⊂ X is an essential domain

for A iff it is dense in X (in the usual topology).

(2) If A is closed, has a dense domain and D is its essential domain, then D is dense in X .

(2) follows from the following fact:



Proposition 1.6.2 Let V ⊂ X be Banach spaces with ‖x‖X ≤ ‖x‖V . Then a dense subspace

in V is dense in X .

1.7 Perturbations of closed operators

Definition 1.7.1 Let B, A : X → Y . We say that B is bounded relatively to A iff DomA ⊂
DomB and there exist constants a, b such that

‖Bx‖ ≤ a‖Ax‖+ b‖x‖, x ∈ DomA. (1.7.3)

The infimum of a satisfying (1.7.3) is called the A-bound of B. If DomA 6⊂ DomB the

A-bound of B is set +∞.

In other words: the A-bound of B equals

a1 := inf
c>0

sup
x∈DomA\{0}

‖Bx‖
‖Ax‖+ c‖x‖

.

In particular, if B is bounded, then its A-bound equals 0.



If A is unbounded, then its A-bound equals 1.

In the case of Hilbert spaces it is more convenient to use the following condition to define

the relative boundedness:

Theorem 1.7.2 The A-bound of B equals

a1 = inf
c>0

sup
x∈DomA\{0}

(
‖Bx‖2

‖Ax‖2 + c‖x‖2

)1/2

. (1.7.4)

Proof. For any ε > 0 we have(
‖Ax‖2 + c2‖x‖2

) 1
2 ≤ ‖Ax‖+ c‖x‖

≤
(
(1 + ε2)‖Ax‖2 + c2(1 + ε−2)‖x‖2

) 1
2 .

2

Theorem 1.7.3 Let A be closed and let B be bounded relatively to A with the A-bound less

than 1. Then A+B with the domain DomA is closed. All essential domains of A are essential

domains of A+B.



Proof. We know that

‖Bx‖ ≤ a‖Ax‖+ b‖x‖

for some a < 1 and b. Hence

‖(A+B)x‖+ ‖x‖ ≤ (1 + a)‖Ax‖+ (1 + b)‖x‖

and

(1− a)‖Ax‖+ ‖x‖ ≤ ‖Ax‖ − ‖Bx‖+ (1 + b)‖x‖ ≤ ‖(A+B)x‖+ (1 + b)‖x‖.

Hence the norms ‖Ax‖+ ‖x‖ and ‖(A+B)x‖+ ‖x‖ are equivalent on DomA. 2

In particular, every bounded operator with domain containing DomA is bounded relatively

to A.

Proposition 1.7.4 Suppose that X = Y . Then we have the following seemingly different



definition of the A-bound of B:

a1 := inf
µ∈C

inf
c>0

sup
x∈DomA\{0}

‖Bx‖
‖(A− µ)x‖+ c‖x‖

.

Proof. It suffices to note that

‖Ax‖+ c‖x‖ ≤ ‖(A− µ)x‖+ (µ+ c)‖x‖.

2

Theorem 1.7.5 Suppose that A,C are two operators with the same domain DomA =

DomC = D satisfying

‖(A− C)x‖ ≤ a(‖Ax‖+ ‖Cx‖) + b‖x‖

for some a < 1. Then

(1) A is closed on D iff C is closed on D.



(2) D is an essential domain of Acl iff it is an essential domain of Ccl.

Proof. Define B := C −A and F (t) := A+ tB with the domain D. For 0 ≤ t ≤ 1, we have

‖Bx‖ ≤ a(‖Ax‖+ ‖Cx‖) + b‖x‖

= a (‖(F (t)− tB)x‖+ ‖(F (t) + (1− t)B)x‖) + b‖x‖

≤ 2a‖F (t)x‖+ a‖Bx‖+ b‖x‖

Hence

‖Bx‖ ≤ 2a

1− a
‖F (t)x‖+

b

1− a
‖x‖.

Therefore, if |s| < 1−a
2a and t, t+ s ∈ [0, 1], then F (t+ s) is closed iff F (t) is closed. 2

1.8 Invertible unbounded operators

Let A be an operator from X to Y .

Definition 1.8.1 We say that an operator A is invertible (or boundedly invertible) iff A−1 ∈



B(Y ,X ).

Note that we do not demand that A be densely defined. However, if A is invertible, then

necessarily RanA = Y .

The following criterion for the invertibility is obvious:

Proposition 1.8.2 Let C ∈ B(Y ,X ) be such that RanC ⊂ DomA and AC = 1l. Then A

is invertible and C = A−1.

Theorem 1.8.3 (Closed range theorem) Let A be closed. Suppose that for some c > 0

‖Ax‖ ≥ c‖x‖, x ∈ DomA. (1.8.5)

Then RanA is closed. If RanA = Y , then A is invertible and

‖A−1‖ ≤ c−1. (1.8.6)

Proof. Let yn ∈ RanA and yn → y. Let Axn = yn. Then xn is a Cauchy sequence. Hence

there exists limn→∞ xn := x. But A is closed, hence Ax = y. Therefore, RanA is closed. 2



Corollary 1.8.4 For an operator A, suppose that for some c > 0 (1.8.5) holds.

(1) Let A be closable. Then (1.8.5) holds for Acl as well.

(2) Let A be closed and RanA be dense in Y . Then A is invertible and ‖A−1‖ ≤ c−1.

Theorem 1.8.5 Let A be invertible and DomB ⊃ DomA.

(1) B has the A-bound less than ‖BA−1‖.

(2) If ‖BA−1‖ < 1, then A+B with the domain DomA is closed, invertible and

(A+B)−1 =
∞∑
j=0

(−1)jA−1(BA−1)j.

Proof. By the estimate

‖Bx‖ ≤ ‖BA−1‖‖Ax‖, x ∈ DomA,

we see that B has the A-bound less than or equal to ‖BA−1‖. This proves (1).



Assume now that ‖BA−1‖ < 1. Let

Cn :=
n∑
j=0

(−1)jA−1(BA−1)j.

Then lim
n→∞

Cn =: C exists.

Let y ∈ Y . Clearly, lim
n→∞

Cny = Cy.

(A+B)Cny = y + (−1)n(BA−1)n+1y → y.

But A+B is closed, hence Cy ∈ Dom(A+B) and (A+B)Cy = y. By Prop. 1.8.2, A+B

is invertible and C = (A+B)−1. 2

Theorem 1.8.6 Let A and C be invertible and DomC ⊃ DomA. Then

C−1 − A−1 = C−1(A− C)A−1.

Proposition 1.8.7 (1) Let B : X → Y be closed and bounded. Let A : Y → Z be closed.



Then AB is closed.

(2) Let C : Y → Z be closed and invertible. Let A : X → Y be closed. Then CA is closed.

1.9 Spectrum of unbounded operators

Let A be an operator on X . We define the resolvent set of A as

rsA := {z ∈ C : z1l− A is invertible }.

We define the spectrum of A as spA := C\rsA.

We say that x ∈ X is an eigenvector of A with eigenvalue λ ∈ C iff x ∈ DomA, x 6= 0

and Ax = λx. The set of eigenvalues is called the point spectrum of A and denoted sppA.

Clearly, sppA ⊂ spA.

Let C ∪ {∞} denote the Riemann sphere (the one-point compactification of C). The

extended resolvent set is defined as rsextA := rsA ∪ {∞} if A ∈ B(X ) and rsextA := rsA, if



A is unbounded. The extended spectrum is defined as

spextA = C ∪ {∞}\rsextA.

If A ∈ B(X ), we set (∞− A)−1 = 0.

Theorem 1.9.1 (1) If rsA is nonempty, then A is closed.

(2) If z0 ∈ rsA, then
{
z : |z − z0| < ‖(z0 − A)−1‖−1} ⊂ rsA.

(3) ‖(z − A)−1‖ ≥ (dist(z, spA))−1.

(4) If A is bounded, then {|z| > ‖A‖} is contained in rsA.

(5) spextA is a compact subset of C ∪ {∞}.

(6) If λ, µ ∈ rsA, then

(z1 − A)−1 − (z2 − A)−1 = (z2 − z1)(z1 − A)−1(z2 − A)−1.

(7) If z ∈ rsA, then
d

dz
(z − A)−1 = −(z − A)−2.



(8) (z − A)−1 is analytic on rsextA.

(9) (z − A)−1 cannot be analytically extended to a larger subset of C ∪ {∞} than rsext(A).

(10) spext(A) 6= ∅

(11) Ran (z − A)−1 does not depend on z ∈ rsA and equals DomA.

(12) Ker(z − A)−1 = {0}.

Proof. (1): If λ ∈ rs(A), then λ − A is invertible, hence closed. λ − A is closed iff A is

closed.

(2): For |z− z0| < ‖(z0−A)−1‖−1, we have ‖(z− z0)(z0−A)−1‖ < 1 Hence we can apply

Theorem 2.

By (2), dist(z0, spA) ≥ ‖(z0 − A)−1‖−1. This implies (3).

(4): We check that
∞∑
n=0

z−n−1An is convergent for |z| > ‖A‖ and equals (z − A)−1.

(5): By (2), spextA ∩ C = spA is closed in C. For bounded A, spextA is bounded by (4).

For unbounded A, ∞ ∈ spextA. So in both cases, spextA is closed inin C ∩ {∞}.
(6) follows from Thm 1.8.6. Note that it implies the continuity of the resolvent.



(7) follows from (6).

(8) follows from (7).

(9) follows from (3).

(10): For bounded A, (z − A)−1 is an analytic function tending to zero at infinity. Hence

it cannot be analytic everywhere, unless it is zero, which is impossible. For unbounded A,

∞ ∈ spextA.

(11) and (12) follow from (6). 2

Proposition 1.9.2 Suppose that rsA is non-empty and DomA is dense. Then DomA2 is

dense.

Proof. Let z ∈ rsA. (z − A)−1 is a bounded operator with a dense range and DomA is

dense. Hence (z−A)−1 DomA is dense. A(z−A)−1 DomA = (z−A)−1ADomA ⊂ DomA

Hence (z − A)−1 DomA ⊂ DomA2. 2

Theorem 1.9.3 Let A and B be operators on X with A ⊂ B, A 6= B. Then rsA ⊂ spB,

and hence rsB ⊂ spA.



Proof. Let λ ∈ rsA. Let x ∈ DomB\DomA. We have Ran (λ − A) = X , hence there

exists y ∈ DomA such that (λ − A)y = (λ − B)x. Hence (λ − B)y = (λ − B)x. Hence

λ 6∈ rsB. 2

1.10 Functional calculus

Let K ⊂ C ∪ {∞} be compact. By Hol(K) let us denote the set of analytic functions on a

neighborhood of K. It is a commutative algebra.

More precisely, let H̃ol(K) be the set of pairs (f,D), where D is an open subset of C∪{∞}
containing K and f is an analytic function on D. We introduce the relation (f1,D1) ∼ (f2,D2)

iff f1 = f2 on a neighborhood of K contained D1 ∩ D2. We set Hol(K) := H̃ol(K)/ ∼.

Definition 1.10.1 Let A be an operator on X and f ∈ Hol(spextA). Let γ be a contour in a

domain of f that encircles spextA counterclockwise. We define

f(A) :=
1

2πi

∫
γ

(z − A)−1f(z)dz (1.10.7)



Clearly, the definition is independent of the choice of the contour.

Note that if spAext is the whole Riemann sphere (or equivalently spA = C), then the

functional calculus is trivial, since Hol(C∪{∞}) coincides with constant functions.

Theorem 1.10.2

Hol(spextA) 3 f 7→ f(A) ∈ B(X ) (1.10.8)

is a linear map satisfying

(1) fg(A) = f(A)g(A);

(2) 1(A) = 1l;

(3) If A ∈ B(X ), then id ∈ Hol(spextA) for id(z) = z and id(A) = A.

(4) If f(z) :=
∑∞

n=0 fnz
n is an analytic function defined by a series absolutely convergent in

a disk of radius greater than srA, then

f(A) =
∞∑
n=0

fnA
n;



(5) (Spectral mapping theorem). spf(A) = f(spextA)

(6) g ∈ Hol(f(spextA))⇒ g ◦ f(A) = g(f(A)),

(7) ‖f(A)‖ ≤ cγ,A supz∈γ |f(z)|.

Proof. It is obvious that 1(A) = 1l. From the formula

(z − A)−1 =
∞∑
n=0

z−n−1An, |z| > sr(A),

we get that id(A) = A.

It is clear that f → f(A) is linear. Let us show that it is multiplicative. Let f1, f2 ∈
Hol(spA). Choose a contour γ2 around the contour γ1, both in the domains of f1 and f2.

(2πi)−2
∫
γ1
f1(z1)(z1 − A)−1dz1

∫
γ2
f2(z2)(z2 − A)−1dz2

= (2πi)−2
∫
γ1

∫
γ2
f1(z1)f2(z2)

(
(z1 − A)−1 − (z2 − A)−1

)
(z2 − z1)

−1dz1dz2

= (2πi)−2
∫
γ1
f1(z1)(z1 − A)−1dz1

∫
γ2

(z2 − z1)
−1f2(z2)dz2

+(2πi)−2
∫
γ2
f2(z2)(z2 − A)−1dz2

∫
γ1

(z1 − z2)
−1f1(z1)dz1.



But ∫
γ1

(z1 − z2)
−1f1(z1)dz1 = 0,∫

γ2
(z2 − z1)

−1f2(z2)dz2 = 2πif2(z1).

Thus

f1(A)f2(A) = f1f2(A). (1.10.9)

Let us prove the spectral mapping theorem. First we will show

spf(A) ⊂ f(spextA). (1.10.10)

If µ 6∈ f(spextA), then the function z 7→ f(z)−µ 6= 0 on spextA. Therefore, z 7→ (f(z)−µ)−1

belongs to Hol(spextA). Thus f(A)− µ is invertible and therefore, µ 6∈ spf(A). This implies

(1.10.10).

Let us now show

spf(A) ⊃ f(spextA). (1.10.11)

Let µ 6∈ spf(A). This clearly implies that f(A)− µ is invertible.



If µ does not belong to the image of f , then of course it does not belong to f(spextA). Let

us assume that µ = f(λ). Then the function

z 7→ g(z) := (f(z)− µ)(z − λ)−1

belongs to Hol(spextA). Hence g(A) is well defined as an element of B(X ). We check that

g(A)(f(A) − f(λ))−1 = (λ − A)−1. Hence λ 6∈ spextA. Thus µ 6∈ f(spA). Consequently,

(1.10.11) holds.

Let us show now (6). Notice that if w 6∈ f(spextA), then the function z 7→ (w− f(z))−1 is

analytic on a neighborhood of

(w − f(A))−1 =
1

2πi

∫
γ

(w − f(z))−1(z − A)−1dz.



We compute

g(f(A))

= 1
2πi

∫
γ̃ g(w)(w − f(A))−1dw

= 1
(2πi)2

∫
γ̃

∫
γ g(w)(w − f(z))−1(z − A)−1dwdz

= 1
(2πi)2

∫
γ(z − A)−1dz

∫
γ̃ g(w)(w − f(z))−1dw

= 1
2πi

∫
γ g(f(z))(z − A)−1dz.

2

1.11 Spectral idempotents

Let Ω be a subset of B ⊂ C∪{∞}. Ω will be called an isolated subset of B, if Ω∩(B\Ω)cl = ∅
and Ωcl ∩ (B\Ω) = ∅ (or Ω is closed and open in the relative topology of B).

If B is in addition closed, then Ω is isolated iff both Ω and (B\Ω)cl are closed in C∪{∞}.
Let Ω be an isolated subset of spextA. It is easy to see that we can find open non-intersecting



neighbohoods of Ω and spextA\Ω. Hence

1lΩ(z) :=

 1 z belongs to a neighborhood of Ω,

0 z belongs to a neighborhood of spextA\Ω.

defines an element of Hol(spextA).

Clearly, 1l2Ω = 1lΩ. Hence 1lΩ(A) is an idempotent.

If γ is a counterclockwise contour around Ω outside of spextA\Ω then

1lΩ(A) =
1

2πi

∫
γ

(z − A)−1dz

This operator will be called the spectral idempotent of the operator A onto Ω.

spext
(
A
∣∣
Ran 1Ω(A)

)
= spextA ∩ Ω.

If Ω1 and Ω2 are two isolated subsets of spextA, then

1lΩ1
(A)1lΩ2

(A) = 1lΩ1∩Ω2
(A)



1.12 Examples of unbounded operators

Example 1.12.1 Let I be an infinite set and (ai)i∈I be an unbounded complex sequence. Let

C0(I) be the space of sequences with a finite number of non-zero elements. For 1 ≤ p < ∞
we define the operator

Lp(I) ⊃ C0(I) 3 x 7→ Ax ∈ Lp(I)

by the formula

(Ax)i = aixi.

(We can use C∞(I) instead of Lp(I), then p =∞ in the formulas below). Then the operator

A is unbounded and non-closed. Besides,

spp(A) = {ai : i ∈ I},

spA = C.



The closure of A has the domain

DomAcl := {(xi)i∈I ∈ Lp(I) :
∑

i∈I |aixi|p <∞} (1.12.12)

We then have
spp(Acl) = {ai : i ∈ I},

spAcl = {ai : i ∈ I}cl.

To prove this let D be the rhs of (1.12.12) and x ∈ D. Then there exists a countable set I1 such

that i 6∈ I1 implies xi = 0. We enumerate the elements of I1: i1, i2, . . . . Define xn ∈ C0(I)

setting xnij = xij for j ≤ n and xni = 0 for the remaining indices. Then limn→∞ x
n = x and

Axn → Ax. Hence, {(x,Ax) : x ∈ D} ⊂ (GrA)cl.

If xn belongs to (1.12.12) and (xn, Axn)→ (x, y), then xni → xi and aix
n
i = (Axn)i → yi.

Hence yi = aixi. Using that y ∈ Lp(I) we see that x belongs to (1.12.12).

Example 1.12.2 Let p−1 + q−1 = 1, 1 < p ≤ ∞ and let (wi)i∈I be a sequence that does not



belong to Lq(I). Let C0(I) be as above. Define

Lp(I) ⊃ C0(I) 3 x 7→ 〈w|x〉 :=
∑
i∈I

xiwi ∈ C.

Then 〈w| is non-closable.

It is sufficient to assume that I = N and define vni := |wi|q
wi(
∑n
i=1 |wi|q)

, i ≤ n, vni = 0, i > n.

Then 〈w|vn〉 = 1 and ‖vn‖p = (
∑n

i=1 |wi|q)
− 1
q → 0. Hence (0, 1) belongs to the closure of

the graph of the operator.

1.13 Pseudoresolvents

Definition 1.13.1 Let Ω ⊂ C be open. Then the continuous function

Ω 3 z 7→ R(z) ∈ B(X )

is called a pseudoresolvent if

R(z1)−R(z2) = (z2 − z1)R(z1)R(z2). (1.13.13)



Evidently, if A is a closed operator and Ω ⊂ rsA, then Ω 3 z 7→ (z−A)−1 is a pseudoresolvent.

Proposition 1.13.2 Let Ω 3 z 7→ Rn(z) ∈ B(X ) be a sequence of pseudoresolvents and

R(z) := s− lim
n→∞

Rn(z). Then R(z) is a pseudoresolvent.

Theorem 1.13.3 Let Ω 3 z 7→ R(z) ∈ B(X ) be a pseudoresolvent. Then

(1) R := RanR(z) does not depend on z ∈ Ω.

(2) N := KerR(z) does not depend on z ∈ Ω.

(3) R(z) is an analytic function and

d

dz
R(z) = −R(z)2.

(4) R(z) is a resolvent of a certain operator iff N = {0}. The domain of this operator equals

R.

Proof. Let us prove (4)⇐. Fix z1 ∈ Ω. If N = {0}, then every element of R can be uniquely

represented as R(z1)x, x ∈ X . Define AR(z1)x := −x+ z1R(z1)x. By formula (1.13.13) we

check that the definition of A does not depend on z1. 2



Chapter 2

One-parameter semigroups on Banach spaces

2.1 (M,β)-type semigroups

Let X be a Banach space.

Definition 2.1.1 [0,∞[3 t 7→ W (t) ∈ B(X ) is called a strongly continuous one-parameter

semigroup iff

(1) W (0) = 1l;
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(2) W (t1)W (t2) = W (t1 + t2), t1, t2 ∈ [0,∞[;

(3) lim
t↘0

W (t)x = x, x ∈ X ;

(4) for some t0 > 0, ‖W (t)‖ < M , 0 ≤ t ≤ t0.

Remark 2.1.2 Using the Banach-Steinhaus Theorem one can show that (4) follows from the

remaining points.

Theorem 2.1.3 Let W (t) e a strongly continuous semigroup. Then

(1) Besides, there exist constants M , β such that

‖W (t)‖ ≤Meβt; (2.1.1)

(2) [0,∞[×X 3 (t, x) 7→ W (t)x ∈ X is a continuous function.

Proof. By (4), for t ≤ nt0 we have ‖W (t)‖ ≤ Mn. Hence, ‖W (t)‖ ≤ M exp( tt0 logM).

Therefore, (2.1.1) is satisfied.



Let tn → t and xn → x. Then

‖W (tn)xn −W (t)x‖ ≤ ‖W (tn)xn −W (tn)x‖+ ‖W (tn)x−W (t)x‖

≤Meβtn‖xn − x‖+Meβmin(tn,t)‖W (|t− tn|)x− x‖.

2

We say that the semigroup W (t) is (M,β)-type, if the condition (2.1.1) is satisfied.

Clearly, if W (t) is (M,β)-type, then W (t)e−βt is (M, 0)-type. Since W (0) = 1l, no semi-

groups (M,β) exist for M < 1.

2.2 Generator of a semigroup

If W (t) is a strongly continuous one-parameter semigroup, we define

DomA := {x ∈ X : there exists lim
t↘0

t−1(W (t)x− x)}.



The operator A with the domain DomA is defined by the formula

Ax := lim
t↘0

t−1(W (t)x− x).

A will be called the generator of W (t). In the following theorem we show that an operator

cannot be the generator of more than one semigroup.

If W (t) is the semigroup generated by A, then we will write W (t) =: etA.

Theorem 2.2.1 (1) A is a closed densely defined operator;

(2) W (t) DomA ⊂ DomA and W (t)A = AW (t);

(3) If W1(t) and W2(t) are two different semigroups, then their generators are different.

Proof of Theorem 2.2.1 (2). Let x ∈ DomA. Then

lim
s↘0

s−1(W (s)− 1l)W (t)x = W (t) lim
s↘0

s−1(W (s)− 1l)x = W (t)Ax. (2.2.2)

Hence the limit of the left hand side of (2.2.2) exists. Hence W (t)x ∈ DomA and AW (t)x =

W (t)Ax. 2



Lemma 2.2.2 For x ∈ X put

Btx := t−1

∫ t

0

W (s)xds.

Then

(1) s− lim
t↘0

Bt = 1l.

(2) BtW (s) = W (s)Bt.

(3) For x ∈ DomA, ABtx = BtAx.

(4) If x ∈ X , then Btx ∈ DomA,

ABtx = t−1(W (t)x− x). (2.2.3)

(5) If limt↘0ABtx exists, then x ∈ DomA and the limit equals Ax.

Proof. (1) follows by

Btx− x = t−1

∫ t

0

(W (s)x− x)ds →
t↘0

0.



(2) is obvious. (3) is proven as Theorem 2.2.1 (2). To prove (4) we note that

u−1(W (u)− 1l)Btx = t−1(W (t)− 1l)Bux →
u↘0

t−1(W (t)x− x).

(5) follows from (4). 2

Proof of Theorem 2.2.1 (1) The density of DomA follows by Lemma 2.2.2 (1) and (3).

Let us show that A is closed. Let xn →
n→∞

x and Axn →
n→∞

y. Using the boundedness of

BtA = ABt we get

Bty = lim
n→∞

BtAxn = lim
n→∞

ABtxn = ABtx.

Hence

y = lim
t↓0

Bty = lim
t↓0

ABtx. (2.2.4)

By Lemma 2.2.2 (5), x ∈ DomA and (2.2.4) equals Ax. 2

Proposition 2.2.3 Let W (t) be a semigroup and A its generator. Then, for any x ∈ DomA



there exists a unique solution of

[0,∞[3 t 7→ x(t) ∈ DomA,
d

dt
x(t) = Ax(t), x(0) = x. (2.2.5)

(for t = 0 the derivative is right-sided). The solution is given by x(t) = W (t)x.

Proof. Let us show that x(t) := W (t)x solves (2.2.5), both for the left and right derivative:

u−1(W (t+ u)x−W (t)x) = W (t)u−1(W (u)− 1)x →
u↓0

W (t)Ax = AW (t)x,

u−1(W (t− u)x−W (t)x) = W (t− u)u−1(W (u)− 1)x →
u↓0

W (t)Ax = AW (t)x, 0 ≤ u ≤ t.

Let us show now the uniqueness. Let x(t) solve (2.2.5). Let y(s) := W (t− s)x(s). Then

d

ds
y(s) = W (t− s)Ax(s)− AW (t− s)x(s) = 0

Hence y(s) does not depend on s. At s = t it equals x(t), and at s = 0 it equals W (t)x. 2

Proof of Theorem 2.2.1 (3) By Prop. 2.2.3 (2), W (t) is uniquely determined by A on

DomA. But W (t) is bounded and DomA is dense, hence W (t) is uniquely determined. 2



2.3 One-parameter groups

Definition 2.3.1 R 3 t 7→ W (t) ∈ B(X ) is called a strongly continuous one-parameter group

iff

(1) W (0) = 1l;

(2) W (t1)W (t2) = W (t1 + t2), t1, t2 ∈ R;

(3) lim
t→0

W (t)x = x, x ∈ X ;

(4) for some t0 > 0, ‖W (t)‖ < M , |t| ≤ t0.

Each 1-parameter group R 3 t 7→ W (t) consists of two semigroups:

[0,∞[3 t 7→ W (t), [0,∞[3 t 7→ W (−t).

If A is the generator of the former, then −A is the generator of the latter.

Conversely, if both A and −A generate semigroups, then they can be combined to form a

group.



2.4 Norm continuous semigroups

Theorem 2.4.1 (1) If A ∈ B(X ), then R 3 z 7→ etA =
∞∑
n=0

tn

n!A
n is a norm continuous

group and A is its generator.

(2) If a one-parameter semigroup W (t) is norm continuous, then its generator is bounded.

Proof. (1) follows by the functional calculus.

Let us show (2). W (t) is norm continuous, hence lim
t→0

Bt = 1l. Therefore, for 0 < t < t0

‖Bt − 1l‖ < 1.

Hence Bt is then invertible.

We know that for x ∈ DomA

t−1(W (t)− 1l)x = BtAx.



For 0 ≤ t < t0 we can write this as

Ax = t−1B−1
t (W (t)− 1)x.

Hence ‖Ax‖ ≤ c‖x‖. 2

2.5 Essential domains of generators

Theorem 2.5.1 Let W (t) be a strongly continuous one-parameter semigroup and let A be

its generator. Let D ⊂ DomA be dense in X and W (t)D ⊂ D, t > 0. Then D is dense in

DomA in the graph topology—in other words, D is an essential domain of A.

Lemma 2.5.2 (1) For x ∈ X , ‖Btx‖DomA ≤ (Ct−1 + 1)‖x‖;

(2) For x ∈ DomA, limt↓0 ‖Btx− x‖DomA = 0;

(3) W (t) is a strongly continuous semi-group on DomA equipped with the graph norm.

(4) If D̃ is a closed subspace in DomA invariant wrt W (t), then it is invariant also wrt Bt.



Proof. (1) follows by Lemma 2.2.2 (3).

(2) follows by Lemma 2.2.2 (1) and because B(t) commutes with A.

(3) follows from the fact that W (t) is a strongly continuous semigroup on X , preserves

DomA and commutes with A.

To show (4), note that Btx is defined using an integral involving W (s)x. W (s)x depends

continuously on s in the topology of DomA, as follows by (3). Hence this integral (as Rie-

mann’s integral) is well defined. Besides, Btx belongs to the closure of the space spanned by

W (s)x, 0 ≤ s ≤ t. 2

Proof of Theorem 2.5.1. Let x ∈ DomA, xn ∈ D and xn →
n→∞

x in X . Let D̃ be he

closure of D in DomA. Then Btxn ∈ D̃, by Lemma 2.5.2 (4). By Lemma 2.5.2 (1) we have

‖Btxn −Btx‖DomA ≤ Ct‖xn − x‖.

Hence Btx ∈ D̃. By Lemma 2.5.2 (2)

‖Btx− x‖DomA→
t↓0

0.



Hence, x ∈ D̃. 2

2.6 Operators of (M,β)-type

Theorem 2.6.1 Let A be a densely defned operator. Then the following conditions are

equivalent:

(1) [β,∞[⊂ rs(A) and

‖(x− A)−m‖ ≤M |x− β|−m, m = 1, 2, . . . , x ∈ R, x > β

(2) {z ∈ C : Rez > β} ⊂ rs(A) and

‖(z − A)−m‖ ≤M |Rez − β|−m, m = 1, 2, . . . , z ∈ C, Rez > β.

Proof. It suffices to prove (1)⇒(2). Let (1) be satisfied. It suffices to assume that β = 0.



Let z = x+ iy. Then for t > 0

(z − A)−m = (x+ t− A)m(1l + (iy − t)(x+ t− A)−1)−m

=
∞∑
j=0

(x+ t− A)−m−j(iy − t)j
(
−m
j

)
.

Using the fact that
∣∣∣( −m

j

)∣∣∣ = (−1)j

(
−m
j

)
we get

‖(z − A)−m‖ ≤M
∞∑
j=0

|x+ t|−m−j(−1)j|iy − t|j
(
−m
j

)
= M |x+ t|m

(
1− |iy−t|x+t

)−m
= M(x+ t− |iy − t|)−m →

t→∞
Mx−m.

2

Definition 2.6.2 We say that an operator A is (M,β)-type, iff the conditions of Theorem



2.6.1 are satisfied.

Obviously, if A is of (M,β)-type, then A− β is of (M, 0)-type.

2.7 The Hille-Philips-Yosida theorem

Theorem 2.7.1 If W (t) is a semigroup of (M,β)-type, then its generator A is also of (M,β)-

type. Besides,

(z − A)−1 =

∫ ∞
0

e−tzW (t)dt, Rez > β.

Proof. Set

R(z)x :=

∫ ∞
0

e−ztW (t)xdt.



Let y = R(z)x. Then

u−1(W (u)− 1l)y

= −u−1ezu
∫ u

0

e−ztW (t)xdt+ u−1(ezu − 1)

∫ ∞
0

e−ztW (t)xdt →
u↘0
−x+ zy.

Hence y ∈ DomA and (z − A)R(z)x = x.

Suppose now that x ∈ Ker(z − A). Then xt := eztx ∈ DomA satisfies d
dtxt = Axt. Hence

xt = W (t)x. But ‖xt‖ = eRezt‖x‖, which is impossible.

By the formula

(z − A)−m =

∫ ∞
0

· · ·
∫ ∞

0

e−z(t1+···+tm)W (t1 + · · ·+ tm)dt1 · · · dtm

we get the estimate

‖(z − A)−m‖ ≤
∫ ∞

0

· · ·
∫ ∞

0

Me−(z−β)(t1+···+tm)dt1 · · · dtm = M |z − β|−m.

2



Theorem 2.7.2 If A is an operator of (M,β)-type, then it is the generator of a semigroup

of (M,β)-type.

To simplify, let us assume that β = 0 (which does not restrict the generality). Then we

have the formula

etA = s− lim
n→∞

(
1l− t

n
A

)−n
,∥∥∥∥∥etAx−

(
1l− t

n
A

)−n
x

∥∥∥∥∥ ≤M
t2

2
‖A2x‖, x ∈ DomA2.

Proof. Set

Vn(t) :=

(
1l− t

n
A

)−n
.

Let us first show that

s− lim
t↓0

Vn(t) = 1l. (2.7.6)



To prove (2.7.6) it suffices to prove that

s− lim
s↓0

(1l− sA)−1 = 1l. (2.7.7)

We have (1l− sA)−1 − 1l = (s−1 − A)−1A. Hence for x ∈ DomA

‖(1l− sA)−1x− x‖ ≤Ms−1‖Ax‖,

which proves (2.7.7).

Let us list some other properties of Vn(t): for Ret > 0, Vn(t) is holomorphic, ‖Vn(t)‖ ≤M

and
d

dt
Vn(t) = A

(
1l− t

n
A

)−n−1

.



To show that Vn(t)x is a Cauchy sequence for x ∈ Dom(A2), we compute

Vn(t)x− Vm(t)x = lims↓0 Vn(t− s)Vm(s)x− lims↑t Vn(t− s)Vm(s)x

= limε↓0
∫ t−ε
ε

d
dsVn(t− s)Vm(s)x

= limε↓0
∫ t−ε
ε

(
− V ′n(t− s)Vm(s) + Vn(t− s)V ′m(s)

)
x

= limε↓0
∫ t−ε
ε

(
s
n −

t−s
m

) (
1l− t−s

n A
)−n−1 (

1l− s
nA
)−m−1

A2x.

Hence for x ∈ Dom(A2)

‖Vn(t)x− Vm(t)x‖ ≤ ‖A2x‖
∫ t

0 |
s
m −

t−s
n |M

2ds

= M 2( 1
n + 1

m) t
2

2 .

By the Proposition 1.9.2, Dom(A2) is dense in X . Therefore, there exists a limit uniform on

[0, t0]

s− lim
n→∞

Vn(t) =: W (t),

which depends strongly continuously on t.



Finally, let us show that W (t) is a semigroup with the generator A. To this end it suffices

to show that for x ∈ DomA
d

dt
W (t)x = AW (t)x. (2.7.8)

But x ∈ DomA

Vn(t+ u)x = Vn(t)x+

∫ t+u

t

A
(

1l− s

n
A
)−1

Vn(s)xds

Hence passing to the limit we get

W (t+ u)x = W (t)x+

∫ t+u

t

AW (s)xds.

This implies (2.7.8). 2

2.8 Semigroups of contractions and their generators

Theorem 2.8.1 Let A be a closed operator on X . Then the following conditions are eqiva-

lent:



(1) A is a generator of a semigroup of contractions, i.e. ‖etA‖ ≤ 1, t ≥ 0.

(2) The operator A is of (1, 0)-type.

(3) ]0,∞[⊂ rs(A) and

‖(µ− A)−1‖ ≤ µ−1, µ ∈ R, µ > 0,

(4) {z ∈ C : Rez > 0} ⊂ rs(A) and

‖(z − A)−1‖ ≤ |Rez|−1, z ∈ C, Rez > 0.

Proof. The equivalence of (1) and (2) is a special case of Theorems 2.7.1 and 2.7.2. The

implications (2)⇒(3) and (2)⇒(4) are obvious, the converse implications are easy. 2



Chapter 3

Unbounded operators on Hilbert spaces

3.1 Graph scalar product

Let V ,W be Hilbert spaces. Let A : V → W be an operator with domain DomA. It is natural

to treat DomA as a space with the graph scalar product

(v1|v2)A := (v1|v2) + (Av1|Av2).

Clearly, DomA is a Hilbert space with the graph scalar product iff A is closed.
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3.2 The adjoint of an operator

Definition 3.2.1 Let A : V → W have a dense domain. Then w ∈ DomA∗, iff the functional

DomA 3 v 7→ (w|Av)

is bounded (in the topology of V). Hence there exists a unique y ∈ V such that

(w|Av) = (y|v), v ∈ V .

The adjoint of A is then defined by setting

A∗w = y.

Theorem 3.2.2 Let A : V → W have a dense domain. Then

(1) A∗ is closed.

(2) DomA∗ is dense in W iff A is closable.

(3) (RanA)⊥ = KerA∗.



(4) DomA ∩ (RanA∗)⊥ ⊃ KerA.

Proof. Let j : V ⊕W →W ⊕ V , j(v, w) := (−w, v). Note that j is unitary. We have

GrA∗ = j(GrA)⊥.

Hence GrA∗ is closed. This proves (1).

Let us prove (2).

w ∈ (DomA∗)⊥ ⇔ (0, w) ∈ (GrA∗)⊥ = j(GrA)⊥⊥

⇔ (w, 0) ∈ (GrA)⊥⊥ = (GrA)cl.



Proof of (3):

w ∈ KerA∗ ⇔ (A∗w|v) = 0, v ∈ V

⇔ (A∗w|v) = 0, v ∈ DomA

⇔ (w|Av) = 0, v ∈ DomA

⇔ w ∈ (RanA)⊥.

Proof of (4)

v ∈ KerA ⇔ (w|Av) = 0, w ∈ W

⇒ (w|Av) = 0, w ∈ DomA∗

⇔ (A∗w|v) = 0, w ∈ DomA∗

⇔ v ∈ (RanA∗)⊥.

Theorem 3.2.3 Let A : V → W be closable with a dense domain. Then

(1) A∗ is closed with a dense domain.

(2) A∗ = (Acl)∗.



(3) (A∗)∗ = Acl

(4) (RanA)⊥ = KerA∗. Hence A∗ is injective iff RanA is dense.

(5) (RanA∗)⊥ = KerA. Hence A is injective iff RanA∗ is dense.

Proof. (1) was proven in Theorem 3.2.2.

To see (2) note that

GrA∗ = j(GrA)⊥ = j((GrA)cl)⊥ = GrAcl∗.

To see (3) we use

Gr (A∗∗) = j−1
(
j(GrA)⊥

)⊥
= (GrA)⊥⊥ = (GrA)cl.

(4) is proven in Theorem 3.2.2.

To prove (5) note that in the second line of the proof of Theorem 3.2.2 (4) we can use the

fact that DomA∗ is dense in W to replace ⇒ with ⇔. 2



3.3 Inverse of the adjoint operator

Theorem 3.3.1 Let A be densely defined, closed, injective and with a dense range. Then

(1) A−1 is densely defined, closed, injective and with a dense range.

(2) A∗ is densely defined, closed, injective and with a dense range.

(3) (A∗)−1 = (A−1)∗.

Proof. (1) and (2) sum up previously proven facts.

To prove (3), recall the maps τ, j : V ⊕W →W ⊕ V . We have

GrA∗ = j(GrA)⊥, GrA−1 = τ(GrA).

Hence

GrA−1∗ = j(τ(GrA))⊥ = τ−1(j(GrA)⊥) = GrA∗−1.

2

Theorem 3.3.2 Let A : V → W be densely defined and closed. Then the following conditions



are equivalent:

(1) A is invertible.

(2) A∗ is invertible.

(3) For some c > 0, ‖Av‖ ≥ c‖v‖, v ∈ V and ‖A∗w‖ ≥ c‖v‖, w ∈ W .

Proof. (1)⇒(2). Let A be invertible. Then A−1 ∈ B(W ,V). Hence, A−1∗ ∈ B(V ,W).

Clearly, the assumptions of Theorem 3.3.1 are satisfied, and hence A∗−1 = A−1∗. Therefore,

A∗−1 ∈ B(V ,W).

(1)⇐(2). A∗ is also densely defined and closed. Hence the same arguments as above apply.

It is obvious that (1) and (2) imply (3). Let us prove that (3)⇒(1). ‖A∗v‖ ≥ c‖v‖ implies

that KerA∗ = {0}. Hence (RanA)⊥ is dense. This together with ‖Av‖ ≥ c‖v‖ implies that

RanA =W , and consequently, A is invertible. 2

Theorem 3.3.3 Let A : V → W be densely defined and closed. Then spext(A) = spext(A∗).



3.4 Numerical range and maximal operators

Definition 3.4.1 Let T be an operator on V . The numerical range of T is defined as

NumT := {(v|Tv) ∈ C : v ∈ V , ‖v‖ = 1}.

Theorem 3.4.2 (1) In a two-dimensional space the numerical range is always an elipse

together with its interior.

(2) NumT is a convex set.

(3) Num(αT + β1l) = αNum(T ) + β.

(4) NumT ∗ = NumT .

(5) Num(T + S) ⊂ NumT + NumS.

Proof. (1) We write T = TR + iTI, where TR, TI are self-adjoint. We diagonalize TI. Thus

if

[
t11 t12

t21 t22

]
is the matrix of T , then t12 = t21. By multiplying one of the basis vectors with

a phase factor we can guarantee that t12 = t21 is real.



Now T is given by a matrix of the form

c

[
1 0

0 1

]
+

[
λ µ

µ −λ

]
+ i

[
γ 0

0 −γ

]

Any normalized vector up to a phase factor equals v = (cosα, eiφ sinα) and

(v|Tv)− c = λ cos 2α + µ cosφ sin 2α + iγ cos 2α =′: x+ iy. (3.4.1)

Now it is an elementary exercise to check that x+ iy are given by (3.4.1), iff they satisfy

(γx− λy)2 + µ2y2 ≤ γ2µ2.

(2) follows immediately from (1). 2

Theorem 3.4.3 (1) ‖(z − T )v‖ ≥ dist(z,NumT )‖v‖, v ∈ DomT .

(2) If T is a closed operator and z ∈ C\(NumT )cl, then z − T has a closed range.

(3) If z ∈ rsT\NumT , then ‖(z − T )−1‖ ≤ |dist(z,NumT )|−1.

(4) Let ∆ be a connected component of C\(NumT )cl. Then either ∆ ⊂ spT or ∆ ⊂ rsT .



Proof. To prove (1), take z 6∈ (NumT )cl. Recall that NumT is convex. Hence, replacing

T wih αT + β we can assume that z = iν and 0 ∈ (NumT )cl ⊂ {Imz ≤ 0}. Thus

ν = dist(iν,NumT ) and

‖(iν − T )v‖2 = (Tv|Tv)− iν(v|Tv) + iν(Tv|v) + |ν|2‖v‖2

= (Tv|Tv)− 2νIm(v|Tv) + |ν|2‖v‖2

≥ |ν|2‖v‖2.

(1) implies (2) and (3).

Let z0 ∈ rsT\NumT . By (3), if r = dist(z0,NumT ), then {|z − z0| < r} ⊂ rsT . This

proves (4). 2

Definition 3.4.4 An operator T is called maximal, if spT ⊂ (NumT )cl.

Clearly, if T is a maximal operator, and z 6∈ (NumT )cl, then

‖(z − T )−1‖ ≤ (dist(z,NumT ))−1.



If T is bounded, then T is maximal.

Theorem 3.4.5 Suppose that T is an operator and for any connected component ∆i of

C\(NumT )cl we choose λi ∈ ∆i. Then the following conditions are necessary and sufficient

for T to be maximal

(1) For all i, λi 6∈ spT ;

(2) T is closable and for all i, Ran (λi − T ) = V .

(3) T is closed and for all i, Ran (λi − T ) is dense in V .

(4) T is closed and for all i, Ker(λi − T ∗) = {0}.

If K is a closed convex subset of C, then C\K is either connected or has two connected

components.



3.5 Dissipative operators

Definition 3.5.1 We say that an operator A is dissipative iff

Im(v|Av) ≤ 0, v ∈ DomA.

Equivalently, A is dissipative iff NumA ⊂ {Imz ≤ 0}.

Definition 3.5.2 A is maximally dissipative iff A is dissipative and spA ⊂ {Imz ≤ 0}.

Theorem 3.5.3 Let A be a densely defined operator. Then the following conditions are

equivalent:

(1) −iA is the generator of a strongly continuous semigroup of contractions.

(2) A is maximally dissipative.

Proof. (1) ⇒(2) We have

Re(v|e−itAv) ≤ |(v|e−itAv)| ≤ ‖v‖2.



Hence
Im(v|Av) = Re(v| − iAv)

= Re lim
t↗0

t−1
(
(v|e−itAv)− ‖v‖2

)
≤ 0.

Hence A is dissipative.

We know that the generators of contractions satisfy {Rez > 0} ⊂ rs(−iA).

(2)⇒(1) Let Rez > 0. We have

‖v‖‖(z + iA)v‖ ≥ |(v|(z + iA)v)|

≥ Re(v|(z + iA)v) ≥ Rez‖v‖2.

Hence, noting that z ∈ rs(−iA), we obtain ‖(z + iA)−1‖ ≤ Rez−1. Therefore, −iA is an

operator of the type (1, 0). 2

Theorem 3.5.4 Let A be dissipative. Then the following conditions are equivalent:

(1) A is maximally dissipative.

(2) A is closable and there exists z0 with Imz0 > 0 and Ran (z0 − A) = V .



(3) A is closed and there exists z0 with Imz0 > 0 and Ran (z0 − A) dense in V .

(4) A is closed and there exists z0 with Imz0 > 0 and Ker(z0 − A∗) = {0}.

3.6 Hermitian operators

Definition 3.6.1 An operator A : V → V is hermitian iff

(Aw|v) = (w|Av), w, v ∈ DomA.

Equivalently, A is hermitian iff NumA ⊂ R.

If in addition A is densely defined, then it is hermitian iff A ⊂ A∗.

Remark 3.6.2 In a part of literature the term “symmetric” is used instead of “hermitian”.

Theorem 3.6.3 Let A be densely defined and hermitian. Then A is closable. Besides, one

of the following possibilities is true:

(1) spA ⊂ R.

(2) spA = {Imz ≥ 0}.



(3) spA = {Imz ≤ 0}.

(4) spA = C.

Proof. A is closable because A ⊂ A∗ and A∗ is closed. 2

Theorem 3.6.4 Let A be a densely defined operator. Then the following conditions are

equivalent:

(1) −iA is the generator of a strongly continuous semigroup of isometries.

(2) A is hermitian and spA ⊂ {Imz ≤ 0}.

Proof. (1)⇒(2): For v ∈ DomA,

0 = ∂t(e
−itAv|e−itAv)

∣∣∣
t=0

= −i(Av|v) + i(v|Av).

Hence A is hermitian.

Isometries are contractions. Hence, by Thm 2.8.1, spA ⊂ {Imz ≤ 0}.
(2)⇒(1): By Thm 3.4.3, ‖(z + iA)−1‖ ≤ |Rez|−1, Rez > 0. Hence, by Thm 2.8.1, e−itA is

the generator of a strongly continuous contractive semigroup.



For v ∈ DomA,

0 = ∂t(e
−itAv|e−itAv)

Hence, for v ∈ DomA, ‖e−itAv‖2 = ‖v‖2. In other words, e−itA is a group of isometries. 2

Theorem 3.6.5 Let A be hermitian. Then the following conditions are equivalent:

(1) spA ⊂ {Imz ≤ 0}.

(2) There exists z0 with Imz0 > 0 and Ran (z0 − A) = V .

(3) A is closed and there exists z0 with Imz0 > 0 and Ran (z0 − A) dense in V .

(4) A is closed and there exists z0 with Imz0 > 0 and Ker(z0 − A∗) = {0}.

3.7 Self-adjoint operators

Definition 3.7.1 Let A be a densely defined operator on V . A is self-adjoint iff A∗ = A.

In other words, A is self-adjoint if for w ∈ W there exists y ∈ V such that

(y|v) = (w|Av), v ∈ DomA,



then w ∈ DomA and Aw = y.

Theorem 3.7.2 Every self-adjoint operator is hermitian and closed. If A ∈ B(V) , then it is

self-adjoint iff it is hermitian.

Theorem 3.7.3 Fix z± with ±Imz± > 0. Let A be hermitian. Then the following conditions

are necessary and sufficient for A to be self-adjoint:

(1) spA ⊂ R.

(2) z± 6∈ spA.

(3) Ran (z± − A) = V .

(4) A is closed and Ran (z± − A) is dense in V .

(5) A is closed and Ker(z± − A∗) = {0}.

Theorem 3.7.4 Let z0 ∈ R. Let A be hermitian and z0 6∈ NumA. Then the following

conditions are sufficient for A to be self-adjoint:

(1) z0 6∈ spA.



(2) Ran (z0 − A) = V .

(3) A is closed and Ran (z0 − A) is dense in V .

(4) A is closed and Ker(z0 − A∗) = {0}.

Theorem 3.7.5 (Stone Theorem) Let A be an operator. Then the following conditions are

equivalent:

(1) iA is the generator of a strongly continuous group of unitary operators.

(2) A is self-adjoint.

Proof. To prove (1)⇒(2), suppose that R 7→ U(t) is a strongly continuous unitary group.

Let −iA be its generator. Then [0,∞[3 t 7→ U(t), U(−t) are semigroups of contractions with

the generators iA and −iA. By Theorem 3.7.5, A is hermitian and spA ⊂ R. Hence A is

self-adjoint.

(2)⇒(1): By Theorem 3.7.5 ±iA generate semigroups of isometries e±itA. Clearly, e±itA is

the inverse of e∓itA. Hence these isometries are unitary. 2



3.8 Spectral theorem

Definition 3.8.1 Recall that B ∈ B(V) is called normal if B∗B = BB∗.

Let us recall one of the versions of the spectral theorem for bounded normal operators.

Let X be a Borel subset of C. Let M(X) denote the space of measurable functions on X

with values in C. For f ∈ M(X) we set f ∗(x) := f(x), x ∈ X. In particular, the function

X 3 z 7→ id(z) := z belongs to M(X).

L∞(X) will denote the space of bounded measurable functions on X.

Theorem 3.8.2 Let B be a bounded normal operator on V . Then there exists a unique linear

map

L∞(spB) 3 f 7→ f(B) ∈ B(V)

such that 1(B) = 1l, id(B) = B, fg(B) = f(B)g(B),

f(B)∗ = f ∗(B), ‖f(B)‖ ≤ sup |f |,
if fn → f pointwise and |fn| ≤ c then s− lim

n→∞
fn(B)→ f(B).

Above, all functions f, fn, g ∈ L∞(spB).



Theorem 3.8.3 Let B be a bounded normal operator B. Let f ∈M(spB). Set

fn(x) :=

f(x) |f(x)| ≤ n,

0, |f(x)| > n.

Dom(f(B)) = {v ∈ V : sup ‖fn(B)v‖ <∞}.

Then for v ∈ DomB there exists the limit

f(B)v := lim
n→∞

fn(B)v,

which defines a closed normal operator.

Let now A be a (possibly unbounded) self-adjoint operator on V .

Theorem 3.8.4 Then U := (A+ i)(A− i)−1 is a unitary operator with

spU = (spextA+ i)(spextA− i)−1.



Proof. Using the fact that A is hermitian, for v ∈ DomA we check that

‖(A± i)v‖2 = ‖Av‖2 + ‖v‖2.

Therefore, (A± i) : DomA → V are isometric. Using Ran (A± i) = V we see that they are

unitary. Hence so is (A+ i)(A− i)−1.

The location of the spectrum of U follows from

(z − U)−1 = (A− i)−1(z − 1)−1
(
A− i(z + 1)(z − 1)−1

)−1

.

2

U is unitary, hence normal. If f is a measurable function on spA, we define

f(A) := g(U),

where g(z) = f(i(z + i)(z − 1)−1).



Theorem 3.8.5 The map

M(spA) 3 f 7→ f(A) ∈ B(V)

is linear and satisfies 1(A) = 1l, id(A) = A, fg(A) = f(A)g(A),

f(A)∗ = f(A), ‖f(A)‖ ≤ sup |f |,
where f, g ∈M(spA),

Definition 3.8.6 A possibly unbounded densely defined operator A is called normal if DomA =

DomA∗ and

‖Av‖2 = ‖A∗v‖, v ∈ DomA.

One can extend Thm 3.8.5 to normal unbounded operators in an obvious way.

Proposition 3.8.7 Let A be normal. Then the closure of the numerical range is the convex

hull of its spectrum.

Proof. We can write A =
∫
λdE(λ), where E(λ) is a spectral measure. Then for ‖v‖ = 1,

(v|Av) is the center of mass of the measure (v|dE(λ)v). 2



3.9 Essentially self-adjoint operators

Definition 3.9.1 An operator A : V → V is essentially self-adjoint iff Acl is self-adjoint.

Theorem 3.9.2 (1) Every essentially self-adjoint operator is hermitian and closable.

(2) A is essentially self-adjoint iff A∗ is self-adjoint.

Theorem 3.9.3 Let A be hermitian. Fix z± ∈ C with ±Imz± > 0. Then the following

conditions are necessary and sufficient for A to be essentially self-adjoint:

(1) Ran (z+ − A) and Ran (z− − A) are dense in V .

(2) Ker(z+ − A∗) = {0} and Ker(z− − A∗) = {0}.

Theorem 3.9.4 Let A be hermitian. Let z0 ∈ R\NumA. Then the following conditions are

sufficient for A to be essentially self-adjoint:

(1) Ran (z0 − A) is dense in V .

(2) Ker(z0 − A∗) = {0}.



3.10 Rigged Hilbert space

Let V be a Hilbert space with the scalar product (·|·). Suppose that T is a self-adjoint operator

on V with T ≥ c0 > 0. Then DomT can equipped with the scalar product

(Tv|Tw), v, w ∈ DomT

is a Hilbert space embedded in V . We will prove a converse construction, that leads from an

embedded Hilbert space to a positive self-adjoint operator.

Let V∗ denote the space of bounded antilinear functionals on V . The Riesz lemma says that

V∗ is a Hilbert space naturally isomorphic to V .

Suppose that W is a Hilbert space contained and dense in V . We assume that for c0 > 0

(w|w)W ≥ c0(w|w), w ∈ W . (3.10.2)

Of course, W∗ is also a Hilbert naturally isomorphic to W . However, we do not want to use

this isomorphism.

Let J : W → V denote the embedding. By (3.10.2), it is bounded. Clearly J∗ : V →



W∗ (where we use the identification V ' V∗). We have KerJ∗ = (Ran J)⊥ = {0} and

(Ran J∗)⊥ = KerJ = {0}. Hence J∗ is a dense embedding of V in W∗. Thus we obtain a

triplet of Hilbert spaces, sometimes called a rigged Hilbert space

W ⊂ V ⊂ W∗.

Theorem 3.10.1 There exists a unique positive injective self-adjoint operator T on V such

that DomT =W and

(w1|w2)W = (Tw1|Tw2), w1, w2 ∈ W . (3.10.3)

Proof. Without loss of generality we will assume that c0 = 1.

For v ∈ V , w ∈ W , we have

|(w|v)| ≤ ‖w‖‖v‖ ≤ ‖w‖W‖v‖.



By the Riesz lemma, there exists A : V → W such that

(w|v) = (w|Av)W , (3.10.4)

We treat A as an operator from V to V . A is bounded, because

‖Av‖2 ≤ ‖Av‖2
W = (Av|Av)W = (Av|v) ≤ ‖Av‖‖v‖.

A is positive, (and hence in particular self-adjoint) because

(Av|v) = (Av|Av)W ≥ 0.

A has a zero kernel, because Av = 0 implies

0 = (w|Av)V = (w|v), v ∈ DomW ,

and W is dense.



Thus T := A−1/2 defines a positive self-adjoint operator ≥ 1l. We have

(w|y)W = (w|T 2y), w ∈ W , y ∈ DomT 2 = RanA.

Using the lemma below, with two embedded Hilbert spaces W and DomT having a common

dense subspace DomT 2, we obtain W = DomT and the equality (3.10.3). 2

Lemma 3.10.2 Let W+,W− be two Hilbert spaces embedded in a Hilbert space V . Suppose

that their norms satisfy

‖w‖ ≤ ‖w‖+, w ∈ W+, ‖w‖ ≤ ‖w‖−, w ∈ W−.

Let D ⊂ W+ ∩W− be dense both in W+ and in W−. Suppose ‖ · ‖+ = ‖ · ‖− in D. Then

W+ =W− and ‖ · ‖+ = ‖ · ‖−.

Proof. Let w+ ∈ W+. There exists (wn) ⊂ D such that ‖wn − w+‖+ → 0. This implies

‖wn − w+‖ → 0.

Besides wn is Cauchy in W− Hence there exists w− ∈ W− such that ‖wn − w−‖− → 0.



This implies ‖wn−w−‖ → 0. Hence w+ = w−. Besides, ‖w+‖+ = lim ‖wn‖+ = lim ‖wn‖− =

‖w−‖−.

Thus W+ ⊂ W− and in W+ the norm ‖ · ‖+ coincides with the norm ‖ · ‖−. 2

By functional calculus for self-adjoint operators we can define S := T 2. Clearly, T =
√
S

and

(v|Sw) = (v|w)W , v ∈ Dom
√
S, w ∈ DomS.

We will say that the operator S is associated with the sesquilinear form (·|·)W .

3.11 Polar decomposition

Let A be a densely defined closed operator. Let S+ 1 be the positive operator associated with

the sesquilinear form

(Av|Aw) + (v|w), v, w ∈ DomA.

Theorem 3.11.1 S = A∗A.



In order to prove this theorem, introduce V1 = (1l + T )−1V and V−1 = (1l + T )V , so that

V1 = DomA and V−1 = V∗1 . Denote by A(1) the operator A treated as an operator V1 → V .

Clearly, A(1) is bounded, and so is A∗(1) : V → V−1.

Proposition 3.11.2 (1) DomA∗ = {v ∈ V : A∗(1)v ∈ V}.

(2) On DomA∗ the operators A∗ and A∗(1) coincide.

(3) DomT 2 = {v ∈ DomA : Av ∈ DomA∗}

(4) For v ∈ DomT 2, T 2v = A∗Av.

Proof. (1). Let w ∈ V . We have

w ∈ DomA∗ ⇔ |(w|Av)| ≤ C‖v‖, v ∈ DomA. (3.11.5)

But DomA = V1 and (w|Av) = (A∗(1)w|v). Hence, (3.11.5) is equivalent to

|(A∗(1)w|v)| ≤ C‖v‖, v ∈ DomA, (3.11.6)

which means A∗(1)w ∈ V .



In the proof of (3) we will use the operators T(1) and T ∗(1) defined analogously as A(1) and

A∗(1). We have

T ∗(1)T(1) = A∗(1)A(1). (3.11.7)

In fact, for v, w ∈ V1

(w|T ∗(1)T(1)v) = (T(1)w|T(1)v) = (A(1)w|A(1)v) = (w|A∗(1)A(1)v).

Now

DomT 2 = {v ∈ V1 : T ∗(1)T(1)v ∈ V} by spectral theorem

= {v ∈ V1 : A∗(1)A(1)v ∈ V} by (3.11.7)

= {v ∈ V1 : A(1)v ∈ DomA∗} by (1).

2

Theorem 3.11.3 Let A be closed. Then there exist a unique positive operator |A| and a

unique partial isometry U such that KerU = KerA and A = U |A|. We have then RanU =



RanAcl.

Proof. The operator A∗A is positive. By the spectral theorem, we can then define

|A| :=
√
A∗A.

On Ran |A| the operator U is defined by

U |A|v := Av.

It is isometric, because

‖|A|v‖2 = (v||A|2v) = (v|A∗Av) = ‖Av‖2,

and correctly defined. We can extend it to (Ran |A|)cl by continuity. On Ker|A| = (Ran |A|)cl,

we extend it by putting Uv = 0. 2



3.12 Scale of Hilbert spaces I

Let A be a positive self-adjoint operator on V with A ≥ 1. We define the family of Hilbert

spaces Vα, α ∈ R as follows.

For α ≥ 0, we set Vα := RanA−α = DomAα with the scalar product

(v|w)α := (v|A2αw).

Clearly, for 0 ≤ α ≤ β we have the embedding Vα ⊃ Vβ.

For α ≤ 0 we set Vα := V∗−α, If α ≤ β ≤ 0 we have a natural inclusion Vα ⊃ Vβ.

Note that we have the identification V = V∗, hence both definitions give V0 = V .

Thus we obtain

Vα ⊃ Vβ, for any α ≤ β. (3.12.8)

Note that for α ≤ 0 V is embedded in Vα and for v, w ∈ V

(v|w)α =
(
v|A2αw

)
.



Moreover, V is dense in Vα.

Sometimes we will use a different notation: A−αV = Vα.

By restriction or extension, we can reinterpret the operator Aβ as a unitary operator

Aβ
(−α) : AαV → Aα+βV .

If B is a self-adjoint operator, then we will use the notation 〈B〉 := (1 +B2)1/2. Clearly, B

gives rise to a bounded operator

B(α) : 〈B〉−αV → 〈B〉−α+1V .

Thus every self-adjoint operator can be interpreted in many ways, depending on β we choose.

The standard choice corresponding to β = 1

B(1) : DomB = 〈B〉−1V → V

can be called the “operator interpretation”.



Another interpretation is often useful:

B(1/2) : 〈B〉−1/2V → 〈B〉1/2V ,

the “form interpretation”. One often introduces the form domain Q(B) := 〈B〉−1/2V . We

obtain a sesquilinear form

Q(B)×Q(B) 3 (v, w) 7→ (v|B(1/2)w).

3.13 Scale of Hilbert spaces II

We will write A > 0 if A is positive, self-adjoint and KerA = {0}. One can generalize the

definition of the scale of spaces AαV to the case A > 0.

Set V+ := Ran 1l[1,∞[(A), V− := Ran 1l[0,1[(A). Let A± := A
∣∣∣
V±

. Then A+ ≥ 1 and

A−1
− ≥ 1. Hence we can define the scales of spaces Aα

+V+, Aα
−V− := (A−1

− )−αV−, α ∈ R. We

set

AαV := Aα
+V+ ⊕ Aα

−V−. (3.13.9)



If A is not bounded away from zero, then the scale (3.13.9) does not have the nested property

(3.12.8). However, for any α, β ∈ R, AαV ∩ AβV is dense in AαV . Again, we have a family

of unitary operators

Aβ
(α) : AαV → Aα+βV .

3.14 Complex interpolation

Let us recall a classic fact from complex analysis:

Theorem 3.14.1 (Three lines theorem) Suppose that a function {0 ≤ Rez ≤ 1} 3 z 7→
f(z) ∈ C is continuous, bounded, analytic in the interor of its domain, and satisfies the bounds

|f(is)| ≤ c0,

|f(1 + is)| ≤ c1, s ∈ R. (3.14.10)

Then

|f(t+ is)| ≤ c1−t
0 ct1, t ∈ [0, 1], s ∈ R. (3.14.11)



Theorem 3.14.2 Let A > 0 on V , B > 0 on W . Consider an operator C : V ∩ A−1V →
W ∩B−1W that satisfies

‖Cv‖ ≤ c0‖v‖,

‖BCv‖ ≤ c1‖Av‖, v ∈ V ∩ A−1V .

(In other words, C is bounded as an operator V → W with the norm ≤ c0 and A−1V → B−1W
with the norm ≤ c1.) Then, for 0 ≤ t ≤ 1,

‖BtCv‖ ≤ c1−t
0 ct1‖Atv‖, (3.14.12)

and so C extends to a bounded operator

C : A−tV → B−tW ,

with the norm ≤ c1−t
0 ct1.



Proof. Let w ∈ W ∩B−1W and v ∈ V ∩A−1V . The vector valued functions z 7→ Bzw and

z 7→ Azv are bounded on {0 ≤ Rez ≤ 1}, and hence so is

f(z) := (Bzw|CAzv)

We have

|f(is)| ≤ c0‖w‖‖v‖,

|f(1 + is)| ≤ c1‖w‖‖v‖, s ∈ R.

Hence,

|f(t)| ≤ c1−t
0 ct1‖w‖‖v‖, t ∈ [0, 1].

This implies (3.14.12), by the density of W ∩B−1W . 2



3.15 Relative operator boundedness

Let A be a closed operator and B an operator with DomB ⊃ DomA. Recall that the

(operator) A-bound of B is

a1 := inf
ν>0

sup
v 6=0, v∈DomA

(
‖Bv‖2

‖Av‖2 + ν2‖v‖2

) 1
2

. (3.15.13)

In a Hilbert space

‖Av‖2 + ν2‖v‖2 = ‖(A∗A+ ν2)1/2v‖2.

Therefore, (3.15.13) can be rewritten as

a1 = inf
ν>0
‖B(A∗A+ ν2)−1/2‖. (3.15.14)

If, moreover, A is self-adjoint, then, using the unitarity of (A2 + ν2)−1/2(±iν − A), we can

rewrite (3.15.14) as

a1 = inf
ν 6=0
‖B(iν − A)−1‖. (3.15.15)



Using Prop. 1.7.4 we obtain

a1 = inf
z∈rsA

‖B(z − A)−1‖. (3.15.16)

Theorem 3.15.1 (Kato-Rellich) Let A be self-adjoint, B hermitian. Let B be A-bounded

with the A−bound < 1. Then

(1) A+B is self-adjoint on DomA.

(2) If A is essentally self-adjoint on D, then A+B is essentially self-adjoint on D.

Proof. Clearly, A+B is hermitian on DomA. Moreover, for some ν, ‖B(±iν −A)−1‖ < 1.

Hence, iν − A−B and −iν − A−B are invertible. 2

3.16 Relative form boundedness

Assume first that A is a positive self-adjoint operator. Let B be a bounded operator from

DomA1/2 = (1l +A)−1/2V to (1l +A)1/2V . Note that B defines a bounded quadratic form on

Q(B) := (1l + A)−1/2V
Q(B) 3 u, v 7→ (u|Bv).



Let us assume that this form is hermitian, that is

(u|Bv) = (v|Bu).

Definition 3.16.1 We say that B is form-bounded relatively to A iff there exist constants a,

b such that

|(v|Bv)| ≤ a(v|Av) + b(v|v), v ∈ DomA1/2. (3.16.17)

The infimum of a satisfying (3.16.17) is called the A-bound of B.

In other words: the A-form bound of B equals

a2 := inf
c>0

sup
v∈DomA1/2\{0}

(v|Bv)

(v|Av) + c(v|v)
.

This can be rewritten as

a2 = inf
c>0
‖(A+ c)−1/2B(A+ c)−1/2‖.

Theorem 3.16.2 A is a positive self-adjoint operator. Let B have the form A-bound less



than 1. Then

R(µ) :=
∞∑
j=0

(µ− A)−1/2
(
(µ− A)−1/2B(µ− A)−1/2

)j
(µ− A)−1/2

is convergent for large negative µ. Moreover, R(z) is a resolvent of a self-adjoint bounded

from below operator, which will be called the form sum of A and B and denoted, by the abuse

of notation, A+B. We have Dom |A+B| 12 = Dom |A| 12 .

We can generalize the concept of the form boundedness to the context of not necessarily

positive operators as follows. Let A be a self-adjoint operator. Let B be a bounded operator

from 〈A〉−1/2V to 〈A〉1/2V . We assume that the form given by B is hermitian.

Definition 3.16.3 The improved form A-bound of B is

a′2 := inf
ν>0,µ

‖(A− µ)2 + ν2)−
1
4B((A− µ)2 + ν2)−

1
4‖. (3.16.18)



(3.16.18) can be rewritten as

a′2 = inf
ν>0,µ

‖(µ+ iν − A)−
1
2B(µ+ iν − A)−

1
2‖. (3.16.19)

Theorem 3.16.4 Let A be a self-adjoint operator. Let B have the improved A-form bound

less than 1. Then there exists open subsets in the upper and lower complex half-plane such

that the series

R(z) :=
∞∑
j=0

(z − A)−1/2
(
(z − A)−1/2B(z − A)−1/2

)j
(z − A)−1/2

is convergent. Moreover, R(z) is a resolvent of a self-adjoint operator, which will be called the

form sum of A and B and denoted, by the abuse of notation, A+B.

The form boundedness is stronger than the operator boundedness. Indeed, suppose that B

is a hermitian operator on V with DomB ⊃ DomA and

‖B
(
(A− µ)2 + ν2

)1/2‖ ≤ a.



This means that B is bounded as an operator
(
(A− µ)2 + ν2

)−1/2V → V and as an operator

V →
(
(A − µ)2 + ν2

)1/2V , in both cases with norm ≤ a. By the complex interpolation, it is

bounded as an operator
(
(A − µ)2 + ν2

)−1/4V →
(
(A − µ)2 + ν2

)1/4V with norm ≤ a. In

particular, we have a′2 ≤ a1, where a1 is the operator A-bound and a′2 is the improved form

A-bound.

3.17 Self-adjointness of Schrödinger operators

The following lemma is a consequence of the Hölder inequality:

Lemma 3.17.1 Let 1 ≤ p, q ≤ ∞ and 1
p + 1

q = 1
r . Then the operator of multiplication by

V ∈ Lp(Rd) is bounded as a map Lq(Rd)→ Lr(Rd) with norm equal to ‖V ‖q.

The following two lemmas follow from the Hardy-Littlewood-Sobolev inequality:

Lemma 3.17.2 The operator (1l−∆)−1 is bounded from L2(Rd) to Lq(Rd) in the following

cases:

(1) For d = 1, 2, 3 if 1
∞ ≤

1
q ≤

1
2 .



(2) For d = 4 if 1
∞ < 1

q ≤
1
2 .

(3) For d ≥ 5 if 1
2 −

2
d ≤

1
q ≤

1
2 .

Lemma 3.17.3 The operator (1l−∆)−
1
2 is bounded from L2(Rd) to Lq(Rd) in the following

cases:

(1) For d = 1 if 1
∞ ≤

1
q ≤

1
2 .

(2) For d = 2 if 1
∞ < 1

q ≤
1
2 .

(3) For d ≥ 3 if 1
2 −

1
d ≤

1
q ≤

1
2 .

Proposition 3.17.4 Let V ∈ Lp + L∞(Rd),where

(1) for d = 1, 2, 3, p = 2,

(2) for d = 4, p > 2,

(3) for d ≥ 5, p = d
2 .

Then the −∆-bound of V is zero. Hence −∆ + V (x) is self-adjoint on Dom(−∆).



Proof. We need to show that

lim
c→∞

V (x)(c−∆)−1 = 0, (3.17.20)

where (3.17.20) is understood as an operator on L2(Rd).

For any ε > 0 we can write V = V∞+Vp, where V∞ ∈ L∞(Rd), Vp ∈ Lp(Rd) and ‖Vp‖p ≤ ε.

Now

V (x)(c−∆)−1 = V∞(x)(c−∆)−1 + Vp(x)(c−∆)−1.

The first term has the norm ≤ ‖V∞‖∞c−1. Consider the second term. Let

1

q
+

1

p
=

1

2

‖Vp(x)Lq→L2 = ‖Vp‖p ≤ ε, and ‖(c−∆)−1
L2→Lq‖ is uniformly finite for c > 1 by Lemma 3.17.3.

2

Proposition 3.17.5 Let V ∈ Lp + L∞(Rd),where



(1) for d = 1, p = 1,

(2) for d = 2, p > 1,

(3) for d ≥ 3, p = d
2 .

Then the form −∆-bound of V is zero. Hence −∆ + V (x) can be defned in the sense of the

form sum with the form domain Dom(
√
−∆).

Proof. We need to show that

lim
c→∞

(c−∆)−1/2V (x)(c−∆)−1/2 = 0, (3.17.21)

where (3.17.21) is understood as an operator on L2(Rd). For any ε > 0 we can write V =

V∞ + Vp, where V∞ ∈ L∞(Rd), Vp ∈ Lp(Rd) and ‖Vp‖p ≤ ε. Now

(c−∆)−1/2V (x)(c−∆)−1/2 = (c−∆)−1/2V∞(x)(c−∆)−1/2

+
(
|Vp(x)|1/2(c−∆)−1/2

)∗
sgnVp(x)|Vp(x)|1/2(c−∆)−1/2.



The first term has the norm ≤ ‖V∞‖∞c−1. Consider the second term. Let

1

q
+

2

p
=

1

2
.

‖|Vp(x)|1/2
Lq(Rd)→L2(Rd)‖ =

√
‖Vp‖p ≤

√
ε and ‖(c − ∆)

−1/2
L2→Lq‖ is uniformly finite for c > 1 by

Lemma 3.17.3. 2





Chapter 4

Positive forms

4.1 Quadratic forms

Let V ,W be complex vector spaces.

Definition 4.1.1 a is called a sesquilinear form on W ×V iff it is a map

W ×V 3 (w, v) 7→ a(w, v) ∈ C
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antilinear wrt the first argument and linear wrt the second argument.

If λ ∈ C, then λ can be treated as a sesquilinear form λ(w, v) := λ(w|v). If a is a form,

then we define λa by (λa)(w, v) := λa(w, v). and a∗ by a∗(v, w) := a(w, v). If a1 and a2 are

forms, then we define a1 + a2 by (a1 + a2)(w, v) := a1(w, v) + a2(w, v).

Suppose that V =W . We will write a(v) := a(v, v). We will call it a quadratic form. The

knowledge of a(v) determines a(w, v):

a(w, v) =
1

4
(a(w + v) + ia(w − iv)− a(w − v)− ia(w + iv)) . (4.1.1)

Suppose now that V ,W are Hilbert spaces. A form is bounded iff

|a(w, v)| ≤ C‖w‖‖v‖.

Proposition 4.1.2 (1) Let a be a bounded sesquilinear form on W × V . Then there exists

a unique operator A ∈ B(V ,W) such that

a(w, v) = (w|Av).



(2) If A ∈ B(V ,W), then (w|Av) is a bounded sesquilinear form on W ×V .

Proof. (2) is obvious. To show (1) note that w 7→ a(w|v) is an antilinear functional on W .

Hence there exists η ∈ W such that a(w, v) = (w|η). We put Av := η.

Theorem 4.1.3 Suppose that D,Q are dense linear subspaces of V ,W and a is a bounded

sesquilinear form on D ×Q. Then there exists a unique extension of a to a bounded form on

V ×W .

4.2 Sesquilinear quasiforms

Let V ,W be complex spaces. We say that t is a sesquilinear quasiform on W × V iff there

exist subspaces Doml t ⊂ W and Domr t ⊂ V such that

Domlt×Domrt 3 (w, v) 7→ t(w, v) ∈ C

is a sesquilinear map. From now on by a sesquilinear form we will mean a sesquilinear quasiform.

We define a form t∗ with the domains Doml t
∗ := Domr t, Domr t

∗ := Doml t, by the formula



t∗(v, w) := t(w, v). If t1 are t2 forms, then we define t1 + t2 with the domain Doml(t1 + t2) :=

Doml t1∩Doml t1, Domr(t1 +t2) := Domr t1∩Domr t1 by (t1 +t2)(w, v) := t1(w, v)+t2(w, v).

We write t1 ⊂ t2 if Doml t1 ⊂ Doml t2, Domr t1 ⊂ Domr t2, and t1(w, v) = t2(w, v), w ∈
Doml t1, v ∈ Domr t1.

From now on, we will usually assume that W = V and Doml t = Domr t and the latter

subspace will be simply denoted by Dom t. We will then write t(v) := t(v, v), v ∈ Dom t.

The numerical range of the form t is defined as

Numt := {t(v) : v ∈ Dom t, ‖v‖ = 1}.

We proved that Numt is a convex set.

With every operator T on V we can associate the form

t1(w, v) := (w|Tv), w, v ∈ DomT.

Clearly, Numt1 = NumT . If T is self-adjoint, we will however prefer to associate a different

form to it, see Theorem 4.5.1.



The form t is bounded iff Numt is bounded. Equivalently, |t(v)| ≤ c‖v‖2.

t is hermitian iff Numt ⊂ R. An equivalent condition: t(w, v) = t(v, w).

A form t is bounded from below, if there exists c such that

Numt ⊂ {z : Rez > c}.

A form t is positive if Numt ⊂ [0,∞[. In this section we develop the basics of the theory of

positive forms.

Note that many of the concepts and facts about positive forms generalize to hermitian

bounded from below forms. In fact, if t is bounded from below hermitian, then for some c ∈ R
we have a positive form t + c. We leave these generalizations to the reader.

4.3 Closed positive forms

Let s be a positive form.



Definition 4.3.1 We say that s is a closed form iff Dom s with the scalar product

(w|v)s := (s + 1)(w, v), w, v ∈ Dom s, (4.3.2)

is a Hilbert space. We will then write ‖v‖s :=
√

(v|v)s.

Clearly, the scalar product (4.3.2) is equivalent with

(s + c)(w, v), w, v ∈ Dom s,

for any c > 0.

Theorem 4.3.2 The form s is closed iff for any sequence (vn) in Dom s, if vn → v and

s(vn − vm)→ 0, then v ∈ Dom s and s(vn − v)→ 0.

Example 4.3.3 Let A be an operator. Then

(Aw|Av), w, v ∈ DomA,

is a closed form iff A is closed.



4.4 Closable positive forms

Let s be a positive form.

Definition 4.4.1 We say that s is a closable form iff there exists a closed form s1 such that

s ⊂ s1.

Theorem 4.4.2 (1) The form s is closable ⇔ for any sequence (vn) ⊂ Dom s, if vn → 0

and s(vn − vm)→ 0, then s(vn)→ 0.

(2) If s is closable, then there exists the smallest closed form s1 such that s ⊂ s1. We will

denote it by scl.

(3) Nums is dense in Numscl

Proof. (1) ⇒ follows immediately from Theorem 4.3.2.

To prove (1) ⇐, define s1 as follows: v ∈ Dom s1, iff there exists a sequence (vn) ⊂ Dom s

such that vn → v and s(vn − vm) → 0. From s(vn) ≤ (
√
s(v1) +

√
s(vn − v1))

2 it follows

that
(
s(vn)

)
is bounded. From |s(vn)− s(vm)| ≤

√
s(vn − vm)

(√
s(vn) +

√
s(vn)

)
it follows

that
(
s(vn)

)
is a Cauchy sequence. Hence we can set s1(v) := lim

n→∞
s(vn)



To show that the definition is correct, suppose that (wn) ∈ Dom s, wn → v and s(wn −
wm) → 0. Then s(vn − wn − (vm − wm)) → 0 and vn − wn → 0. By the hypothesis we get

s(vn − wn) → 0. Hence, lim
n→∞

s(vn) = lim
n→∞

s(wn). Thus the definition of s1 does not depend

on the choice of the sequence vn. It is clear that s1 is a closed form containing s. Hence s is

closable.

To prove (2) note that the form s1 constructed above is the smallest closed form containg

s. 2

Example 4.4.3 Let A be an operator. Then

(Aw|Av), w, v ∈ DomA,

is closable iff A is a closable operator. Then

(Aclw|Aclv), w, v ∈ DomAcl

is its closure.

Definition 4.4.4 We say that a linear subspace Q is an essential domain of the form s if



(
s
∣∣∣
Q×Q

)cl

= s.

4.5 Operators associated with positive forms

Let S be a self-adjoint operator. We define the form s as follows:

s(v, w) := (|S|1/2v|sgn(S)|S|1/2w), v, w ∈ Dom s := Dom |S|1/2.

We will say that s is the form associated with the operator S.

Theorem 4.5.1 (1) NumS is dense in Nums.

(2) If S is positive, then s is a closed positive form and DomS is its essential domain.

The next theorem describes the converse construction. It follows immediately from Thm

3.11.2.

Theorem 4.5.2 (Lax-Milgram Theorem) Let s be a densely defined closed positive form.



Then there exists a unique positive self-adjoint operator S such that

s(v, w) := (S1/2v|S1/2w), v, w ∈ Dom s := DomS1/2.

Proof. By Thm 3.10.1 applied to Dom s there exists a positive self-adjoint operator T such

that

s(v, w) := (Tv|Tw), v, w ∈ Dom s := DomT.

We set S := T 2. 2

We will say that S is the operator associated with the form s.

4.6 Perturbations of positive forms

Theorem 4.6.1 Let t1 and t2 be positive forms.

(1) t1 + t2 is also a positive form.

(2) If t1 and t2 are closed, then t1 + t2 is closed as well.



(3) If t1 and t2 are closable, then t1 + t2 is closable as well and (t1 + t2)
cl ⊂ tcl

1 + tcl
2 .

Definition 4.6.2 Let p, t be hermitian forms. Let t be positive. We say that p is t-bounded

iff Dom t ⊂ Dom p and

b := inf
c>0

sup
v∈Dom t

|p(v)|
t(v) + c‖v‖2

<∞.

The number b is called the t-bound of p.

Theorem 4.6.3 Let t be positive and let p be t-bounded with the t-bound < 1. Then

(1) The form t + p (with the domain Dom t) is bounded from below.

(2) t is closed ⇔ t + p is closed.

(3) t is closable ⇔ t + p is closable, and then Dom(t + p)cl = Dom tcl.

Proof. Let us prove (1). For some b < 1, we have

(t + p)(v) ≥ t(v)− |p(v)| ≥ (1− b)t(v)− c‖v‖2. (4.6.3)

This proves that t + p is bounded from below.



To see (2) and (3), note that (4.6.3) and

(1 + b)t(v) + c‖v‖2 ≥ (t + p)(v)

prove that the norms ‖ · ‖t and ‖ · ‖t+p are equivalent. 2

4.7 Friedrichs extensions

Theorem 4.7.1 Let T be a positive densely defined operator. Then the form

t(w, v) := (w|Tv), w, v ∈ Dom t := DomT

is closable.

Proof. Suppose that wn ∈ DomT , wn → 0, lim
n,m→∞

t(wn − wm) = 0. Then

|t(wn)| ≤ |t(wn − wm, wn)|+ |t(wm, wn)|

≤
√
t(wn)

√
t(wn − wm) + (wm|Twn).



For any ε > 0 there exists N such that for n,m > N we have t(wn − wm) ≤ ε2. Besides,

lim
m→∞

(wm|Twn) = 0. Therefore, for n > N ,

|t(wn)| ≤ ε|t(wn)|1/2.

Hence t(wn)→ 0. 2

Thus there exists a unique postive self-adjoint operator TFr associated with the form tcl.

The operator TFr is called the Friedrichs extension of T .

Clearly, DomT is then essential form domain of TFr. However in general it is not an essential

operator domain of T Fr. The theorem says nothing about essential operator domains.

For example, consider any open Ω ⊂ Rd. Note that C∞c (Ω) is dense in L2(Ω). The equation

(f | −∆g) =

∫
∇f(x)∇g(x)dx, f ∈ C∞c (Ω)

shows that −∆ on C∞c (Ω) is a positive operator. Its Friedrichs extension is called the laplacian

on Ω with the Dirichlet boundary conditions.



If V is any positive bounded from below function we can consider ∆ + V (x) and define its

Friedrichs extension.
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Chapter 5

Non-maximal operators

5.1 Defect indices

If V is a finite dimensional Hilbert space and V1,V2 its two subspaces such that V1∩V2 = {0},
then we have the following obvious inequalities:

dimV1 + dimV2 ≤ dimV ,

dimV1 ≤ dimV⊥2 ,

dimV2 ≤ dimV⊥1 .



If dimV = ∞, then clearly the first inequality loses its interest. However the other two

inequalities, which are still true, may be interesting.

Let A be an operator on a Hilbert space V .

Theorem 5.1.1 dim Ran (z − A)⊥ = dim Ker(z − A∗) is a constant function on connected

components of C\(NumA)cl.

Proof. Let us show that if |z − z1| < dist(z,NumA), then

Ran (z − A) ∩ Ran (z1 − A)⊥ = {0}. (5.1.1)

Let w ∈ Ran (z − A). Then there exists v ∈ DomA such that

w = (z − A)v

and ‖v‖ ≤ c‖w‖, where c =
(
dist(z,NumA)

)−1
. If moreover, w ∈ Ran (z1 − A)⊥ =



Ker(z1 − A∗), then

0 =
(
(z1 − A∗)w|v

)
=
(
w|(z − A)v

)
+ (z1 − z)(w|v)

= ‖w‖2 + (z − z1)(w|v).

But ∣∣‖w‖2 + (z1 − z)(w|v)
∣∣ ≥ (1− |z1 − z|c)‖w‖2 > 0,

which is a contradiction and completes the proof of (5.1.1).

Now (5.1.1) implies that dim Ran (z − A)⊥ ≤ dim Ran (z1 − A)⊥. 2

5.2 Extensions of hermitian operators

Let A be closed hermitian.

Theorem 5.2.1 The so-called defect indices of A

n± := dim Ker(z − A∗), z ∈ C±



do not depend on z. Then A possesses a self-adjoint extension iff n+ = n−. Moreover, one of

the following possibilities is true:

(1) NumA 6= R.

(i) spA ⊂ R, n+ = n− = 0 and A is self-adjoint.

(ii) spA = C, n+ = n− > 0.

(2) NumA = R.

(i) spA ⊂ R, n+ = n− = 0, A is self-adjoint.

(ii) spA = {Imz ≥ 0}, n+ > 0, n− = 0, A is not self-adjoint.

(iii) spA = {Imz ≤ 0}, n+ = 0, n− > 0, A is not self-adjoint.

(iv) spA = C, n+ > 0, n− > 0, A is not self-adjoint.

Proof. The existence of self-adjoint extensions for n+ = n− follows from Theorem 5.2.3.

The remaining statements are essentially a special case of Theorem 5.1.1. 2



Definition 5.2.2 Define on DomA∗ the following scalar product:

(v|w)A∗ := (v|w) + (A∗v|A∗w)

and the following antihermitian form:

[v|w]A∗ := (A∗v|w)− (v|A∗w).

The A∗−closedness and the A∗−orthogonality is defined using the scalar product (·|·)A∗.

Theorem 5.2.3 (1) Every closed extension of A is a restriction of A∗ to an A∗−closed

subspace in DomA∗ containing DomA.

(2)

DomA∗ = DomA⊕Ker(A∗ + i)⊕Ker(A∗ − i)

and the components in the above direct sum are A∗-closed, A∗−orthogonal and

(w0 ⊕ w+ ⊕ w−|v0 ⊕ v+ ⊕ v−)A∗ = (w0|v0) + (Aw0|Av0) + 2(w+|v+) + 2(w−|v−),

[w0 ⊕ w+ ⊕ w−|v0 ⊕ v+ ⊕ v−]A∗ = 2i(w+|v+)− 2i(w−|v−).



Proof. (1) is obvious. In (2) the A∗−orthogonality and the A∗−closedness are easy.

Let w ∈ DomA∗ and

w ⊥A∗ DomA⊕Ker(A∗ + i).

In particular, for v ∈ DomA we have

0 = (A∗w|A∗v) + (w|v) = (A∗w|Av) + (w|v).

Hence A∗w ∈ DomA∗ and

A∗A∗w = −w.

Therefore,

(A∗ + i)(A∗ − i)w = 0.

Thus

(A∗ − i)w ∈ Ker(A∗ + i). (5.2.2)



If y ∈ Ker(A∗ + i), then

i(y|(A∗ − i)w) = (A∗y|A∗w) + (y|w) = (y|w)A∗ = 0

In particular, by (5.2.2) we can set y = (A∗ − i)w. We get w ∈ Ker(A∗ − i). 2

DomA belongs to the kernel of the antisymmetric form [·, ·]A∗. Therefore, in what follows

we restrict this form to

Vdef := Ker(A∗ + i)⊕Ker(A∗ − i).

We will write

Zper := {v ∈ Vdef : [z, v]A∗ = 0, z ∈ Z}.

We will say that a subspace Z of Vdef is A∗−isotropic iff [·|·]A∗ vanishes on Z and A∗-Lagrangian

if Zper = Z.

Every A∗−closed subspace of V containing DomA is of the form DomA ⊕ Z, where

Z ⊂ Vdef . If

A ⊂ B ⊂ A∗,



then the subspace Z corresponding to B will be denoted by ZB.

Theorem 5.2.4 (1) We have

ZB∗ = (ZB)per.

(2) B is hermitian iff ZB is A∗−isotropic iff there exists a partial isometry U : Ker(A∗+i)→
Ker(A∗ − i) such that

Z := {w+ ⊕ Uw+ : w+ ∈ RanU ∗U}.

(3) B is self-adjoint iff ZB is A∗-Lagrangian iff there exists a unitary U : Ker(A∗ + i) →
Ker(A∗ − i) such that

Z := {w+ ⊕ Uw+ : w+ ∈ Ker(A∗ + i)}.

5.3 Extension of positive operators

(This subsection is based on unpublished lectures of S.L.Woronowicz).



Theorem 5.3.1 Let V = V0 ⊕ V1 and

B =

[
B00 B01

B10 B11

]

be an operator in B(V) with B11 invertible. Then B is positive iff B11 ≥ 0, B01 = B∗10 and

B00 ≥ B01B
−1
11 B10.

Proof. Let v0 ∈ V0, v1 ∈ V1. For vz =

[
v0

v1

]
. Then

0 ≤ (v|Bv) = (v0B00v0) + (v0|B01v1) + (v1|B10v0) + (v1|B11v1)

=
(
v0|(B00 −B01B

−1
11 B10)v0

)
+ ‖B−1/2

11 B10v0 +B
1/2
11 v1‖2

This proves ⇒.

Let us prove ⇐. The necessity of B11 ≥ 0 is obvious. Given v0, we can choose v1 =

−B−1
11 B10v0. This shows that B00 −B01B

−1
11 B10 has to be positive. 2



Suppose that G is hermitian, positive and closed. We would like to describe its positive

self-adjoint extensions. Thus we are looking for positive self-adjoint H such that G ⊂ H.

The operator G + 1l is injective and has a closed range. Define V1 := RanG and set

V0 := V⊥1 , so that V = V0⊕V1. Let A ∈ B(V1,V) be the left inverse of G+ 1l. We can write

it as

A =

[
A01

A11

]
We are looking for a bounded operator

(1l +H)−1 = B =

[
B00 B01

B10 B11

]
∈ B(V)

that extends A and 0 ≤ B ≤ 1l. Clearly, B11 = A11, B01 = A01, B10 = A∗01. By Theorem

5.3.1,

B00 ≥ B01B
−1
11 B10,

1l00 −B00 ≥ B01(1l11 −B11)
−1B10.



Thus we can choose any B00 ∈ B(V0) satisfying

1l00 − A01(1l11 − A11)
−1A∗01 ≥ B00 ≥ A01A

−1
11 A

∗
01.

This condition has two extreme solutions: The smallest A01A
−1
11 A

∗
01 yields the largest extension,

called the Friedrichs extension HFr. The largest 1l00−A01(1l11−A11)
−1A∗01, gives the smallest

positive extension, called the Krein extension HKr. We have the following formula for both

extensions:

(1l +HFr)−1

:=
(
A

1/2
11 + A01A

−1/2
11

)(
A

1/2
11 + A01A

−1/2
11

)∗
,

1l− (1l +HKr)−1

:=
(
(1l11 − A11)

1/2 − A01(1l11 − A11)
−1/2

)(
(1l11 − A11)

1/2 − A01(1l11 − A11)
−1/2

)∗
.
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Chapter 6

Aronszajn-Donoghue Hamiltonians and their

renormalization

6.1 Construction

Recall that the operators (h| and |h) are defined by

H 3 v 7→ (h|v := (h|v) ∈ C,

C 3 α 7→ |h)α := αh ∈ H.
(6.1.1)



In particular, |h)(h| equals the orthogonal projection onto h times ‖h‖2.

Let H0 be a self-adjoint operator on H, h ∈ H and λ ∈ R.

Hλ := H0 + λ|h)(h|, (6.1.2)

is a rank one perturbation of H0. We will call (6.1.2) the Aronszajn Donoghue Hamiltonian.

We would like to describe how to define the Aronszajn-Donoghue Hamiltonian if h is not

necessarily a bounded functional on H. It will turn out that it is natural to consider 3 types of

h:

I. h ∈ H, II. h ∈ 〈H0〉1/2H \ H, III. h ∈ 〈H0〉H \ 〈H0〉1/2H, (6.1.3)

where 〈H0〉 := (1 +H2
0)1/2.

Clearly, in the case I Hλ is self-adjoint on DomH0. We will see that in the case II one

can easily define Hλ as a self-adjoint operator, but its domain is no longer equal to DomH0.

In the case III, strictly speaking, the formula (6.1.2) does not make sense. Nevertheless, it

is possible to define a renormalized Aronszajn-Donoghue Hamiltonian. To do this one needs



to renormalize the parameter λ. This procedure resembles the renormalization of the charge

in quantum field theory. In this case usually the parameter λ looses its meaning, so we will

abandon the notation Hλ. Instead, one can label the Hamiltonian by various parameters, which

we will put in brackets.

Lemma 6.1.1 In Case I with λ 6= 0, the resolvent of H equals

R(z) := (z −H)−1

= (z −H0)
−1 − g(z)−1(z −H0)

−1|h)(h|(z −H0)
−1, (6.1.4)

where

g(z) := −λ−1 + (h|(z −H0)
−1h). (6.1.5)

defined for z 6∈ spH0.

Proof. We have

R(z)− (z −H0)
−1 = λR(z)|h)(h|(z −H0)

−1

= λ(z −H0)
−1|h)(h|R(z). (6.1.6)



Hence the range of (6.1.6) is C(z − H0)
−1h, and the kernel is {(z − H0)

−1h}⊥. Therefore,

(6.1.6) has the form

−g(z)−1(z −H0)
−1|h)(h|(z −H0)

−1 (6.1.7)

for some complex function g(z). Thus it remains to determine g(z) in (6.1.4). We insert

(6.1.4) into

λ(z −H0)
−1|h)(h|R(z) = −g(z)−1(z −H0)

−1|h)(h|(z −H0)
−1,

and we obtain the formula for g, sometimes called Krein’s formula. 2

For λ = 0, clearly

R0(z) = (z −H0)
−1. (6.1.8)

The following theorem describes how to define the Aronszajn-Donoghue Hamiltonian also in

cases II and III:

Theorem 6.1.2 Assume that:

(A) h ∈ 〈H0〉1/2H, λ ∈ R ∪ {∞}. Let Rλ(z) be given by (6.1.8) or (6.1.4) with gλ(z) given



by (6.1.5),

or

(B) h ∈ 〈H0〉H, γ ∈ R. Let R(γ)(z) be given by (6.1.4) where g(γ)(z) is the solution of{
∂zg(γ)(z) = −

(
h|(z −H0)

−2h
)
,

1
2

(
g(γ)(i) + g(γ)(−i)

)
= γ.

(6.1.9)

Then, for z ∈ C\spH0 such that g(z) 6= 0

(1) z 7→ R(z) is a pseudoresolvent (a function with values in bounded operators that fulfill

the first resolvent formula);

(2) KerR(z) = {0}, unless h ∈ H and λ =∞;

(3) RanR(z) is dense in H, unless h ∈ H and λ =∞;

(4) R(z)∗ = R(z).

Hence, except for the case h ∈ H, λ = ∞, there exists a unique densely defined self-adjoint

operator H such that R(z) is the resolvent of H.

The initial condition in (6.1.9) can be called the renormalization condition. It is easy to solve



(6.1.9) obtaining

g(γ)(z) = γ +
(
h|
(
(z −H0)

−1 +H0(1 +H2
0)−1

)
h
)
.

If g(β) = 0 and β 6∈ spH0, then H has an eigenvalue at β, and the corresponding eigenpro-

jection is

1{β}(H) = (h|(β −H0)
−2h)−1(β −H0)

−1|h)(h|(β −H0)
−1.

In Case I and II the function R ∪ {∞} 3 λ 7→ Hλ is increasing.

In Case III we rename H0 as H(∞).

6.2 Cut-off method

Another way to define H for the case h ∈ 〈H0〉H is the cut-off method. For Λ > 0 we define

hΛ := 1l[−Λ,Λ](H0)h, (6.2.10)

where 1l[−Λ,Λ](H0) is the spectral projection for H0 onto [−Λ,Λ] ⊂ R. Note that hΛ ∈ H.



We fix the running coupling constant by

−λ−1
Λ := γ + (hΛ|H0(1 +H2

0)−1hΛ)

and set the cut-off Hamiltonian to be

HΛ := H0 + λΛ|hΛ)(hΛ|. (6.2.11)

Then the resolvent for HΛ is given by

RΛ(z) = (z −H0)
−1 − gΛ(z)−1(z −H0)

−1|hΛ)(hΛ|(z −H0)
−1, (6.2.12)

where

gΛ(z) := −λ−1
Λ +

(
hΛ|(z −H0)

−1hΛ

)
. (6.2.13)

Note that λΛ is chosen in such a way that the renormalization condition 1
2 (gΛ(i) + gΛ(−i)) = γ.

holds. The cut-off Hamiltonian converges to the renormalized Hamiltonian:

Theorem 6.2.1 Assume that h ∈ 〈H0〉H. Then lim
k→∞

RΛ(z) = R(z).



6.3 Extensions of hermitian operators

Let H0 be as above and h ∈ 〈H0〉H\H. (Thus we consider jointly Case II and III.) Define

Hmin to be the restriction of H0 to

Dom(Hmin) := {v ∈ Dom(H0) = 〈H0〉−1H : (h|v) = 0}.

Then Hmin is a closed densely defined Hermitian operator. Set Hmax := H∗min. Then

Dom(Hmax) = Span
(

DomH0 ∪ {(z0 −H0)
−1h}

)
,

where z0 ∈ rsH0. Note that Ker(Hmax ± i) is spanned by

v± := (±i−H0)
−1h.

Thus the indices of defect of Hmin are (1, 1).

The operators H(γ) described in the previous subsection are self-adjoint extensions of Hmin.



To obtain H(γ) it suffices to increase the domain of Hmin by adding the vector

γ + (h|H0(1 +H2
0)−1h)

γ − i(h|(1 +H2
0)−1h)

(i−H0)
−1h− γ + (h|H0(1 +H2

0)−1h)

γ + i(h|(1 +H2
0)−1h)

(i +H0)
−1h,

If H(γ) has an eigenvalue β outside of spH0, then instead we can add the vector

(β −H0)
−1h.

6.4 Positive H0

Let us consider the special case H0 > 0.

We can define the positive form hmin associated with Hmin:

hmin(v, v) = (v|Hminv) = (v|H0v),

v ∈ Dom(hmin) := DomHmin = {v ∈ Dom(H0) : (h|v) = 0}.

In Case II and III the form hmin is densely defined.

Clearly, g is analytic on C\[0,∞[. g restricted to ] −∞, 0[ is a decreasing function (in all



cases I, II and III). Therefore, H can possess at most one negative eigenvalue.

We distinguish subcases of Cases I, II and III

Case I iff h ∈ H;

Case Ia iff h ∈ DomH
−1/2
0 ;

Case Ib iff h 6∈ DomH
−1/2
0 .

Case II iff h ∈ (1 +H0)
1/2H, h 6∈ H;

Case IIa iff (1 +H0)
−1/2h ∈ Dom(1 +H0)

1/2H
−1/2
0 ;

Case IIb iff (1 +H0)
−1/2h 6∈ Dom(1 +H0)

1/2H
−1/2
0 .

Case II iff h ∈ (1 +H0)H, h 6∈ (1 +H0)
1/2H;

Case IIIa iff (1 +H0)
−1h ∈ Dom(1 +H0)

1/2H
−1/2
0 ;

Case IIIb iff (1 +H0)
−1h 6∈ Dom(1 +H0)

1/2H
−1/2
0 .



In Case Ia and IIa we set

λKr := −(h|H−1
0 h)−1. (6.4.14)

Note that λKr is negative. (In all other cases one could interpret (h|H−1
0 h) as +∞, and

therefore one can then set λKr := 0). We have

lim
x→−∞

g(x) = −λ−1, g(0) = −λ−1 + λ−1
Kr .

Therefore, Hλ is positive for λKr ≤ λ ≤ ∞. For λ < λKr, Hλ has a single negative eigenvalue

β, which is the solution of

λ(h|(H0 − β)−1h) = −1. (6.4.15)

In Case IIa HλKr
is the Krein extension of Hmin and H∞ is the Friedrichs extension.

In Case Ib and IIb we have

lim
x→−∞

g(x) = −λ−1, g(0) = −∞.

Hλ is positive for 0 ≤ λ ≤ ∞. For λ < 0, Hλ has a single negative negative eigenvalue β,

which is the solution of (6.4.15). In Case IIb H0 is the Krein extension of Hmin and H∞ is its



Friedrichs extension.

In Case III we will use several kinds of parameters, always putting them in brackets. In

particular, it is natural to rename H0 and call it H(∞). It is the Friedrichs extension of Hmin.

In Case IIIa we have

lim
x→−∞

g(x) =∞, g(0) =: γ0,

where γ0 is a finite real number that can be used to parametrize H, so that

g(z) = γ0 −
(
h|(H0 − z)−1H−1

0 h
)
z.

H(γ0) is an increasing function of γ0. It is positive for 0 ≤ γ0. It has a single negative eigenvalue

at β solving

γ0 = (h|(H0 − β)−1H−1
0 h)β.

The Krein extension corresponds to γ0 = 0.

In Case IIIb

lim
x→−∞

g(x) =∞, g(0) = −∞.



A natural way to parametrize the Hamiltonian is by g(z0) for some fixed z0 ∈] −∞, 0[, say

γ−1 := g(−1). This yields

g(z) = γ−1 −
(
h|(H0 − z)−1(H0 + 1)−1h

)
(z + 1).

H is an increasing function of γ−1 on R ∪ {∞}. The Krein extension is H(∞) (and coincides

with the Friedrichs extension).

H(γ−1) has a single negative eigenvalue β for all γ−1 ∈ R. β is an increasing function of γ−1.

If we use the cut-off method in Case III, then λΛ ↗ 0. Thus we should think of λ as

infinitesimally small negative.
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Chapter 7

Friedrichs Hamiltonians and their

renormalization

7.1 Construction

Let H0 be again a self-adjoint operator on the Hilbert space H. Let ε ∈ R and h ∈ H. The

following operator on the Hilbert space C⊕H is often called the Friedrichs Hamiltonian:

G :=

[
ε (h|
|h) H0

]
. (7.1.1)



We would like to describe how to define the Friedrichs Hamiltonian if h is not necessarily a

bounded functional on H. It will turn out that it is natural to consider 3 types of h:

I. h ∈ H, II. h ∈ 〈H0〉1/2H \ H, III. h ∈ 〈H0〉H \ 〈H0〉1/2H, (7.1.2)

Clearly, in the case I G is self-adjoint on C ⊕ DomH0. We will see that in the case II one

can easily define G as a self-adjoint operator, but its domain is no longer C ⊕ DomH0. In

the case III, strictly speaking, the formula (7.1.1) does not make sense. Nevertheless, it is

possible to define a renormalized Friedrichs Hamiltonian. To do this one needs to renormalize

the parameter ε. This procedure resembles the renormalization of mass in quantum field theory.

Let us first consider the case h ∈ H. As we said earlier, the operator G with DomG =

C⊕DomH0 is self-adjoint. It is well known that the resolvent of G can be computed exactly.

In fact, for z 6∈ spH0 define the analytic function

f(z) := ε+ (h|(z −H0)
−1h). (7.1.3)



Then for z ∈ C\spH0, f(z) 6= z the resolvent Q(z) := (z −G)−1 is given by

Q(z) =

[
0 0

0 (z −H0)
−1

]
(7.1.4)

+
(
z − f(z)

)−1

 1l (h|(z −H0)
−1

(z −H0)
−1|h) (z −H0)

−1|h)(h|(z −H0)
−1

 .
Theorem 7.1.1 Assume that:

(A) h ∈ 〈H0〉1/2H, ε ∈ R. Let Q(z) be given by (7.1.4) with f(z) defined by (7.1.3),

or

(B) h ∈ 〈H0〉H, γ ∈ R. Let Q(z) be given by (7.1.4) with f(z) defined by{
∂zf(z) = −

(
h|(z −H0)

−2h
)
,

1
2

(
f(i) + f(−i)

)
= γ.

(7.1.5)

Then for all z ∈ C\spH0, f(z) 6= z :

(1) Q(z) is a pseudoresolvent;



(2) KerQ(z) = {0};

(3) RanQ(z) is dense in C⊕H;

(4) Q(z)∗ = Q(z).

Therefore, there exists a unique densely defined self-adjoint operator G such that Q(z) =

(z −G)−1.

Proof. Let z ∈ C\spH0, f(z) 6= z. It is obvious that Q(z) is bounded and satisfies (4). We

easily see that both in the case (A) and (B) the function f(z) satisfies

f(z1)− f(z2) = −(z1 − z2)(h|(z1 −H0)
−1(z2 −H0)

−1|h). (7.1.6)

Direct computations using (7.1.6) show the first resolvent formula.

Let (α, f) ∈ C⊕H be such that (α, f) ∈ KerQ(z). Then

0 = (z − f(z))−1
(
α + (h|(z −H0)

−1f)
)
, (7.1.7)

0 = (z −H0)
−1f + (z −H0)

−1h(z − f(z))−1
(
α + (h|(z −H0)

−1f)
)
. (7.1.8)



Inserting (7.1.7) into (7.1.8) we get 0 = (z −H0)
−1f and hence f = 0. Now (7.1.7) implies

α = 0, so KerQ(z) = {0}.

Using (2) and (4) we get (RanQ(z))⊥ = KerQ(z)∗ = KerQ(z) = {0}. Hence (3) holds.

2

It is easy to solve (7.1.5):

f(z) := γ +
(
h|((z −H0)

−1 +H0(1 +H2
0)−1)h

)
= γ +

(
h|( i−z

2(z−H0)(i−H0) −
i+z

2(z−H0)(−i−H0))h
) (7.1.9)

7.2 The cut-off method

Let h ∈ 〈H0〉H and γ ∈ R. We can also use the cut-off method. For all Λ > 0 we define hΛ

as in (6.2.10), that is hΛ := 1l[−Λ,Λ](H0)h,. We set

εΛ := γ + (hΛ|H0(1 +H2
0)−1hΛ).



For all Λ > 0, the cut-off Friedrichs Hamiltonian

GΛ :=

[
εΛ (hΛ|
|hΛ) H0

]

is well defined and we can compute its resolvent, QΛ(z) := (z −GΛ)−1:

QΛ(z) =

[
0 0

0 (z −H0)
−1

]
(7.2.10)

+
(
z − fΛ(z)

)−1

 1 (hΛ|(z −H0)
−1

(z −H0)
−1|hΛ) (z −H0)

−1|hΛ)(hΛ|(z −H0)
−1

 .
where

fΛ(z) := εΛ + (hΛ|(z −H0)
−1hΛ). (7.2.11)

Note that εΛ is chosen such a way that the following renormalization condition is satisfied:
1
2 (fΛ(i) + fΛ(−i)) = γ.



Theorem 7.2.1 Assume that h ∈ 〈H0〉H. Then lim
k→∞

QΛ(z) = Q(z), where Q(z) is given by

(7.1.4) and f(z) is given by (7.1.9). If H0 is bounded from below, then lim
k→∞

εΛ =∞.

Proof. The proof is obvious if we note that lim
k→∞
‖(z − H0)

−1h − (z − H0)
−1hΛ‖ = 0 and

lim
k→∞

fΛ(z) = f(z). 2

Thus the cut-off Friedrichs Hamiltonian is norm resolvent convergent to the renormalized

Friedrichs Hamiltonian.

7.3 Eigenvectors and resonances

Let β 6∈ spH0, If β = f(β) = 0 then G has an eigenvalue at β. The corresponding eigenpro-

jection equals

1lβ(G) = (1 + (h|(β −H0)
−2|h))−1

[
1 (h|(β −H0)

−1

(β −H0)
−1|h) (β −H0)

−1|h)(h|(β −H0)
−1

]
.

It may happen that C\spH0 3 z 7→ f(z) extends to an analytic multivalued function accross

some parts of spH0. Then so does the resolvent (z−G)−1 sandwiched between a certain class



of vectors, in particular, between

w :=

[
1

0

]
(7.3.12)

(
w
∣∣(z −G)−1w

)
= (z − f(z))−1.

It may happen that we obtain a solution of

f(β) = β

in this non-physical sheet of the complex plane. This gives a pole of the resolvent called a

resonance.

Suppose that we replace h with λh and ε with ε0 + λ2α and assume that we have Case I or

II with λ small.

Then if ε0 6∈ spH0, we have an approximate expression for the eigenvalue for small λ:

ελ = ε0 + λ2α + λ2(h|(ε0 −H0)
−1h) +O(λ4).

If ε0 ∈ spH0, then the eigenvalue typically disappears and we obtain an approximate formula



for the resonance:

ελ = ε0 + λ2α + λ2(h|(ε0 + i0−H0)
−1h) +O(λ4)

= ε0 + λ2α + λ2(h|P(ε0 −H0)
−1h)− λ2iπ(h|δ(H0)h) +O(λ4).

Suppose now that ε0 = 0. Then we have the weak coupling limit:

lim
λ↘0

(w|e−i t
λ2Gλw) = exp

(
−itα + it(h|P(H−1

0 )h)− tπ(h|δ(H0)h)
)
.

7.4 Dissipative semigroup from a Friedrichs Hamiltonian

Consider L2(R), ε ∈ R, λ ∈ C and

H0v(k) := kv(k), v ∈ L2(R), k ∈ R.



Then R 3 k 7→ 1(k) = 1 does not belong to 〈H0〉1/2L2(R), however it belongs to 〈H0〉L2(R).

We will see that

G =

[
ε λ(1|

λ|1) H0

]
(7.4.13)

is a well defined Friedrichs Hamiltonian without renormalizing λ, even though it is only type

III.

Set 1Λ(k) := 1l[−Λ,Λ](k). We approximate (7.4.13) by

GΛ =

[
ε λ(1Λ|

λ|1Λ) H0

]
(7.4.14)

Note that (7.4.14) has a norm resolvent limit, which can be denoted (7.4.13). In fact,

f(z) = ε+ lim
Λ→∞

∫ −Λ

Λ

|λ|2

z − k
dk =

{
ε− iπ|λ|2 Imz > 0,

ε+ iπ|λ|2 Imz < 0.



If w is the distinguished vector (7.3.12), then(
w|(z −G)−1w

)
= (z − ε± iπ|λ|2)−1, ±Imz > 0,(

w|e−itGw
)

= e−iεt−π|λ|2|t|.



Chapter 8

Momentum in one dimension

8.1 Distributions on R

The space of distributions on R is denoted D′(R). Note that L1
loc(R) ⊂ D′(R).

Proposition 8.1.1 (1) Let g ∈ L1
loc(R). Then∫ x

0

g(y)dy =: f(x) (8.1.1)
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is a continuous function and f ′ = g, where we use the derivative in the distributional

sense.

(2) If g ∈ Lp(R) with 1 ≤ p, then g ∈ L1
loc(R) and so f(x) defined in (8.1.1) is a continuous

function.

(3) If f ∈ C1(R), then f ′ in the classical and ditributional sense coincide.

θ will denote the Heavyside function.

8.2 Momentum on the line

Consider the Hilbert space L2(R).

The equation

U(t)f(x) := f(x− t), f ∈ L2(R), t ∈ R,

defines a unitary strongly continuous group.



The momentum operator p is defined by on the domain

Dom p := {f ∈ L2(R) : f ′ ∈ L2(R)}

by

pf(x) :=
1

i
∂xf(x), f ∈ Dom p. (8.2.2)

Its graph scalar product is

(f |g)p =

∫ ∞
−∞

(
f(x)g(x) + f ′(x)g′(x)

)
dx.

Theorem 8.2.1 (1) U(t) = e−itp.

(2) p is a self-adjoint operator.

(3) C∞c (R) is an essential domain of p.

(4) sp p = R, sppp = ∅.



(5) The integral kernel of (z − p)−1 equals

R(z, x, y) =

{
−iθ(x− y)eiz(x−y), Imz > 0,

+iθ(y − x)eiz(x−y), Imz < 0.

Proof. (1): Let A be the generator, f ∈ DomA. Then for any φ ∈ C∞c (R)

(φ|Af)→ 1

t
(φ|U(t)f − f) =

1

t

∫ (
φ(x+ t)− φ(x)

)
f(x)dx→

∫
φ′(x)f(x)dx.

Therefore, Af = −f ′ in the distributional sense.

Let f ∈ L2, g := f ′ ∈ L2. Then f ∈ C(R) and

1

t

(
f(x− t)− f(x) =

1

t

∫ x

x−t
g(y)dy = jt ∗ g → g, (8.2.3)

where we jt :=

1/t, y ∈ [−t, 0],

0 y 6∈ [−t, 0].
and (8.2.3) is understood in the L2 sense. Therefore,

f ∈ Dom p.



(3): C∞c (R) is a dense subspace of L2(R) left invariant by U(t). Therefore, it is an essential

domain.

(5): For Imz > 0

(z − p)−1 = −i

∫ ∞
0

eiztU(t)dt.

Hence

(z − p)−1f(x) = −i

∫ ∞
0

eiztf(x− t)dt = −i

∫ ∞
−∞

ei(x−y)zθ(x− y)f(y)dy.

For Imz < 0 we can use

(z − p)−1∗ = (z − p)−1.

(4): Let k ∈ R. Consider fε,k =
√
πεe−εx

2+ikx. Then ‖fε,k‖ = 1, fε,k ∈ Dom p and

(k − p)fε,k → 0 as ε→ 0. Hence k ∈ spp.

Suppose that f ∈ Dom p and pf = kf . Clearly, f ∈ Dom p2. Hence, by Theorem 9.1.1,

f ∈ C1(R) and pf = −i∂xf = kf . It is well known that the only solution is f = ceikx, which

does not belong to L2(R). 2



Proposition 8.2.2 (1) Dom p ⊂ C∞(R) and Dom p 3 f 7→ f(x) ∈ C is a continuous

functional.

(2) If f ∈ Dom p and pf ∈ C(R), then f ∈ C1(R) and (8.2.2) is true in the classical sense.

(3) If f ∈ Dom p and f = 0 on ]a, b[, then pf = 0 on ]a, b[.

Proof. (1): Dom p = Ran (i − p)−1. Now (i − p)−1 is the convolution with −iθ(x)e−|x|,

which belongs to L2(R). The convolution of two L2(R) functions belongs to C∞(R).

(2) Let f ∈ Dom p, g ∈ C(R) and pf = g. Let x ∈ R, r > 0. Set h := 1[x,x+r]. Then

t−1(h|U(t)f − f) = t−1
∫ x+r−t
x−t f(y)dy − t−1

∫ x+r

x f(y)dy

= −t−1
∫ x+r

x+r−t f(y)dy + t−1
∫ x
x−t f(y)dy → −f(x+ r) + f(x).

where we used the continuity of f . Therefore

i(h|g) = i

∫ x+r

x

g(y)dy = −f(x+ r) + f(x).



Hence, using the continuity of g,

lim
r→0

f(x+ r)− f(x)

r
= −ig(x).

(3) is obvious for f ∈ C1
c (R). It extends by density. 2

Proposition 8.2.3 (1) The spaces

{f ∈ Dom p : f(x) = 0, x < 0}, (8.2.4)

{f ∈ Dom p : f(x) = 0, x > 0}. (8.2.5)

are mutually orthogonal in Dom p.

(2) The orthogonal complement of the direct sum of (8.2.4) and (8.2.5) is spanned by e−|x|.

Proof. (2): We easily check the orthogonality of e−|x| to (8.2.4) and (8.2.5).

Let f ∈ L2
1(R). Set f±(x) := θ(±x)

(
f(x)− f(0)e−|x|

)
. Then

f(x) = f(0)e−|x| + f−(x) + f+(x).



2

8.3 Momentum on the half-line

Consider the Hilbert space L2([0,∞[).

Define the semigroups

U←(t)f(x) := f(x+ t), t ≥ 0.

U→(t)f(x) :=

 f(x− t), x ≥ t ≥ 0.

0, t > x,

Define pmax by

pmaxf(x) :=
1

i
∂xf(x), f ∈ Dom pmax := {1l[0,∞[f : f ∈ Dom p}. (8.3.6)

Note that the graph scalar product of pmax is

(f |g)pmax
=

∫ ∞
0

(
f(x)g(x) + f ′(x)g′(x)

)
dx.



Define the operator pmin as the restriction of pmax to the domain

Dom pmin := {f ∈ Dom p : f(x) = 0, x < 0}.

(In the definitions of Dom pmax and Dom pmin we used concepts defined in the space L2(R),

however it is easy to see that both are subspaces of L2([0,∞[).)

Theorem 8.3.1 (1) We have U←(t) = eitpmax and U→(t) = e−itpmin.

(2) pmin ⊂ pmax, p
∗
min = pmax, p∗max = pmin; the operators pmin and −pmax are m-dissipative

(in particular, they are closed); the operator pmin is hermitian.

(3) Dom pmin is a subspace of Dom pmax of codimension 1 and its orthogonal complement is

spanned by 1l[0,∞[(x)e−x.

(4) C∞c ([0,∞[) is an essential domain of pmax and C∞c (]0,∞[) is an essential domain of pmin.

(5) sppmax = spppmax = {Imz ≥ 0}, sppmin = {Imz ≤ 0}, spppmin = ∅,

pmaxeizx = zeizx, eizx ∈ Dom pmax, Imz > 0; (8.3.7)



(6) The integral kernels of (z − pmax)−1 and (z − pmin)−1 are equal

Rmax(z, x, y) = iθ(y − x)eiz(x−y), Imz < 0.

Rmin(z, x, y) = −iθ(x− y)eiz(x−y), Imz > 0.

8.4 Momentum on an interval I

Consider the Hilbert space L2([−π, π]).

Define pmax as an operator with domain

Dom pmax =:= {1l[−π,π]f : f ∈ Dom p}

and

pmaxf(x) :=
1

i
∂xf(x), f ∈ Dom pmax. (8.4.8)



Note that the graph scalar product for pmax is

(f |g)pmax
=

∫ π

−π

(
f(x)g(x) + f ′(x)g′(x)

)
dx, f, g ∈ Dom pmax.

Define the operator pmin as the restriction of pmax to the domain

Dom pmin := {f ∈ Dom p : f(x) = 0, x 6∈]− π, π[}.

Theorem 8.4.1 (1) Neither pmax nor pmin generate a semigroup.

(2) pmin ⊂ pmax, p
∗
min = pmax, p∗max = pmin; the operators pmin and pmax are closed; the

operator pmin is hermitian.

(3) C∞([−π, π]) is an essential domain of pmax and C∞c (]− π, π[) is an essential domain of

pmin.

(4) sppmax = spppmax = C, sppmin = C, spppmin = ∅,

pmaxeizx = zeizx, z ∈ C, (8.4.9)



8.5 Momentum on an interval II

Let κ ∈ C. Define the family of groups on L2([−π, π]) by

Uκ(t)φ(x) = ei2πnκφ(x− t), −(2n− 1)π < x− t < −(2n+ 1)π, n ∈ Z.

Let the operator pκ be defined as the restriction of pmax to

Dom pκ = {f ∈ Dom pmax : ei2πκf(−π) = f(π)}.

Theorem 8.5.1 (1) Uκ(t) = e−itpκ.

(2) ‖Uκ(t)‖ = e2πnImκ, 2π(n− 1) < t ≤ 2πn, n ∈ Z.

(3) The semigroup [0,∞[3 t 7→ Uκ(t) is of type (1, 0) for Imκ ≤ 0 and of type (e2πImκ, Imκ)

for Imκ ≥ 0.

(4) p∗κ = pκ, pκ = pκ+1; pmin ⊂ pκ ⊂ pmax. Operators pκ are closed. For κ ∈ R they

are self-adjoint.

(5) {f ∈ C∞([−π, π]) : ei2πκf(−π) = f(π)} is an essential domain of pκ.



(6) sppκ = spppκ = Z + κ,

pκe
i(n+κ)x = (n+ κ)ei(n+κ)x, n ∈ Z.

(7) The integral kernel of (z − pκ)−1 equals

Rκ(z, x, y) =
1

2 sinπ(z − κ)

(
e−i(z−κ)πeiz(x−y)θ(x− y) + ei(z−κ)πeiz(x−y)θ(y − x)

)
.

(8) The operators pκ are similar to one another up to an additive constant:

Dom pκ = eiκx Dom p0, pκ = eiκxp0e
−iκx + κ. (8.5.10)

8.6 Momentum on an interval III

Define the contractive semigroups on L2([−π, π]):

U←(t)f(x) :=

{
f(x+ t), |x+ t| ≤ π,

0 |x+ t| > π.



U→(t)f(x) :=

{
f(x− t), |x− t| ≤ π,

0 |x− t| > π.
.

Let the operator p±i∞ be defined as the restriction of pmax to

Dom p±i∞ = {f ∈ Dom pmax : f(±π) = 0}.

Theorem 8.6.1 (1) U←(t) = eitp+i∞ and U→(t) = e−itp−i∞.

(2) p∗±i∞ = p∓i∞; pmin ⊂ p±i∞ ⊂ pmax. Operators p±i∞ are closed.

(3) spp±i∞ = ∅.

(4) The integral kernel of (z − p±i∞)−1 equals

R±i∞(z, x, y) = ±ieiz(x−y±π)θ(±y ∓ x), z ∈ C.



Chapter 9

Laplacian

9.1 Sobolev spaces in one dimension

For α ∈ R let 〈p〉−αL2(R) be the scale of Hilbert spaces associated with the operator p. It is

called the scale of Sobolev spaces. We will focus in the case α ∈ N.

Theorem 9.1.1 (1)

〈p〉−nL2(R) = {f ∈ L2(R) : f (n) ∈ L2(R)}.
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(2) 〈p〉−nL2(R) ⊂ Cn−1(R) and 〈p〉−nL2(R) 3 f 7→ f (j)(x) for j = 0, . . . , n − 1 are

continuous functionals depending continuously on x ∈ R.

Proof. We use induction. The step n = 1 was proven before.

Suppose that we know that 〈p〉−nL2(R) ⊂ Cn(R). Let f ∈ 〈p〉−(n+1)L2(R). Then (i−p)f =

g ∈ 〈p〉−nL2(R). Clearly, 〈p〉−n−1L2(R) ⊂ 〈p〉−nL2(R), hence f ∈ Cn−1(R). Likewise,

g ∈ Cn−1(R), by the induction assumption. Now pf = −g + if ∈ Cn−1(R). Hence, by Prop.

8.2.2 (2) f ∈ Cn(R). 2

9.2 Laplacian on the line

Define the form d by

d(f, g) :=

∫
f ′(x)g′(x)dx, f, g ∈ Dom d := 〈p〉−1L2(R).



The operator p2 on L2(R) will be denoted −∆. Thus

−∆f(x) = −∂2
xf(x), f ∈ Dom(−∆) = 〈p〉−2L2(R).

Theorem 9.2.1 (1) −∆ is a positive self-adjoint operator.

(2) spp(−∆) = ∅.

(3) sp(−∆) = [0,∞[.

(4) The integral kernel of (k2 −∆)−1, for Rek > 0, is

R(k, x, y) =
1

2k
e−k|x−y|.

(5) The integral kernel of et∆ is

K(t, x, y) = (4πt)−
1
2 e−

(x−y)2

4t .

(6) The form d is closed and associated with the operator −∆.



(7) {f ∈ C2(R) ∩ L2(R) : f ′, f ′′ ∈ L2(R)} is contained in Dom(−∆) and on this set

−∆f(x) = −∂2
xf(x).

(8) C∞c (R) is an essential domain of −∆.

Proof. (4) Let Rek > 0. Then

(ik − p)−1(x, y) = −iθ(x− y)e−k|x−y|, (−ik − p)−1(x, y) = iθ(y − x)e−k|x−y|.

Now
(k2 −∆)−1 = (ik − p)−1(−ik − p)−1

= (−2ik)−1
(
(ik − p)−1 − (−ik − p)−1

)
.

(9.2.1)

The integral kernel of (9.2.1) equals (2k)−1e−k|x−y|.

(5) We have

et∆ = (2πi)−1

∫
γ

(z −∆)−1etzdz,



where γ is a contour of the form e−iα]0,∞[∪eiα[0,∞[ bypassing 0, where π/2 < α < π. Hence

et∆(x, y) = (2πi)−1

∫
γ̃

e−k|x−y|+tk
2

dk

where γ̃ is a contour of the form e−iα/2[0,∞[∪eiα/2[0,∞[. We put k = iu and obtain

et∆(x, y) = (2πi)−1

∫ ∞
−∞

e−iu|x−y|−tu2

idu

2

9.3 Laplacian on the halfline I

Consider the space L2([0,∞[). Define −∆max by

−∆maxf = −∂2
xf, f ∈ Dom

(
−∆max

)
:= {1l[0,∞[f : f ∈ 〈p〉−2L2(R)}.



Likewise, define −∆min as the restriction of −∆max to

Dom
(
−∆min

)
:= {f ∈ 〈p〉−2L2(R) : f(x) = 0, x < 0}.

(Both Dom
(
− ∆max

)
and Dom

(
− ∆min

)
are defined using the space L2(R). It is easy to

see that they are contained in L2([0,∞[).)

Theorem 9.3.1 (1) −∆∗min = −∆max, −∆min ⊂ −∆max.

(2) The operators −∆min and −∆max are closed and −∆min is hermitian.

(3) spp(−∆max) = C\[0,∞[, spp(−∆min) = ∅

−∆maxeikx = k2eikx, Imk > 0, eikx ∈ Dom(−∆max).

(4) sp(−∆max) = C, sp(−∆min) = C.

(5) −∆min =
(
pmin

)2
, −∆max =

(
pmax

)2
.



9.4 Laplacian on the halfline II

Let µ ∈ C ∪ {∞}. Let −∆µ be the restriction of −∆max to

Dom(−∆µ) = {f ∈ Dom(−∆max) : µf(0) = f ′(0)}. (9.4.2)

(If µ =∞, these are the Dirichlet boundary conditions, that means f(0) = 0, if µ = 0, these

are the Neumann boundary conditions, that means f ′(0) = 0).

Define also the form dµ as follows. If µ ∈ R, then

dµ(f, g) := µf(0)g(0) +

∫
f ′(x)g′(x)dx, f, g ∈ Dom dµ := Dom pmax.

For µ =∞,

d∞(f, g) :=

∫
f ′(x)g′(x)dx, f, g ∈ Dom d∞ := Dom pmin.

Theorem 9.4.1 (1) −∆min ⊂ −∆µ ⊂ −∆max.

(2) −∆∗µ = −∆µ.

(3) The operator −∆µ is a generator of a group. For µ ∈ R ∪ {∞} it is self-adjoint.



(4) spp(−∆µ) =

{
{−µ2}, Reµ < 0;

∅, otherwise;

−∆µeµx = −µ2eµx, Reµ < 0, eµx ∈ Dom(−∆µ).

(5) sp(−∆µ) =

 {−µ
2} ∪ [0,∞[, Reµ < 0,

[0,∞[, otherwise.

(6) −∆0 = p∗maxpmax, −∆∞ = p∗minpmin.

(7) The forms dµ are closed and associated with the operator −∆µ.

(8) Let Rek > 0. The integral kernel of (k2 −∆µ)−1 is equal

Rµ(k, x, y) =
1

2k
e−k|x−y| +

1

2k

(k − µ)

(k + µ)
e−k(x+y),

in particular, for the Dirichlet boundary conditions,

R∞(z, x, y) =
1

2k
e−k|x−y| − 1

2k
e−k(x+y),



and for the Neumann boundary conditions

R0(k, x, y) =
1

2k
e−k|x−y| +

1

2k
e−k(x+y).

(9) The semigroups et∆µ have the integral kernel

Kµ(t, x, y) = (4πt)−
1
2 e−

(x−y)2

4t + (2π)−1

∫ ∞
−∞

iu− µ
iu+ µ

e−iu(x+y)−tu2

du,

In particular, in the Dirichlet case

K∞(t, x, y) = (4πt)−
1
2 e−

(x−y)2

4t − (4πt)−
1
2 e−

(x+y)2

4t ,

and in the Neumann case

K0(t, x, y) = (4πt)−
1
2 e−

(x−y)2

4t + (4πt)−
1
2 e−

(x+y)2

4t .

The group eit∆µ for µ ∈ R∪{∞} describes a quantum particle with a potential well or bump

at the end of the halfline.

The semigroup et∆µ for µ ∈ R describes the diffusion with a sink or source at the end of the



halfline. Note that et∆µ preserves the pointwise positivity. If pt = et∆µp0, 0 < a < b, then

∂t

∫ b

a

pt(x)dx = p′(b)− p′(a).

∂t

∫ a

0

pt(x)dx = p′(a)− µp(0).

Thus at 0 there is a sink of p with the rate µ.

9.5 Neumann Laplacian on a halfline with the delta potential

On L2([0,∞[) we define the cosine transform

UNf(k) := π−1/2

∫ ∞
0

cos kxf(x)dx, k ≥ 0.

Note that UN is unitary and U 2
N = 1.

Let ∆N be the Laplacian on L2([0,∞[) with the Neumann boundary condition. Clearly,

−UN∆NU
∗
N = k2.



Let |δ)(δ| be the quadratic form given by

(f1|δ)(δ|f2) = f1(0)f2(0),

Note that it can be formally written as∫ ∞
0

f(x)δ(x)g(x)dx,

and thus is interpreted as a “potential”.

Let (1| denote the functional on L2([0,∞[) given by

(1|g) =

∫ ∞
0

g(k)dk.

Using δ(x) = π−1
∫∞

0 cos kxdx we deduce that

UN|δ)(δ|U ∗N = π−1|1)(1|.

Then

UN (−∆N + λ|δ)(δ|)U ∗N = k2 + λπ−1|1)(1|



is an example of an Aronszajn-Donoghue Hamiltonian of type IIb, because∫ ∞
0

1dk =∞,
∫ ∞

0

1

1 + k2
dk <∞,

∫ ∞
0

1

k2
dk =∞.

9.6 Dirichlet Laplacian on a halfline with the δ′ potential

On L2([0,∞[) we define the sine transform

UDf(k) := π−1/2

∫ ∞
0

sin kxf(x)dx, k ≥ 0.

Note that UD is unitary and U 2
D = 1

Let ∆D be the Laplacian on L2([0,∞[) with the Dirichlet boundary condition. Clearly,

−UD∆DU
∗
D = k2.

Using −δ′(x) = π−1
∫∞

0 sin kxdx we deduce that

UD|δ′)(δ′|U ∗D = π−1|k)(k|.



Here |δ′)(δ′| is the quadratic form given by

(f1|δ′)(δ′|f2) = f ′1(0)f ′2(0),

and (k| is the functional on L2([0,∞[) given by

(k|g) =

∫ ∞
0

kg(k)dk.

Thus

UD (−∆D + λ|δ′)(δ′|)U ∗ = k2 + λπ−1|k)(k|

is an example of an Aronszajn-Donoghue Hamiltonian of type IIIa, because∫ ∞
0

k2

1 + k2
dk =∞,

∫ ∞
0

k2

(1 + k2)2
dk <∞,

∫ ∞
0

k2

(1 + k2)k2
dk <∞.



9.7 Laplacian on L2(Rd) with the delta potential

On L2(Rd) we consider the unitary operator U = (2π)d/2F , where F is the Fourier transfor-

mation. Note that U is unitary.

Let ∆ be the usual Laplacian. Clearly,

−U∆U ∗ = k2.

Let |δ)(δ| be the quadratic form given by

(f1|δ)(δ|f2) = f1(0)f2(0).

Note that again it can be also written as∫
f(x)δ(x)g(x)dx,



and thus is interpreted as a “potential”. Let (1| denote the functional on L2(Rd) given by

(1|g) =

∫
g(k)dk.

Using δ(x) = (2π)−d
∫

eikxdx we deduce that

U |δ)(δ|U ∗ = (2π)−d|1)(1|.

Consider

U (−∆ + λ|δ)(δ|)U ∗ = k2 + λ(2π)−d|1)(1|

as an example of an Aronszajn-Donoghue Hamiltonian. We compute:∫
ddk

1 + k2
<∞ ⇔ d = 1,∫

ddk

(1 + k2)2
<∞ ⇔ d = 1, 2, 3,∫

ddk

k2(1 + k2)
<∞ ⇔ d = 3.



Thus

(1) for d = 1 it is of type IIb, so it can be defined in the form sense using the parameter λ

(as we have already seen),

(2) for d = 2 it is of type IIIb. It can be renormalized.

(3) for d=3 it is of type IIIa. It can be renormalized.

(4) for d ≥ 4 there is no nontrivial renormalization procedure.

Consider dimension d = 2. Let us compute the resolvent for z = −p2. We have

g(−p2) = γ−1 + (p2 − 1)(1|(H0 + p2)−1(H0 + 1)−1|1)

= γ−1 + (p2 − 1)

∫
d3k

(k2 + p2)(k2 + 1)
= γ−1 + π ln p2.

Using that the Fourier transform of k 7→ 1
k2+p2 equals x 7→ 2πK0(p|x|), where K0 is the 0th

MacDonald function, we obtain the following expression for the integral kernel of (p2 +H)−1:

2πK0(p|x− y|) +
K0(p|x|)K0(p|y|)
γ−1 + π ln p2

. (9.7.3)



In the physics literature one usually introduces the parameter a = eγ−1/2π called the scattering

length. There is a bound state K0(|x|/a) with eigenvalue −a−2.

Note that

{f ∈ (1−∆)−1L2(R2) : f(0) = 0} (9.7.4)

is a closed subspace of (1−∆)−1L2(R2). The domain of H is spanned by (9.7.4) and

(−a−2 −∆)−1|1), (9.7.5)

which is in L2(R2)\(1−∆)−1L2(R2). In the position representation (9.7.5) is x 7→ 2πK0(|x|/a)

Around r ∼ 0 we have the asymptotics K0(r) ' − log(r/2)− γ. Therefore, the domain of H

contains functions that behave at zero as C
(

log(|x|/2a) + γ
)
.

Consider dimension d = 3. Let us compute the resolvent for z = −p2. We have

g(−p2) = γ0 + p2(1|(H0 + p2)−1H−1
0 |1)

= γ0 + p2

∫
d3k

(k2 + p2)k2
= γ0 + p4π2



Using that the Fourier transform of k 7→ 1
k2+p2 equals x 7→ 2π2 ep|x|

|x| , we obtain the following

expression for the integral kernel of (p2 +H)−1:

2π2 e−p|x−y|

|x− y|
+

πe−p|x|e−p|y|

2(γ0 + 4π2p)|x||y|
. (9.7.6)

In the physics literature one usually introduces the parameter a = −(4πγ0)
−1 called the scat-

tering length.

{f ∈ (1−∆)−1L2(R3) : f(0) = 0} (9.7.7)

is a closed subspace of (1−∆)−1L2(R3). The domain of H is spanned by (9.7.7)

(aeiπ/4 − i)(i−∆)−1|1) + (ae−iπ/4 + i)(−i−∆)−1|1) (9.7.8)

In the position representation (±i − ∆)−1|1) equals x 7→ 2π2 exp(e±iπ/4|x|)
|x| . Therefore, the

Hamiltonian with the scattering length a has the domain whose elements around zero behave

as C(1− a/|x|).



For a > 0 there is a bound state e−|x|/a

|x| with eigenvalue −a−2. To get the domain, instead

of (9.7.8), we can adjoin this bound state to (9.7.7).

Note that the Hamiltonian is increasing wrt γ0 ∈] − ∞,∞]. It is also increasing wrt a

separately on [−∞, 0] and ]0,∞]. At 0 the monotonicity is lost. a = 0 corresponds to the

usual Laplacian.

The following theorem summarizes a part of the above results.

Theorem 9.7.1 Consider −∆ on C∞c (Rd\{0})

(1) It has the defficiency index (2, 2) for d = 1.

(2) It has the defficiency index (1, 1) for d = 2, 3.

(3) It is essentially self-adjoint for d ≥ 4.

(4) For d = 1 its Friedrichs extension is −∆D and its Krein extension is −∆.

(5) For d = 2 its Friedrichs and Krein extension is −∆.

(6) For d = 3 its Friedrichs extension is −∆ an its Krein extension corresponds to a =∞.



Let us sketch an alternative approach. The Laplacian in d dimensions written in spherical

coordinates equals

∆ = ∂2
r +

d− 1

r
∂r +

∆LB

r2
,

where ∆LB is the Laplace-Beltrami operator on the sphere. For d ≥ 2, the eigenvalues of ∆LB

are −l(l + d − 2), for l = 0, 1, . . . . For d = 1 instead of the Laplace-Beltrami operator we

consider the parity operator with the eigenvalues ±1. We will write l = 0 for parity +1 and

l = 1 for parity −1. Hence the radial part of the operator is

∂2
r +

d− 1

r
∂r −

l(l + d− 2)

r2
.

The indicial equation of this operator reads

λ(λ+ d− 2)− l(l + d− 2) = 0.

It has the solutions λ = l and λ = 2− l − d.

For l ≥ 2 only the solutions behaving as rl around zero are locally square integrable, the

solutions behaving as r2−1−d have to be discarded. For l = 0, 1 we have the following possible



square integrable behaviors around zero:

l = 0 l = 1 l ≥ 2

d = 1 r0, r1 r0, r1 −−
d = 2 r0, r0 ln r r1 rl

d = 3 r0, r−1 r1 rl

d ≥ 4 r0 r1 rl

In dimension d = 1 in both parity sectors we have non-uniqueness of boundary conditions.

In dimensions d = 2, 3 this non-uniqueness appears only in the spherically symmetric sector.

There is no nonuniqueness in higher dimensions.



9.8 Approximating delta potentials by separable potentials

Set 1Λ(k) := 1l[0,Λ](|k|). The Laplacian with a delta potential can be conveniently approximated

by a separable potential

−∆ +
λ

(2π)d
|1Λ)(1Λ|. (9.8.9)

In dimension d = 1 and d = 2 (9.8.9) has a (single) negative bound state iff λ < 0.

Clearly, in dimension d = 1 (9.8.9) converges to −∆ + λδ in the norm resolvent sense for

all λ ∈ R.

It is easy to check that

−∆−
(
γ−1 + π log(1 + Λ2)

)−1|1Λ)(1Λ| (9.8.10)

converges to −∆(γ−1) for all γ−1 ∈ R.

In dimension d = 3 (9.8.9) has a (single) negative bound state for all λ
(2π)3 < −(Λ4π)−1. It

is easy to check that

−∆−
(
γ0 + 4πΛ

)−1|1Λ)(1Λ| (9.8.11)



converges to −∆(γ0) for all γ0 ∈ R.





Chapter 10

Orthogonal polynomials

First we discuss some basic general facts about orthogonal polynomials. Then we will classify

the so called classical orthogonal polynomials, that is orthogonal polynomials that are eigefunc-

tions of a certain second order differential operator. We will show that all classical orthogonal

polynomials essentially fall into one of the following 3 classes:
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(1) Hermite polynomials Hn(x) = (−1)n

n! ex
2

∂xe
−x2

, which form an orthogonal basis in L2(R, e−x2

)

and satisfy

(∂2
x − 2x∂x + 2n)Hn(x) = 0.

(2) Laguerre polynomials Lαn(x) = 1
n!e

x∂nxe−xxn+α , which form an orthogonal basis in

L2(]0,∞[, e−xxα) for α > −1 and satisfy

(x∂2
x + (α + 1− x)∂x + n)Lαn(x) = 0.

(3) Jacobi polynomials P α,β
n (x) = (−1)n

2nn! (1 − x)−α(1 + x)−β∂nx(1 − x)α+n(1 + x)β+n, which

form an orthogonal basis in L2(]− 1, 1[, (1− x)α(1 + x)β) for α, β > −1 and satisfy

(1− x2)∂2
x + (β − α− (α + β + 2)x)∂x + n(n+ α + β + 1)P α,β

n (x) = 0.

An important role in the proof is played by unbounded operators. More precisely, we use the

fact that eigenvectors of hermitian operators with distinct eigenvalues are orthogonal.



Note that the proof is quite elementary – it has been routinely used in courses for physics

students of 2nd year of University of Warsaw. In particular, one does not need to introduce

the concept of a self-adjoint or essentially self-adjoint operator: one can limit oneself to the

concept of a hermitian operator, which is much less technical and acceptable for students

without sophisticated mathematical training.

10.1 Orthogonal polynomials

Let −∞ ≤ a < b ≤ ∞. Let ρ > 0 be a fixed positive integrable function on ]a, b[ called a

weight. Let x denote the generic variable in R.

We will denote by Pol the space of complex polynomials of the real variable. We assume

that ∫ b

a

|x|nρ(x)dx <∞, n = 0, 1, . . . . (10.1.1)

Then Pol is contained in L2([a, b], ρ).

The monomials 1, x, x2, . . . form a linearly independent sequence in L2([a, b], ρ). Applying



the Gram-Schmidt orthogonalization to this sequence we obtain the orthogonal polynomials

P0, P1, P2, . . . . Note that degPn = n. There exist a simple criterion that allows us to check

whether this is an orthogonal basis.

Theorem 10.1.1 Suppose that there exists ε > 0 such that∫ b

a

eε|x|ρ(x)dx <∞.

Then Pol is dense in L2([a, b], ρ). Therefore, P0, P1, . . . form an orthogonal basis of L2([a, b], ρ).

Proof. Let h ∈ L2([a, b], ρ). Then for |Imz| ≤ ε
2∫ b

a

|ρ(x)h(x)eixz|dx ≤
(∫ b

a

ρ(x)eε|x|dx

) 1
2
(∫ b

a

ρ(x)|h(x)|2dx
) 1

2

<∞.

Hence, for |Imz| ≤ ε
2 we can define

F (z) :=

∫ b

a

ρ(x)e−izxh(x)dx.



F is analytic in the strip {z ∈ C : |Imz| < ε
2}. Let (xn|h) = 0, n = 0, 1, . . . . Then

dn

dzn
F (z)

∣∣∣
z=0

= (−i)n
∫ b

a

xnρ(x)h(x)dx = (−i)n(xn|h) = 0.

But an analytic function vanishing with all derivatves at one point vanishes in its whole (con-

nected) domain. Hence F = 0 in the whole strip, and in particular on the real line. Hence

ĥ = 0. Applying the inverse Fourier transformation we obtain h = 0.

Therefore, there are no nonzero vectors orthogonal to Pol. 2

10.2 Reminder about hermitian operators

In this chapter we will need some minimal knowledge about hermitian operators. In order to

make it essentially self-contained, we recall that an operator A is hermitian if

(w|Av) = (Aw|v), v, w ∈ DomA.

Theorem 10.2.1 Let A be a hermitian operator.



(1) If v ∈ DomA is its eigenvector with eigenvalue λ, that is Av = λv, then λ ∈ R.

(2) If λ1 6= λ2 are its eigenvalues with eigenvectors v1 and v2, then v1 is orthogonal to v2.

Proof. To prove (1), we note that

λ(v|v) = (v|Av) = (Av|v) = λ(v|v).

then we divide by (v|v) 6= 0.

Proof of (2):

(λ1 − λ2)(v1|v2) = (Av1|v2)− (v1|Av2) = (v1|Av2)− (v1|Av2) = 0.

2

Remark 10.2.2 In finite dimension we can always find an orthonormal basis consisting of

eigenvectors of a hermitian operators. In infinite dimension this is not always the case. If it

happens then the operator is essentially self-adjoint.



10.3 2nd order differential operators

A general 2nd order differential operator without a 0th order term can be written as

C := σ(x)∂2
x + τ(x)∂x, (10.3.2)

for some functions σ(x) and τ(x).

It is often convenient to rewrite C in a different form. Let ρ(x) satisfy

σ(x)ρ′(x) = (τ(x)− σ′(x))ρ(x). (10.3.3)

We have then

C = ρ(x)−1∂xρ(x)σ(x)∂x. (10.3.4)

The form (10.3.4) of the operator C is convenient for the study of its hermiticity.

To simplify the exposition, in the remaining part of this subsection we will assume that a = 0

and b = ∞, which will illustrate the two possible types of endpoints. The generalization to

arbitrary a < b will be obvious.



Theorem 10.3.1 Assume (10.1.1). Suppose also that

(1) ρ and σ are real differentiable functions on ]0,∞[ and ρ > 0;

(2) at the boundaries of the interval we have

σ(0)ρ(0) = 0,

lim
x→∞

σ(x)ρ(x)|x|n = 0, n = 0, 1, 2, . . . .

Then C as an operator on L2([0,∞[, ρ) with domain Pol is hermitian.



Proof.

(g|Cf) =

∫ ∞
0

ρ(x)g(x)ρ(x)−1∂xσ(x)ρ(x)∂xf(x)dx

= lim
R→∞

∫ R

0

g(x)∂xσ(x)ρ(x)∂xf(x)dx

= lim
R→∞

g(x)ρ(x)σ(x)f ′(x)
∣∣∣R
0
− lim

R→∞

∫ R

0

(∂xg(x))σ(x)ρ(x)∂xf(x)dx

= − lim
R→∞

g′(x)ρ(x)σ(x)f(x)
∣∣∣R
0

+ lim
R→∞

∫ R

0

(∂xρ(x)σ(x)∂xg(x))f(x)dx

=

∫ ∞
0

ρ(x)(ρ(x)−1∂xσ(x)ρ(x)∂xg(x))f(x)dx = (Cg|f).

2

Self-adjoint operators of the form (10.3.4) are often called Sturm-Liouville operators.



10.4 Hypergeometric type operators

We are looking for 2nd order differential operators whose eigenfunctions are polynomials. This

restricts severely the form of such operators.

Theorem 10.4.1 Let

C := σ(z)∂2
z + τ(z)∂z + η(z) (10.4.5)

Suppose there exist polynomials P0, P1, P2 of degree 0, 1, 2 respectively, satisfying

CPn = λnPn.

Then

(1) σ(z) is a polynomial of degree ≤ 2,

(2) τ(z) is a polynomial of degree ≤ 1,

(3) η(z) is a polynomial of degree ≤ 0 (in other words, it is a number).

Proof. CP0 = η(z)P0, hence deg η = 0.



CP1 = τ(z)P ′1 + ηP1, hence deg τ ≤ 1.

CP2 = σ(z)P ′′2 + τ(z)P ′2(z) + ηP2, hence deg σ ≤ 2. 2

Clearly, the number η can be included in the eigenvalue. Therefore, it is enough to consider

operators of the form

C := σ(z)∂2
z + τ(z)∂z, (10.4.6)

where deg σ ≤ 2 and deg τ ≤ 1. We will show that for a large class of (10.4.6) there exists

for every n ∈ N a polynomial Pn of degree n that is an eigenfunction of (10.4.6).

The eigenvalue equation of (10.4.6), that is equations of the form(
σ(z)∂2

z + τ(z)∂z + λ)f(z) = 0,

will be called hypergeometric type equations. Solutions of these equations will be called hyper-

geometric type functions. Polynomial solutions will be called hypergeometric type polynomials.



10.5 Generalized Rodrigues formula

Some of the properties of hypergeometric type polynomials can be introduced in a unified way.

Let ρ satisfy

σ(z)∂zρ(z) = (τ(z)− σ′(z)) ρ(z). (10.5.7)

Note that ρ can be expressed by elementary functions.

Let us fix σ. We will however make explicit the dependence on ρ. The operator C(ρ) can

be written as

C(ρ) = ρ−1(z)∂zσ(z)ρ(z)∂z (10.5.8)

= ∂zρ
−1(z)σ(z)∂zρ(z)− τ ′ + σ′′. (10.5.9)

The following is a generalization of the Rodrigues formula, originally given in the case of



Legendre polynomials:

Pn(ρ; z) :=
1

n!
ρ−1(z)∂nz σ

n(z)ρ(z) (10.5.10)

=
1

2πi
ρ−1(z)

∫
[0+]

σn(z + t)ρ(z + t)t−n−1dt. (10.5.11)

Theorem 10.5.1 Pn is a polynomial, typically of degree n, more precisely its degree is given

as follows:

(1) If σ′′ = τ ′ = 0, then degPn = 0.

(2) If σ′′ 6= 0 and −2τ ′

σ′′ + 1 = m is a positive integer, then

degPn =

{
n, n = 0, 1, . . . ,m;

n−m− 1, n = m+ 1,m+ 2, . . . .

(3) Otherwise, degPn = n.



We have (
σ(z)∂2

z + τ(z)∂z
)
Pn(ρ; z) = (nτ ′ + n(n− 1)

σ′′

2
)Pn(ρ; z), (10.5.12)

(σ(z)∂z + τ(z)− σ′(z))Pn(ρ; z) = (n+ 1)Pn+1(ρσ
−1; z), (10.5.13)

∂zPn(ρ; z) =

(
τ ′ + (n− 1)

σ′′

2

)
Pn−1(ρσ; z), (10.5.14)

ρ(z + tσ(z))

ρ(z)
=

∞∑
n=0

tnPn(ρσ
n; z). (10.5.15)

Proof. Introduce the following creation and annihilation operators:

A+(ρ) := σ(z)∂z + τ(z) = ρ−1(z)∂zρ(z)σ(z),

A− := ∂z.



Note that

C(ρ) = A+(ρ)A−

= A−A+(ρσ−1)− τ ′ + σ′′.

Hence

C(ρ)A+(ρ) = A+(ρ)A−A+(ρ)

= A+(ρ)
(
C(ρσ) + τ ′

)
.

Therefore, if C(ρσn)F0 = λ0F0, then

C(ρ) A+(ρ) · · ·A+(ρσn−1)F0

=
(
λ0 + nτ ′ + n(n− 1)

σ′′

2

)
A+(ρ) · · ·A+(ρσ−1)F0.



Using

A+(ρ) = ρ−1(z)∂zρ(z)σ(z),

A+(ρσ) = ρ−1(z)σ−1(z)∂zρ(z)σ2(z),

· · · = · · ·

A+(ρσn−1) = ρ−1(z)σ−(n−1)∂zρ(z)σn(z),

we obtain

A+(ρ) · · ·A+(ρσn−1)F0 = ρ(z)−1∂nz ρ(z)σn(z)F0(z).

Take F0 = 1, for which λ0 = 0. We then obtain (10.5.12). 2



10.6 Classical orthogonal polynomials as eigenfunctions of a Sturm-Liouville

operator

We are looking for −∞ ≤ a < b ≤ ∞ and weights ]a, b[3 x 7→ ρ(x) with the following

properties: There exist polynomials P0, P1, . . . satisfying degPn = n which form an orthogonal

basis of L2(]a, b[, ρ) and are eigenfunctions of a certain 2nd order differential operator C :=

σ(x)∂2
x + τ(x)∂x, that is, for some λn ∈ R(

σ(x)∂2
x + τ(x)∂x + λn

)
Pn(x) = 0. (10.6.16)

In particular, we want C to be hermitian on Pol.

We know that one has to satisfy the following conditions:

(1) For any n ∈ N ∫ b

a

ρ(x)|x|ndx <∞, (10.6.17)

which guarantees that Pol ⊂ L2(]a, b[, ρ).

(2) σ has to be a polynomial of degree at most 2 and τ a polynomial of degree at most 1.



(See Thm 10.4.1).

(3) The weight ρ has to solve

σ(x)ρ′(x) = (τ(x)− σ′(x))ρ(x), (10.6.18)

to be positive, σ has to be real. (See Thm 10.3.1 (1)).

(4) We have to check the boundary conditions

(i) If an endpoint, say, a is a finite number, we check whether ρ(a)σ(a) = 0.

(ii) If an endpoint is infinite, say a = −∞, then

lim
x→−∞

|x|nσ(x)ρ(x) = 0, n = 0, 1, 2, . . . .

(see Thm 10.3.1 (2).)

We will find all weighted spaces L2(]a, b[, ρ) satisfying the conditions (1)-(4). It will turn



out that in all cases the condition ∫ b

a

eε|x|ρ(x)dx <∞ (10.6.19)

for some ε > 0 will hold, which will guarantee that we obtain an orthogonal basis (see Thm

10.1.1).

We will simplify our answers to standard forms

(1) by changing the variable x 7→ αx+ β for α 6= 0;

(2) by dividing (both the differential equation and the weight) by a constant.

As a result, we will obtain all classical orthogonal polynomials.

10.7 Classical orthogonal polynomials for deg σ = 0

We can assume that σ(x) = 1.

If deg τ = 0, then

C = ∂2
y + c∂y.



It is easy to discard this case.

Hence deg τ = 1. Thus

C = ∂2
y + (ay + b)∂y.

Let us set x =
√
|a|
2

(
y + b

a

)
. We obtain

C = ∂2
x + 2x∂x, a > 0; (10.7.20)

C = ∂2
x − 2x∂x, a < 0. (10.7.21)

Thus ρ(x) = e±x
2

.

σ(x)ρ(x) = e±x
2

is never zero, hence the only possible interval is ]−∞,∞[.

If a > 0, we have ρ(x) = ex
2

, which is impossible because of (4ii).

If a < 0, we have ρ(x) = e−x
2

and the interval ] −∞,∞[ is admissible, and even satisfes

(10.6.19). We obtain Hermite polynomials



10.8 Classical orthogonal polynomials for deg σ = 1

We can assume that σ(y) = y.

If deg τ = 0, then

C = y∂2
y + c∂y

Such a C always decreases the degree of a polynomial. Therefore, if P is a polynomial and

CP = λP , then λ = 0. Hence P (x) = x−c. Therefore, we do not obtain polynomials of all

degrees as eigenfunctions.

Thus deg τ = 1. Hence, for b 6= 0,

y∂2
y + (a+ by)∂y. (10.8.22)

After rescaling, we obtain the operator:

C = −x∂2
x + (−α− 1 + x)∂x.

We compute: ρ = xαe−x. ρ(x)σ(x) = xα+1e−x is zero only for x = 0 i α > −1. The



interval [−∞, 0] is eliminated by (4ii). The interval [0,∞] is admissible for α > −1, and even

it satisfies 10.6.19. We obtain Laguerre polynomials.

10.9 Classical orthogonal polynomials for deg σ = 2,

σ has a double root

We can assume that σ(x) = x2.

If τ(0) = 0, then

C = x2∂2
x + cx∂x.

xn are eigenfunctions of this operator, but the weight ρ(x) = xc−2 is not good.

Let us assume now that τ(0) 6= 0. After rescaling we can suppose that

τ(x) = 1 + (γ + 2)x.

This gives ρ(x) = e−
1
xxγ. The only point where ρ(x)σ(x) = e−

1
xxγ+2 can be zero is x = 0.

Hence the only possible intervals are ]−∞, 0[ and ]0,∞[. Both are eliminated by (4ii).



10.10 Classical orthogonal polynomials for deg σ = 2,

σ has two roots

If both roots are imaginary, it suffices to assume that σ(x) = 1 + x2. We can suppose that

τ(x) = a+ (b+ 2)x. Then ρ(x) = ea arctanx(1 + x2)b. σ(x)ρ(x) is nowhere zero and therefore

the only admissble interval is [−∞,∞]. This has to be rejected, because lim|x|→∞ ρ(x)|x|n(1+

x2) =∞ for large enough n.

Thus we can assume that the roots are real. It suffices to assume that σ(x) = 1− x2. Let

τ(x) = β − α− (α + β − 2)x,

which corresponds to the operator

(1− x2)∂2
x + (β − α− (α + β − 2)x∂x,

We obtain ρ(x) = |1 − x|β|1 + x|α. (4ii) eliminates the intervals ] −∞,−1[ and ]1,∞[.

There remains only the interval [−1, 1], which satisfies (4i) for α, β > −1. We obtain Jacobi

polynomials.





Chapter 11

Homogeneous Schrödinger operators

This chapter is partly based on the joint work with V.Georgescu and L.Bruneau. Some of the

results (in particular (11.3.6)) were obtained independently by Pankrashkin and Richard.

11.1 Modified Bessel equation
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The modified Bessel equation has the form

(z2∂2
z + z∂z − z2 −m2)v(z) = 0.

It is equivalent to the homogeneous Schrödinger equation with energy −1

z
1
2−2
(
z2∂2

z + z∂z − z2 −m2
)
z−

1
2

= ∂2
z +

(
1/4−m2

) 1

z2
− 1.

For m ∈ C\{. . . ,−3,−2,−1} we define the modified Bessel function Im(z) as the unique

solution of the modified Bessel equation satisfying

Im(z) ∼
(z

2

)m 1

Γ(m+ 1)
, z ∼ 0.

For m = . . . ,−3,−2,−1, we extend this definition by continuity in m. It turns out that

Im(z) = I−m, m ∈ Z.

We define the Macdonald or Basset function as the unique solution of the modified Bessel



equation satisfying, for | arg z| > π − ε,

lim
|z|→∞

Km(z)
e−z
√
π√

2z

= 1.

We have the relations

K−m(z) = Km(z) =
π

2 sinπm
(I−m(z)− Im(z)), (11.1.1)

Im(z) =
1

iπ

(
Km(e−iπz)− eiπmKm(z)

)
. (11.1.2)

As x→ 0, we have

Km(x) ∼



Re
(
Γ(m)

(
2
x

)m)
if Rem = 0, m 6= 0;

− ln
(
x
2

)
− γ if m = 0,

Γ(m)
2

(
2
x

)m
if Rem > 0;

Γ(−m)
2

(
x
2

)m
if Rem < 0.

(11.1.3)



From a single solution we can generate a whole ladder of solutions:(
1

z
∂z

)n
zmIm(z) = zm−nIm−n(z),(

1

z
∂z

)n
z−mIm(z) = z−m−nIm+n(z).

Analoguous identities hold for Km(z).

For m = ±1
2 (and hence for all m ∈ Z+ 1

2) the modified Bessel and the MacDonald functions

can be expressed in terms of elementary functions:

I 1
2
(z) =

(
2

πz

) 1
2

sinh z

I− 1
2
(z) = =

(
2

πz

) 1
2

cosh z,

K− 1
2
(z) = K 1

2
(z) =

( π
2z

) 1
2

e−z.



11.2 Standard Bessel equation

Replacing z with ±iz in the modified Bessel equation leads to the standard Bessel equation:

(z2∂2
z + z∂z + z2 −m2)v(z) = 0.

It is equivalent to the homogeneous Schrödinger equation with energy 1

z
1
2−2
(
z2∂2

z + z∂z + z2 −m2
)
z−

1
2

= ∂2
z +

(
1/4−m2

) 1

z2
+ 1.

For m ∈ C\{. . . ,−3,−2,−1} we define the Bessel function Jm(z) as the unique solution

of the Bessel equation satisfying

Jm(z) ∼
(z

2

)m 1

Γ(m+ 1)
, z ∼ 0.

For m = . . . ,−3,−2,−1, we extend this definition by continuity in m. It turns out that

Jm(z) = (−1)mJ−m, m ∈ Z.



It is simply related to the modified Bessel function:

Jm(z) = e±iπm2 Im(∓iz).

There are two Hankel functions. They can be defined as the unique functions satisfying the

following asymptotic formulas are true for −π + δ < arg z < 2π − δ, δ > 0:

lim
z→∞

H+
m(z)(

2
πz

) 1
2 eize−

imπ
2 −

iπ
4

= 1,

lim
z→∞

H−m(z)(
2
πz

) 1
2 e−ize

imπ
2 + iπ

4

= 1.

Both are analytic continuations of the MacDonald function – one to the lower and the other

to the upper part of the complex plane:

H±m(z) =
±2

iπ
e∓iπm2 Km(∓iz),

Km(z) = ± iπ

2
e±imπH±(±iz).



Note the identities
H±−m(z) = e±mπiH±m(z),

Jm(z) = 1
2 (H+

m(z) +H−m(z)) ,

J−m(z) = 1
2

(
emπiH+

m(z) + e−mπiH−m(z)
)
,

H±m(z) = ± ie∓mπiJm(z)−iJ−m(z)
sinmπ ,

From a single solution we can generate a whole ladder of solutions:(
1

z
∂z

)n
zmJm(z) = zm−nJm−n(z),(

−1

z
∂z

)n
z−mJm(z) = z−m−nJm+n(z).

Analogous identities hold for H±m(z).

For m = ±1
2 (and hence for all m ∈ Z+ 1

2) the modified Bessel and the MacDonald functions



can be expressed in terms of elementary functions:

J 1
2
(z) = =

(
2

πz

) 1
2

sin z,

J− 1
2
(z) =

(
2

πz

) 1
2

cos z,

H±1
2

(z) =

(
2

πz

) 1
2

e±i(z−π2 ),

H±− 1
2

(z) =

(
2

πz

) 1
2

e±iz

11.3 Homogeneous Schrödinger operators

Let Uτ be the group of dilations on L2[0,∞[, that is (Uτf)(x) = eτ/2f(eτx). We say that an

operator A is homogeneous of degree ν if UτAU
−1
τ = e−ντA.

Let D := 1
2(xp+ px) denote the generator of dilations, so that Uτ = e−iτD.



For c ∈ C consider the differential expression

L̃c := −∂2
x + (−1/4 + c)x−2. (11.3.4)

Clearly (11.3.4) is homogeneous of degree −2.

Let Lmin
c and Lmax

c be the minimal and maximal operators associated to it in L2(0,∞). That

means, Lmin
c is the closure of L̃c on C∞c ]0,∞[, and

Dom(Lmax
m ) = {f ∈ D′[0,∞[ : L̃cf ∈ L2[0,∞[}.

It is clear that Lmin
c and Lmax

c are closed operators homogeneous of degree −2, Lmin
c is hermitian

for real c and

(Lmin
c )∗ = Lmax

c , Lmin
c ⊂ Lmax

c .

We choose ξ ∈ C∞(R+) such that ξ = 1 on [0, 1] and 0 on [2,∞[. If m is a complex

number we set

ζm(x) = x1/2+mξ(x).

Proposition 11.3.1 ζm is square integrable if and only if Rem > −1, and then it belongs to



DomLmax
m2 . For Rem > 1, ζm belongs also to DomLmin

m2 , otherwise it does not.

For Re(m) > −1, we define Hm to be the operator Lmax
m2 restricted to Dom(Lmin

m2 ) + Cζm.

We will see that the family of operators m 7→ Hm possesses very good properties. The main

tool in its investigation is its resolvent, which can be computed explicitly.

Theorem 11.3.2 (1) The operators Hm are homogeneous of degree −2

(2) Hm = Lmin
m2 = Lmax

m2 iff Rem > 1.

(3) For any Re(m) > −1 we have sp(Hm) = [0,∞[.

(4) Let λ ∈ C\[0,∞[. Set Rm(λ;x, y) to be the integral kernel of (λ − Hm)−1. Then for

Rek > 0 we have

Rm(−k2;x, y) =

{ √
xyIm(kx)Km(ky) if x < y,
√
xyIm(ky)Km(kx) if x > y.

,

where Im is the modified Bessel function and Km is the MacDonald function.

(5) The resolvent (λ−Hm)−1 is an analytic function of m for Rem > −1. As Rem approaches

−1, its norm blows up.



(6) We have H∗m = Hm. In particular, Hm is self-adjoint and positive iff m is real.

In the following theorem we describe the self-adjoint extensions of Lmin
c for various real values

of c.

Theorem 11.3.3 (1) If 1 ≤ c, then Lmin
c = Lmax

c = Hm with m =
√
c is self-adjoint. In

particular, Hm is essentially self-adjoint on C∞c ]0,∞[.

(2) If 0 < c < 1, then a subspace of DomLmax
c complementary to DomLmin

c is spanned by

ζm and ζ−m with m =
√
c. Self-adjoint extensions are obtained by adjoining to DomLmin

c

cosαζm + sinαζ−m.

Among them we have Hm, which is the Friedrichs extension of Lmin
c , and H−m, which is

its Krein extension.

(3) A subspace of DomLmax
0 complementary to DomLmin

0 is spanned by ζ0 and log xζ0.

Self-adjoint extensions are obtained by adjoining to DomLmin
0

cosαζ0 + sinα log xζ0.



Among them there is H0, which is both a Friedrichs and Krein extension of Lmin
0 .

(4) If c ≤ 0, then a subspace of DomLmax
c complementary to DomLmin

c is spanned by ζik

and ζ−ik with k =
√
−c. Self-adjoint extensions are obtained by adjoining to DomLmin

c

eiαζik + e−iαζ−ik.

H−ik and Hik are non-self-adjoint extensions of Lmin
c .

Theorem 11.3.4 (1) 0 ≤ m ≤ m′ ⇒ Hm ≤ Hm′.

(2) 0 ≤ m < 1⇒ H−m ≤ Hm.

(3) If 0 ≤ argm ≤ π/2, then Num(Hm) = {z : 0 ≤ arg z ≤ 2 argm}.

(4) If −π/2 ≤ argm ≤ 0, then Num(Hm) = {z : 2 argm ≤ arg z ≤ 0}.

(5) If π/2 < | argm| < π, then Num(Hm) = C.

In the following theorem we show how to compute various quantities closely related to the

operators Hm. We restrict ourselves to the case of real m.



Theorem 11.3.5 (1) For 0 < a < b <∞, the integral kernel of 1l[a,b](Hm) is

1l[a,b](Hm)(x, y) =

∫ √b
√
a

√
xyJm(kx)Jm(ky)kdk,

where Jm is the Bessel function.

(2) Let Fm be the operator on L2[0,∞] given by

Fm : f(x) 7→
∫ ∞

0

Jm(kx)
√
kxf(x)dx (11.3.5)

Up to an inessential factor, Fm is the so-called Hankel transformation. Fm is a unitary

involution on L2[0,∞] diagonalizing Hm, more precisely

FmHmF−1
m = x2.

It satisfies FmeitD = e−itDFm for all t ∈ R.



(3) If m, k > −1 are real then the wave operators associated to the pair Hm, Hk exist and

Ω±m,k := lim
t→±∞

eitHme−itHk = e±i(m−k)π/2FmFk

= e±i(m−k)π/2 Ξk(D)

Ξm(D)
. (11.3.6)

where

Ξm(t) = ei ln(2)tΓ(m+1+it
2 )

Γ(m+1−it
2 )

.

(4) The scattering operator for the pair (Hm, Hk) is a scalar operator Sm,k = eiπ(m−k)1l.

11.4 Factorization

For each complex number α let Ãα be the differential expression

Ãα := −i∂x + i
α

x



acting on distributions on R+. Its restriction to C∞c ]0,∞[ is a closable operator in L2[0,∞[

whose closure will be denoted Amin
α . This is the minimal operator associated to Ãα. The

maximal operator Amax
α associated to Ãα is defined as the restriction of Ãα to Dom(Amax

α ) :=

{f ∈ L2[0,∞[ : Ãαf ∈ L2[0,∞[}.
The following properties of the operators Amin

α and Amax
α are easy to check:

(i) Amin
α ⊂ Amax

α ,

(ii) (Amin
α )∗ = Amax

−α and (Amax
α )∗ = Amin

−α ,

(iii) Amin
α and Amax

α are homogeneous of degree −1.



Proposition 11.4.1 (1) We have Amin
α = Amax

α if and only if |Reα| ≥ 1/2.

(2) Let Reα > −1/2. Then

(i) rs(Amax
α ) = C−.

(ii) The map α 7→ Amax
α is holomorphic in the region Reα > −1/2.

(iii) If Reα ≥ 0 then iAmax
α is the generator of a C0-semigroup of contractions

(1) Let Reα < 1/2. Then

(i) rs(Amin
α ) = C+.

(ii) The map α 7→ Amin
α is holomorphic in the region Reα < 1/2.

(iii) if Reα ≤ 0 the operator −iAmin
α is the generator of a C0-semigroup of contractions



m ≥ 1: Hm = A∗1/2+mA1/2+m = A∗1/2−mA1/2−m, H1
0 = Q(Hm),

Hm = Lmin
m2 = Lmax

m2 ;

0 < m < 1: Hm = A∗1/2+mA1/2+m =
(
Amin

1/2−m

)∗
Amin

1/2−m H1
0 = Q(Hm),

Hm is the Friedrichs ext. of Lmin
m2 ;

m = 0: H0 = A∗1/2A1/2, H1
0 + Cζ0 dense in Q(H0),

H0 is the Friedrichs and Krein ext. of Lmin
0 ;

−1 < m < 0: Hm =
(
Amax

1/2+m

)∗
Amax

1/2+m, H1
0 + Cζm = Q(Hm),

Hm is the Krein ext. of Lmin
m2 .

In the region −1 < m < 1 (which is the most interesting one), it is quite remarkable that

for strictly positive m one can factorize Hm in two different ways, whereas for m ≤ 0 only one

factorization appears.

As an example, let us consider the case of the Laplacian −∂2
x, i.e. m2 = 1/4. The operators



H1/2 and H−1/2 coincide with the Dirichlet and Neumann Laplacian respectively. One usually

factorizes them as H1/2 = P ∗minPmin and H−1/2 = P ∗maxPmax, where Pmin and Pmax denote the

usual momentum operator on the half-line with domain H1
0[0,∞[ and H1[0,∞[ respectively.

The above analysis says that, whereas for the Neumann Laplacian this is the only factorization

of the form S∗S with S homogeneous, in the case of the Dirichlet Laplacian one can also

factorize it in the rather unusual following way

H1/2 =
(
Pmin + ix−1

)∗ (
Pmin + ix−1

)
.

11.5 Hm as a holomorphic family of closed operators

The definition (or actually a number of equivalent definitions) of a holomorphic family of

bounded operators is quite obvious and does not need to be recalled. In the case of unbounded

operators the situation is more subtle.

Suppose that Θ is an open subset of C, H is a Banach space, and Θ 3 z 7→ H(z) is a

function whose values are closed operators on H. We say that this is a holomorphic family



of closed operators if for each z0 ∈ Θ there exists a neighborhood Θ0 of z0, a Banach space

K and a holomorphic family of injective bounded operators Θ0 3 z 7→ A(z) ∈ B(K,H) such

that RanA(z) = D(H(z)) and

Θ0 3 z 7→ H(z)A(z) ∈ B(K,H)

is a holomorphic family of bounded operators.

We have the following practical criterion:

Theorem 11.5.1 Suppose that {H(z)}z∈Θ is a function whose values are closed operators

on H. Suppose in addition that for any z ∈ Θ the resolvent set of H(z) is nonempty.

Then z 7→ H(z) is a holomorphic family of closed operators if and only if for any z0 ∈ Θ

there exists λ ∈ C and a neighborhood Θ0 of z0 such that λ ∈ rs(H(z)) for z ∈ Θ0 and

z 7→ (H(z)− λ)−1 ∈ B(H) is holomorphic on Θ0.

The above theorem indicates that it is more difficult to study holomorphic families of closed

operators that for some values of the complex parameter have an empty resolvent set.



It is interesting to note that Ξm(D) is a unitary operator for all real values of m and

Ξ−1
m (D)x−2Ξm(D) (11.5.7)

is a function with values in self-adjoint operators for all real m. Ξm(D) is bounded and

invertible also for all m such that Rem 6= −1,−2, . . . . Therefore, the formula (11.5.7) defines

an operator for all {m | Rem 6= −1,−2, . . . } ∪ R. Clearly, for Rem > −1, this operator

function coincides with the operator Hm studied in this paper. Its spectrum is always equal to

[0,∞[ and it is analytic in the interior of its domain.

One can then pose the following question: does this operator function exetnd to a holomor-

phic function of closed operators on the whole complex plane?
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