Probability

Jan Dereziński
Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland, email: jan.derezinski@fuw.edu.pl

June 16, 2022

1 Random processes

1.1 Random variables

A probability space $(\Omega, \mathcal{F}, \mathrm{P})$ is a set Ω equipped with a σ-algebra $\mathcal{F} \subset 2^{\Omega}$ and a probability measure $\mathrm{P}: \mathcal{F} \rightarrow[0,1]$. If $(\mathcal{S}, \mathcal{B})$ is another set equipped with a σ-algebra, then X is a S-valued random variable if it is a measurable transformation $X: \Omega \rightarrow S$, modulo sets of measure zero. We usually take $S=\mathbb{R}$, so that when we do not specify the target set we mean a real valued random variable.

1.2 Finite distributions of random processes

Let T be a set and $\left\{X_{t}\right\}_{t \in T}$ a family of random variables with values in S on a probability space ($\Omega, \mathcal{F}, \mathrm{P}$). Such a family is called a random process. Often $T=[0, \infty[$ or $T=\{0,1,2, \ldots\}$, and T is called the time.

If t_{1}, \ldots, t_{k} are distinct elements of T, then $\left(X_{t_{1}}, \ldots X_{t_{k}}\right): \Omega \rightarrow S^{k}$ defines a measurable transformation. This transformation defines a probability measure on S^{k} : if A is a measurable set in S^{k}, then

$$
\begin{equation*}
\mathrm{P}_{t_{1}, \ldots, t_{k}}(A):=\mathrm{P}\left(\left(X_{t_{1}}(\omega), \ldots X_{t_{k}}(\omega)\right) \in A\right) . \tag{1.1}
\end{equation*}
$$

The family of measures $\mathrm{P}_{t_{1}, \ldots, t_{k}}$ is called finite dimensional distributions of P . It satisfies the consistency conditions:

$$
\begin{align*}
& \mathrm{P}_{t_{1}, \ldots, t_{k}}(A)=\mathrm{P}_{t_{\sigma(1)}, \ldots, t_{\sigma(k)}}(\sigma(A)), \quad \text { for every permutation } \quad \sigma ; \tag{1.2}\\
& \mathrm{P}_{t_{1}, \ldots, t_{k}}(A)=\mathrm{P}_{t_{1}, \ldots, t_{k}, t_{k+1}}(A \times S) . \tag{1.3}
\end{align*}
$$

One can ask whether for every familly of measures $\mathrm{P}_{t_{1}, \ldots, t_{k}}$ satisfying the consistency conditions is derived from a certain random process. The answer is (partly) positive due to the Kolmogorov Theorem, which we describe below.

Let $\tilde{\Omega}$ be the set of all functions $\tilde{\omega}: T \rightarrow S$. (Other possible notations for $\tilde{\Omega}$ are $\underset{t \in T}{\times} S$, the Cartesian product of many copies of S indexed by T). We say that $B \subset \tilde{\Omega}$ is a cylindrical set if there exist $\left\{t_{1}, \ldots, t_{k}\right\} \subset T$ and a measurable set $A \subset S^{k}$ such that

$$
\begin{equation*}
\left\{\tilde{\omega} \mid\left(\tilde{\omega}\left(t_{1}\right), \ldots, \tilde{\omega}\left(t_{k}\right)\right) \in A\right\}=B . \tag{1.4}
\end{equation*}
$$

Let $\tilde{\mathcal{F}}$ be the σ-algebra generated by cylindrical sets in $\tilde{\Omega}$.

Theorem 1.1 (The Kolmogorov Consistency Theorem) If S is a Polish space (e.g. a countable space or a closed subset of \mathbb{R}^{d}) and $\mathrm{P}_{t_{1}, \ldots, t_{k}}$ satisfies the consistency conditions, then there exists a unique measure $\tilde{\mathrm{P}}$ on $(\tilde{\Omega}, \tilde{\mathcal{F}})$ such that $\mathrm{P}_{t_{1}, \ldots, t_{k}}$ are its finite distributions.

For instance, for $t \in T$, let P_{t} be a probability measure on S. Then

$$
\begin{equation*}
\mathrm{P}_{t_{1}, \ldots, t_{k}}:=\mathrm{P}_{t_{1}} \otimes \cdots \otimes \mathrm{P}_{t_{k}} \tag{1.5}
\end{equation*}
$$

is a familty satisfying the consistency condition. The resulting measure on $\tilde{\Omega}$ can be called the product measure $\underset{t \in T}{\otimes} \mathrm{P}_{t}$.

1.3 Gaussian processes

Let $\left[\sigma_{i j}\right]$ be a positive definite matrix $n \times n$. Let X_{1}, \ldots, X_{n} be the (real) random variables on \mathbb{R}^{n} with the density

$$
\begin{equation*}
\rho\left(x_{1}, \ldots, x_{n}\right)=\frac{\sqrt{\operatorname{det} \sigma}}{(2 \pi)^{\frac{n}{2}}} \exp \left(-\frac{x_{i} \sigma_{i j} x_{j}}{2}\right) \tag{1.6}
\end{equation*}
$$

Then $\rho(x) \mathrm{d} x$ is a probability measure. Let $\left[\sigma^{i j}\right]$ be the inverse of $\left[\sigma_{i j}\right]$. Then

$$
\begin{equation*}
\operatorname{Cov}\left(X_{i} X_{j}\right)=\sigma^{i j} \tag{1.7}
\end{equation*}
$$

Clearly, the positive matrix $\left[\sigma^{i j}\right]$ determines uniquely a Gaussian measure on \mathbb{R}^{n} with mean zero and satisfying (1.7).

Let $\left\{\sigma^{t, s}\right\}_{t, s \in T}$ be a family of numbers such that for any t_{1}, \ldots, t_{k} the matrix $\left[\sigma^{t_{i}, t_{j}}\right]_{i, j=1, \ldots k}$ is positive definite. Let $\mathrm{P}_{t_{1}, \ldots, t_{k}}$ be the Gaussian measure on \mathbb{R}^{k} with the covariance matrix $\left[\sigma^{t_{i}, t_{j}}\right]_{i, j=1, \ldots k}$. Then the consistency condition is satisfied and we can define the Gaussian measure on $\underset{t \in T}{\times} \mathbb{R}$.

1.4 Conditional expectation

Let $(\Omega, \mathcal{F}, \mathrm{P})$ be a probability space and $A, B \in \mathcal{F}$. Assume that $\mathrm{P}(B) \neq 0$. Recall that the conditional probability of A given B is

$$
\begin{equation*}
\mathrm{P}(A \mid B):=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}=\frac{\int_{B} \mathbb{1}_{A}(\omega) \mathrm{dP}(\omega)}{\mathrm{P}(B)} \tag{1.8}
\end{equation*}
$$

Let $X \in L^{1}(\Omega, \mathcal{F}, \mathrm{P})$ (X is an integrable random variable). Then we can define the conditional expectation of X given B by

$$
\begin{equation*}
\mathrm{E}(X \mid B):=\frac{\int_{B} X(\omega) \mathrm{dP}(\omega)}{\mathrm{P}(B)} \tag{1.9}
\end{equation*}
$$

Suppose now \mathcal{G} is a σ-subalgebra of \mathcal{F}. The conditional expectation of X given \mathcal{G}, denoted $\mathrm{E}(X \mid \mathcal{G})$, is the random variable $Y \in L^{1}(\Omega, \mathcal{G}, \mathrm{P})$ such that for any $A \in \mathcal{G}$

$$
\begin{equation*}
\int_{A} X \mathrm{dP}=\int_{A} Y \mathrm{dP} \tag{1.10}
\end{equation*}
$$

Note that the lhs of (1.10) defines a measure on (Ω, \mathcal{G}) continuous wrt $\left.\mathrm{P}\right|_{\mathcal{G}}$. Hence the existence of Y follows by the Radon-Nikodym Theorem. Y is unique up to zero measure sets wrt $\left.\mathrm{P}\right|_{\mathcal{G}}$.

1. If X is measurable wrt \mathcal{G}, then

$$
\begin{equation*}
\mathrm{E}(X \mid \mathcal{G})=X \tag{1.11}
\end{equation*}
$$

2. If X is independent of \mathcal{G}, then

$$
\begin{equation*}
\mathrm{E}(X \mid \mathcal{G})=\mathrm{E}(X) \tag{1.12}
\end{equation*}
$$

In fact, to prove this it is enough to assume that $X=\mathbb{1}_{B}$, with B independent of $A \in \mathcal{G}$. Then

$$
\begin{equation*}
\int_{A} \mathbb{1}_{B} \mathrm{dP}=\int_{A \cap B} \mathrm{dP}=\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)=\mathrm{E}\left(\mathbb{1}_{B}\right) \int_{A} \mathrm{dP} \tag{1.13}
\end{equation*}
$$

3. $\mathrm{E}(\mathrm{E}(X \mid \mathcal{G}))=\mathrm{E}(X)$.
4. $\mathrm{E}(\mathrm{E}(X \mid \mathcal{G}) \mid \mathcal{G})=\mathrm{E}(X \mid \mathcal{G})$.
5. If $\mathcal{G}=\{B, \Omega \backslash B, \emptyset, \Omega\}$ and $0<\mathrm{P}(B)<1$, then

$$
\begin{equation*}
\mathrm{E}(X \mid \mathcal{G})=\mathrm{E}(X \mid B) \mathbb{1}_{B}+E(X \mid \Omega \backslash B) \mathbb{1}_{\Omega \backslash B} \tag{1.14}
\end{equation*}
$$

6. If $X, X Y \in L^{1}(\Omega, \mathcal{F}, \mathrm{P})$ and Y is measurable wrt \mathcal{G}, then

$$
\begin{equation*}
\mathrm{E}(X Y \mid \mathcal{G})=Y \mathrm{E}(X \mid \mathcal{G}) \tag{1.15}
\end{equation*}
$$

(We say that Y is measurable wrt \mathcal{G} if $Y^{-1}(B) \in \mathcal{G}$ for all Borel sets B.)
If Y_{1}, \ldots, Y_{n} are random variables on (Ω, \mathcal{F}), then $\sigma\left(Y_{1}, \ldots, Y_{n}\right)$ will denote the smallest σ-algebra wrt which Y_{1}, \ldots, Y_{n} are measurable. We will write

$$
\begin{equation*}
\mathrm{E}\left(X \mid Y_{1}, \ldots, Y_{n}\right):=\mathrm{E}\left(X \mid \sigma\left(Y_{1}, \ldots, Y_{n}\right)\right) \tag{1.16}
\end{equation*}
$$

1.5 Markov chains

Let S be a discrete set, $T=\{0,1,2, \ldots\}$ and $\left[P_{i j}^{n}\right]_{i, j \in S}$ be a family of stochastic matrices, that is

$$
\begin{equation*}
P_{i j}^{n} \geq 0, \quad \sum_{j} P_{i j}^{n}=1 \tag{1.17}
\end{equation*}
$$

Let ρ_{j} be a probability distribution on S, that is,

$$
\begin{equation*}
\rho_{j} \geq 0, \quad \sum_{j} \rho_{j}=1 \tag{1.18}
\end{equation*}
$$

We define the family of finite dimensional probability distributions $\mathrm{P}^{0,1, \ldots, n}$:

$$
\begin{equation*}
\mathrm{P}^{0,1, \ldots, n}\left(X_{n}=s_{n}, X_{n-1}=s_{n-1}, \ldots, X_{0}=s_{0}\right):=\rho_{s_{0}} P_{s_{0} s_{1}}^{1} \cdots P_{s_{n-1} s_{n}}^{n} \tag{1.19}
\end{equation*}
$$

It is easy to see that this family is consistent. In fact, it is enough to check

$$
\begin{equation*}
\sum_{s_{n} \in S} \mathrm{P}^{0, \ldots, n}\left(X_{n}=s_{n}, X_{n-1}=s_{n-1}, \ldots, X_{0}=s_{0}\right)=\mathrm{P}^{0, \ldots, n-1}\left(X_{n-1}=s_{n-1}, \ldots, X_{0}=s_{0}\right) \tag{1.20}
\end{equation*}
$$

By using Kolmogorov's Theorem there exists a probability measure P on the probability space $\times{ }_{n=0}^{\infty} S$, such that $X_{n}, n=0,1, \ldots$, becomes a random process.

A random process constructed this way has special properties and is called a Markov chain (with discrete time $\{0,1,2, \ldots\}$ on a discrete state space S). It is determined by the initial distribution ρ and the nth step transition matrix P^{n}.

Suppose we adopt a converse point of view. We start from a probability measure P on the probability space $\times_{n=0}^{\infty} S$ and random S-valued variables $X_{n}, n=0,1, \ldots$. We say that it is a Markov chain if the following condition holds: If $\mathrm{P}\left(X_{n-1}=s_{n-1}, \ldots, X_{0}=s_{0}\right)>0$, then

$$
\begin{equation*}
\mathrm{P}\left(X_{n}=s_{n} \mid\left(X_{n-1}=s_{n-1}\right)=\mathrm{P}\left(X_{n}=s_{n} \mid X_{n-1}=s_{n-1}, \ldots, X_{0}=s_{0}\right)\right. \tag{1.21}
\end{equation*}
$$

Setting

$$
\begin{align*}
P_{i j}^{n} & :=\mathrm{P}\left(X_{n}=j \mid X_{n-1}=i\right) \tag{1.22}\\
\rho_{i} & :=\mathrm{P}\left(X_{0}=i\right) \tag{1.23}
\end{align*}
$$

we retrieve the construction described in (1.20).
If we have a random process with values in, say, \mathbb{R}, then we can reformulate the above definition using the conditional expectation. We say that a random process $\left\{X_{n}\right\}_{n=0,1, \ldots}$ with values in \mathbb{R} is a Markov chain if for any $n=1,2, \ldots$

$$
\begin{equation*}
\mathrm{E}\left(X_{n} \mid X_{n-1}\right)=\mathrm{E}\left(X_{n} \mid X_{n-1}, \ldots, X_{0}\right) \tag{1.24}
\end{equation*}
$$

It is easy to generalize the above definitions and constructions to stochatic transformations on more general measure spaces.

1.6 Examples of Markov semigroups

Example 1.2 2-state transition matrix.

$$
P=\left[\begin{array}{cc}
1-p_{1} & p_{1} \tag{1.25}\\
p_{2} & 1-p_{2}
\end{array}\right]
$$

Stationary distribution: $\left[\frac{p_{2}}{p_{1}+p_{2}}, \frac{p_{1}}{p_{1}+p_{2}}\right]$.
Example 1.3 Random walk absorbing on the left and reflecting on the right.
The transition matrix:

$$
\left[\begin{array}{lllll}
1 & & & & \tag{1.26}\\
q & 0 & p & & \\
& q & 0 & p & \\
& & q & 0 & p \\
& & & 1 & 0
\end{array}\right]
$$

The stationary state is $[1,0,0,0,0]$.
Example 1.4 Permutation.
The transition matrix:

$$
\left[\begin{array}{lll}
& 1 & \tag{1.27}\\
& & 1 \\
1 & &
\end{array}\right]
$$

The stationary distribution: $\left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right]$.
Example 1.5 The Bernoulli scheme.

State space: $\{0,1,2, \ldots\}$. The transition matrix:

$$
\begin{gather*}
{\left[\begin{array}{ccccc}
q & p & & & \\
& q & p & & \\
& & q & p & \\
& & & q & p
\end{array}\right]} \tag{1.28}\\
 \tag{1.29}\\
p_{j, j+m}(n)=p^{m} q^{n-m}\binom{n}{m} .
\end{gather*}
$$

Example 1.6 Random walk in 1 dimension.
State space: \mathbb{Z}. The transition matrix:

$$
\begin{gather*}
{\left[\begin{array}{cccccc}
q & 0 & p & & & \\
& q & 0 & p & & \\
& & q & 0 & p & \\
& & & q & 0 & p \\
& & & & &
\end{array}\right]} \tag{1.30}\\
p_{j, j+m}(n)=p^{\frac{n+m}{2}} q^{\frac{n-m}{2}}\binom{n}{\frac{(n+m)}{2}} \tag{1.31}
\end{gather*}
$$

for even $n-m$, otherwise it is 0 .
Using the Stirling formula $n!\sim \sqrt{2 \pi n} n^{n} \mathrm{e}^{-n}$ we obtain

$$
\begin{equation*}
P_{0,0}(2 n) \sim \frac{1}{\sqrt{\pi n}}(4 p q)^{n} \tag{1.32}
\end{equation*}
$$

Example 1.7 The Ehrenfest Model.
We have two vessels and n particles. At random we transfer a particle from one vessel to the other.
This can be described by the state space $\{0,1, \ldots, n\}$, where the number corresponds to the number of particles in the 1st vessel. The transition matrix is given by $p_{j, j+1}=\frac{n-j}{n}, p_{j, j-1}=\frac{j}{n}$:

$$
\left[\begin{array}{ccc}
0 & \frac{n}{n} & 0 \tag{1.33}\\
\frac{1}{n} & 0 & \frac{n-1}{n} \\
0 & \frac{2}{n} & 0
\end{array}\right]
$$

Using the identity

$$
\begin{equation*}
\binom{n}{j}=\binom{n}{j-1}(n-j+1)+\binom{n}{j+1}(j+1) \tag{1.34}
\end{equation*}
$$

we obtain the stationary distribution

$$
\begin{equation*}
2^{-n}\binom{n}{j} \tag{1.35}
\end{equation*}
$$

1.7 Detailed balance condition

We say that a stochastic matrix P satisfies the Detailed Balance Condition if there exist $\rho_{i}>0$ such that

$$
\begin{equation*}
\rho_{i} P_{i j}=\rho_{j} P_{j i} . \tag{1.36}
\end{equation*}
$$

Then $\rho=\left[\rho_{i}\right]$ satisfies $\rho P=\rho$. Besides, if we define $l^{2}(S, \rho)$, then P is self-adjoint in the sense of $l^{2}(S, \rho)$.
Equivalent condition: for any i_{1}, i_{2}, i_{3},

$$
\begin{equation*}
P_{i_{1} i_{2}} P_{i_{2} i_{3}} P_{i_{3} i_{1}}=P_{i_{1} i_{3}} P_{i_{3} i_{2}} P_{i_{2} i_{1}} . \tag{1.37}
\end{equation*}
$$

1.8 Markov processes with continuous time

Let us now generalize the definition of a Markov chain to the continuous time, that is to $T=[0, \infty[$. We will then say a "Markov process", not a "Markov chain".

Let $\left\{P^{t, s}\right\}_{t, s \geq 0}$ be a family of stochastic matrices with the state space S satisfying

$$
\begin{equation*}
P^{t, t}=\mathbb{1}, \quad P^{t, s} P^{s, u}=P^{t, u}, \quad 0 \leq t \leq s \leq u \tag{1.38}
\end{equation*}
$$

Let ρ^{0} be a probability distribution on S and

$$
\begin{equation*}
\rho^{t}=\rho^{0} P^{0, t} \tag{1.39}
\end{equation*}
$$

For any $0 \leq t_{1}<\cdots<t_{k}$ we define the probability distribution on S^{k} :

$$
\begin{align*}
& \mathrm{P}_{0}^{t_{0}, t_{1}, \ldots, t_{n}}\left(X_{t_{n}}=s_{n}, \ldots, X_{t_{1}}=s_{1}, X_{0}=s_{0}\right) \tag{1.40}\\
= & \rho^{t_{0}} P_{s_{0} s_{1}}^{t_{0}, t_{1}} \cdots P_{s_{n-1} s_{n}}^{t_{n-1}, s_{n}} .
\end{align*}
$$

We easily check that the family is consistent. To see this we use

$$
\begin{align*}
\sum_{s_{i}} P_{s_{i-1} s_{i}}^{t_{i-1} t_{i}} P_{s_{i} s_{i+1}}^{t_{i} t_{i+1}} & =P_{s_{i-1} s_{i+1}}^{t_{i-1} t_{i+1}} \tag{1.41}\\
\sum_{s_{0}} \rho_{s_{0}}^{t_{0}} P_{s_{0} s_{1}}^{t_{0} t_{1}} & =\rho_{s_{1}}^{t_{1}}
\end{align*}
$$

Therefore, it defines a measure P on $\underset{t \in[0, \infty[}{\times} S$. The random process $\left\{X_{t}\right\}_{t \in[0, \infty[}$ is said to be Markov.
Suppose that the values of X_{t} are in \mathbb{C}^{d}. Then we have an equivalent definition: For any $0 \leq t_{0}<$ $t_{1}<\cdots<t_{k}$,

$$
\begin{equation*}
\mathrm{E}\left(X_{t_{k}} \mid X_{t_{k-1}}\right)=\mathrm{E}\left(X_{t_{k}} \mid X_{t_{k-1}}, \ldots, X_{t_{0}}\right) \tag{1.42}
\end{equation*}
$$

1.9 Infinitesimally stochastic matrices

Suppose that $K=\left[K_{i j}\right]$ is a real matrix. We say that it is infinitesimally stochastic (or Markovian) if

$$
\begin{equation*}
K_{i j} \geq 0, \quad i \neq j ; \quad \sum_{j} K_{i j}=0 . \tag{1.43}
\end{equation*}
$$

Note that necessarily $K_{i i} \leq 0$. If K is infinitesimally stochastic, then $\mathrm{e}^{t K}$ is stochastic. In fact, set $P(t)=\mathrm{e}^{t K}$.

$$
\begin{align*}
i \neq j,\left.\quad \frac{\mathrm{~d}}{\mathrm{~d} t} P(t)_{i j}\right|_{t=0}=K_{i j} \geq 0, \quad P(0)_{i j}=0, & \text { hence } P_{i j}(t)>0 \quad \text { for small } t ; \tag{1.44}\\
P(0)_{i i}=1, & \text { hence } P_{i j}(t)>0 \quad \text { for small } t ; \tag{1.45}\\
\frac{\mathrm{d}}{\mathrm{~d} t} \sum_{j} P_{i j}(t)=\sum_{k j} P_{i k}(t) K_{k j}=0, & \text { hence } \sum_{j} P_{i j}(t)=1 \tag{1.46}
\end{align*}
$$

Example:

$$
Z=\left[\begin{array}{cc}
-\lambda & \lambda \tag{1.47}\\
0 & 0
\end{array}\right]
$$

Then

$$
\begin{gather*}
Z\left[\begin{array}{l}
1 \\
1
\end{array}\right]=0\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 1
\end{array}\right] Z=\left[\begin{array}{ll}
0 & 1
\end{array}\right] 0 \tag{1.48}\\
Z\left[\begin{array}{l}
1 \\
0
\end{array}\right]=-\lambda\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad\left[\begin{array}{ll}
1 & -1
\end{array}\right] Z=\left[\begin{array}{ll}
0 & 1
\end{array}\right](-\lambda) \tag{1.49}
\end{gather*}
$$

Hence

$$
\mathrm{e}^{t Z}=\left[\begin{array}{l}
1 \tag{1.50}\\
1
\end{array}\right]\left[\begin{array}{ll}
0 & 1
\end{array}\right]+\mathrm{e}^{-t \lambda}\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{cc}
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{e}^{-t \lambda} & 1-\mathrm{e}^{-t \lambda} \\
0 & 1
\end{array}\right]
$$

1.10 Poisson Process

Let $\lambda>0$. Recall that

$$
\begin{equation*}
p_{\lambda}(n):=\mathrm{e}^{-\lambda} \frac{\lambda^{n}}{n!}, \quad n=0,1,2, \ldots \tag{1.51}
\end{equation*}
$$

defines a probability distribution called the Poisson distribution.
Consider the state space $\{0,1,2, \ldots\}$ and the infinitesimally stochastic matrix

$$
Z:=\left[\begin{array}{ccccc}
-\lambda & \lambda & & & \tag{1.52}\\
& -\lambda & \lambda & & \\
& & -\lambda & \lambda & \\
& & & -\lambda & \lambda \\
& & & & -\lambda
\end{array}\right]=-\lambda \mathbb{1}+\lambda N
$$

where N is the right unilateral shift. Clearly,

$$
\begin{equation*}
\mathrm{e}^{t Z}=\sum_{n=0}^{\infty} \mathrm{e}^{-\lambda t} \frac{\lambda^{n}(t-s)^{n} \mathrm{e}^{-\lambda(t-s)}}{n!} N^{n}=: \sum_{n=0}^{\infty} p_{\lambda(t-s)}(n) N^{n} . \tag{1.53}
\end{equation*}
$$

If we denote by (m | the m th basis vector, then

$$
\begin{equation*}
\left(m \mid \mathrm{e}^{t Z}=\sum_{n=0}^{\infty}\left(m+n \mid p_{\lambda t}(n)\right.\right. \tag{1.54}
\end{equation*}
$$

Using the family of stochastic matrices $\mathrm{e}^{(t-s) Z}$ and the initial distribution $[1,0, \ldots]$, we can construct the Markov process X_{t} with time $\left[0, \infty\left[\right.\right.$ and values in $\{0,1,2, \ldots\}$. Clearly, for $0 \leq t_{1}<\cdots<t_{n}$

$$
\begin{align*}
& \mathrm{P}\left(X_{t_{n}}=s_{n}, \ldots, X_{t_{1}}=s_{1}\right) \tag{1.55}\\
= & p_{\lambda\left(t_{n}-t_{n-1}\right)}\left(s_{n}-s_{n-1}\right) \cdots p_{\lambda\left(t_{2}-t_{1}\right)}\left(s_{2}-s_{1}\right) p_{\lambda t_{1}}\left(s_{1}\right)
\end{align*}
$$

The Poisson process has the following properties, which can be used as its definition:

1. $X_{0}=0$ almost everywhere.
2. For $0 \leq t_{1}<\cdots<t_{n}$, the random variables $X_{t_{n}}-X_{t_{n-1}}, \ldots X_{t_{2}}-X_{t_{1}}, X_{t_{1}}$ are independent.
3. For $0 \leq s<t$ the random variable $X_{t}-X_{s}$ has the Poisson distribution with the parameter $\lambda(t-s)$, that is

$$
\mathrm{P}\left(X_{t}-X_{s}=n\right)= \begin{cases}p_{\lambda(t-s)}(n), & n=0,1,2, \ldots \tag{1.56}\\ 0, & n=-1,-2, \ldots\end{cases}
$$

1.11 Brownian motion

There are several ways to define the Brownian motion. One possible definition is to define it as a Gaussian process with the covariances

$$
\begin{equation*}
\sigma^{t_{1}, t_{2}}:=\operatorname{Cov}\left(W_{t_{1}}, W_{t_{2}}\right)=\min \left(t_{1}, t_{2}\right), \quad t_{1}, t_{2} \in[0, \infty[. \tag{1.57}
\end{equation*}
$$

To see that the matrix made of (1.57) is positive definite, consider $0 \leq t_{1}<\cdots<t_{n}$ and set $s_{j}=t_{j}-t_{j-1}$, $s_{1}=t_{1}$. Then this matrix is

$$
\left[\begin{array}{llll}
t_{1} & t_{1} & \ldots & t_{1} \tag{1.58}\\
t_{1} & t_{2} & \ldots & t_{2} \\
t_{1} & t_{2} & \ldots & t_{k}
\end{array}\right]=s_{1}\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1
\end{array}\right]+s_{2}\left[\begin{array}{llll}
0 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 1 \\
& & \ldots & \\
0 & 1 & \ldots & 1
\end{array}\right]+\cdots+s_{k}\left[\begin{array}{llll}
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
& & \ldots & \\
0 & 0 & \ldots & 1
\end{array}\right] .
$$

Clearly, each matrix in (1.58) is positive definite.
This process has the following properties, which can be used as its definition:

1. $W_{0}=0$.
2. For $0 \leq s \leq t$ the random variable $W_{t}-W_{s}$ is Gaussian with zero mean and variance $t-s$.
3. For $0 \leq t_{0}<t_{1}<\cdots<t_{n}$ the random variables $W_{t_{0}}, W_{t_{1}}-W_{t_{0}}, \ldots, W_{t_{n}}-W_{t_{n-1}}$ are independent. It is easy to see 1-3. For instance, if $0 \leq s \leq t \leq u$ then

$$
\begin{align*}
\mathrm{E}\left(W_{t}-W_{s}\right)^{2} & =\mathrm{E}\left(W_{t}^{2}\right)-2 \mathrm{E}\left(W_{t} W_{s}\right)+\mathrm{E}\left(W_{s}^{2}\right)=t-2 s+s=t-s \tag{1.59}\\
\mathrm{E}\left(W_{s}\left(W_{t}-W_{u}\right)\right) & =\mathrm{E}\left(W_{s} W_{t}\right)-\mathrm{E}\left(W_{s} W_{u}\right)=s-s=0 \tag{1.60}
\end{align*}
$$

Then we use the fact that for Gaussian variables vanishing of the correlation implies independence.
The Brownian motion is a Markov process with the state space \mathbb{R} equipped with its Borel structure andwit time in $[0, \infty[$. In fact, consider the difffusion semigroup given by its integral kernel wrt the Lebesgue measure

$$
\begin{equation*}
p_{t}(x, y):=\mathrm{e}^{\frac{t \Delta}{2}}(x, y)=\frac{1}{\sqrt{2 \pi t}} \exp \left(-\frac{(x-y)^{2}}{2 t}\right) \tag{1.61}
\end{equation*}
$$

Using the family of stochastic operators $\mathrm{e}^{\frac{t \Delta}{2}}$ and the initial distribution $\delta(x)$ we define the finite dimensional distributions

$$
\begin{align*}
& \mathrm{P}\left(X_{t_{n}}=x_{n}, \ldots, X_{t_{1}}=x_{1}\right) \mathrm{d} x_{n} \cdots \mathrm{~d} x_{1} \tag{1.62}\\
= & p_{t_{1}}\left(0, x_{1}\right) p_{t_{2}-t_{1}}\left(x_{1}, x_{2}\right) \cdots p_{t_{n}-t_{n-1}}\left(x_{n-1}, x_{n}\right)
\end{align*}
$$

From these finite dimensional distribution we can construct a Markov process with help of the Kolmogorov Theorem.

Acturally, one usually prefers a slightly different construction, which yield much smaller probability spaces. The typical textbook definition of the Brownian motion involves the space of continuous functions $[0, \infty[\ni t \mapsto W(t)$. Note that this requires a separate construction, since continuous functions do not form a measurable subset of $\tilde{\Omega}$.

2 Law of large numbers

2.1 The Jensen Inequality

We say that $g: \mathbb{R} \rightarrow \mathbb{R}$ is convex if

$$
\begin{equation*}
g(\tau x+(1-\tau) y) \leq \tau g(x)+(1-\tau) g(y), \quad x, y \in \mathbb{R}, \quad 0 \leq \tau \leq 1 \tag{2.63}
\end{equation*}
$$

As a consequence, if $p_{1}, \ldots, p_{n} \geq 0, p_{1}+\cdots+p_{n}=1, x_{1}, \ldots, x_{n} \in \mathbb{R}$, then

$$
\begin{equation*}
g\left(p_{1} x_{1}+\cdots+p_{n} x_{n}\right) \leq p_{1} g\left(x_{1}\right)+\cdots+p_{n} g\left(x_{n}\right) \tag{2.64}
\end{equation*}
$$

Let $(\Omega, \mathcal{F}, \mathrm{P})$ be a probability space.

Proposition 2.1 Let g be convex, X a real random variable such that $g(X) \in L^{1}$. Then

$$
\begin{equation*}
g(\mathrm{E}(X)) \leq \mathrm{E}(g(X)) \tag{2.65}
\end{equation*}
$$

Proof. If $A_{1}, \ldots A_{n}$ is a partition of Ω into measurable sets and $X=x_{1} \mathbb{1}_{A_{1}}+\cdots x_{n} \mathbb{1}_{A_{n}}$ with $\mathrm{P}\left(A_{n}\right)=p_{n}$, then

$$
\begin{equation*}
\mathrm{E}(X)=\sum_{i=1}^{n} x_{i} p_{i}, \quad \mathrm{E}(g(X))=\sum_{i=1}^{n} p_{i} g\left(x_{i}\right) \tag{2.66}
\end{equation*}
$$

Therefore for elementary functions the Jensen inequality coincides with (2.64).
Proposition $2.2\left[0, \infty\left[\ni p \mapsto\left(\mathrm{E}|X|^{p}\right)^{\frac{1}{p}}\right.\right.$ is an increasing function.
Proof. Let $g(t)=t^{r}$ and $r \geq 1$. Then $g^{\prime \prime}(t)=r(r-1) t^{r-2} \geq 0$. Hence g is convex.
Let $0 \leq q \leq p$. We use the Jensen inequality with $g=t^{r}$ and $r:=\frac{p}{q} \geq 1$:

$$
\begin{equation*}
\mathrm{E}\left(|X|^{q}\right)^{\frac{p}{q}} \leq \mathrm{E}\left(|X|^{q \frac{p}{q}}\right)=\mathrm{E}\left(|X|^{p}\right) \tag{2.67}
\end{equation*}
$$

2.2 Law of large numbers by the Chebyshev Inequality

Proposition 2.3

$$
\begin{equation*}
\mathrm{P}(|X| \geq \epsilon) \leq \frac{\mathrm{E}(|X|)}{\epsilon} \tag{2.68}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\mathrm{P}(|X-\mathrm{E}(X)| \geq c) \leq \frac{1}{c^{2}} \operatorname{Var}(X) \tag{2.69}
\end{equation*}
$$

Proof. Clearly

$$
\begin{equation*}
\epsilon \mathbb{1}(|X| \geq \epsilon) \leq|X| \tag{2.70}
\end{equation*}
$$

This proves (2.68). By applying it to $|X-\mathrm{E}(X)|^{2}$ and $\epsilon=c^{2}$ we obtain (2.69).
Suppose that X_{1}, X_{2}, \ldots are independent random variables with $\mathrm{E}\left(X_{n}\right)=m$. Set

$$
\begin{equation*}
S_{n}:=X_{1}+\cdots+X_{n} \tag{2.71}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
\mathrm{E}\left(\frac{S_{n}}{n}\right)=m \tag{2.72}
\end{equation*}
$$

Theorem 2.4 Let

$$
\begin{equation*}
\operatorname{Var}\left(X_{n}\right) \leq v \tag{2.73}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left.\mathrm{P}\left(\left|\frac{S_{n}}{n}-m\right|\right)>\delta\right) \leq \frac{v}{\delta^{2} n} \tag{2.74}
\end{equation*}
$$

Proof. In fact,

$$
\begin{equation*}
\operatorname{Var}\left(\frac{S_{n}}{n}\right)=\frac{1}{n^{2}} \sum_{j=1}^{n} \operatorname{Var}\left(X_{j}\right) \leq \frac{v}{n} \tag{2.75}
\end{equation*}
$$

Applying the Chebyshev inequality, more precisely (2.69), we obtain (2.74).

2.3 Improved Law of Large Numbers

Theorem 2.5 Let X_{n}, S_{n} be as above and

$$
\begin{equation*}
\mathrm{E}\left(X_{n}-m\right)^{4} \leq K \tag{2.76}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathrm{P}\left(\frac{S_{n}}{n} \rightarrow m\right)=1 \tag{2.77}
\end{equation*}
$$

Proof. We can replace X_{n} with $X_{n}-\mathrm{E}\left(X_{n}\right)$, so that $\mathrm{E}\left(X_{n}\right)=0$. Then, using

$$
\begin{equation*}
\mathrm{E}\left(X_{i} X_{j}^{3}\right)=\mathrm{E}\left(X_{i} X_{j}^{2} X_{k}\right)=\mathrm{E}\left(X_{i} X_{j} X_{k} X_{l}\right)=0 \tag{2.78}
\end{equation*}
$$

for distinct i, j, k, l, we obtain

$$
\begin{equation*}
\mathrm{E}\left(S_{n}^{4}\right)=\sum_{k=1}^{n} \mathrm{E}\left(X_{k}^{4}\right)+6 \sum_{j \neq k} \mathrm{E}\left(X_{j}^{2} X_{k}^{2}\right) \tag{2.79}
\end{equation*}
$$

Now

$$
\begin{equation*}
\mathrm{E}\left(X_{j}^{2}\right) \leq \mathrm{E}\left(X_{j}^{4}\right)^{\frac{1}{2}} \tag{2.80}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\mathrm{E}\left(X_{i}^{2} X_{j}^{2}\right)=\mathrm{E}\left(X_{i}^{2}\right) \mathrm{E}\left(X_{k}^{2}\right) \leq \mathrm{E}\left(X_{i}^{4}\right)^{\frac{1}{2}} \mathrm{E}\left(X_{k}^{4}\right)^{\frac{1}{2}} \leq K \tag{2.81}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\mathrm{E}\left(\frac{S_{n}}{n}\right)^{4} & \leq \frac{1}{n^{4}}(n K+3 n(n-1) K) \leq \frac{3 K}{n^{2}}, \tag{2.82}\\
\text { hence } \mathrm{E}\left(\sum_{n=1}^{\infty}\left(\frac{S_{n}}{n}\right)^{4}\right) & \leq \sum_{n=1}^{\infty} \frac{3 K}{n^{2}}<\infty . \tag{2.83}
\end{align*}
$$

Therefore, by Lemma 2.6, $\sum_{n=1}^{\infty}\left(\frac{S_{n}}{n}\right)^{4}$ is convergent almost everywhere. Hence

$$
\begin{equation*}
\frac{S_{n}}{n} \rightarrow 0 \quad \text { almost everywhere. } \tag{2.84}
\end{equation*}
$$

Lemma 2.6 Let $X \geq 0$ and $\mathrm{E}(X)<\infty$. Then $X<\infty$ almost everywhere (there exists a measurable set N of measure zero such that $X<\infty$ outside N).

Proof. Let $N:=\{X(\omega)=\infty\}$. Then $X \geq \infty \mathbb{1}_{N}$. Now

$$
\begin{equation*}
\mathrm{E}(X) \geq \infty \mathrm{P}(N) \tag{2.85}
\end{equation*}
$$

2.4 Convergence of random variables

We say that $X_{n} \rightarrow X$

$$
\begin{align*}
& \text { almost surely iff } \mathrm{P}\left(\omega \mid \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right)=1 \tag{2.86}\\
& \text { in probability iff for any } \epsilon>0, \quad \lim _{n \rightarrow \infty} \mathrm{P}\left(\left|X_{n}-X\right|>\epsilon\right)=0 \tag{2.87}
\end{align*}
$$

$$
\begin{equation*}
\text { in the } p \text { th moment (in } L^{p} \text {) iff } \lim _{n \rightarrow \infty} \mathrm{E}\left|X_{n}-X\right|^{p}=0 \tag{2.88}
\end{equation*}
$$

Proposition 2.7 $X_{n} \rightarrow X$ almost surely implies $X_{n} \rightarrow X$ in probability.
Proof. Let $N:=\left\{\omega \mid X_{n}(\omega) \nrightarrow X(\omega)\right\}$. Then $\mathrm{P}(N)=0$.
Let $\epsilon>0$. For any $\omega \in \Omega \backslash N$ we have $\left|X_{n}(\omega)-X(\omega)\right|>\epsilon$ finitely many times. Hence

$$
\begin{align*}
& N \supset\left\{\left|X_{n}-X\right|>\epsilon \text { infinitely often }\right\}=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty}\left\{\left|X_{m}-X\right|>\epsilon\right\} \tag{2.89}\\
& \text { hence } 0=\mathrm{P}(N) \geq \mathrm{P}\left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty}\left\{\left|X_{m}-X\right|>\epsilon\right\}\right) \tag{2.90}\\
&= \lim _{n \rightarrow \infty} \mathrm{P}\left(\bigcup_{m=n}^{\infty}\left\{\left|X_{m}-X\right|>\epsilon\right\}\right) \geq \lim _{n \rightarrow \infty} \mathrm{P}\left(\left\{\left|X_{n}-X\right|>\epsilon\right\}\right), \tag{2.91}\\
& \text { hence } 0=\lim _{n \rightarrow \infty} \mathrm{P}\left(\left|X_{n}-X\right|>\epsilon\right) . \tag{2.92}
\end{align*}
$$

Proposition 2.8 $X_{n} \rightarrow X$ in L^{p} implies $X_{n} \rightarrow X$ in probability.
Proof.

$$
\begin{equation*}
0 \leftarrow \mathrm{E}\left(\left|X-X_{n}\right|^{p}\right) \geq \epsilon^{p} \mathrm{P}\left(\left|X-X_{n}\right|>\epsilon\right) \tag{2.93}
\end{equation*}
$$

3 Characteristic functions and Central Limit Theorem

3.1 Real random variables

Let $(\Omega, \mathcal{F}, \mathrm{P})$ be a probability space and X a real valued random variable on Ω. X defines a probability measure μ on Borel sets in \mathbb{R} by

$$
\begin{equation*}
\mu(A):=\mathrm{P}(X(\omega) \in A) \tag{3.94}
\end{equation*}
$$

μ is sometimes called the law of X.
The distribution function of X is defined as

$$
\begin{equation*}
F(t):=\mu(]-\infty, t])=\mathrm{P}(X \leq t) \tag{3.95}
\end{equation*}
$$

If μ is continuous wrt the Lebesgue measure, then there exists $f \in L^{1}(\mathbb{R})$ with $\int f=1, f \geq 0$ such that

$$
\begin{equation*}
\mu(A)=\int_{A} f(x) \mathrm{d} x \tag{3.96}
\end{equation*}
$$

In general, we will write $\mathrm{d} \mu(x)=f(x) \mathrm{d} x$ even if such a density does not exist, e.g. δ_{a} will be written as $\delta(x-a) \mathrm{d} x$. We have $F^{\prime}(x)=f(x)$ in the distributional sense. We say that μ possesses an atom at $a \in \mathbb{R}$ if $\mathrm{P}(X=a)>0$. Note that the number of atoms is countable.

3.2 Characteristic functions

Let X be a random variable, μ its "law". Probabilists use the term "characteristic function of X " as the name of the Fourier transform of μ. Thus, using various notations, the characteristic function is defined as

$$
\begin{equation*}
\phi_{X}(\xi)=\hat{\mu}(-\xi)=\int \mathrm{e}^{\mathrm{i} \xi x} \mathrm{~d} \mu(x)=\mathrm{E}\left(\mathrm{e}^{\mathrm{i} \xi X}\right)=\int \mathrm{e}^{\mathrm{i} \xi X(\omega)} \mathrm{dP}(\omega) \tag{3.97}
\end{equation*}
$$

Here are some properties:

1. $\phi_{X}(0)=1$.
2. $\left|\phi_{X}(\xi)\right| \leq 1$.
3. $\xi \mapsto \phi_{X}(\xi)$ is continuous.
4. $\phi_{-X}(\xi)=\overline{\phi_{X}(\xi)}$.
5. $\phi_{a X+b}=\mathrm{e}^{\mathrm{i} b \xi} \phi_{X}(a \xi)$.
6. If X, Y are independent, then $\phi_{X+Y}(\xi)=\phi_{X}(\xi) \phi_{Y}(\xi)$. (Because $\mathrm{E}\left(\mathrm{e}^{\mathrm{i}(X+Y) \xi}\right)=\mathrm{E}\left(\mathrm{e}^{\mathrm{i} X \xi}\right) \mathrm{E}\left(\mathrm{e}^{\mathrm{i} Y \xi}\right)$.)

3.3 Examples of characteristic functions

In the following table $x \in \mathbb{R}$ and $n \in \mathbb{N}$. On the left we give the density of a probability measure, on the right its characteristic function:

$$
\begin{aligned}
\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)}{2 \sigma^{2}}\right) & \exp \left(\mathrm{i} \mu \xi-\frac{1}{2} \sigma^{2} \xi^{2}\right) \\
\frac{1}{2} \mathbb{1}_{[-1,1]} & \frac{\sin \xi}{\xi} ; \\
\frac{1}{2} \mathrm{e}^{-|x|} & \frac{1}{1+\xi^{2}} ; \\
\frac{1}{\pi\left(1+x^{2}\right)} & \mathrm{e}^{-|\xi|} ; \\
(1-|x|) \mathbb{1}_{[-1,1]} & 2 \frac{(1-\cos \xi)}{\xi^{2}} ; \\
\frac{(1-\cos x)}{\pi x^{2}} & (1-|\xi|) \mathbb{1}_{[-1,1]}(\xi) ; \\
\mathrm{e}^{-\lambda} \frac{\lambda^{n}}{n!} & \mathrm{e}^{\lambda\left(\mathrm{e}^{\mathrm{i}\langle x\rangle}-1\right)} ; \\
p^{n}(1-p)^{N-n}\binom{N}{n} & \left(p \mathrm{e}^{\mathrm{i} \xi}+1-p\right)^{N} ; \\
(1-p)^{n} p^{\alpha}\binom{\alpha+n-1}{n} & \left(1-(1-p) \mathrm{e}^{\mathrm{i} \xi}\right)^{-\alpha} p^{\alpha} .
\end{aligned}
$$

3.4 Weak convergence of probability measure

Let $\operatorname{Prob}(\mathbb{R})$ denote the set of probability measures on \mathbb{R}. Let $\mu_{n}, \mu \in \operatorname{Prob}(\mathbb{R})$. We say that $\mu_{n} \rightarrow \mu$ weakly if for any $h \in C_{\mathrm{b}}(\mathbb{R})$

$$
\begin{equation*}
\int h \mathrm{~d} \mu_{n} \rightarrow \int h \mathrm{~d} \mu \tag{3.98}
\end{equation*}
$$

Example 3.1 1. Let $f_{n}, f \in L_{+}^{1}(\mathbb{R})$ and $\left\|f_{n}-f\right\|_{1} \rightarrow 0$. Then $f_{n} \mathrm{~d} x \rightarrow f \mathrm{~d} x$ weakly.
2. Let $x_{n}, x \in \mathbb{R}$ and $x_{n} \rightarrow x$. Then $\delta_{x_{n}} \rightarrow \delta_{x_{0}}$ weakly.
3. Let $x_{n} \rightarrow \infty$. Then $\delta_{x_{n}}$ does not have a weak limit.

Proposition 3.2 Let F_{n}, F be the distribution functions of μ_{n}, μ. Then $\mu_{n} \rightarrow \mu$ weakly iff $F_{n}(x) \rightarrow F(x)$ for every $x \in \mathbb{R}$ which is not an atom of F.

Let X_{n}, X be random variables, possibly on different probability spaces $\left(\Omega_{n}, \mathcal{F}_{n}\right),(\Omega, \mathcal{F})$. We say that $X_{n} \rightarrow X$ in law if for the corresponding measures on \mathbb{R} we have the weak convergence $\mu_{n} \rightarrow \mu$.

3.5 Convergence of characteristic functions

Theorem 3.3 (Levy-Cramer) Let $\mu_{n} \in \operatorname{Prob}(\mathbb{R}), \phi_{n}$ their characteristic functions. Suppose that for all $\xi \in \mathbb{R}$ there exists

$$
\begin{equation*}
\phi(\xi):=\lim _{n \rightarrow \infty} \phi_{n}(\xi) \tag{3.99}
\end{equation*}
$$

and ϕ is continuous in 0 . Then there exists $\mu \in \operatorname{Prob}(\mathbb{R})$ such that ϕ is the characteristic function of μ and $\mu_{n} \rightarrow \mu$ weakly.

One can see that the condition of the continuity is necessary from the following example. Suppose that

$$
\begin{equation*}
\mathrm{d} \mu_{n}=\frac{1}{n \sqrt{2 \pi}} \mathrm{e}^{-\frac{x^{2}}{2 n^{2}}} \mathrm{~d} x \tag{3.100}
\end{equation*}
$$

Then

$$
\phi_{n}(\xi)=\mathrm{e}^{-\frac{\xi^{2} n^{2}}{2}} \rightarrow \begin{cases}1 & \xi=0 \tag{3.101}\\ 0 & \xi \neq 0\end{cases}
$$

Clearly, μ_{n} does not converge to any measure.

3.6 Central Limit Theorem

Theorem 3.4 Suppose that X_{n} are independent random variables with the same distribution as X. Let

$$
\begin{equation*}
\mathrm{E}(X)=0, \quad \sigma^{2}:=\operatorname{Var}(X)<\infty \tag{3.102}
\end{equation*}
$$

Set

$$
\begin{equation*}
G_{n}:=\frac{X_{1}+\cdots+X_{n}}{\sigma \sqrt{n}} \tag{3.103}
\end{equation*}
$$

Then G_{n} converges in law to the normal distribution. In other words, (noting that the normal distribution has no atoms),

$$
\begin{equation*}
\mathrm{P}(G<x) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \mathrm{e}^{-\frac{y^{2}}{2}} \mathrm{~d} y=: \operatorname{Erf}(x) \tag{3.104}
\end{equation*}
$$

Proof. (We follow Williams). Set

$$
\begin{equation*}
R_{n}(x):=\mathrm{e}^{\mathrm{i} x}-\sum_{k=0}^{n} \frac{(\mathrm{i} x)^{k}}{k!} \tag{3.105}
\end{equation*}
$$

We have $R_{0}(x)=\mathrm{e}^{\mathrm{i} x}-1=\int_{0}^{x} \mathrm{ie}^{\mathrm{i} y} \mathrm{~d} y$. Therefore,

$$
\begin{equation*}
\left|R_{0}(x)\right| \leq \min (2,|x|) \tag{3.106}
\end{equation*}
$$

Next $R_{n}(x)=\int_{0}^{x} \mathrm{i} R_{n-1}(y) \mathrm{d} y$. Hence

$$
\begin{equation*}
\left\lvert\, R_{n}(x) \leq \min \left(\frac{2|x|^{n}}{n!}, \frac{|x|^{n+1}}{(n+1)!}\right)\right. \tag{3.107}
\end{equation*}
$$

Therefore, if $\mathrm{E}(X)=0$ and $\sigma^{2}=\operatorname{Var}(X)<\infty$,

$$
\begin{align*}
\left|\mathrm{E}\left(\mathrm{e}^{\mathrm{i} \xi X}-1+\frac{1}{2} \sigma^{2}\right)\right| & =\left|\mathrm{E} R_{2}(\xi X)\right| \\
\leq \mathrm{E}\left|R_{2}(\xi X)\right| & \leq \xi^{2} \mathrm{E}\left(\min \left(|X|^{2}, \frac{|\xi||X|^{3}}{6}\right)\right) \tag{3.108}
\end{align*}
$$

We have the pointwise convergence $\min \left(|X|^{2}, \frac{|\xi||X|^{3}}{6}\right) \rightarrow 0$ as $\xi \rightarrow 0$. Besides, $|X|^{2}$ is integrable. Therefore, by the Lebesque Dominated Convergence Theorem

$$
\begin{equation*}
\mathrm{E}\left(\min \left(|X|^{2}, \frac{|\xi||X|^{3}}{6}\right) \rightarrow 0\right. \tag{3.109}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\phi_{X}(\xi)=1-\frac{1}{2} \sigma^{2} \xi^{2}+o\left(\xi^{2}\right) \tag{3.110}
\end{equation*}
$$

Now, as $n \rightarrow \infty$,

$$
\begin{align*}
\phi_{G_{n}}(\xi) & =\phi_{X}\left(\frac{\xi}{\sigma \sqrt{n}}\right)^{n} \tag{3.111}\\
& =\left(1-\frac{\xi^{2}}{2 n}+o\left(\frac{\xi^{2}}{\sigma^{2} n}\right)\right)^{n} \tag{3.112}\\
& =\exp \left(n \log \left(1-\frac{\xi^{2}}{2 n}+o\left(\frac{\xi^{2}}{\sigma^{2} n}\right)\right)\right. \tag{3.113}\\
& =\exp \left(n\left(-\frac{\xi^{2}}{2 n}+o\left(\frac{\xi^{2}}{\sigma^{2} n}\right)\right)=\exp \left(-\frac{\xi^{2}}{2}+n o\left(\frac{1}{n}\right)\right) \rightarrow \mathrm{e}^{-\frac{1}{2} \xi^{2}}\right. \tag{3.114}
\end{align*}
$$

$\mathrm{e}^{-\frac{1}{2} \xi^{2}}$ is clearly continuous at 0 . Hence we can invoke the Levy-Cramer Theorem to get the result.

3.7 Stable distributions

We say that the distribution of a random variable X is stable if the following holds: If X_{1}, \ldots, X_{n} are independent random variables idedntically distributed as X, then $S_{n}:=X_{1}+\cdots+X_{n}$ has the same distribution as $c_{n} X$ for some $c_{n} \in \mathbb{R}$.

One can show that the only possible c_{n} are $c_{n}=n^{\frac{1}{\alpha}}$ for some $\left.\left.\alpha \in\right] 0,2\right]$. We then say that X is α-stable.

If $\phi(\xi)$ is the characteristic function of X, then S_{n} has the characteristic fanction $\phi^{n}(\xi)$. Therefore, the α-stability s equivalent to

$$
\begin{equation*}
\phi^{n}(\xi)=\phi\left(n^{\frac{1}{\alpha}} \xi\right) \tag{3.115}
\end{equation*}
$$

Here are examples of stable distributions:

The Gaussian distribution:.

$$
\begin{equation*}
p(x)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{x^{2}}{2}}, \quad \phi(\xi)=\mathrm{e}^{-\frac{\xi^{2}}{2}} . \tag{3.116}
\end{equation*}
$$

Clearly, it is 2-stable:

$$
\begin{equation*}
\left(\mathrm{e}^{-\frac{\xi^{2}}{2}}\right)^{n}=\mathrm{e}^{-\frac{(\sqrt{n} \xi)^{2}}{2}} \tag{3.117}
\end{equation*}
$$

The Cauchy distribution.

$$
\begin{equation*}
p(x)=\frac{1}{\pi\left(1+x^{2}\right)}, \quad \phi(\xi)=\mathrm{e}^{-|\xi|} \tag{3.118}
\end{equation*}
$$

Clearly, it is 1-stable:

$$
\begin{equation*}
\left(\mathrm{e}^{-|\xi|}\right)^{n}=\mathrm{e}^{-|n \xi|} \tag{3.119}
\end{equation*}
$$

More generally, distributions with the characteristic functions $\mathrm{e}^{-c|\xi|^{\alpha}}, 0<\alpha \leq 2$ are α-stable. Note that among them only the Gaussian distribution has a finite variance. To see this we use

$$
\begin{equation*}
\mathrm{E}\left(X^{2}\right)=-\left.\frac{\mathrm{d}^{2}}{\mathrm{~d} \xi^{2}} \phi(\xi)\right|_{\xi=0} \tag{3.120}
\end{equation*}
$$

Now $\mathrm{e}^{-|\xi|^{\alpha}}$ for $0<\alpha<2$ is not twice differentiable at zero:

$$
\begin{equation*}
\frac{\mathrm{d}^{2}}{\mathrm{~d} \xi^{2}} \mathrm{e}^{-|\xi|^{\alpha}}=\alpha(\alpha-1)|\xi|^{\alpha-2} \mathrm{e}^{-|\xi|^{\alpha}} \tag{3.121}
\end{equation*}
$$

which for $\alpha \in] 0,2[\backslash\{1\}$ has no limit at $\xi=0$, and for $\alpha=1$, we get

$$
\begin{equation*}
\frac{\mathrm{d}^{2}}{\mathrm{~d} \xi^{2}} \mathrm{e}^{-|\xi|}=(2 \delta(\xi)+1) \mathrm{e}^{-|\xi|} \tag{3.122}
\end{equation*}
$$

