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1 Random processes

1.1 Random variables
A probability space (Ω,F ,P) is a set Ω equipped with a σ-algebra F ⊂ 2Ω and a probability measure
P : F → [0, 1]. If (S,B) is another set equipped with a σ-algebra, then X is a S-valued random variable
if it is a measurable transformation X : Ω→ S, modulo sets of measure zero. We usually take S = R, so
that when we do not specify the target set we mean a real valued random variable.

1.2 Finite distributions of random processes
Let T be a set and {Xt}t∈T a family of random variables with values in S on a probability space (Ω,F ,P).
Such a family is called a random process. Often T = [0,∞[ or T = {0, 1, 2, . . . }, and T is called the time.

If t1, . . . , tk are distinct elements of T , then (Xt1 , . . . Xtk) : Ω → Sk defines a measurable trans-
formation. This transformation defines a probability measure on Sk: if A is a measurable set in Sk,
then

Pt1,...,tk(A) := P
((
Xt1(ω), . . . Xtk(ω)

)
∈ A

)
. (1.1)

The family of measures Pt1,...,tk is called finite dimensional distributions of P. It satisfies the consistency
conditions:

Pt1,...,tk(A) = Ptσ(1),...,tσ(k)
(σ(A)), for every permutation σ; (1.2)

Pt1,...,tk(A) = Pt1,...,tk,tk+1
(A× S). (1.3)

One can ask whether for every familly of measures Pt1,...,tk satisfying the consistency conditions is
derived from a certain random process. The answer is (partly) positive due to the Kolmogorov Theorem,
which we describe below.

Let Ω̃ be the set of all functions ω̃ : T → S. (Other possible notations for Ω̃ are ×
t∈T

S, the Cartesian

product of many copies of S indexed by T ). We say that B ⊂ Ω̃ is a cylindrical set if there exist
{t1, . . . , tk} ⊂ T and a measurable set A ⊂ Sk such that

{ω̃ |
(
ω̃(t1), . . . , ω̃(tk)

)
∈ A} = B. (1.4)

Let F̃ be the σ-algebra generated by cylindrical sets in Ω̃.
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Theorem 1.1 (The Kolmogorov Consistency Theorem) If S is a Polish space (e.g. a countable
space or a closed subset of Rd) and Pt1,...,tk satisfies the consistency conditions, then there exists a unique
measure P̃ on (Ω̃, F̃) such that Pt1,...,tk are its finite distributions.

For instance, for t ∈ T , let Pt be a probability measure on S. Then

Pt1,...,tk := Pt1 ⊗ · · · ⊗ Ptk (1.5)

is a familty satisfying the consistency condition. The resulting measure on Ω̃ can be called the product
measure ⊗

t∈T
Pt.

1.3 Gaussian processes
Let [σij ] be a positive definite matrix n× n. Let X1, . . . , Xn be the (real) random variables on Rn with
the density

ρ(x1, . . . , xn) =

√
detσ

(2π)
n
2

exp
(
− xiσijxj

2

)
. (1.6)

Then ρ(x)dx is a probability measure. Let [σij ] be the inverse of [σij ]. Then

Cov(XiXj) = σij . (1.7)

Clearly, the positive matrix [σij ] determines uniquely a Gaussian measure on Rn with mean zero and
satisfying (1.7).

Let {σt,s}t,s∈T be a family of numbers such that for any t1, . . . , tk the matrix [σti,tj ]i,j=1,...k is positive
definite. Let Pt1,...,tk be the Gaussian measure on Rk with the covariance matrix [σti,tj ]i,j=1,...k. Then
the consistency condition is satisfied and we can define the Gaussian measure on ×

t∈T
R.

1.4 Conditional expectation
Let (Ω,F ,P) be a probability space and A,B ∈ F . Assume that P(B) 6= 0. Recall that the conditional
probability of A given B is

P(A|B) :=
P(A ∩B)

P(B)
=

∫
B

1lA(ω)dP(ω)

P(B)
. (1.8)

Let X ∈ L1(Ω,F ,P) (X is an integrable random variable). Then we can define the conditional
expectation of X given B by

E(X|B) :=

∫
B
X(ω)dP(ω)

P(B)
. (1.9)

Suppose now G is a σ-subalgebra of F . The conditional expectation of X given G, denoted E(X|G),
is the random variable Y ∈ L1(Ω,G,P) such that for any A ∈ G∫

A

XdP =

∫
A

Y dP. (1.10)

Note that the lhs of (1.10) defines a measure on (Ω,G) continuous wrt P
∣∣∣
G
. Hence the existence of Y

follows by the Radon-Nikodym Theorem. Y is unique up to zero measure sets wrt P
∣∣∣
G
.

1. If X is measurable wrt G, then
E(X|G) = X. (1.11)
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2. If X is independent of G, then
E(X|G) = E(X). (1.12)

In fact, to prove this it is enough to assume that X = 1lB , with B independent of A ∈ G. Then∫
A

1lBdP =

∫
A∩B

dP = P(A ∩B) = P(A)P(B) = E(1lB)

∫
A

dP. (1.13)

3. E(E(X|G)) = E(X).

4. E
(
E(X|G)|G

)
= E(X|G).

5. If G = {B,Ω\B, ∅,Ω} and 0 < P(B) < 1, then

E(X|G) = E(X|B)1lB + E(X|Ω\B)1lΩ\B . (1.14)

6. If X,XY ∈ L1(Ω,F ,P) and Y is measurable wrt G, then

E(XY |G) = Y E(X|G). (1.15)

(We say that Y is measurable wrt G if Y −1(B) ∈ G for all Borel sets B.)
If Y1, . . . , Yn are random variables on (Ω,F), then σ(Y1, . . . , Yn) will denote the smallest σ-algebra

wrt which Y1, . . . , Yn are measurable. We will write

E(X|Y1, . . . , Yn) := E
(
X|σ(Y1, . . . , Yn)

)
. (1.16)

1.5 Markov chains
Let S be a discrete set, T = {0, 1, 2, . . . } and [Pnij ]i,j∈S be a family of stochastic matrices, that is

Pnij ≥ 0,
∑
j

Pnij = 1. (1.17)

Let ρj be a probability distribution on S, that is,

ρj ≥ 0,
∑
j

ρj = 1. (1.18)

We define the family of finite dimensional probability distributions P0,1,...,n:

P0,1,...,n(Xn = sn, Xn−1 = sn−1, . . . , X0 = s0) := ρs0P
1
s0s1 · · ·P

n
sn−1sn . (1.19)

It is easy to see that this family is consistent. In fact, it is enough to check∑
sn∈S

P0,...,n(Xn = sn, Xn−1 = sn−1, . . . , X0 = s0) = P0,...,n−1(Xn−1 = sn−1, . . . , X0 = s0). (1.20)

By using Kolmogorov’s Theorem there exists a probability measure P on the probability space ×∞n=0S,
such that Xn, n = 0, 1, . . . , becomes a random process.

A random process constructed this way has special properties and is called a Markov chain (with
discrete time {0, 1, 2, . . . } on a discrete state space S). It is determined by the initial distribution ρ and
the nth step transition matrix Pn.
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Suppose we adopt a converse point of view. We start from a probability measure P on the probability
space ×∞n=0S and random S-valued variables Xn, n = 0, 1, . . . . We say that it is a Markov chain if the
following condition holds: If P(Xn−1 = sn−1, . . . , X0 = s0) > 0, then

P(Xn = sn|(Xn−1 = sn−1) = P(Xn = sn |Xn−1 = sn−1, . . . , X0 = s0). (1.21)

Setting

Pnij := P(Xn = j|Xn−1 = i), (1.22)

ρi := P(X0 = i), (1.23)

we retrieve the construction described in (1.20).
If we have a random process with values in, say, R, then we can reformulate the above definition using

the conditional expectation. We say that a random process {Xn}n=0,1,... with values in R is a Markov
chain if for any n = 1, 2, . . .

E(Xn|Xn−1) = E(Xn|Xn−1, . . . , X0). (1.24)

It is easy to generalize the above definitions and constructions to stochatic transformations on more
general measure spaces.

1.6 Examples of Markov semigroups
Example 1.2 2-state transition matrix.

P =

[
1− p1 p1

p2 1− p2

]
. (1.25)

Stationary distribution:
[

p2

p1+p2
, p1

p1+p2

]
.

Example 1.3 Random walk absorbing on the left and reflecting on the right.

The transition matrix: 
1
q 0 p

q 0 p
q 0 p

1 0

 (1.26)

The stationary state is [1, 0, 0, 0, 0].

Example 1.4 Permutation.

The transition matrix:  1
1

1

 (1.27)

The stationary distribution: [ 1
3 ,

1
3 ,

1
3 ].

Example 1.5 The Bernoulli scheme.
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State space: {0, 1, 2, . . . }. The transition matrix:
q p

q p
q p

q p

 (1.28)

pj,j+m(n) = pmqn−m
(
n

m

)
. (1.29)

Example 1.6 Random walk in 1 dimension.

State space: Z. The transition matrix: 
q 0 p

q 0 p
q 0 p

q 0 p

 (1.30)

pj,j+m(n) = p
n+m

2 q
n−m

2

(
n

(n+m)
2

)
, (1.31)

for even n−m, otherwise it is 0.
Using the Stirling formula n! ∼

√
2πnnne−n we obtain

P0,0(2n) ∼ 1√
πn

(4pq)n. (1.32)

Example 1.7 The Ehrenfest Model.

We have two vessels and n particles. At random we transfer a particle from one vessel to the other.
This can be described by the state space {0, 1, . . . , n}, where the number corresponds to the number

of particles in the 1st vessel. The transition matrix is given by pj,j+1 = n−j
n , pj,j−1 = j

n :
0 n

n 0
1
n 0 n−1

n
0 2

n 0

 (1.33)

Using the identity (
n

j

)
=

(
n

j − 1

)
(n− j + 1) +

(
n

j + 1

)
(j + 1), (1.34)

we obtain the stationary distribution

2−n
(
n

j

)
. (1.35)

1.7 Detailed balance condition
We say that a stochastic matrix P satisfies the Detailed Balance Condition if there exist ρi > 0 such that

ρiPij = ρjPji. (1.36)

Then ρ = [ρi] satisfies ρP = ρ. Besides, if we define l2(S, ρ)„ then P is self-adjoint in the sense of l2(S, ρ).
Equivalent condition: for any i1, i2, i3,

Pi1i2Pi2i3Pi3i1 = Pi1i3Pi3i2Pi2i1 . (1.37)
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1.8 Markov processes with continuous time
Let us now generalize the definition of a Markov chain to the continuous time, that is to T = [0,∞[. We
will then say a "Markov process", not a "Markov chain".

Let {P t,s}t,s≥0 be a family of stochastic matrices with the state space S satisfying

P t,t = 1l, P t,sP s,u = P t,u, 0 ≤ t ≤ s ≤ u. (1.38)

Let ρ0 be a probability distribution on S and

ρt = ρ0P 0,t. (1.39)

For any 0 ≤ t1 < · · · < tk we define the probability distribution on Sk:

Pt0,t1,...,tn(Xtn = sn, . . . , Xt1 = s1, X0 = s0) (1.40)

=ρt0P t0,t1s0s1 · · ·P
tn−1,tn
sn−1sn .

We easily check that the family is consistent. To see this we use∑
si

P ti−1ti
si−1siP

titi+1
sisi+1

= P ti−1ti+1
si−1si+1

, (1.41)∑
s0

ρt0s0P
t0t1
s0s1 = ρt1s1 .

Therefore, it defines a measure P on ×
t∈[0,∞[

S. The random process {Xt}t∈[0,∞[ is said to be Markov.

Suppose that the values of Xt are in Cd. Then we have an equivalent definition: For any 0 ≤ t0 <
t1 < · · · < tk,

E(Xtk |Xtk−1
) = E(Xtk |Xtk−1

, . . . , Xt0). (1.42)

1.9 Infinitesimally stochastic matrices
Suppose that K = [Kij ] is a real matrix. We say that it is infinitesimally stochastic (or Markovian) if

Kij ≥ 0, i 6= j;
∑
j

Kij = 0. (1.43)

Note that necessarily Kii ≤ 0. If K is infinitesimally stochastic, then etK is stochastic. In fact, set
P (t) = etK .

i 6= j,
d

dt
P (t)ij

∣∣∣
t=0

= Kij ≥ 0, P (0)ij = 0, hence Pij(t) > 0 for small t; (1.44)

P (0)ii = 1, hence Pij(t) > 0 for small t; (1.45)
d

dt

∑
j

Pij(t) =
∑
kj

Pik(t)Kkj = 0, hence
∑
j

Pij(t) = 1. (1.46)

Example:

Z =

[
−λ λ
0 0

]
. (1.47)

Then

Z

[
1
1

]
= 0

[
1
1

]
,
[
0 1

]
Z =

[
0 1

]
0, (1.48)

Z

[
1
0

]
= −λ

[
1
0

]
,
[
1 −1

]
Z =

[
0 1

]
(−λ). (1.49)
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Hence
etZ =

[
1
1

] [
0 1

]
+ e−tλ

[
1
0

] [
1 −1

]
=

[
e−tλ 1− e−tλ

0 1

]
. (1.50)

1.10 Poisson Process
Let λ > 0. Recall that

pλ(n) := e−λ
λn

n!
, n = 0, 1, 2, . . . (1.51)

defines a probability distribution called the Poisson distribution.
Consider the state space {0, 1, 2, . . . } and the infinitesimally stochastic matrix

Z :=


−λ λ

−λ λ
−λ λ

−λ λ
−λ

 = −λ1l + λN, (1.52)

where N is the right unilateral shift. Clearly,

etZ =

∞∑
n=0

e−λt
λn(t− s)ne−λ(t−s)

n!
Nn =:

∞∑
n=0

pλ(t−s)(n)Nn. (1.53)

If we denote by (m| the mth basis vector, then

(m|etZ =

∞∑
n=0

(m+ n|pλt(n). (1.54)

Using the family of stochastic matrices e(t−s)Z and the initial distribution [1, 0, . . . ], we can construct the
Markov process Xt with time [0,∞[ and values in {0, 1, 2, . . . }. Clearly, for 0 ≤ t1 < · · · < tn

P(Xtn = sn, . . . , Xt1 = s1) (1.55)

=pλ(tn−tn−1)

(
sn − sn−1

)
· · · pλ(t2−t1)

(
s2 − s1

)
pλt1

(
s1

)
.

The Poisson process has the following properties, which can be used as its definition:

1. X0 = 0 almost everywhere.

2. For 0 ≤ t1 < · · · < tn, the random variables Xtn −Xtn−1
, . . .Xt2 −Xt1 , Xt1 are independent.

3. For 0 ≤ s < t the random variable Xt−Xs has the Poisson distribution with the parameter λ(t−s),
that is

P(Xt −Xs = n) =

{
pλ(t−s)(n), n = 0, 1, 2, . . . ;

0, n = −1,−2, . . . .
(1.56)

1.11 Brownian motion
There are several ways to define the Brownian motion. One possible definition is to define it as a Gaussian
process with the covariances

σt1,t2 := Cov(Wt1 ,Wt2) = min(t1, t2), t1, t2 ∈ [0,∞[. (1.57)
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To see that the matrix made of (1.57) is positive definite, consider 0 ≤ t1 < · · · < tn and set sj = tj−tj−1,
s1 = t1. Then this matrix is

t1 t1 . . . t1
t1 t2 . . . t2

. . .
t1 t2 . . . tk

 = s1


1 1 . . . 1
1 1 . . . 1

. . .
1 1 . . . 1

+ s2


0 0 . . . 0
0 1 . . . 1

. . .
0 1 . . . 1

+ · · ·+ sk


0 0 . . . 0
0 0 . . . 0

. . .
0 0 . . . 1

 . (1.58)

Clearly, each matrix in (1.58) is positive definite.
This process has the following properties, which can be used as its definition:

1. W0 = 0.

2. For 0 ≤ s ≤ t the random variable Wt −Ws is Gaussian with zero mean and variance t− s.

3. For 0 ≤ t0 < t1 < · · · < tn the random variables Wt0 , Wt1 −Wt0 ,. . . , Wtn −Wtn−1 are independent.

It is easy to see 1-3. For instance, if 0 ≤ s ≤ t ≤ u then

E(Wt −Ws)
2 =E(W 2

t )− 2E(WtWs) + E(W 2
s ) = t− 2s+ s = t− s; (1.59)

E(Ws(Wt −Wu)) =E(WsWt)− E(WsWu) = s− s = 0. (1.60)

Then we use the fact that for Gaussian variables vanishing of the correlation implies independence.
The Brownian motion is a Markov process with the state space R equipped with its Borel structure

andwit time in [0,∞[. In fact, consider the difffusion semigroup given by its integral kernel wrt the
Lebesgue measure

pt(x, y) := e
t∆
2 (x, y) =

1√
2πt

exp
(
− (x− y)2

2t

)
. (1.61)

Using the family of stochastic operators e
t∆
2 and the initial distribution δ(x) we define the finite dimen-

sional distributions

P(Xtn = xn, . . . , Xt1 = x1)dxn · · · dx1 (1.62)
=pt1(0, x1)pt2−t1(x1, x2) · · · ptn−tn−1

(xn−1, xn).

From these finite dimensional distribution we can construct a Markov process with help of the Kolmogorov
Theorem.

Acturally, one usually prefers a slightly different construction, which yield much smaller probability
spaces. The typical textbook definition of the Brownian motion involves the space of continuous functions
[0,∞[3 t 7→ W (t). Note that this requires a separate construction, since continuous functions do not
form a measurable subset of Ω̃.

2 Law of large numbers

2.1 The Jensen Inequality
We say that g : R→ R is convex if

g(τx+ (1− τ)y) ≤ τg(x) + (1− τ)g(y), x, y ∈ R, 0 ≤ τ ≤ 1. (2.63)

As a consequence, if p1, . . . , pn ≥ 0, p1 + · · ·+ pn = 1, x1, . . . , xn ∈ R, then

g(p1x1 + · · ·+ pnxn) ≤ p1g(x1) + · · ·+ png(xn). (2.64)

Let (Ω,F ,P) be a probability space.
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Proposition 2.1 Let g be convex, X a real random variable such that g(X) ∈ L1. Then

g(E(X)) ≤ E(g(X)). (2.65)

Proof. If A1, . . .An is a partition of Ω into measurable sets and X = x11lA1
+ · · ·xn1lAn with P(An) = pn,

then

E(X) =

n∑
i=1

xipi, E
(
g(X)

)
=

n∑
i=1

pig(xi). (2.66)

Therefore for elementary functions the Jensen inequality coincides with (2.64). 2

Proposition 2.2 [0,∞[3 p 7→
(
E|X|p

) 1
p is an increasing function.

Proof. Let g(t) = tr and r ≥ 1. Then g′′(t) = r(r − 1)tr−2 ≥ 0. Hence g is convex.
Let 0 ≤ q ≤ p. We use the Jensen inequality with g = tr and r := p

q ≥ 1:

E(|X|q)
p
q ≤ E(|X|q

p
q ) = E(|X|p). 2 (2.67)

2.2 Law of large numbers by the Chebyshev Inequality
Proposition 2.3

P(|X| ≥ ε) ≤ E(|X|)
ε

. (2.68)

Therefore,

P
(
|X − E(X)| ≥ c

)
≤ 1

c2
Var(X). (2.69)

Proof. Clearly
ε1l(|X| ≥ ε) ≤ |X|. (2.70)

This proves (2.68). By applying it to |X − E(X)|2 and ε = c2 we obtain (2.69). 2

Suppose that X1, X2,... are independent random variables with E(Xn) = m. Set

Sn := X1 + · · ·+Xn. (2.71)

Clearly,

E
(Sn
n

)
= m. (2.72)

Theorem 2.4 Let
Var(Xn) ≤ v. (2.73)

Then

P
(∣∣∣Sn

n
−m

∣∣∣) > δ
)
≤ v

δ2n
. (2.74)

Proof. In fact,

Var
(Sn
n

)
=

1

n2

n∑
j=1

Var(Xj) ≤
v

n
. (2.75)

Applying the Chebyshev inequality, more precisely (2.69), we obtain (2.74). 2
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2.3 Improved Law of Large Numbers
Theorem 2.5 Let Xn, Sn be as above and

E(Xn −m)4 ≤ K. (2.76)

Then

P
(Sn
n
→ m

)
= 1. (2.77)

Proof. We can replace Xn with Xn − E(Xn), so that E(Xn) = 0. Then, using

E(XiX
3
j ) = E(XiX

2
jXk) = E(XiXjXkXl) = 0 (2.78)

for distinct i, j, k, l, we obtain

E(S4
n) =

n∑
k=1

E(X4
k) + 6

∑
j 6=k

E(X2
jX

2
k) (2.79)

Now
E(X2

j ) ≤ E(X4
j )

1
2 . (2.80)

Hence
E(X2

iX
2
j ) = E(X2

i )E(X2
k) ≤ E(X4

i )
1
2 E(X4

k)
1
2 ≤ K. (2.81)

Therefore,

E
(Sn
n

)4

≤ 1

n4

(
nK + 3n(n− 1)K

)
≤ 3K

n2
, (2.82)

hence E

( ∞∑
n=1

(Sn
n

)4
)
≤
∞∑
n=1

3K

n2
<∞. (2.83)

Therefore, by Lemma 2.6,
∞∑
n=1

(
Sn
n

)4

is convergent almost everywhere. Hence

Sn
n
→ 0 almost everywhere. (2.84)

2

Lemma 2.6 Let X ≥ 0 and E(X) <∞. Then X <∞ almost everywhere (there exists a measurable set
N of measure zero such that X <∞ outside N).

Proof. Let N := {X(ω) =∞}. Then X ≥ ∞1lN . Now

E(X) ≥ ∞P(N). 2 (2.85)

2.4 Convergence of random variables
We say that Xn → X

almost surely iff P
(
ω | lim

n→∞
Xn(ω) = X(ω)

)
= 1; (2.86)

in probability iff for any ε > 0, lim
n→∞

P
(
|Xn −X| > ε

)
= 0; (2.87)

in the pth moment (in Lp) iff lim
n→∞

E|Xn −X|p = 0. (2.88)
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Proposition 2.7 Xn → X almost surely implies Xn → X in probability.

Proof. Let N := {ω | Xn(ω) 6→ X(ω)}. Then P(N) = 0.
Let ε > 0. For any ω ∈ Ω\N we have |Xn(ω)−X(ω)| > ε finitely many times. Hence

N ⊃ {|Xn −X| > ε infinitely often } =

∞⋂
n=1

∞⋃
m=n

{|Xm −X| > ε}, (2.89)

hence 0 = P(N) ≥ P

( ∞⋂
n=1

∞⋃
m=n

{|Xm −X| > ε}

)
(2.90)

= lim
n→∞

P
( ∞⋃
m=n

{|Xm −X| > ε}
)
≥ lim
n→∞

P
(
{|Xn −X| > ε}

)
, (2.91)

hence 0 = lim
n→∞

P(|Xn −X| > ε). 2 (2.92)

Proposition 2.8 Xn → X in Lp implies Xn → X in probability.

Proof.
0← E(|X −Xn|p) ≥ εpP(|X −Xn| > ε). 2 (2.93)

3 Characteristic functions and Central Limit Theorem

3.1 Real random variables
Let (Ω,F ,P) be a probability space and X a real valued random variable on Ω. X defines a probability
measure µ on Borel sets in R by

µ(A) := P(X(ω) ∈ A). (3.94)

µ is sometimes called the law of X.
The distribution function of X is defined as

F (t) := µ(]−∞, t]) = P(X ≤ t). (3.95)

If µ is continuous wrt the Lebesgue measure, then there exists f ∈ L1(R) with
∫
f = 1, f ≥ 0 such that

µ(A) =

∫
A

f(x)dx. (3.96)

In general, we will write dµ(x) = f(x)dx even if such a density does not exist, e.g. δa will be written as
δ(x− a)dx. We have F ′(x) = f(x) in the distributional sense. We say that µ possesses an atom at a ∈ R
if P(X = a) > 0. Note that the number of atoms is countable.

3.2 Characteristic functions
Let X be a random variable, µ its "law". Probabilists use the term "characteristic function of X" as the
name of the Fourier transform of µ. Thus, using various notations, the characteristic function is defined
as

φX(ξ) = µ̂(−ξ) =

∫
eiξxdµ(x) = E(eiξX) =

∫
eiξX(ω)dP(ω). (3.97)

Here are some properties:
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1. φX(0) = 1.

2. |φX(ξ)| ≤ 1.

3. ξ 7→ φX(ξ) is continuous.

4. φ−X(ξ) = φX(ξ).

5. φaX+b = eibξφX(aξ).

6. If X,Y are independent, then φX+Y (ξ) = φX(ξ)φY (ξ). (Because E(ei(X+Y )ξ) = E(eiXξ)E(eiY ξ).)

3.3 Examples of characteristic functions
In the following table x ∈ R and n ∈ N. On the left we give the density of a probability measure, on the
right its characteristic function:

1

σ
√

2π
exp

(
− (x− µ)

2σ2

)
exp

(
iµξ − 1

2
σ2ξ2

)
,

1

2
1l[−1,1]

sin ξ

ξ
;

1

2
e−|x|

1

1 + ξ2
;

1

π(1 + x2)
e−|ξ|;

(1− |x|)1l[−1,1] 2
(1− cos ξ)

ξ2
;

(1− cosx)

πx2
(1− |ξ|)1l[−1,1](ξ);

e−λ
λn

n!
eλ(ei〈x〉−1);

pn(1− p)N−n
( N
n

)
(peiξ + 1− p)N ;

(1− p)npα
( α+ n− 1

n

) (
1− (1− p)eiξ

)−α
pα.

3.4 Weak convergence of probability measure
Let Prob(R) denote the set of probability measures on R. Let µn, µ ∈ Prob(R). We say that µn → µ
weakly if for any h ∈ Cb(R) ∫

hdµn →
∫
hdµ. (3.98)

Example 3.1 1. Let fn, f ∈ L1
+(R) and ‖fn − f‖1 → 0. Then fndx→ fdx weakly.

2. Let xn, x ∈ R and xn → x. Then δxn → δx0
weakly.

3. Let xn →∞. Then δxn does not have a weak limit.

Proposition 3.2 Let Fn, F be the distribution functions of µn, µ. Then µn → µ weakly iff Fn(x)→ F (x)
for every x ∈ R which is not an atom of F .

Let Xn, X be random variables, possibly on different probability spaces (Ωn,Fn), (Ω,F). We say
that Xn → X in law if for the corresponding measures on R we have the weak convergence µn → µ.
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3.5 Convergence of characteristic functions
Theorem 3.3 (Levy-Cramer) Let µn ∈ Prob(R), φn their characteristic functions. Suppose that for
all ξ ∈ R there exists

φ(ξ) := lim
n→∞

φn(ξ). (3.99)

and φ is continuous in 0. Then there exists µ ∈ Prob(R) such that φ is the characteristic function of µ
and µn → µ weakly.

One can see that the condition of the continuity is necessary from the following example. Suppose
that

dµn =
1

n
√

2π
e−

x2

2n2 dx. (3.100)

Then

φn(ξ) = e−
ξ2n2

2 →

{
1 ξ = 0;

0 ξ 6= 0.
(3.101)

Clearly, µn does not converge to any measure.

3.6 Central Limit Theorem
Theorem 3.4 Suppose that Xn are independent random variables with the same distribution as X. Let

E(X) = 0, σ2 := Var(X) <∞. (3.102)

Set
Gn :=

X1 + · · ·+Xn

σ
√
n

. (3.103)

Then Gn converges in law to the normal distribution. In other words, (noting that the normal distribution
has no atoms),

P(G < x)→ 1√
2π

∫ x

−∞
e−

y2

2 dy =: Erf(x). (3.104)

Proof. (We follow Williams). Set

Rn(x) := eix −
n∑
k=0

(ix)k

k!
. (3.105)

We have R0(x) = eix − 1 =
∫ x

0
ieiydy. Therefore,

|R0(x)| ≤ min(2, |x|). (3.106)

Next Rn(x) =
∫ x

0
iRn−1(y)dy. Hence

|Rn(x) ≤ min
(2|x|n

n!
,
|x|n+1

(n+ 1)!

)
. (3.107)

Therefore, if E(X) = 0 and σ2 = Var(X) <∞,∣∣∣∣E(eiξX − 1 +
1

2
σ2
)∣∣∣∣ = |ER2(ξX)|

≤ E|R2(ξX)| ≤ ξ2E
(

min
(
|X|2, |ξ||X|

3

6

))
. (3.108)
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We have the pointwise convergence min
(
|X|2, |ξ||X|

3

6

)
→ 0 as ξ → 0. Besides, |X|2 is integrable.

Therefore, by the Lebesque Dominated Convergence Theorem

E
(

min
(
|X|2, |ξ||X|

3

6

)
→ 0 (3.109)

Hence
φX(ξ) = 1− 1

2
σ2ξ2 + o(ξ2). (3.110)

Now, as n→∞,

φGn(ξ) = φX

( ξ

σ
√
n

)n
(3.111)

=
(

1− ξ2

2n
+ o
( ξ2

σ2n

))n
(3.112)

= exp
(
n log

(
1− ξ2

2n
+ o
( ξ2

σ2n

))
(3.113)

= exp
(
n
(
− ξ2

2n
+ o
( ξ2

σ2n

))
= exp

(
− ξ2

2
+ no

( 1

n

))
→ e−

1
2 ξ

2

. (3.114)

e−
1
2 ξ

2

is clearly continuous at 0. Hence we can invoke the Levy-Cramer Theorem to get the result. 2

3.7 Stable distributions
We say that the distribution of a random variable X is stable if the following holds: If X1, . . . , Xn are
independent random variables idedntically distributed as X, then Sn := X1 + · · · + Xn has the same
distribution as cnX for some cn ∈ R.

One can show that the only possible cn are cn = n
1
α for some α ∈]0, 2]. We then say that X is

α-stable.
If φ(ξ) is the characteristic function of X, then Sn has the characteristic fanction φn(ξ). Therefore,

the α-stability s equivalent to
φn(ξ) = φ(n

1
α ξ). (3.115)

Here are examples of stable distributions:
The Gaussian distribution:.

p(x) =
1√
2π

e−
x2

2 , φ(ξ) = e−
ξ2

2 . (3.116)

Clearly, it is 2-stable: (
e−

ξ2

2

)n
= e−

(
√
nξ)2

2 . (3.117)

The Cauchy distribution.

p(x) =
1

π(1 + x2)
, φ(ξ) = e−|ξ|. (3.118)

Clearly, it is 1-stable: (
e−|ξ|

)n
= e−|nξ|. (3.119)
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More generally, distributions with the characteristic functions e−c|ξ|
α

, 0 < α ≤ 2 are α-stable. Note
that among them only the Gaussian distribution has a finite variance. To see this we use

E(X2) = − d2

dξ2
φ(ξ)

∣∣∣
ξ=0

(3.120)

Now e−|ξ|
α

for 0 < α < 2 is not twice differentiable at zero:

d2

dξ2
e−|ξ|

α

= α(α− 1)|ξ|α−2e−|ξ|
α

, (3.121)

which for α ∈]0, 2[\{1} has no limit at ξ = 0, and for α = 1, we get

d2

dξ2
e−|ξ| = (2δ(ξ) + 1)e−|ξ|. (3.122)
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