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1 Minkowski space

1.1 Coordinates in Minkowski space

By definition, the Minkowski space, denoted R1,n, is the vector space R1+n

equipped with the canonical pseudo-Euclidean form of signature (− + · · ·+).
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Its coordinates will be typically denoted by xµ, µ = 0, 1, . . . , n. The pseudo-
Euclidean form is then given by

gµνx
µxν = −(x0)2 +

n∑
i=1

(xi)2. (1.1)

(Throughout these notes the velocity of light has the value 1 and we use the
Einstein summation convention). We use the metric tensor [gµν ] to lower indices
and its inverse [gµν ] to raise indices:

xµ = gµνx
ν , xµ = gµνxν .

For a function R1,n 3 x 7→ f(x), we will sometimes use various kind of
notation for partial derivatives:

∂f(x)

∂xµ
= ∂xµf(x) = ∂µf(x) = f,µ(x).

Writing Rn we will typically denote the spatial part of the Minkowski space
obtained by setting x0 = 0. If x ∈ R1,n, then ~x will denote the projection of
x onto Rn. Latin letters i, j, k will sometimes denote the spatial indices of a
vector. Note that xi = xi.

On R1,n we have the standard Lebesgue measure denoted dx. The notation
d~x will be used for the Lebesgue measure on Rn ⊂ R1,n.

We will often write t for x0 = −x0. The time derivative will be often denoted
by a dot:

ḟ(t) =
∂f(t)

∂t
= ∂tf(t) =

∂f(x0)

∂x0
= ∂0f(x0) = f,0(x0).

1.2 Causal structure

A nonzero vector x ∈ R1,n is called

timelike if xµx
µ < 0,

causal if xµx
µ ≤ 0,

lightlike if xµx
µ = 0,

spacelike if xµx
µ > 0.

A causal vector x is called

future oriented if x0 > 0,

past oriented if x0 < 0.

The set of future/past oriented causal vectors is called the future/past light
cone and denoted J±. We set J := J+ ∪ J−.

If O ⊂ R1,n, its causal shadow is defined as J(O) := O + J . We also define
its future/past shadow J±(O) := O + J±.
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Lemma 1.1. Let Oi ⊂ R1,n, i = 1, 2. Then

J+(O1) ∩ O2 =∅ ⇔ O1 ∩ J−(O2) = ∅, (1.2)

J(O1) ∩ O2 =∅ ⇔ O1 ∩ J(O2) = ∅. (1.3)

We will write O1 × O2 iff (1.3) holds. We then say that O1 and O2 are
spatially separated.

1.3 Lorentz and Poincaré groups

The pseudo-Euclidean group O(1, n) is called the full Lorentz group. Its con-
nected component of unity is denoted SO0(1, n) and called the connected or
proper Lorentz group.

Λ ∈ O(1, n) if for any vector [xµ] ∈ R1,n

gµνx
µxν = gαβΛαµx

µΛβνx
ν . (1.4)

The full Lorentz group contains special elements: the time reversal T and
the space inversion (the parity) P and the space-time inversion X := PT:

T(x0, ~x) = (−x0, ~x), P(x0, ~x) = (x0,−~x), Xx = −x.

It consists of four connected components

SO0(1, n), T·SO0(1, n), P·SO0(1, n), X·SO0(1, n).

O(1, n) has three subgroups of index two:

SO0(1, n) ∪X·SO0(1, n), (1.5)

SO0(1, n) ∪ P·SO0(1, n), (1.6)

SO0(1, n) ∪ T·SO0(1, n). (1.7)

(1.5) coincides with SO(1, n) for even 1+n and (1.6) coincides with SO(1, n)
for odd 1 + n.

The affine extension of the full Lorentz group R1,noO(1, n) is called the full
Poincaré group. Its elements will be typically written as (y,Λ). On x ∈ R1,n it
acts by

(y,Λ)x := y + Λx.

Here is the multiplication:

(y1,Λ1)(y2 + Λ) = (y1 + Λ1y2,Λ1Λ2). (1.8)

We will often write y instead of (y, 1l) and Λ instead of (0,Λ). It is the full
symmetry group of the Minkowski space.

Example 1.2. Let us determine O(1, 1). We set

x+ := x+ t, x− := x− t; x =
1

2
(x+ + x−), t =

1

2
(x+ − x−).
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Now, let A =

[
a b
c d

]
.

x2 − t2 = x−x+ = (ax+ + bx−)(cx+ + dx−)

is solved by
ad+ bc = 1, ac = 0, bd = 0.

This has 4 types of solutions:

a > 0, d > 0, b = c = 0, (1.9)

a < 0, d < 0, b = c = 0, (1.10)

b > 0, c > 0, a = d = 0, (1.11)

b > 0, c > 0, a = d = 0. (1.12)

Finally, we set

A =
1

2

[
1 −1
1 1

] [
a b
c d

] [
1 1
−1 1

]
.

1.4 Euclidean space

We will sometimes consider the Euclidean space Rd equipped with the form

|x|2 = (x1)2 + · · · (xd)2. (1.13)

The orthogonal group O(d) has only two connected components, one of them is
the group SO(d). We also have the Euclidean group Rd oO(d).

Note that if d = 1 + n and we set x0 = ±ixd, then (1.13) becomes the
Minkowski form (1.1). This trick is called the Wick rotation.

1.5 Joint spectrum

Assume first that H is a finite dimensional Hilbert space. The spectrum of an
operator A then is defined as the set of its eigenvalues.

We say that A is self-adjoint if A = A∗. The spectral theorem says that if
A is self-adjoint, then

A =
∑

a∈sp(A)

a1la(A). (1.14)

where 1la(A) is the orthogonal projection onto eigenvectors of A with eigenvalue
a. More generally, if Ω ⊂ sp(A), then we set

1lΩ(A) :=
∑
a∈Ω

1la(A).

Let self-adjoint operators A1, . . . , An commute. Then so do their spectral
projections. Define the joint spectrum of A1, . . . , An by

sp(A1, . . . , An) := {(a1, . . . , an) ∈ Rn : 1l{a1}(A1) · · · 1l{an}(An) 6= 0.}.
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For any subset Ω ⊂ sp(A1, . . . , An) we define the spectral projection of A1, . . . , An
onto Ω:

1lΩ(A1, . . . An) :=
∑

(a1,...,an)∈Ω

1l{a1}(A1) · · · 1l{an}(An).

Assume now that H is a Hilbert space of any dimension. The spectrum of
an operator A is defined as

sp(A) := {z ∈ C | (z −A)−1 does not exist}.

The set of eigenvalues of A is called the point spectrum of A and is contained
in sp(A)

The spectral theorem says that if A is self-adjoint, then we can define for
any Borel set Ω ⊂ sp(A) the corresponding spectral projection, denoted 1lΩ(A).
They are orthogonal projections. They satisfy

1lΩ1(A)1lΩ2(A) = 1lΩ1∩Ω2(A). (1.15)

Let A1, . . . , An be self-adjoint operators that strongly commute, that is their
spectral projections commute. We say that (a1, . . . , an) ∈ sp(A1, . . . , An) if for
any ε > 0

1l[a1−ε,a1+ε](A1) · · · 1l[an−ε,an+ε](An) 6= 0. (1.16)

Clearly

sp(A1, . . . , An) ⊂ sp(A1)× · · · × sp(An), (1.17)

sp(UA1U
−1, . . . , UAnU

−1) = sp(A1, . . . , An) (1.18)

Example 1.3. Consider the commuting self-adjoint operators L2 = L2
x+L2

y+L2
z

and Lz.

sp(L2) = {`(`+ 1) | ` = 0, 1, . . . } (1.19)

sp(Lz) = Z, (1.20)

sp(L2, Lz) =
{(
`(`+ 1),m

)
| ` = 0, 1, . . . ; m = −`,−`+ 1, . . . , `

}
. (1.21)

Example 1.4. Consider pj = −i∂xj , −∆ =
∑d
j=1 p

2
j . They are commuting

self-adjoint operators.

sp(pj) = R; (1.22)

sp(−∆) = [0,∞[ (1.23)

sp(p1, p2, p3,−∆) = {(k1, k2, k3, k
2
1 + k2

2 + k2
3 | k1, k2, k3 ∈ R}. (1.24)

This follows from
(F−1pjFf)(k) = kjf(k). (1.25)
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1.6 Quantum mechanics

Pure quantum states are described by normalized vectors in a Hilbert space
H. The dynamics is usually described by considering a strongly continuous 1-
parameter unitary group on H, that is, a strongly continuous function R 3 t 7→
U(t) ∈ U(H) such that

U(t1)U(t2) = U(t1 + t2), t1, t2 ∈ R,

The Stone Theorem says that U(t) := e−itH for a uniquely defined self-adjoint
operator H, called a Hamiltonian.

In typical situations the Hamiltonian is bounded from below, which means
that there exists E ∈ R such that

(f |Hf) ≥ E(f |f), f ∈ H. (1.26)

Equivalently, sp(H) ⊂ [E,∞[. It does not affect any physical predictions if we
subtract from the Hamiltonian the infimum of its spectrum.

The Hamiltonian has often a ground state, that means inf sp(H) is an eigen-
value. The ground state is often nondegenerate.

It will be convenient to formalize these properties.

Definition 1.5. We will say that H, H,Ω satisfy the standard requirements of
quantum mechanics (QM) if

(1) H is a Hilbert space;

(2) H is a positive self-adjoint operator on H (called the Hamiltonian);

(3) Ω is a normalized eigenvector of H with eigenvalue 0;

(4) Ω is nondegenerate as an eigenvector of H.

1.7 Relativistic quantum mechanics

Let us assume that there are no fermions. Relativistic covariance of a quantum
system described by a Hilbert space H is expressed by choosing a strongly
continuous unitary representation of the connected Poincaré group

R1,3 o SO0(1, 3) 3 (y,Λ) 7→ U(y,Λ) ∈ U(H). (1.27)

We will denote the self-adjoint generator of space-time translations by P =
(P 0, ~P ). P 0 = H is the Hamiltonian. ~P is called the momentum. Thus

U((t, ~y), 1l) = e−itH+i~y ~P .

(We assume that the Planck constant ~ equals 1).

Proposition 1.6. sp(P ) is invariant wrt SO0(1, n).
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Proof. We compute for Λ ∈ SO0(1, n):

U(Λ)eixPU(Λ)−1 = U(0,Λ)U(x, 1)U(0,Λ−1) (1.28)

= U(Λx, 1) = ei(Λx)P = eixΛTP . (1.29)

Differentiating wrt x we obtain

U(Λ)PU(Λ)−1 = ΛTP. (1.30)

Hence ΛTsp(P ) = sp(P ).
Let us show that

SO0(1, n) = {ΛT | Λ ∈ SO0(1, n)}. (1.31)

Note that g = g−1 (which is valid in the standard coordinates). Using this we
check that

ΛTgΛ = g ⇒ ΛgΛT = g. (1.32)

Besides, both sides of (1.31) contain 1l and Λ 7→ ΛT is continuous. 2

Definition 1.7. Suppose a representation of the proper Poincaré group is given.
The following conditions will be called the basic requirements of relativistic quan-
tum mechanics (RQM):

(1) Existence of a Poincaré invariant vacuum: There exists a (normalized)
vector Ω invariant with respect to R1,3 o SO0(1, 3).

(2) Spectral condition: The joint spectrum of the energy-momentum operator
is contained in the forward light cone, that is, sp(P ) ⊂ J+.

(3) Uniqueness of the vacuum: The vector Ω is unique up to a phase factor.

Note that conditions (1)-(3) imply the standard requirements of QM.
More precisely, (2) implies H ≥ 0. (1) and (2) imply that Ω is the ground

state of H. (3) implies that this ground state is unique.
Conversely, the Poincaré invariance of sp(P ) and the boundedness from be-

low of H in any system of coordinates imply (2).

2 Algebras and axioms

2.1 States and observables

Let us describe basic framework of quantum mechanics. To avoid technical
complications, in the first part of this section we will assume that the Hilbert
space H describing a quantum system is finite dimensional, so that it can be
identified with CN , for some N .

In basic courses on Quantum Mechanics we learn that a quantum state
is described by a density matrix ρ and a yes/no experiment by an orthogonal

11



projection P . The probability of the affirmative outcome of such an experiment
equals

Tr(ρP ).

Two orthogonal projections P1 and P2 are simultaneously measurable iff they
commute.

We say that a family of orthogonal projections P1, . . . , Pn is an orthogonal
partition of unity on H iff

n∑
i=1

Pi = 1l, PiPj = δijPj , i, j = 1, . . . n.

Clearly, all elements of an orthogonal partition of unity commute with one
another. Therefore, in principle, one can design an experiment that measures
simultaneously all of them.

If P1, . . . , Pn is an orthogonal partition of unity, then setting Hi := RanPi,

i = 1, . . . , n, we obtain an orthogonal direct sum decomposition H =
n
⊕
i=1
Hi.

Thus specifying an ortogonal partition of unity is equivalnt to speciifying an
orthogonal direct sum decomposition.

To any self-adjoint operator A we can associate an orthogonal partition of
unity given by the spectral projections of A onto its eigenvalues:

1l{a}(A), a ∈ sp(A). (2.1)

By measuring the observable A we mean measuring the partition of unity (2.1).
Clearly, A =

∑
a∈sp(A)

a1la(A). Hence, the average eigenvalue of A in such an

experiment equals

TrρA =
∑

a∈sp(A)

aTrρ1la(A). (2.2)

We call (2.2) the expectation value of the observable A in the state ρ.

2.2 Superselection sectors

So far we assumed that all orthogonal projections on H, hence all self-adjoint
operators on H, correspond to possible experiments. We say that all self-adjoint
elements of B(H) are observable.

Sometimes this is not the case. We are going to describe several situations
where only a part of self-adjoint operators are observable.

It may happen that the Hilbert space H has a distinguished direct sum
decomposition

H =
n
⊕
i=1
Hn (2.3)

such that only self-adjoint operators that preserve each subspace Hi are mea-
surable. We say then that Hi, i = 1, . . . , n, are superselection sectors.

12



Let Qi denote the orthogonal projection onto Hi. Then linear combinations
of Qi can be measured simultaneously with all other observables. We say that
they are classical observables.

If we choose an o.n. basis of H compatible with (2.3), then only block
diagonal self-adjoint matrices are observable. States are also described by block
diagonal matrices.

Superselection sectors arise typically when we have a strictly conserved quan-
tity, this means a self-adjoint operator Q that commutes with all possible dy-
namics. For instance, the total charge of the system usually determines a su-
perselection sector. Another example of a superselection sector is the fermionic
parity: states of an even and odd number of fermions form two superselection
sectors.

2.3 Composite quantum systems

Suppose that two quantum systems are described by Hilbert spaces H1, H2.
Then the composite system is described by the tensor product H1 ⊗ H2. Ob-
servables of the first system are described by self-adjoint elemens of B(H1)⊗1lH2 ,
whereas observables of the second system are described by self-adjoint elements
of 1lH1

⊗ B(H2). Note that they commute, so that one can simultaneously
measure them. From the point of view of the first system only self-adjoint ele-
ments of B(H1)⊗ 1lH2

are observable. Again, we have a situation where not all
self-adjoint elements of B(H) are observable.

Let H1 = Cp with an o.n. basis e1, . . . , ep and H2 = Cq with an o.n. basis
f1, . . . , fq. Then ei ⊗ fj i = 1, . . . , p, j = 1, . . . , q is an o.n. basis of H1 ⊗ H2.
Matrices in B(Cp)⊗ 1lCq have the form

A 0
0 A

A

 , A ∈ B(Cp),

and matrices in 1lH1 ⊗B(H2) have the form
b111l b121l
b211l b221l

bqq1l

 , [bij ] ∈ B(Cq),

2.4 ∗-algebras

Consider the Hilbert space H = CN , N =
n∑
i=1

piqi,

H =
n
⊕
i=1

Cpi ⊗ Cqi ,
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and the set
A :=

n
⊕
i=1

B(Cpi)⊗ 1lqi .

Note that A is a vector space closed wrt the multiplication and the Hermitian
conjugation. It is an example of what mathematicians call a ∗-algebra, which
we recall below.

As discussed before, in the finite dimensional case, observables of a quantum
system are described by the self-adjoint part of a certain ∗-subalgebra of B(H).

Let A be a vector space over C. We say that A is an algebra if it is equipped
with an operation

A× A 3 (A,B) 7→ AB ∈ A

satisfying

A(B + C) = AB +AC, (B + C)A = BA+ CA,
(αβ)(AB) = (αA)(βB).

If in addition
A(BC) = (AB)C,

we say that it is an associative algebra. (In practice by an algebra we will usually
mean an associative algebra).

The center of an algebra A equals

Z(A) = {A ∈ A : AB = BA, B ∈ A}.

Let A, B be algebras. A map φ : A → B is called a homomorphism if it is
linear and preserves the multiplication, ie.

(1) φ(λA) = λφ(A);

(2) φ(A+B) = φ(A) + φ(B);

(3) φ(AB) = φ(A)φ(B).

We say that an algebra A is a ∗-algebra if it is equipped with an antilinear
map A 3 A 7→ A∗ ∈ A such that (AB)∗ = B∗A∗, A∗∗ = A and A 6= 0 implies
A∗A 6= 0.

If H is a Hilbert space, then B(H) equipped with the hermitian conjugation
is a ∗-algebra

If A, B are ∗-algebras, then a homomorphism π : A→ B satisfying π(A∗) =
π(A)∗ is called a ∗-homomorphism.

Theorem 2.1. (1) Every finite dimensional ∗-algebra A is ∗-isomorphic to

n
⊕
i=1

B(Cpi),

for some p1, . . . , pn

(2) If in addition A is a subalgebra of B(CN ) and contains the identity on CN ,

then there exist q1, . . . , qn with N =
n∑
i=1

piqi, and a basis of CN such that

A =
n
⊕
i=1

B(Cpi)⊗ 1lqi . (2.4)
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2.5 Commutant

If B ⊂ B(H), then the commutant of B is defined as

B′ := {A ∈ B(H) : AB = BA, B ∈ B}.

Theorem 2.2. 1. A commutant is always an algebra containing 1lH.

2. If B is ∗-invariant, then so is B′.

3. B′ = B′′′ = . . . .

4. B ⊂ B′′ = B′′′′ = . . . .

Proof. 1. and 2. are immediate. The following inclusions are easy and
they imply 3. and 4.:

B1 ⊂ B2 ⇒ B′1 ⊃ B′2, (2.5)

B ⊂ B′′. (2.6)

2

We say that A ⊂ B(H) is a von Neumann algebra if A = A′′. Clearly, von
Neumann algebras are ∗-algebras.

It is easy to see that all ∗-subalgebras of B(CN ) containing 1lN are von
Neumann algebras. Indeed, if A is given by (2.4), then A is obviously ∗-invariant
and

A′ =
n
⊕
i=1

1lpi ⊗B(Cqi).

So, A′′ = A.

2.6 Observables – infinite dimension

In infinite dimensions we have several technical complications of the formalism
developed in the previous section.

It is still reasonable to assume that observables are described by self-adjoint
elements of a ∗-algebra. However, the theory of ∗-algebras is much richer in
infinite dimension. Here are a few examples of algebras acting on an infinite
dimensional H:

1. Finite rank operators on H.

2. Compact operators on H.

3. Bounded operators on H, that is, B(H).

4. Bounded multiplication operators on H = l2(N). This algebra is isomor-
phic to l∞(N).

5. Bounded multiplication operators on H = L2(R). This algebra is isomor-
phic to L∞(R).
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The definition of a von Neumann algebra is still valid in any dimension. But
Theorem 2.1 does not extend to infinite dimension. Besides, there are other
kinds of ∗-algebras that are interesting candidates for a description of quantum
systems, such as C∗-algebras. We will however stick to von Neumann algebras.
Note that in the list above only 3,4,5 are von Neumann algebras.

If B is a ∗-invariant subset of B(H), then B′′ is the smallest von Neumann
algebra containing B. We will say that B′′ is generated by B. For instance,
the von Neumann algebra generated by finite rank or compact operators is the
whole B(H).

Physically, if we know that self-adjoint operators A1, . . . , An are observables,
then as the observable algebra it is natural to take

A = {A1, . . . , An}′′.

Observables are often described by unbounded self-adjoint operators. This is
not a serious problem. What is relevant for quantum measurements are spectral
projections, which are bounded. Thus by saying that an algebra A ⊂ B(H) is
generated by A1, . . . , An we will mean that it is generated by spectral projections
of these operators (or, equivalently, by their bounded Borel function).

1. Consider the operators φ̂i, i = 1, 2, 3 on L2(R3). They are self-adjoint and
commute. They have simple joint spectrum. The von Neumann algebra
generated by φ̂i, i = 1, 2, 3 is equal to the operators of multiplication by
functions in L∞(R3).

2. Consider in addition the operators π̂i := i−1∂xi , i = 1, 2, 3 on L2(R3).

The von Neumann algebra generated by φ̂i, π̂i, i = 1, 2, 3, coincides with
B(L2(R3)).

2.7 Haag-Kastler axioms for observable algebras

Let us assume that there are no fermions. Recall that the relativistic covariance
of a quantum system described by a Hilbert space H is expressed by choosing
a strongly continuous unitary representation of the connected Poincaré group

R1,3 o SO0(1, 3) 3 (y,Λ) 7→ U(y,Λ) ∈ U(H), (2.7)

which defines the 4-momentum P such that U(x, 1l) = eixP . We assume the
basic requirements of relativistic quantum mechanics, which we recall:

(1) Existence of a Poincaré invariant vacuum: There exists a (normalized)
vector Ω invariant with respect to R1,3 o SO0(1, 3).

(2) Spectral condition: The joint spectrum of the energy-momentum operator
is contained in the forward light cone, that is, sp(P ) ⊂ J+.

(3) Uniqueness of the vacuum: The vector Ω is unique up to a phase factor.

We still need some postulates that express the idea of causality. In the
mathematical physics literature one can find two kinds of axioms that try to
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formalize this concept: the Haag-Kastler and the Wightman axioms. Even
though the Wightman axioms were formulated earlier, it is more natural to
start with the Haag-Kastler axioms.

Definition 2.3. In addition to the basic requirements of relativistic quantum
mechanics, suppose to each open bounded set O ⊂ R1,3 we associate a von
Neumann algebra A(O) ⊂ B(H). We will say that the family {A(O)}O is a
net of observable algebras satisfying the Haag-Kastler axioms if the following
conditions hold:

(1) Isotony: O1 ⊂ O2 implies A(O1) ⊂ A(O2).

(2) Poincaré covariance: for (y,Λ) ∈ R1,3 o SO0(1, 3), we have

U(y,Λ)A(O)U∗(y,Λ) = A
(
(y,Λ)O

)
.

(3) Einstein causality: Let O1 ×O2. Then

Ai ∈ A(Oi), i = 1, 2, implies A1A2 = A2A1.

Self-adjoint elements of the algebras A(O) are supposed to describe observ-
ables in O. This means that in principle an observer contained in O can measure
a self-adjoint operator from A(O), and only from A(O).

Remark 2.4. One can ask why von Neumann algebras are used in the Haag-
Kastler axioms to describe sets of observables. We would like to argue that it is
a natural choice.

Suppose we weaken the Haag-Kastler axioms as follows: We replace the
family of von Neumann algebras A(O) by arbitrary sets B(O) of self-adjoint
elements of B(H), and otherwise we keep the axioms unchanged. Then, if we
set A(O) := B(O)′′ (which obviously contain B(O)), we obtain a family of von
Neumann algebras satisfying the usual Haag-Kastler axioms. In particular, to
see that the Einstein causality still holds, we use the following easy fact:

Let B1, B2, be two ∗-invariant subsets of B(H) such that

A1 ∈ B1, A2 ∈ B2 implies A1A2 = A2A1.

Set A1 := B′′1 , A2 := B′′2 . Then

A1 ∈ A1, A2 ∈ A2 implies A1A2 = A2A1.

In fact, B1 ⊂ B′2 ⇒ B′′1 ⊂ B′′′2 .

2.8 Quantum fields

In practical computations of quantum field theory the information is encoded
in quantum fields. In practice, fields are divided into neutral and charged fields,
which are described in somewhat different formalisms. However, since charged
fields can be decomposed into neutral fields, we will restrict ourselves to neutral
fields.
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Again, we will restrict ourselves to bosonic fields. They are typically denoted
by R1,3 3 x 7→ φ̂a(x), where a = 1, . . . , n enumerates the “internal degrees of
freedom”, eg. the species of particles and the value of their spin projected on
a distinguished axis. They commute for spatially separated points, which is
expressed by the commutation relations

[φ̂a(x), φ̂b(y)] = 0, (x− y)2 > 0.

One can try to interpret quantum fields as “operator valued tempered dis-
tributions”, which become (possibly unbounded) self-adjoint operators when
smeared out with real Schwartz test functions. We can organize the internal de-
grees of freedom of neutral fields into a finite dimensional vector space V = Rn.
Thus for any f = (fa) ∈ S(R1,3,Rn) we obtain a smeared-out quantum field,
which is the operator

φ̂[f ] :=
∑
a

∫
fa(x)φ̂a(x)dx. (2.8)

2.9 Wightman axioms for bosonic fields

Let us now formulate the Wightman axioms for neutral fields.

Definition 2.5. We assume that the basic requirements of Relativistic Quantum
Mechanics are satisfied and V is a finite dimensional real vector space equipped
with a representation

SO0(1, 3) 3 Λ 7→ σ(Λ) ∈ L(V). (2.9)

We suppose that D is a dense subspace of H containing Ω and we have a
map

S(R1,3,V) 3 f 7→ φ̂[f ] ∈ L(D) (2.10)

satisfying the following conditions:

(1) Continuity: For any Φ,Ψ ∈ D,

S(R1,3,V) 3 f 7→ (Φ|φ̂[f ]Ψ) (2.11)

is continuous.

(2) Poincaré covariance: for (y,Λ) ∈ R1,3 o SO0(1, 3) we have

U(y,Λ)φ̂[f ]U∗(y,Λ) = φ̂
[
σ(Λ)f ◦ (y,Λ)−1

]
.

(3) Einstein causality: Let suppf1 × suppf2. Then

φ̂[f1]φ̂[f2] = φ̂[f2]φ̂[f1].

(4) Cyclicity of the vacuum: Let Falg denote the algebra of polynomials gener-

ated by φ̂[f ]. Then FalgΩ is dense in H.
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(5) Hermiticity: For any Φ,Ψ ∈ D,

(Φ|φ̂[f ]Ψ) = (φ̂[f ]Φ|Ψ).

In what follows a map (2.10) satisfying Axiom (1) will be called an operator
valued distribution. By saying that it is cyclic we will mean that it satisfies
Axiom (4).

Note that free bosons satisfy both the Haag-Kastler and Wightman axioms.
In particular, the joint spectrum of the Hamiltonian and momentum is contained
in the forward light cone:

sp(P ) = {0} ∪ {p ∈ R1,3 | p2 = −m2 or p2 ≤ −4m2; p0 ≥ 0}. (2.12)

This follows from the following inequality on the relativistic energy:√
~p2 +m2 +

√
~k2 +m2 ≥

√
(~p+ ~k)2 + 4m2, (2.13)

which is saturated for ~p = ~k.
It is easy to extend the Haag-Kastler and Wightman axioms to include

fermions. The Poincaré group R1,3 o SO0(1, 3) has to be replaced by its 2-fold
covering R1,3 o Spin0(1, 3), and (in the case of Wightman axioms) we should
allow for anticommutation between fields.

2.10 Relationship between Haag-Kastler and Wightman
axioms

“Morally”, Wightman axioms are stronger than the Haag-Kastler axioms. In
fact, let Aalg(O) be the algebra of polynomials in φ̂[f ] with suppf ⊂ O, which
can be treated as a ∗-subalgebra of L(D). Then the family O 7→ Aalg(O) is
almost a net of field algebras. Unfortunately, elements of Aalg(O) are defined
only onD and not on the wholeH, and often do not extend to bounded operators
on H.

We know that the fields φ̂[f ] are Hermitian (symmetric) on D. Suppose
they are essentially self-adjoint. Then their closures are self-adjoint operators
on H. We could consider the von Neumann algebra A(O) generated by bounded

functions of φ̂[f ], suppf ⊂ O. Then there is still no guarantee that the net
O 7→ A0(O) satisfies the Haag-Kastler axioms: we are not sure whether the
Einstein causality holds.

To understand this, we recall that there are serious problems with commu-
tation of unbounded operators [Reed-Simon-I]. One says that two self-adjoint
operators commute (or strongly commute) if all their spectral projections com-
mute. There exist however examples of pairs of two self-adjoint operators A, B
and a subspace D ⊂ DomA ∩DomB with the following property:

(1) A and B preserve D and are essentially self-adjoint on D.

(2) A and B commute on D.
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(3) A and B do not commute strongly.

(4) D is dense.

One of the most important topics in QFT is that of gauge invariance. In the
older literature one distinguishes between gauge invariance of the first kind–wrt
a global symmetry–and of the second kind–wrt a local symmetry. In modern
physics literature the first meaning seems to have disappeared, although it is
still used in some parts of mathematical literature. Thus in the modern physics
usage by gauge invariance one one means local gauge invariance.

Global symmetries are well understood in the framework of Haag-Kastler
axioms, thanks to the work of Doplicher-Haag-Roberts. Unfortunately, to my
understanding, we do not know how to accommodate (local) gauge invariance
in axioms of QFT.

The Haag-Kastler axioms are so abstract, general and have so little structure
that we do not know how to see the gauge invariance. The Wightman axioms do
not apply to gauge fields, because apparently for them one needs an indefinite
product Hilbert space or nonlocal fields like Wilson loops. I am not aware of a
successful adaptation of Wightman axioms that accommodates gauge fields.

3 The Laplace and Helmholtz equation

3.1 Tempered distributions

The space of Schwartz functions on Rn is defined as

S(Rn) :=
{

Ψ ∈ C∞(Rn) :
∫
|xα∇βxΨ(x)|2dx <∞, α, β ∈ Nn

}
. (3.1)

Remark 3.1. (3.1) is equivalent to the definition

S(Rn) =
{

Ψ ∈ C∞(Rn) : |xα∇βxΨ(x)| ≤ cα,β , α, β ∈ Nn
}
. (3.2)

more common in the literature.

S ′(Rn) denotes the space of continuous linear functionals on S(Rn). This
means. a linear functional S(Rn) 3 Ψ 7→ 〈T |Ψ〉 ∈ C belongs to S ′ iff there
exists N such that

|〈T |Ψ〉| ≤ C
( ∑
|α|+|β|<N

∫
|xα∇βxΨ(x)|2dx

) 1
2

.

If f is a function which is locally integrable (L1 on all bounded intervals),
and satisfies some mild growth conditions, then it defines a distribution in S ′
by the formula

〈Tf |Ψ〉 =

∫
f(x)Ψ(x)dx. (3.3)

Motivated by (3.3), we will often use the integral notation

〈T |Ψ〉 =

∫
T (x)Ψ(x)dx
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also for distributions that are not given by such integrals
Here are some examples of elements of S ′(R):∫

δ(t)Φ(t)dt := Φ(0), (3.4)

P
∫

Φ(x)

x
dx := lim

ε↘0

(∫ ε

−∞
+

∫ +∞

ε

)
Φ(x)

x
dx, (3.5)∫

(t± i0)λΦ(t)dt := lim
ε↘0

∫
(t± iε)λΦ(t)dt. (3.6)

(3.6) is simply given by the locally integrable function tλ, however for λ < −1
it is not.

Here some examples of functions that do not correspond to elements of S ′(R):
et, 1
|t| ,

1
t . The first blows up at infinity too fast. The last two can be regularized

to make a distribution in S ′(R). Note the Sochocki formula and its consequence:

1

t∓ i0
= P 1

t
± iπδ(t), (3.7)

1

t− i0
− 1

t+ i0
= 2πiδ(t). (3.8)

Note that for λ > −1

3.2 Fourier transformation

The definition of the Fourier transform of Rd 3 ~x 7→ f(~x) on a Euclidean space
will be standard:

f̂(~k) :=

∫
e−i~k·~xf(~x)d~x.

It is also common normalize the Fourier transformation as follows

Ff(k) =
1√

(2π)d
f̂(k).

F is unitary on L2(Rd).
Often, we will drop the hat – the name of the variable will indicate whether

we use the position or momentum representation:

f(~k) =

∫
e−i~k·~xf(~x)d~x, f(~x) =

1

(2π)d

∫
ei~k·~xf(~k)d~k.

On a Minkowski space, for the time variable (typically t) we reverse the sign
in the Fourier transform:

f(ε) =

∫
eiεtf(t)dt, f(t) =

1

2π

∫
e−iεtf(ε)dε.

The Fourier transformation is a continuous map from S ′ into itself. We have
continuous inclusions

S(Rn) ⊂ L2(Rn) ⊂ S ′(Rn).
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3.3 Green’s functions on the Euclidean space

Let Rd be the Euclidean space and ∆ the Laplacian. The following equations
are invariant wrt Rd oO(d):

the Laplace equation −∆ζ =0, (3.9)

the Helmholtz equation (−∆±m2)ζ =0. (3.10)

We also have their inhomogeneous versions:

the Poisson equation −∆ζ =f, (3.11)

the inhomogeneous Helmholtz equation (−∆±m2)ζ =f. (3.12)

We will say that G is Green’s function for −∆±m2 if

(−∆±m2)G(x) = δ(x). (3.13)

If we are given f and G is Green’s function, then

ζ(x) =

∫
G(x− y)f(y)dy (3.14)

solves (3.12)
Assume that ζ, f ∈ S ′(Rd) and apply the Fourier transformation

ζ(x) = (2π)−d
∫

eipxζ(p)dp, f(x) = (2π)−d
∫

eipxf(p)dp (3.15)

to (3.12). Then

(p2 +m2)ζ(p) = f(p), ζ(p) = (p2 +m2)−1f(p) (3.16)

Using Ĝ ? f = Ĝf̂ we obtain

ζ(x) =

∫
Gd,m(x− y)f(y)dy, Gd,m(x) = (2π)−d

∫
eixp

(p2 +m2)
dp. (3.17)

For m > 0 or m = 0 and d 6= 1, 2, the function (p2 +m2)−1 is locally integrable
and belongs to S ′(Rd). Hence its Fourier transform is well defined and is the
unique Green’s function of−∆+m2 (at least if we are interested only in solutions
in S ′(Rd), which is usually the case).

The case m > 0 can be reduced to m = 1:

Gd,m(x) = md−2Gd(mx), Gd(x) = (2π)−d
∫

eixp

(p2 + 1)
dp. (3.18)

The Euclidean invariance suggests to look for Green’s functions that depend
only on r = |x|, so that one can write G(x) = G(r). Such Green’s functions
away from r = 0 satisfy the radial part of the Helmholtz equation:(

− ∂2
r −

d− 1

r
∂r ±m2

)
G(r) = 0 (3.19)

The massless Green’s function can be expressed in terms of elementary func-
tions.
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Theorem 3.2. For d ≥ 3, Gd,0(r) =
Γ( d2−1)

4π
d
2
r2−d.

E.g. G3,0(r) = 1
4πr , G4,0(r) = 1

4π2r2 .

Proof. It is elementary to check that G(r) = cdr
2−d satisfies the Laplace

equation away from the origin. Clearly, it belongs to S ′(Rd). We need to find
cd. We take a radial test function Ψ(r). We need to check that

−∆Gd,0(x) = δ(x), (3.20)

or

∫
∆G(x)Φ(x)dx = −Φ(0). (3.21)

But the lhs of (3.21) equals∫
G(x)∆Φ(x)dx =

∫ ∞
0

G(r)rd−1|Sd−1|
(
∂2
r +

d− 1

r
∂r

)
Φ(r)dr (3.22)

= cd|Sd−1|

(∫ ∞
0

Φ(r)
(
∂2
r − ∂r

d− 1

r

)
rdr (3.23)

+
(
rΦ′(0)− Φ(0) + (d− 1)Φ(0)

))∣∣∣∞
0

(3.24)

= cd|Sd−1|(d− 2)Φ(0), (3.25)

where |Sd−1| = 2πd

Γ( d2 )
is the surface of the d− 1-dimensional sphere.

In the massive case, For d ≥ 3, Gd,m(r) ∼ Γ( d2−1)

4π
d
2
r2−d. near zero, but for

large r we have exponential decay, more precisely

Gd,m(r) ∼ 1

2(2π)
d−1
2

r
1−d
2 e−mr. (3.26)

This will follow from the analysis below.

3.4 Bessel equations

There are two basic forms of the Bessel equation:

the modified Bessel equation
(
∂2
r +

1

r
∂r −

µ2

r2
− 1
)
v = 0, (3.27)

the (standard) Bessel equation
(
∂2
r +

1

r
∂r −

µ2

r2
+ 1
)
v = 0. (3.28)

One can pass from one to the other by substituting ±ir for r.
We have

r−1+ d
2

(
∂2
r +

d− 1

r
∂r

)
r−

d
2 +1 = ∂2

r +
1

r
∂r −

(
1− d

2

)2 1

r2
, (3.29)

Set µ = d
2 − 1 and m = 1. We see that if F satisfies satisfies the modified

Bessel equation, then r1− d2F (r) satisfies (3.19) for +m2, and if F satisfies the

standard Bessel equation is, then r1− d2F (r) satisfies (3.19) for −m2.
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3.5 Macdonald function

One of standard solutions of the modified Bessel equation is the Macdonald
function:

Kµ(r) :=
1

2

∫ ∞
0

exp
(
−r

2
(s+ s−1)

)
s±µ−1ds. (3.30)

The integral (3.30) is absolutely convergent. Substitution s = t−1 shows that µ
can be replaced by −µ (and thus Kµ = K−µ).

Theorem 3.3. For | arg z| < π − ε,

lim
|z|→∞

Kµ(z)
e−z
√
π√

2z

= 1.

Proof. We use the steepest descent method. Set φ(t) := − 1
2 (t + t−1). We

compute

φ′(t) = −1

2
(1− t−2), φ′′(t) = −t−3.

Hence φ has a critical point at t0 = 1 with φ(t0) = −1 and φ′′(t0) = −1. Thus

Kµ(z) =
1

2

∫ ∞
0

t−µ−1 exp(zφ(t))dt

' 1

2

∫ ∞
−∞

exp

(
zφ(t0) + z

φ′′(t0)

2
(t− t0)2

)
dt

=
1

2
e−z

∫ ∞
−∞

exp
(z

2
(t− 1)2

)
dt =

1

2
e−z
√

2π√
z
.

2

Theorem 3.4. For µ > 0,

lim
m↘0

mµKµ(mr) =
1

2
Γ(µ)

(r
2

)−µ
. (3.31)

Proof. We set s = 2t
mr :

mµKµ(mr) =
mµ

2

∫ ∞
0

exp
(
−mr

2
(s+ s−1)

)
sµ−1ds (3.32)

=
1

2

(2

r

)µ ∫ ∞
0

exp

(
−t− m2r2

4t

)
tµ−1dt (3.33)

→ 1

2

(r
2

)−µ
Γ(µ). (3.34)

2

For half-integer µ the Macdonald function can be expressed in terms of
elementary functions, e.g.

K± 1
2
(r) =

( π
2r

) 1
2

e−r. (3.35)
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Theorem 3.5.

Gd(r) =
1

(2π)
d
2

r1− d2K d
2−1(r). (3.36)

E.g. G1(r) = e−r

2 , G3(r) = e−r

4πr .

Proof. We will use the following identities:

1

A
=

∫ ∞
0

e−sAds, (3.37)∫
dpe−

sp2

2 eipx =
(2π

s

) d
2

e−
x2

2s . (3.38)

Now

(2π)−d
∫

eipxdp

(1 + p2)

= (2π)−d
|x|
2

∫ ∞
0

ds

∫
dpe−(1+p2)

|x|s
2 eipx

= (2π)−d
( |x|

2

)1− d2
π
d
2

∫ ∞
0

dss−
d
2 e−(s+ 1

s )
|x|
2

= (2π)−d2π
d
2

( |x|
2

)1− d2
K1− d2

(|x|).

2

Using
Gd,0(x) = lim

m↘0
md−2Gd(mx), (3.39)

we obtain an alternative proof of the zero mass formulas Gd,0(r) =
Γ( d2−1)

4π
d
2
r2−d,

d ≥ 3.

3.6 Bessel and Hankel functions

We will also need the following solutions of the standard Bessel equation:

the Hankel functions: H(1)/(2)
µ (r) = H±µ (r) :=

2

π
e∓iπ2 (µ+1)Kµ(∓ir), (3.40)

the Bessel function: Jµ(r) :=
1

2

(
H+
µ (r) +H−µ (r)

)
(3.41)

For large r > 0 the Hankel functions are oscillating:

lim
r→∞

H±µ (r)(
2
πr

) 1
2 e±ire∓

iµπ
2 ∓

iπ
4

= 1,
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The Bessel function can be expanded in a power series near zero:

Jµ(r) =

∞∑
n=0

(−1)n
(
r
2

)2n+µ

n!Γ(µ+ n+ 1)
.

Let’s go back to the Helmholtz equation with the negative sign at m2:

(−∆−m2)ζ = f. (3.42)

The Green’s function Gd,m is well defined not only for m ≥ 0, but also for
Re(m) > 0, which guarantees m2 ∈ C\]−∞, 0]. Taking the limit at imaginary
line, that is setting Gd,±im, we obtain two Green’s functions of (3.42):

Gd,∓im(r) = (2π)−d
∫

e−ixp

(p2 −m2 ∓ i0)
dp (3.43)

= ± i

4

( m

2πr

) d
2−1

H±d
2−1

(mr). (3.44)

Thus in the case −m2 we have many Green’s functions that belong to S ′.
We also have many solutions in S ′ of the (homogeneous) Helmholtz equation,
e.g.

i
(
Gd,im(r)−Gd,−im(r)

)
=

1

2

( m

2πr

) d
2−1

J d
2−1(mr). (3.45)

4 Wave and Klein-Gordon equations

4.1 Propagators

Let d = 1 + n. Let 2 be the d’Alembertian on the Minkowski space R1,n:

2 := −∂2
0 +

n∑
i=1

∂2
i . (4.1)

The following equations are invariant wrt R1+n oO(1, n):

the wave equation −2ζ =0, (4.2)

the Klein-Gordon equation (−2 +m2)ζ =0. (4.3)

We are interested also in their inhomogeneous versions:

the inhomogeneous wave equation −2ζ =f, (4.4)

the inhomogeneous Klein-Gordon equation (−2 +m2)ζ =f. (4.5)

We will say that G• is Green’s function of the Klein-Gordon equation if

(−2 +m2)G•(x) = δ(x). (4.6)
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Thus, for any f ,

ζ(x) =

∫
G•(x− y)f(y)dy (4.7)

satisfies (4.5).
We say that G• is a solution the Klein-Gordon equation if

(−2 +m2)G•(x) = 0. (4.8)

The ansatz analogous to (3.17)

G•(x) = (2π)−d
∫

eixp

(p2 +m2)
dp (4.9)

is incomplete and needs to be precised to make it well defined.
Every bisolution of G• can be written as

G•(x) =

∫
eipxg(p)δ(p2 +m2)

dp

(2π)3

where g is a function on the two-sheeted hyperboloid p2 + m2 = 0 (see below
for the meaning of δ(p2 +m2)).

4.2 Invariant measure

Let f be a differentiable function on R. The following fact (under appropriate
assumptions) is easy:

Lemma 4.1. Let δε be an approximate delta function, that is

lim
ε↘0

∫
δε(t)φ(t)dt = φ(0).

Then ∫
lim
ε↘0

δε(f(s))φ(s)ds =
∑

f(si)=0

φ(si)

|f ′(si)|
. (4.10)

This suggests the following notation:∫
δ(f(s))φ(s)ds =

∑
f(si)=0

φ(si)

|f ′(si)|
. (4.11)

Now consider R1,n and apply (4.11) to s = p0 for fixed ~p and

f(p) = p2 +m2 = −(p0)2 + ~p2 +m2.

We have
d(p2 +m2)

dp0
= 2p0,
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and p2 +m2 = 0 iff p0 = ±
√
~p2 +m2. Hence we can write

δ(p2 +m2)dp =
δ
(
p0 −

√
~p2 +m2

)
2
√
~p2 +m2

d~p+
δ
(
p0 +

√
~p2 +m2

)
2
√
~p2 +m2

d~p. (4.12)

(4.12) is a measure on R1,3 invariant wrt Lorentz transformations. In fact,

2πiδ(p2 +m2) = lim
ε↘0

( 1

p2 +m2 − iε
− 1

p2 +m2 + iε

)
, (4.13)

where the rhs is obviously Lorentz invariant.

4.3 Propagators for the Klein-Gordon and wave equation

Introduce

• the forward/backward or retarded/advanced propagator

G∨/∧(x) :=
1

(2π)d

∫
eix·p

p2 +m2 ∓ i0sgn(p0)
dp, (4.14a)

• the Feynman/anti-Feynman(-Stueckelberg) propagator

GF/F(x) :=
1

(2π)d

∫
eix·p

p2 +m2 ∓ i0
dp, (4.14b)

• the Pauli–Jordan propagator or the commutator function

GPJ(x) :=
i

(2π)d

∫
eix·psgn(p0)δ(p2 +m2)dp (4.14c)

=
1

(2π)d−1

∫
d~p√

~p2 +m2
ei~x~p sin

(
x0
√
~p2 +m2

)
(4.14d)

• the positive/negative frequency, or particle/antiparticle, or Wightman-anti-
Wightman solution (two-point function)

G(±)(x) :=
1

(2π)d

∫
eix·pθ(±p0)δ(p2 +m2)dp (4.14e)

=
1

(2π)d−1

∫
d~p

2
√
~p2 +m2

e∓ix0
√
~p2+m2+i~x~p. (4.14f)

(4.14a), (4.14b) are distinguished Green’s functions (inverses) and (4.14c), (4.14e)
are distinguished solutions of the Klein–Gordon equation −2+m2. We will call
them jointly “propagators”.
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Note the identities satisfied by the propagators:

G∨ −G∧ = GPJ (4.15a)

= iG(+) − iG(−), (4.15b)

GF −GF = iG(+) + iG(−), (4.15c)

GF +GF = G∨ +G∧, (4.15d)

GF = iG(+) +G∧ = iG(−) +G∨, (4.15e)

GF = −iG(+) +G∨ = −iG(−) +G∧. (4.15f)

To prove these identities we use repeatedly

θ(±p0)2πiδ(p2 +m2) = θ(±p0)
( 1

p2 +m2 − i0
− 1

p2 +m2 + i0

)
, (4.16)

4.4 Einstein causality of propagators

Proposition 4.2. We have suppG∨/∧ ⊂ J∨/∧ and suppGPJ ⊂ J .

Proof. Let us prove that suppG∨ ⊂ J∨. By the Lorentz invariance it
suffices to prove that G∨ is zero on the lower half-plane. We write

G∨(x) =

∫
eipx

(p2 +m2 − i0sgnp0)

dp

(2π)4

=

∫
e−ip0x0+i~p~x(

~p2 +m2 − (p0 + i0)2
) dp0d~p

(2π)4
.

Next we continuously deform the contour of integration, replacing p0 by p0 +iR,
where R ∈ [0,∞[. We do not cross any singularities of the integrand and note

that e−ix0(p0+iR) goes to zero (remember that x0 < 0).
Analogously one proves suppG∧ ⊂ J∧. By (4.15a) we obtain suppGPJ ⊂ J .

2

Note that

G(+)(x) =

{
−iGF(x) on R1,3\J∧,
iGF(x) on R1,3\J∨;

(4.17)

G(+)(x) = G(−)(x) =

{
−iGF(x) on R1,3\J∨,
iGF(x) on R1,3\J∧.

(4.18)

Hence

−iGF(x− y) =θ(x0 − y0)G(+)(x− y) + θ(y0 − x0)G(−)(x− y), (4.19)

iGF(x− y) =θ(x0 − y0)G(−)(x− y) + θ(y0 − x0)G(+)(x− y). (4.20)
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4.5 Propagators in position representation in dimension
1 + 3.

Below we give the formulas for the massive propagators in the position repre-
sentation in dimension 1 + 3.

• The forward/backward or retarded/advanced propagator:

G∨/∧(x) =
1

2π
θ(±x0)δ(x2)− mθ(−x2)θ(±x0)

4π
√
−x2

J1(m
√
−x2).

• The (anti-)Feynman(-Stueckelberg) Green’s function:

GF/F(x) =
1

4π
δ(x2)− mθ(−x2)

8π
√
−x2

H∓1 (m
√
−x2)

±miθ(x2)

4π2
√
x2
K1(m

√
x2). (4.21)

• The Pauli-Jordan

GPJ(x) =
1

2π
sgnx0δ(x2)− msgnx0θ(−x2)

4π
√
−x2

J1(m
√
−x2).

• The positive/negative frequency solution:

G(±)(x) = ∓ i

4π
sgnx0δ(x2)

− imθ(−x2)

8π
√
−x2

H∓sgnx0

1 (m
√
−x2) +

mθ(x2)

4π2
√
x2
K1(m

√
x2).

The above formulas are somewhat sloppily written in the neighborhood of
the surface of the light cone, where they describe irregular distribution.

To obtain these formulas, first we find the Euclidean Green’s function in 4
dimensions:

GE(x) =
m

4π2|x|
K1(m|x|). (4.22)

Using the formula for the function K1 we can write

GE(x) =
1

4π2|x|2
+
m2

8π2

∞∑
k=0

(
ln
|x|m

2
+ γ +

Hk +Hk+1

2

) 1

k!(k + 1)!

(m2|x|2

4

)k
=

1

4π2|x|2
+m2 ln

|x|m
2

u(m2|x|2) +m2v(m2|x|2), (4.23)

where u, v are analytic functions and Hk = 1
1 + · · · + 1

k . Then we apply the
Wick rotation. This means that we replace x4 with ±ix0 in the argument. We
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also have to replace the measure of integration dx1 · · · dx4 with ±idx0dx1 · · · .
This leads to the Feynman/anti-Feynman propagator

GF/F(x0, ~x) = ±iGE(±ix0, ~x). (4.24)

We obtain (4.21). This is obvious for spacelike x0, ~x, where the Wick rotation
does not change the sign of x2 and therefore we still obtain an expression in-
volving the Macdonald function. Inside the light cones the sign of x2 changes.
More precisely, we can interpret the Wick rotation as e±iφx0 with φ ∈ [0, π2 ]
and we obtain expressions involving Hankel functions. For φ ∈]0, π2 [ we have
±Im

(
(e±iφx0)2 + (~x)2

)
> 0. Therefore, the Eclidean square |x|2 has to be re-

placed with the Lorentzian square x2 ± i0. On the surface of the light cone the
terms involving u, v are sufficiently regular and cause no problem. However the
function 1

|x|2 becomes

1

x2 ± i0
=

1

x2
∓ iπδ(x2) =

1

x2
∓ iπ

2|~x|
(
δ(x0 + |~x|) + δ(x0 − |~x|)

)
, (4.25)

where we used the Sochocki formula and 1
x2 is meant in terms of the principal

value.
Then we compute

G∨(x) +G∧(x) = GF(x) +GF(x) (4.26)

=
1

2π
δ(x2)− mθ(−x2)

4π
√
−x2

J1(m
√
−x2). (4.27)

Now we can obtain the forward/backward propagators from

G∨/∧ = θ(±x0)
(
GF(x) +GF(x)

)
. (4.28)

Finally, we can read off the formulas for positive/negative frequency solutions
from (4.17).

Below we give the formulas for the massless propagators in the position
representation in dimension 1 + 3.

• The forward/backward propagator:

G∨/∧(x) =
1

2π
θ(±x0)δ(x2) =

δ(x0 ∓ |~x|)
4π|~x|

.

• The (anti-)Feynman propagator:

GF/F(x) =
±i

4π2(x2 ± i0)
.

• The Pauli-Jordan or the commutator function:

GPJ(x) =
1

2π
sgnx0δ(x2) =

δ(x0 − |~x|)
4π|~x|

− δ(x0 + |~x|)
4π|~x|

.

• The positive frequency, resp. negative frequency:

G(±)(x) =
1

4π(x2 ± i0sgnx0)
.
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4.6 Classical propagators and solving the Klein-Gordon
equation

A function on R1,n is called space compact if there exists a compact K ⊂ R1,n

such that suppf ⊂ J(K). It is called future/past space-compact if there exists a
compact K ⊂ R1,n such that suppf ⊂ J±(K).

The set of space compact smooth functions will be denoted C∞sc (R1,n).

Proposition 4.3. Let f ∈ C∞c (R1,n).

(1) ζ∨/∧(x) :=
∫
G∨/∧(x− y)f(y)dy is the unique solution of

(−2 +m2)ζ =f. (4.29)

future/past space compact.

(2) ζ(x) :=
∫
GPJ(x− y)f(y)dy is a solution of

(−2 +m2)ζ =0. (4.30)

Every smooth space-compact solution of (4.30) is of this form.

GPJ(x) is the unique solution of the Klein-Gordon equation satisfying

GPJ(0, ~x) = 0, ĠPJ(0, ~x) = δ(~x). (4.31)

Proposition 4.4. Let α, β ∈ C∞c (Rn). Then there exists a unique ζ ∈ C∞sc (R1,n)
that solves

(−2 +m2)ζ = 0 (4.32)

with initial conditions ζ(0, ~x) = α(~x), ζ̇(0, ~x) = β(~x). It satisfies suppζ ⊂
J(suppα ∪ suppβ) and is given by

ζ(t, ~x) =

∫
Rn
ĠPJ(t, ~x− ~y)α(~y)d~y +

∫
Rn
GPJ(t, ~x− ~y)β(~y)d~y. (4.33)

Proof. Clearly, (4.33) satisfies (4.32). Using (4.31) we check that ζ(0, ~x) =
α(~x). We have

G̈PJ(0, ~x) = (∆−m2)GPJ(0, ~x) = 0. (4.34)

Now we can verify that ζ̇(0, ~x) = β(~x). 2

5 Second quantization

In this chapter we describe the terminology and notation of multilinear algebra.
We will concentrate on the infinite dimensional case, where it is often natural to
use the structure of Hilbert spaces. We will introduce Fock spaces and various
classes of operators acting on them. In quantum physics the passage from a
dynamics on one-particle spaces to a dynamics on Fock spaces is often called
second quantization – hence the name of the chapter.

We will consider two setups: that of vector spaces and that of Hilbert spaces.
If X ,Y are vector spaces, then L(X ,Y) will denote the set of linear operators
from X to Y. If X ,Y are Hilbert spaces, then B(X ,Y) will denote the set of
bounded operators fro X to Y.
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5.1 Vector and Hilbert spaces

Let V be a vector space. A set {ei : i ∈ I} ⊂ V is called linearly independent
if for any finite subset {ei1 , . . . , ein} ⊂ {ei : i ∈ I}

c1ei1 + · · ·+ cnein = 0 ⇒ c1 = · · · = cn = 0. (5.1)

{ei : i ∈ I} is a Hamel basis (or simply a basis) of V if it is a maximal linearly
independent set. It means that it is linearly independent and if we add any
v ∈ V to {ei : i ∈ I} ⊂ V then it is not linearly independent any more. Note
that every v ∈ V can be written as a finite linear combination v =

∑
i∈I λiei in

a unique way.
Let V be a vector space over C or R equipped with a scalar product (v|w)

(positive, nondegenerate, sesquilinear form). It defines a metric on V by

‖v − w‖ :=
√

(v − w|v − w). (5.2)

We say that V, (·|·) is a Hilbert space if V is complete.
If V, (·|·) is not necessarily complete, then we can always complete it, that

is find a larger complete space Vcpl, (·|·) in which V is embedded as a dense
subspace. Vcpl is uniquely defined and is called the completion of V.

For instance, if we take Cc(R), C∞c (R) or S(R) with the usual scalar product
(f |g) =

∫
f(x)g(x)dx, then its completion is L2(R).

If V is a Hilbert space, then {ei : i ∈ I} is called an orthonormal basis
(o.n.b.) if it is a maximal orthonormal set. Note that every v ∈ V can be written
as a linear combination v =

∑
i∈I λiei, where

∑
i∈I |λi|2 <∞, in a unique way

Note that in a finite dimensional Hilbert space every orthonormal basis is a
basis. This is not true in infinite dimensional Hilbert spaces.

5.2 Direct sum

Let (Vi)i∈I be a family of vector spaces. The algebraic direct sum of Vi will be
denoted

al⊕
i∈I
Vi, (5.3)

It consists of sequences (vi)i∈I , which are zero for all but a finite number of
elements.

If (Vi)i∈I is a family of Hilbert spaces, then
al⊕
i∈I
Vi has a natural scalar prod-

uct. (
(yi)i∈I

∣∣∣(vi)i∈I) =
∑
i∈I

(yi|vi). (5.4)

The direct sum of Vi in the sense of Hilbert spaces is defined as

⊕
i∈I
Vi :=

(
al⊕
i∈I
Vi
)cpl

.

If I is finite, then
al⊕
i∈I
Vi = ⊕

i∈I
Vi
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Let (Vi), (Wi), i ∈ I, be families of vector spaces. If ai ∈ L(Vi,Wi), i ∈ I,

then their direct sum is denoted ⊕
i∈I

ai and belongs to L

(
al⊕
i∈I
Vi,

al⊕
i∈I
Wi

)
. It is

defined as (
⊕
i∈I

ai

)
(vi)i∈I = (aivi)i∈I (5.5)

Let Vi, Wi, i ∈ I be families of Hilbert spaces, and ai ∈ B(Vi,Wi) with

supi∈I ‖ai‖ <∞. Then the operator ⊕
i∈I

ai is bounded. Its extension inB

(
⊕
i∈I
Vi, ⊕

i∈I
Wi

)
will be denoted by the same symbol.

5.3 Tensor product

Let V,W be vector spaces. The algebraic tensor product of V and W will be
denoted V al⊗W. Here is one of its definitions

Let Z be the space of finite linear combinations of vectors (v, w), v ∈ V,
w ∈ W. In Z we define the subspace Z0 spanned by

(λv,w)− λ(v, w), (v, λw)− λ(v, w),

(v1 + v2, w)− (v1, w)− (v2, w), (v, w1 + w2)− (v, w1)− (v, w2).

We set V al⊗W := Z/Z0. If v ∈ V, w ∈ W, we define v ⊗ w := (v, w) + Z0.

Remark 5.1. Note that (v, w) above is just a symbol and not an element of
V ⊕W. Elements of the space Z have the form

n∑
j=1

λn(vn, wn). (5.6)

In particular, in general

(v1, w1) + (v2, w2) 6∼ (v1 + v2, w1 + w2), (5.7)

λ(v, w) 6∼ (λv, λw). (5.8)

V al⊗W is a vector space and ⊗ is an operation satisfying

(λv)⊗ w = λv ⊗ w, v ⊗ (λw) = λv ⊗ w,
(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w, v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2.

Vectors of the form v ⊗w are called simple tensors. Not all elements of V ⊗W
are simple tensors, but they span V al⊗W.

If {ei}i∈I and {fj}j∈J are bases of V, resp. W, then {ei ⊗ fj}(i,j)∈I×J is a

basis of V al⊗W,
If V, W are Hilbert spaces, then V al⊗W has a unique scalar product such

that

(v1 ⊗ w1|v2 ⊗ w2) := (v1|v2)(w1|w2), v1, v2 ∈ V, w1, w2 ∈ W.
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To see this it is enough to choose o.n.b’s {ei}i∈I and {fj}j∈J in V, resp. W.

Then every element of V al⊗W can be written as an (infinite) linear combination
of ei⊗fj and we can use them as an orthonormal set defining this scalar product.

We set
V ⊗W := (V al⊗W)cpl,

and call it the tensor product of V and W in the sense of Hilbert spaces. If
{ei}i∈I and {fj}j∈J are o.n.b’s of V, resp. W, then {ei ⊗ fj}(i,j)∈I×J is an
o.n.b. of V ⊗W,

If one of the spaces V or W is finite dimensional, then V al⊗W = V ⊗W.
Let V1,V2,W1,W2 be vector spaces. If a ∈ L(V1,V2) and b ∈ L(W1,W2),

then there exists a unique operator a ⊗ b ∈ L(V1
al⊗W1,V2

al⊗W2) such that on
simple tensors we have

(a⊗ b)(y ⊗ w) = (ay)⊗ (bw). (5.9)

To see this it is enough to choose bases (ei)i∈I in V1 and (fj)j∈J in W1 and to
define a⊗ b on the basis (ei ⊗ fj)(i,j)∈I×J by

(a⊗ b)ei ⊗ fj := (aei)⊗ (bfj). (5.10)

Then we check that thus defined operator satisfies (5.9) and is unique. It is
called the tensor product of a and b.

If V1,V2,W1,W2 are Hilbert spaces and a ∈ B(V1,V2), b ∈ B(W1,W2), then
a⊗ b is bounded. It extends uniquely to an operator in B(V1 ⊗W1,V2 ⊗W2),
denoted by the same symbol.

To prove the boundedness of a⊗ b = a⊗ 1l 1l⊗ b, it is sufficient to consider
the operator a ⊗ 1l from V1

al⊗W to V2
al⊗W. Let e1, e2, . . . and f1, f2 . . . be

orthonormal bases in V1, W resp. Consider a vector
∑
cijei ⊗ fj .∥∥∥a⊗ 1l

∑
i

cijei ⊗ fj
∥∥∥2

=
∑
j

∥∥∥∑
i

cijaei

∥∥∥2

≤
∑
j

‖a‖2
∥∥∥∑

i

cijei

∥∥∥2

≤
∑
j

‖a‖2
∑
i

|cij |2

= ‖a‖2
∥∥∥∑

ij

cijei ⊗ fj
∥∥∥2

.

5.4 Fock spaces

Let Y be a vector space. Let Sn denote the permutation group of n elements

and σ ∈ Sn. Θ(σ) is defined as the unique operator in L(
al⊗
n
Y) such that

Θ(σ)y1 ⊗ · · · ⊗ yn = yσ−1(1) ⊗ · · · ⊗ yσ−1(n). (5.11)

To see that Θ(σ) is well defined we first choose a basis {ei}i∈I of Y. Then

we define Θ(σ) on the corresponding basis of
al⊗
n
Y:

Θ(σ)ei1 ⊗ · · · ⊗ ein = eiσ−1(1)
⊗ · · · ⊗ eiσ−1(n)

.
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Then we extend by linearity Θ(σ) to the whole
al⊗
n
Y. It is easy to see that the

operator defined in this way satisfies (5.11).
We can check that

Sn 3 σ 7→ Θ(σ) ∈ L(
al⊗
n
Y) (5.12)

is a group representation.

We say that a tensor Ψ ∈ al⊗
n
Y is symmetric, resp. antisymmetric if

Θ(σ)Ψ = Ψ, (5.13)

resp. Θ(σ)Ψ = sgn(σ)Ψ. (5.14)

We define the symmetrization/antisymmetrization projections

Θn
s :=

1

n!

∑
σ∈Sn

Θ(σ), Θn
a :=

1

n!

∑
σ∈Sn

sgnσΘ(σ).

They project onto symmetric/antisymmetric tensors.
We will often write s/a to denote either s or a.
If Y is a Hilbert space, then Θ(σ) is unitary and Θn

s/a are orthogonal pro-
jections.

Let Y be a vector space. The algebraic n-particle bosonic/fermionic space is
defined as

al⊗
n

s/aY := Θn
s/a

al⊗
n
Y.

The algebraic bosonic/fermionic Fock space or the symmetric/antisymmetric
tensor algebra is

al

Γs/a(Y) :=
∞
al⊕
n=0

al⊗
n

s/aY.

The vacuum vector is Ω := 1 ∈ ⊗0
s/aY = C.

If Y is a Hilbert space, then the n-particle bosonic/fermionic space is defined
as

⊗ns/aY := Θn
s/a ⊗

n Y.

The bosonic/fermionic Fock space is

Γs/a(Y) :=
∞
⊕
n=0
⊗ns/aY.

5.5 Creation/annihilation operators

For z ∈ Y we define the creation operator

â∗(z)Ψ := Θn+1
s/a

√
n+ 1z ⊗Ψ, Ψ ∈ ⊗ns/aY,

and the annihilation operator â(z) := (â∗(z))
∗
. (We often omit the hat).
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We will sometimes write (z| and |z) for the following operators

V 3 v 7→ (z|v := (z|v) ∈ C, (5.15)

C 3 λ 7→ λ|z) := λz ∈ V. (5.16)

Then on ⊗ns/aY we have

a∗(z) = Θn+1
s/a

√
n+ 1|z)⊗ 1ln⊗, (5.17)

a(z) =
√
n(z| ⊗ 1l(n−1)⊗. (5.18)

Above we used the compact notation for creation/annihilation operators pop-
ular among mathematicians. Physicists commonly prefer the traditional nota-
tion, which is longer and less canonical.

One version of the traditional notation uses a fixed basis {ei}i∈I of Z and
set a∗i := a∗(ei), ai := a(ei). Then if z =

∑
i ziei, we have

a∗(z) =
∑
i

zia
∗
i , a(z) =

∑
i

ziai, (5.19)

[ai, a
∗
j ]∓ = δij , [ai, aj ]∓ = 0. (5.20)

Alternatively, one often identifies Z with, say, L2(Rd,dξ). If z equals a
function Ξ 3 ξ 7→ z(ξ), then

a∗(z) =

∫
z(ξ)a∗ξdξ, a(z) =

∫
z(ξ)aξdξ.

Note that formally

[a(ξ), a∗(ξ′)]∓ = δ(ξ − ξ′), [a(ξ), a(ξ′)]∓ = 0. (5.21)

The space⊗ns/aZ can then be identified with the space of symmetric/antisymmetric

square integrable functions L2(Rnd), and then(
a(ξ)Φ

)
(ξ′1, . . . , ξ

′
n−1) =

√
nΦ(ξ, ξ′1, . . . , ξ

′
n−1). (5.22)

5.6 Integral kernel of an operator

Every linear operator A on Cn can be represented by a matrix [Aji ].
One would like to generalize this concept to infinite dimensional spaces (say,

Hilbert spaces) and continuous variables instead of a discrete variables i, j. Sup-
pose that a given vector space is represented, say, as L2(Rd), or more generally,
L2(X) where X is a certain space with a measure. One often uses the represen-
tation of an operator A in terms of its integral kernel Rd×Rd 3 (x, y) 7→ A(x, y),
so that

AΨ(x) =

∫
A(x, y)Ψ(y)dy.
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Note that strictly speaking A(·, ·) does not have to be a function. E.g. in the
case X = Rd it could be a distribution, hence one often says the distributional
kernel instead of the integral kernel. Sometimes A(·, ·) is ill-defined anyway. At
least formally, we have

AB(x, y) =

∫
A(x, z)B(z, y)dz,

A∗(x, y) = A(y, x).

Here is a situation where there is a good mathematical theory of inte-
gral/distributional kernels:

Theorem 5.2 (The Schwartz kernel theorem). B is a continuous linear trans-
formation from S(Rd) to S ′(Rd) iff there exists a distribution B(·, ·) ∈ S ′(Rd ⊕
Rd) such that

(Ψ|BΦ) =

∫
Ψ(x)B(x, y)Φ(y)dxdy, Ψ,Φ ∈ S(Rd).

Note that ⇐ is obvious. The distribution B(·, ·) ∈ S ′(Rd ⊕Rd) is called the
distributional kernel of the transformation B. All bounded operators on L2(Rd)
satisfy the Schwartz kernel theorem.

Examples:

(1) e−ixy is the kernel of the Fourier transformation

(2) δ(x− y) is the kernel of identity.

(3) ∂xδ(x− y) is the kernel of ∂x.

5.7 Second quantization of operators

For a contraction q on Z the operator q⊗n commutes with Θ(σ), σ ∈ Sn.
Therefore, it preserves ⊗ns/aZ. We define the operator Γ(q) on Γs/a(Z) by

Γ(q)
∣∣∣
⊗n

s/a
Z

= q ⊗ · · · ⊗ q
∣∣∣
⊗n

s/a
Z
.

Γ(q) is called the second quantization of q.
Similarly, for an operator h on Z the operator h⊗1(n−1)⊗+ · · ·+1(n−1)⊗⊗h

preserves ⊗ns/aZ. We define the operator dΓ(h) by

dΓ(h)
∣∣∣
⊗n

s/a
Z

= h⊗ 1(n−1)⊗ + · · ·+ 1(n−1)⊗ ⊗ h
∣∣∣
⊗n

s/a
Z
.

dΓ(h) is called the (infinitesimal) second quantization of h.
Note the identities

Γ(eith) = eitdΓ(h), Γ(q)Γ(r) = Γ(qr), [dΓ(h),dΓ(k)] = dΓ([h, k]),

Γ(q)dΓ(h)Γ(q−1 = dΓ(qhq−1). (5.23)
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Let {ei | i ∈ I} be an orthonormal basis of Z. Write âi := â(ei). Let h be
an operator on Z given by the matrix [hij ]. Then

dΓ(h) =
∑
ij

hij â
∗
i âj . (5.24)

Let us prove it in the bosonic case. Let Φ ∈ Γns (Z).

â∗i âjΦ = nΘn
s |ei)⊗ 1l(n−1)⊗(ej | ⊗ 1l(n−1)⊗Φ (5.25)

= nΘn
s |ei)(ej | ⊗ 1l(n−1)⊗Φ (5.26)

=
1

(n− 1)!

∑
σ∈Sn

Θ(σ)|ei)(ej | ⊗ 1l(n−1)⊗Θ(σ)−1Φ (5.27)

=

n∑
k=1

1l(k−1)⊗|ei)(ej | ⊗ 1l(n−k)⊗Φ. (5.28)

More generally, if the integral kernel of an operator h is h(x, y), then

dΓ(h) =

∫
h(x, y)â∗xâydxdy. (5.29)

For instance, if h is the multiplication operator by h(ξ), then dΓ(h) =
∫
h(ξ)â∗ξ âξdξ.

5.8 Symmetric/antisymmetric tensor product

Let Ψ ∈ ⊗ps/aZ, Φ ∈ ⊗qs/aZ. We set

Ψ⊗s/a Φ := Θp+q
s/a Ψ⊗ Φ. (5.30)

Note that
z ⊗ · · · ⊗ z = z ⊗s · · · ⊗s z. (5.31)

If there are n terms, it is often written as zn⊗. In the antisymmetric case one
usually prefers

Ψ ∧ Φ :=
(p+ q)!

p!q!
Ψ⊗a Φ. (5.32)

The operations ⊗s, ⊗a, ∧ are associative. We have

y1 ∧ · · · ∧ yn =
∑
σ∈Sn

sgn(σ)yσ(1) ⊗ · · · ⊗ yσ(n), (5.33)

y1 ⊗a · · · ⊗a yn =
1

n!

∑
σ∈Sn

sgn(σ)yσ(1) ⊗ · · · ⊗ yσ(n). (5.34)

Let {ei}i∈I be a linearly ordered orthonormal basis in Z. Then

√
n!ei1 ⊗a · · · ⊗a ein , i1 < · · · < in, (5.35)
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forms an o.n.b of ⊗na (Z).
√
n!√

k1! · · · kn!
e⊗k1i1

⊗s · · · ⊗s e
⊗km
im

, k1 + · · ·+ km = n, (5.36)

forms an o.n.b of ⊗ms (Z).
If dimZ = d, then

dim⊗ns Z =
(d+ n− 1)!

(d− 1)!n!
, dim⊗naZ =

d!

n!(d− n)!
. (5.37)

5.9 Exponential law

Let Z,W be Hilbert spaces. We can treat them as subspaces of Z ⊕W. Let
Φ ∈ ⊗ns/aZ, Ψ ∈ ⊗ms/aW. We can identify Φ⊗Ψ with

UΦ⊗Ψ :=

√
(n+m)!

n!m!
Φ⊗s/a Ψ ∈ ⊗n+m

s/a (Z ⊕W). (5.38)

Theorem 5.3. The map (5.38) extends to a unitary map

U : Γs/a(Z)⊗ Γs/a(W)→ Γs/a(Z ⊕W). (5.39)

It satisfies

UΩ⊗ Ω = Ω, (5.40)

dΓ(h⊕ g)U = U
(
dΓ(h)⊗ 1l + 1l⊗ dΓ(g)

)
, (5.41)

Γ(p⊕ q)U = UΓ(p)⊗ UΓ(q), (5.42)

a∗(z ⊕ w)U = U
(
a∗(z)⊗ 1l + 1l⊗ a∗(w)

)
, (5.43)

a(z ⊕ w)U = U
(
a(z)⊗ 1l + 1l⊗ a(w)

)
, in the bosonic case, (5.44)

a∗(z ⊕ w)U = U
(
a∗(z)⊗ 1l + (−1)N ⊗ a∗(z)

)
, (5.45)

a(z ⊕ w)U = U
(
a(z)⊗ 1l + (−1)N ⊗ a(z)

)
, in the fermionic case. (5.46)

Proof. Let us prove the unitarity of this map in the symmetric case:

Φ⊗s Ψ =
1

(n+m)!

∑
σ∈Sn+m

Θ(σ)Φ⊗Ψ (5.47)

=
n!m!

(n+m)!

∑
[σ]∈Sn+m/Sn×Sm

Θ(σ)Φ⊗Ψ. (5.48)

The terms on the right are mutually orthogonal. The maps Θ(σ) are unitary.

The number of cosets in Sn+m/Sn × Sm is (n+m)!
n!m! . Therefore the square norm

of (5.47) is
n!m!

(n+m)!
‖Φ⊗Ψ‖2. (5.49)

2
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5.10 Wick symbol

Let Z = L2(Rd) or Z = Cn. The variable ξ will be interpreted as an elemenrt
of Rd in the former case, as ξ = 1, 2, . . . , n in the latter case.

∫
dξ will have the

usual meaning in the first case, it will be
∑n
ξ=1 in the second.

(ξ1, · · · ξm, ξ′k, · · · , ξ′1) 7→ b(ξ1, · · · ξm, ξ′k, · · · , ξ′1) (5.50)

be a complex function. Note that (5.50) can be also interpreted as the integral
kernel of an operator b from ⊗kZ to ⊗mZ:

(Φ|bΨ) =

∫
· · ·
∫

Φ(ξ1, · · · ξm)b(ξ1, · · · ξm, ξ′k, · · · , ξ′1)

Ψ(ξ′k, · · · , ξ′1)dξ1 · · · dξmdξ′k · · · dξ′1. (5.51)

We can restrict (5.51) to Φ ∈ ⊗ks/aZ to Ψ ∈ ⊗ms/aZ. Then (5.51) will depend

only on the symmetrization/antisymmetrization of b, that is

bs/a := Θm
s/abΘ

k
s/a. (5.52)

Thus to describe integral kernels of operators from ⊗ks/aZ to ⊗ms/aZ it is enough

to consider functions symmetric/antisymmetric separately wrt the first m and
the last k arguments.

In this subsection we will put “hats” on the creation/annihillation operators.
The symbols a∗(ξ), a(ξ) without hats will be reserved for classical variables,
which in the bosonic case commute and in the fermionic anticommute.

By a polynomial on Z⊕Z we will mean a linear combination of the following
expressions

b(a∗, a) =

∫
· · ·
∫
b(ξ1, · · · ξm, ξ′k, · · · , ξ′1) (5.53)

a∗(ξ1) · · · a∗(ξm)a(ξ′k) · · · a(ξ′1)dξ1 · · · dξmdξ′k · · · dξ′1,

where b are symmetric/antisymmetric separately wrt the first m and the last k
arguments. In the symmetric case this can be interpreted as a usual polynomial
on Z ⊕ Z, but it is common to use this term also in the antisymmetric case.

The Wick quantization of b(a∗, a) is defined as

b(â∗, â) =

∫
b(ξ1, · · · ξm, ξ′k, · · · , ξ′1) (5.54)

â∗(ξ1) · · · â∗(ξm)â(ξ′k) · · · â(ξ′1)dξ1, · · · dξkdξ′1 · · · dξ′m.

(Actually, by (5.52), in (5.53) and (5.54) we can consider b which is not
symmetric/antisymmetric.)

Here is an equivalent definition of b(â, â): Its only nonzero matrix elements

are between Φ ∈ ⊗p+ms/a Z, Ψ ∈ ⊗p+ks/a Z, and equal

(Φ|b(â∗, â)Ψ) =

√
(m+ p)!(k + p)!

p!
(Φ|b⊗ 1⊗pZ Ψ). (5.55)
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To see this it is enough to use the formal identity (5.22) several times:(
Φ|â∗(ξ1) · · · â∗(ξm)â(ξ′k) · · · â(ξ′1)Ψ

)
(5.56)

=
(
â(ξm) · · · â(ξ1)Φ|â(ξ′k) · · · â(ξ′1)Ψ

)
(5.57)

=
√

(m+ p) · · · (p+ 1)(k + p) · · · (p+ 1) (5.58)

×
∫

Φ(ξm, . . . , ξ1, ηp, . . . , η1)Ψ(ξ′m, . . . , ξ
′
1, ηp, . . . , η1)dηp · · · dη1. (5.59)

Essentially every operator on a Fock space can be written as a linear com-
bination of (5.54).

5.11 Wick symbol and coherent states

In the bosonic case, we have the identities

e−â
∗(b)+â(b)â(v)eâ

∗(b)−â(b) = â(v) + (v|b), (5.60)

e−â
∗(b)+â(b)â∗(v)eâ

∗(b)−â(b) = â(v) + (v|b). (5.61)

We also introduce the coherent state corresponding to b ∈ Z:

Ωb := eâ
∗(b)−â(b)Ω. (5.62)

Note that â(v)Ωb = (v|b)Ωb. We have the identity

(Ωb|c(â∗, â)Ωb) =c(b∗, b). (5.63)

5.12 Particle number preserving operators

If m = k, then the operator b(â∗, â) preserves the number of particles and (5.55).
For Φ ∈ ⊗ns/aZ, Ψ ∈ ⊗ns/aZ it can be rewritten as

(Φ|b(â∗, â)Ψ) =
n!

(n−m)!
(Φ|b⊗ 1

⊗(n−m)
Z Ψ). (5.64)

But n!
(n−m)!m! is the number of m-element subsets of {1, 2, . . . , n}. Therefore in

the obvious notation, we can rewrite (5.64) as

1

m!
b(â∗, â) =

∑
1≤i1<···<im≤n

bi1,...,im . (5.65)

In particular, for m = 2 we can write

1

2
b(â∗, â) =

∑
1≤i<j≤n

bij . (5.66)

Finally, for m = 1, we have

b(â∗, â) =
∑

1≤i≤n

bi = dΓ(b). (5.67)
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5.13 Examples

Consider the Schrödinger Hamiltonian of n identical particles on L2(RdN )

Hn = −
n∑
i=1

∆i +
∑

1≤i<j≤n

V (xi − xj), (5.68)

Pn =

n∑
i=1

1

i
∂xi , (5.69)

In the momentum representation

Hn =

n∑
i=1

p2
i

+(2π)−d
∑

1≤i<j≤N

δ(p′i + p′j − pj − pi)V̂ (p′i − pi).

Pn =

n∑
i=1

pi.

Consider the 2nd quantization of L2(Rd). We have the position representa-
tion, with the generic variables x, y and the momentum representation with the
generic variables k, k′. We can pass from one representation to the other by

a∗(k) = (2π)−
d
2

∫
a∗(x)e−ikxdx, a∗(x) = (2π)−

d
2

∫
a∗(k)eikxdk, (5.70)

a(k) = (2π)−
d
2

∫
a(x)eikxdx, a(x) = (2π)−

d
2

∫
a(k)e−ikxdk. (5.71)

In the 2nd quantized notation we can rewrite all this as

H :=
∞
⊕
n=0

Hn = −
∫
a∗x∆xaxdx (5.72)

+

∫ ∫
dxdyV (x− y)a∗xa

∗
yayax

=

∫
p2a∗papdp (5.73)

+ (2π)−d
∫ ∫ ∫

dpdqdkV̂ (k)a∗p+ka
∗
q−kaqap

P :=
∞
⊕
n=0

Pn =

∫
a∗x

1

i
∂xaxdx (5.74)

=

∫
pa∗papdp. (5.75)

Consider L2([0, L]d) ' L2
(

2π
L Zd

)
and its 2nd quantization. Again we use

x, y in the position representation with periodic boundary conditions and k, k′
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in the momentum representation. We can pass from one representation to the
other by

a∗(k) = L−
d
2

∫
a(x)e−ikxdx, a∗(x) = L−

d
2

∑
k

a(k)eikx, (5.76)

a(k) = L−
d
2

∫
a(x)eikxdx, a(x) = L−

d
2

∑
k

a(k)e−ikx. (5.77)

Here are the analogs of (5.73) and (5.75):

H =
∑
p

p2a∗pap

+ L−d
∑
p

∑
q

∑
k

V̂ (k)a∗p+ka
∗
q−kaqap,

P =
∑
p

pa∗pap.

6 Formalism of classical mechanics

6.1 Dynamical systems

Suppose that a system is described by a manifold Y called a “phase space”. The
space C∞(Y) of smooth functions on Y describes possible observables.

To define a dynamics one needs to fix a vector field V on Y and one has the
equations of motion

d

dt
ζ(t) = V

(
ζ(t)

)
, ζ(0) = ζ0. (6.1)

The evolution of an observable F ∈ C∞(Y) is then given by

d

dt
F (ζ) = 〈dF (ζ)|V (ζ)〉. (6.2)

If we fix coordinates xi on Y, then for each y ∈ Y, the tangent space TyY
is spanned by the vectors ∂

∂xi and its dual, called the cotangent space by the
1-forms dxi statisfying

〈dxi| ∂
∂xj
〉 = δji . (6.3)

The vector field V can be written as V = V i(x) ∂
∂xi and the 1-form dF as

dF = ∂F (x)
∂xi dxi, and the equations (6.1) and (6.2) become

d

dt
ζi(t) = V i

(
ζ(t)

)
, (6.4)

d

dt
F (ζ) =

∂F (ζ)

∂xi
· V i(ζ). (6.5)
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6.2 Hamiltonian dynamics

Let us first recall basic facts about Hamiltonian dynamics. Let us begin with
the phase space Y = R2n with coordinates φi, πj , i = 1, . . . , n. Let us consider a
Hamiltonian H, that is a function on the phase space, so that it can be expressed
in terms of φ and π. The Hamiltoni equations generated by H are

d

dt
(φi, πi) =

(
∂πiH(φ, π),−∂φiH(φ, π)

)
. (6.6)

Another form:
d

dt

[
φ
π

]
=

[
0 1
−1 0

] [
∂φH
∂πH

]
. (6.7)

A vector field of the form

∂πiH(φ, π)
∂

∂φi
− ∂φiH(φ, π)

∂

∂πi
(6.8)

for some function H is called a Hamiltonian vector field. Thus the Hamilton
equations are given by a Hamiltonian vector field.

Given two functions F,G on Y one introduces the Poisson bracket which is
a bilinear antisymmetric map C∞(Y)× C∞(Y)→ C∞(Y), as

{F,G} = ∂φiF∂πiG− ∂πiF∂φiG. (6.9)

The Poisson bracket satisfies the Leibniz and Jacobi identity

{F,GH} = {F,G}H +G{F,H}, (6.10)

{{F,G}, H}+ {{G,H}, F}+ {{H,F}, G} = 0. (6.11)

The coordinates φ, π satisfy

{φi, φj} = {πi, πj} = 0, {φi, πj} = δij . (6.12)

The Hamilton equations can be rewritten as

d

dt
φi = {φi, H}, (6.13)

d

dt
πi = {πi, H}. (6.14)

More generally, the evolution of every observable F is given by

d

dt
F = {F,H}. (6.15)

Note that the Poisson bracket is preserved by a Hamiltonian flow:

d

dt
{F,G} = {{F,H}, G}+ {F, {G,H}} = {{F,G}, H}. (6.16)
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6.3 Symplectic form

Let us continue with the phase space Y = R2n with the coordinates φi and πi.
For any y ∈ Y, the tangent space TyR2n is spanned by the vectors ∂

∂φi ,
∂
∂πi

and the cotangent space T∗yR2n by the 1-forms dφi, dπi. One can introduce the
2-form on Y:

ω = dπi ∧ dφi, (6.17)

called the symplectic form.
Clearly, 〈

ω| ∂
∂φi

,
∂

∂φj

〉
=
〈
ω| ∂
∂πi

,
∂

∂πj

〉
= 0, (6.18)〈

ω| ∂
∂πi

,
∂

∂φj

〉
= −

〈
ω| ∂
∂φi

,
∂

∂πj

〉
= δij . (6.19)

One can introduce a linear map ω : TyR2n → T∗yR2n such that

〈ω|v, z〉 = 〈v|ωz〉. (6.20)

Thus

ω
( ∂

∂φi

)
=dπi, (6.21)

ω
( ∂

∂πi

)
=− dφi. (6.22)

Thus ω is given by the matrix ω =

[
0 −1
1 0

]
. Clearly, ω−1 =

[
0 1
−1 0

]
. A

vector field on a symplectic manifold is called Hamiltonian if it has the form

V (y) = −ω−1dH(y). (6.23)

In the previous subsection the phase space was Y = R2n and φi, πi were
functions on Y satisfying the Poisson bracket relations (6.12).

As a side remark, let us note the following properties of the symplectic form:

1. ω(y) is nondegenerate at every point y ∈ Y;

2. dω = 0.

Nondegenerate means: Let z ∈ TyY be a tangent vector. If for any vector
v ∈ TyY we have ω(z, v) = 0, then z = 0.

One can be more general: Let Y be a manifold equipped with a 2-form
satisfying 1. and 2. Then we say that Y, ω is a symplectic manifold. The
Darboux Theorem says that on any symplectic manifold locally we can always
choose coordinates, say φi, πj , i = 1, . . . , n, such that (6.17) holds.

Specifying a symplectic form is equivalent to specifying a Poisson bracket.
Indeed, dF = (∂φF, ∂πF ), dG = (∂φG, ∂πG), we can write the Poisson bracket
as

{F,G} = 〈dF |ω−1dG〉 = −
〈
ω|ω−1(dF ),ω−1(dG)

)
, F,G ∈ C∞(Y). (6.24)
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In most our applications, the phase space wil have the structure of a vector
space and φi, πj , i = 1, . . . , n, can be chosen to be the coordinates in a basis.
Then the tangent space to TyY at any point y ∈ Y can be identified with Y
itself and the form ω is simply a nondegenerate antisymmetric bilinear form on
Y. The Darboux Theorem says that we can identify a symplectic manifold with
a symplectic vector space at least locally.

The space YT of linear functionals on Y obviously is contained in C∞(Y).
For a linear functional on Y, its derivative is the original functional itself. There-
fore, (6.17) can be simplified and written as

ω = πi ∧ φi, (6.25)

If dimY is finite, then YT = ωY (because ω is nondegenerate) and (6.24)
determines the Poisson bracket on the whole C∞(Y), consistently with (6.17).

6.4 Lagrangian formalism

Suppose that Rn is described by the coordinates φi. Let L(t, φ, φ̇) be a function
on R× Rn × Rn called the Lagrangian. The Euler-Lagrange equations are

∂L

∂φi
=

d

dt

∂L

∂φ̇i
. (6.26)

Define the canonical momentum conjugate to φi, that is πi := ∂L
∂φ̇i

.

The initial consitions for (6.26) can be expressed in terms φ, φ̇. Suppose that
we can express φ̇ in terms of φ, π. Then initial conditions can be described in
terms of φ, π and we can pass from the Lagrangian to the Hamiltonian formalism.
More precisely, we can introduce

the tautological 1-form, θ := πidφ
i, (6.27)

the symplectic 2-form ω := dπi ∧ dφi = dθ, (6.28)

and the Hamiltonian H(t, φ, π) := πiφ̇
i − L

(
t, φ, φ̇(φ, π)

)
. (6.29)

We check that ∂φH = −∂φL, ∂πH = φ̇. Hence the Euler-Lagrange equations
imply the Hamilton equations.

6.5 Noether Theorem

Suppose that φ depend on a parameter α. Define

P :=
∂L

∂φ̇i
∂αφ

i. (6.30)
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Suppose that L
(
t, φ(α), φ̇(α)

)
is independent of α. The Noether Theorem says

that along the evolution P
(
t, φ(t), φ̇(t)

)
is constant. Indeed,

d

dt
P =

( d

dt

∂L

∂φ̇i

)
φi,α +

∂L

∂φ̇i
d

dt
φi,α (6.31)

=
∂L

∂φi
φi,α +

∂L

∂φ̇i
φ̇i,α = 0. (6.32)

If α = ~x, so that the Lagrangian is invariant wrt translations, then P is
called the (total) momentum. (Note a confusing collision of terminology with
canonical momenta).

6.6 Classical field theory

Consider the space Rd (the “spacetime”, where however the metric or Lorentz
structure is for the moment irrelevant) and a space Rn (the “internal degrees
of freedom”, whose indices will be as a rule omitted). A field configuration is a
function Rd 3 x 7→ ζ(x) = [ζi(x)] ∈ Rn. The classical field φi(x) is the “value
of the ith coordinate at x of the field configuration”, that is

〈φi(x)|ζ〉 = ζi(x). (6.33)

Thus the classical field is a linear functional on field configurations.
Suppose that L(x) = L(x, φ(x), φ,µ(x)) is a function called the Lagrangian

density.

I :=

∫
L(x)dx (6.34)

is called the action. Thus the action is a (typically nonlinear) functional on field
configurations.

Let us compute the the derivative in the direction of ε ∈ C∞c (Rd) of the
action at the configuration ζ:

〈I|ζ + ε〉 − 〈I|ζ〉

=

∫ (
L
(
x, ζ(x) + ε(x), ζ,µ(x) + ε,µ(x)

)
− L

(
x, ζ(x), ζ,µ(x)

))
dx

≈
∫

∂L
∂φ(x)

(x, ζ(x), ζ,µ(x))ε(x)dx+

∫
∂L

∂φ,µ(x)
(x, ζ(x), ζ,µ(x))ε,µ(x)dx

=

∫ ( ∂L
∂φ(x)

(x, ζ(x), ζ,µ(x))− ∂µ
∂L

∂φ,µ(x)
(x, ζ(x), ζ,µ(x))

)
ε(x)dx (6.35)

+

∫
∂µ

( ∂L
∂φ,µ(x)

(x, ζ(x), ζ,µ(x))ε(x)
)

dx

The last term vanishes by the Stokes Theorem. Hence the derivative in the
direction of ε is given by (6.35). If we require that ζ is stationary, that is this
derivative vanishes, we obtain the Euler-Lagrange equations:

∂φ(x)L(x)− ∂µ
∂L(x)

∂φ,µ(x)
= 0 (6.36)
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Let πµ(x) denote the canonical momentum conjugate to φ(x) in the direction
of xµ:

πµ(x) =
∂L(x)

∂φ,µ(x)
. (6.37)

Consider the space of solutions of the Euler-Lagrange equations. The opera-
tion d will denote the exterior derivative on this (infinite dimensional) space.
Similarly, on this space we use ∧. If something holds on solutions of the Euler-
Lagrange equation, we will say that it is true on shell.

We introduce

the tautological current θµ(x) := πµ(x)dφ(x), (6.38)

the symplectic current jµ(x) := dπµ(x) ∧ dφ(x) = dθµ. (6.39)

The divergence of the tautological current is the differential of the Lagrangian
and that of the symplectic current vanishes:

∂µθ
µ(x) = dL, (6.40)

∂µj
µ(x) = 0. (6.41)

Indeed,

∂µθ
µ(x) = ∂µ

∂L(x)

∂φ,µ(x)
∧ dφ(x) +

∂L(x)

∂φ,µ(x)
∧ dφ,µ(x) (6.42)

=
∂L(x)

∂φ(x)
∧ dφ(x) +

∂L(x)

∂φ,µ(x)
∧ dφ,µ(x) = dL. (6.43)

Introduce the Noetherian stress-energy tensor

T µν (x) := − ∂L(x)

∂φ,µ(x)
φ,ν(x) + δµνL(x). (6.44)

Here is the Noether Theorem in the context of classical field theory: on solutions
of the Euler-Lagrange equation we have

∂µT µν (x) = ∂νL(x) (6.45)

In particular, if L is invariant wrt translations, then the stress-energy tensor is
conserved (its divergence vanishes).

Indeed,

∂µT µν (x) = −∂µ
( ∂L(x)

∂φ,µ(x)

)
φ,ν(x)− ∂L(x)

∂φ,µ(x)
φ,µν(x) (6.46)

+
∂L(x)

∂φ(x)
φ,ν(x) +

∂L(x)

∂φ,α(x)
φ,αν(x) + ∂νL(x). (6.47)

Then we use the Euler-Lagrange equations (6.36).
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6.7 Hyperbolic classical field theory

Suppose now that the Euler-Lagrange equations (6.36) are characterized by a
finite speed of propagation. A typical example of such a situation is when Rd
is the Minkowski space, the Lagrangian is

L(x) = −1

2
gµν∂µ(x)φ∂νφ(x)− P (φ(x)), (6.48)

which leads to the Klein-Gordon equation with nonlinear terms:

(−2 +m2(x))φ(x) = P ′(φ(x)). (6.49)

One can then introduce an identification M ' R×Σ, where R describes “time”
and Σ is a “spatial cross-section”, in the case of the Minkowski space Σ = Rd−1.
The Lagrangian is given by the integral of the Lagrangian density over a constant
time surface {t} × Σ

L(t) :=

∫
L(t, ~x)d~x. (6.50)

The momentum conjugate to the field φ(t, ~x) coincides with the temporal coor-
dinate of (6.37):

π(t, ~x) :=
∂L(t)

∂φ̇(t, ~x)
= π0(t, ~x). (6.51)

The Hamiltonian obtained from the Lagrangian by the Legendre transformation
coincides with the integral of the 00-component of the stress-energy tensor over
the corresponding constant time surface:

H(t) :=

∫
φ̇(t, ~x)π(t, ~x)d~x− L(t) =

∫
T 0

0 (t, ~x)d~x. (6.52)

It is natural to use the set of space-compact solutions of the Euler-Lagrange
equations as the phase space. It is equipped with a symplectic form

ω :=

∫
j0(t, ~x)d~x =

∫
dπ0(t, ~x) ∧ dφ(t, ~x)d~x. (6.53)

Using (6.41) we can show that (6.53) does not depend on t. Actually, instead
of integrating over {t} × Σ, we can integrate the symplectic current over any
“Cauchy surface” obtaining the same ω.

The symplectic form ω corresponds to the equal-time Poisson brackets

{φ(t, ~x), φ(t, ~y)} = {π(t, ~x), π(t, ~y)} = 0,

{φ(t, ~x), π(t, ~y)} = δ(~x− ~y). (6.54)

7 Canonical Commutation Relations

7.1 Symplectic vector spaces

Let Y be a vector space. Recall that it is called symplectic if it is equipped with
a nondegenerate antisymmetric 2-form. Thus we have a bilinear form

Y × Y 3 (y, z) 7→ ω(y, z) (7.1)

50



such that ω(y, z) = −ω(z, y) and for every y 6= 0 we can find z such that
ω(y, z) 6= 0.

Every finite dimensional symplectic vector space has an even dimension. If
we choose a basis, we can write

ω(y, z) =
∑
ij

ωijy
izj , (7.2)

where [ωij ] is an antisymmetric invertible matrix.
Let φi, i = 1, . . . , 2n, denote the coordinate functionals, that is for y ∈ Y we

have φi(y) = yi. Then using

φi ∧ φj(y, z) = φi(y)φj(z)− φi(z)φj(y). (7.3)

we see that (7.2) can be written as ω = 1
2ωijφ

i ∧ φj .
Let [ωij ] be the inverse of [ωij ]. Then it is also an invertible antisymmetric

matrix. We can equip functions on Y with a Poisson bracket: for F,G ∈ C∞(Y)
we set

{F,G} = −
∑

ωij∂φiF∂φjG. (7.4)

In particular,
{φi, φj} = −ωij . (7.5)

We say that a symplectic space is R2n is equipped with a symplectic basis if
the symplectic form is given by the matrix

ω =

[
0 1l
−1l 0

]
. (7.6)

In every finite dimensional symplectic vector space we can find a symplectic
basis. It is then natural to separate the variables into two families. writing
xi = φi, pi := φn+i i = 1, . . . , n. Then ω = xi ∧ pi and

{F,G} = ∂xiF∂piG− ∂piF∂xiG. (7.7)

In particular,
{xi, xj} = {pi, pj} = 0, {xi, pj} = δij . (7.8)

Recall that by an affine transformation on a vector space Y we mean a
transformation of the form

Y 3 y 7→ Ty + z ∈ Y, (7.9)

where T is linear and z ∈ Y.
A linear transformation T on a symplectic space Y, ω) is called symplectic

if it preserves the symplectic form, that is

ω(Ty, Tz) = ω(y, z). (7.10)

Equivalently, it preserves the Poisson product: that means

{F ◦ T,G ◦ T} = {F,G} ◦ T, (7.11)

where ◦ denotes the composition. We say that (7.9) is affine symplectic, if T is
symplectic.
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Remark 7.1. There exists a useful generalization of a symplectic vector space:
a symplectic manifold. More precisely, let Y be a manifold equipped with a
2-form ω such that dω = 0 is ω is nondegenerate on the whole Y. Then we
say that (Y, ω) is a symplectic manifold. The Darboux Theorem says that on
any symplectic manifold locally we can always choose coordinates, say xi, pj,
i = 1, . . . , n, such that (7.8) holds. One can also define the Poisson bracket on
Y. However, we will avoid using this concept.

7.2 Quantization of linear and quadratic observables

Suppose for a moment that Y is a symplectic manifold. Informally one can say
that quantization is a map that to a function F on Y associates an operator F̂
on a certain Hilbert space H, which satisfies the following conditions:

1̂ = 1l; (7.12)

1

2
(F̂ Ĝ+ ĜF̂ ) ≈ F̂G; (7.13)

[F̂ , Ĝ] ≈ i~{̂F,G}. (7.14)

Here ~ is a small positive parameter and ≈ means some kind of equality modulo
terms small for small ~.

One can prove that one cannot replace ≈ with =.
Almost always we will assume that Y is a symplectic vector space. As we

discussed above, if Y is finite dimensional, we can always find coordinates xi, pi,
i = 1, . . . , n satisfying (7.8). In other words, Y = R2n is a symplectic vector
space equipped with a symplectic basis.

With the above classical system we associate a quantum system as follows.
Let ~ be a real parameter. We consider the Hilbert space H := L2(Rn) equipped
with the operators

x̂iΨ(x) = xiΨ(x), p̂iΨ(x) := ~
∂

i∂xi
Ψ(x). (7.15)

They satisfy the Heisenberg commutation relations:

[x̂i, x̂j ] = [p̂i, p̂j ] = 0, [x̂i, p̂j ] = i~δij . (7.16)

Note that 1st degree polynomials, that is,

V = ξix
i + ηipi + c, (7.17)

V̂ = ξix̂
i + ηip̂i + c1l. (7.18)

satisfy (7.14) exactly:

[V̂ , V̂ ′] = i~{̂V, V ′} (7.19)

One would like to extend the quantization to more general functions, not
only 1st order polynomials. There are many possibilities in the literature (e.g.
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the Weyl quantization, Wick quantization, etc.). We will not discuss them here.
Actually, for our present purposes we will only need quantization of second order
polynomials, which we define as follows:

H =
1

2
Aijx

ixj +
1

2
Bijpipj + Cji x

ipj , (7.20)

Ĥ =
1

2
Aij x̂

ix̂j +
1

2
Bij p̂ip̂j +

1

2
Cji (x̂ip̂j + p̂j x̂

i). (7.21)

Note that with this definition we have exact versions of (7.13) and (7.14)

[Ĥ, Ĥ ′] = i~ ̂{H,H ′}, (7.22)

1

2
(V̂ V̂ ′ + V̂ ′V̂ ) = V̂ V ′ (7.23)

for polynomials V, V ′ of degree ≤ 1 and for polynomials H,H ′ of degree ≤ 2.

7.3 Quantization of symplectic transformations

Let H be a Hamiltonian given by a quadratic polynomial on a symplectic vector
space Y with the coordinates φi, i = 1, . . . , 2n.

H =
1

2

∑
hijφ

iφj +
∑
i

diφ
i. (7.24)

The Hamilton equations

d

dt
φi(t) = {φi(t), H}, (7.25)

define an affine symplectic transformation

φ(0) 7→ φ(t). (7.26)

Note that if the variables are divided into “positions” and “momenta”, then
in general they are mixed by the flow generated by a quadratic Hamiltonian.
What is preserved is the “symplectic structure”.

The variables φ(t) are 1st order polynomials and we can quantize them

obtaining φ̂(t). Likewise, we can quantize H(t) obtaining Ĥ(t).

Theorem 7.2.

φ̂i(t) =eit Ĥ~ φ̂i(0)e−it Ĥ~ . (7.27)

Proof. Clearly, (7.27) is satisfied for t = 0. We check that φ̂(t) satisfies the
Heisenberg equations:

i~
d

dt
φ̂i(t) = i~ ̂{φ(t), H} = [φ̂i(t), Ĥ], (7.28)

This implies (7.27) for all t. 2

Thus we can first solve the classical Hamilton equations obtaining φ(t) and
then put the hat, or first put the hat and then solve the quantum Heisenberg
equation—we obtain the same φ̂(t).
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7.4 Weyl operators

Proposition 7.3 (Baker-Campbell-Hausdorff formula). Suppose that[
[A,B], A

]
=
[
[A,B], B

]
= 0.

Then
eA+B = eAeBe−

1
2 [A,B].

Proof. We will show that for any t ∈ R

et(A+B) = etAetBe−
1
2 t

2[A,B]. (7.29)

First, using the Lie formula, we obtain

etABe−tA =

∞∑
n=0

tn

n!
adnA(B)

= B + t[A,B].

Now

d

dt
etAetBe−

1
2 t

2[A,B] = AetAetBe−
1
2 t

2[A,B]

+etABetBe−
1
2 t

2[A,B]

−etAetBt[A,B]e−
1
2 t

2[A,B]

= (A+B)etAetBe−
1
2 t

2[A,B].

Besides, (7.29) is true for t = 1. 2

Let ξ = (ξ1, . . . , ξd), η = (η1, . . . , ηd) ∈ Rd. We will write

x̂(ξ) := ξix̂
i, p̂(η) := ηj p̂j .

Clearly,
[x̂(ξ), p̂(η)] = i~ξ · η.

Therefore,

eix̂(ξ)eip̂(η) = e−
i~
2 ξηei(x̂(ξ)+p̂(η)) (7.30)

= e−i~ξeip̂(η)eix̂(ξ). (7.31)

The operators ei(x̂(ξ)+p̂(η)) are sometimes called Weyl operators. They satisfy
the Weyl commutation relations:

ei(x̂(ξ)+p̂(η))ei(x̂(ξ′)+p̂(η′)) = e−
i~
2 (ξη′−ηξ′)ei

(
x̂(ξ+ξ′)+p̂(η+η′)

)
. (7.32)

The Weyl commutation relations, at least formally, imply the Heisenberg com-
mutation relations.

Weyl operators translate the position and momentum:

e
i
~ (−p̂(y)+x̂(w))x̂e

i
~ (p̂(y)−x̂(w)) = x̂− y,

e
i
~ (−p̂(y)+x̂(w))p̂e

i
~ (p̂(y)−x̂(w)) = p̂− w.
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7.5 Stone-von Neumann Theorem

Operators x̂i, p̂i are unbounded. Hence the Heisenberg commutation relations
(7.16) are problematic–without specifying the domain it is not clear what they
precisely mean. The Weyl commutation relations (7.32) involve only bounded
operators, hence their meaning is clear.

The following theorem is one of mathematical foundations of Quantum Me-
chanics:

Theorem 7.4. Suppose that

R2n 3 (ξ, η) 7→ Ŵ (ξ, η) ∈ U(H) (7.33)

is a family of operators satisfying

1. the Weyl commutation relations:

Ŵ (ξ, η)Ŵ (ξ′, η′) = e−
i~
2 (ξη′−ηξ′)Ŵ (ξ + ξ′, η + η′),

2. strong continuity: R2n 3 (ξ, η) 7→ Ŵ (ξ, η)Ψ is continuous,

3. irreducibility: there are no nontrivial subspaces in H invariant wrt Ŵ (ξ, η).

Then there exists a unitary U : H → L2(Rn) such that

UŴ (ξ, η)U∗ = ei(x̂(ξ)+p̂(η)). (7.34)

If we drop the irreducibility condition, then there exists a Hilbert space K and a
unitary operator U : H → L2(Rn)⊗K such that

UŴ (ξ, η)U∗ = ei(x̂(ξ)+p̂(η)) ⊗K. (7.35)

7.6 Representations of the CCR

Let (Y, ω) be a symplectic space, possibly infinite dimensional. Let H be a
Hilbert space. We say that a map

Y 3 y 7→ Ŵ (y) ∈ U(H) (7.36)

is a representation of the CCR or a CCR representation if

Ŵ (y)Ŵ (y′) = e−
i
2ω(y,y′)Ŵ (y + y′). (7.37)

We say that it is regular if
t 7→ Ŵ (ty)

is strongly continuous for any y ∈ Y.
One of the main examples of regular CCR representations is the Schrödinger

representation

Rn ⊕ Rn 3 (ξ, η) 7→ Ŵ (ξ, η) := ei(x̂(ξ)+p̂(η)) ∈ U
(
L2(Rn)

)
. (7.38)
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In this case Y = Rn ⊕ Rn, y = (ξ, η), y′ = (ξ′, η′),

ω(y, y′) = ξη′ − ηξ′. (7.39)

If Y is a finite dimensional symplectic space, then its dimension is necessarily
even and we can find a basis so that the symplectic form is (7.39). The Stone-
von Neumann theorem says that every irreducible strongly continuous CCR
representation over a finite dimensional symplectic space is unitarily equivalent
to a multiple of the Schrödinger representation.

Note that if we have a regular CCR representation over Y and y ∈ Y, then

R 3 t 7→ Ŵ (ty) ∈ U(H) (7.40)

is a 1-parameter unitary group. Hence it has a generator, which will be denoted
φ̂(y), so that

Ŵ (ty) = eitφ̂(y). (7.41)

It is easy to show that on an appropriate domain

φ̂(ty) = tφ̂(y), (7.42)

φ̂(y + y′) = φ̂(y) + φ̂(y′), (7.43)

[φ̂(y), φ̂(y′)] = iω(y, y′). (7.44)

We can also extend these “fields” to the complexification of Y, denoted
CY := Y + iY, that is consisting of y = yR + iyI, yR, yI ∈ Y. Note that we have
the complex conjugation y := yR − iyI. We set

φ̂(y) := φ̂(yR) + iφ̂(yI). (7.45)

Clearly, φ̂(y)∗ = φ̂(y).
There are many irregular CCR representations. For instance, we can con-

sider l2(Y) with basis {ey | y ∈ Y} and

Ŵ (y)ey′ = e−
i
2y·ωy

′
ey+y′ . (7.46)

Usually, they are only a non-physical mathematical curiosity.

7.7 Fock representations of the CCR

Let Z be a Hilbert space. It is then a symplectic space with the form

ω(z, z′) := 2Im(z|z′). (7.47)

Set
Ŵ (z) := eâ

∗(z)−â(z). (7.48)

Then, using the Baker-Campbell-Hausdorff formula we see that

Z 3 z 7→ Ŵ (z) ∈ U
(
Γs(Z)

)
(7.49)
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is a regular irreducible CCR representation over the symplectic space Z. Of
course, if Z is finite dimensional, it is unitarily equivalent to the Schrödinger
representation, which follows from the Stone-von Neumann Theorem, but is also
an obvious consequence of the well known theory of the harmonic oscillator.

We have

Ŵ (z) = e−
(z|z)

2 eâ
∗(z)e−â(z), (7.50)

â(z)Ω = 0, z ∈ Z. (7.51)

Hence,

(Ω|Ŵ (z)Ω) = e−
(z|z)

2 . (7.52)

Therefore, if we know the vacuum state we can recover the real part of the scalar
product on Z.

The symplectic form ω fixes the imaginary part of the scalar product, see
(7.47). Then there are many ways you can complete it to a full scalar product.
Each of them leads to a Fock representation of CCR satisfying (7.52). If Z
has an infinite dimension, the resulting representations in general will not be
unitarily equivalent, as we will illustrate in the next section.

7.8 Equivalence of representations of CCR

Suppose that (Y, ω) is a symplectic space and Y 3 y 7→Wi(y) ∈ U(Hi), i = 1, 2
are two representations of CCR. We say that they are unitarily equivalent if
there exists a unitary U : H1 → H2 such that

UW1(y) = W2(y)U, y ∈ Y. (7.53)

The Stone-von Neumann Theorem says that all CCR representations over a
finite dimensional symplectic space are unitarily equivalent up to a multiplicity.
This is not the case for an infinite number of degrees of freedom.

In fact, for instance, there are many inequivalent Fock representations over
the same infinite dimensional symplectic space.

Let us do a computation that illustrates this. Let us start with the symplectic
space R2 with the Schrödinger representation on L2(R) given by x̂, p̂. For any
ω > 0 we introduce the creation/annihilation operators

a∗ω :=
1√
2

(√
ωx̂− ip̂√

ω

)
, aω :=

1√
2

(√
ωx̂+

ip̂√
ω

)
. (7.54)

The vacuum annihilated by aω is

Ωω(x) =
4
√
ω

4
√
π

e−
ωx2

2 . (7.55)

The vectors

eω,n :=
1√
n!
a∗nω Ωω (7.56)
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form an orthonormal basis of eigenvectors of the harmonic ascillator a∗a. Thus

UωΦ :=

∞∑
n=0

|n)(eω,n|Φ) (7.57)

is a unitary operator Uω : L2(R)→ Γs(C) ∼ l2(0, 1, 2, . . . ). We have

x̂ =
1√
2ω

(a∗ω + aω), p̂ = i

√
ω√
2

(a∗ω − aω). (7.58)

Obviously, these representation are unitarily equivalent. In fact, setting

VωΦ(x) := 4
√
ωΦ(
√
ωx), (7.59)

we obtain

Vωx̂V
−1
ω =

√
ωx̂, Vωp̂V

−1
ω =

1√
ω
p̂, (7.60)

hence
Vωâ

∗
1V
−1
ω = â∗ω, Vωâ1V

−1
ω = âω, Vωe1,n = eω,n, (7.61)

and Vω = U−1
ω U1. We can also compute

(Ωω|Ω1) =

√
2

ω
1
2 + ω−

1
2

. (7.62)

So far we treated L2(R) as the underlying space. Let us now treat the
Fock space Γs(C) as the main space. Then for any ω > 0 we have a Fock
representation

R2 3 (ξ, η) 7→Wω(ξ, η) := exp
( iξ√

2ω
(a∗ + a) +

iη
√
ω√

2
(a∗ − a)

)
. (7.63)

They are different, but unitarily equivalent.
It is straightforward to generalize this construction to a finite number of

degrees of freedom. Thus, for any finite sequence of positive numbers we obtain
the equivalence of two CCR representations of the symplectic space R2n: the
Schrödinger representation on L2(Rn) and the Fock representation on Γs(Cn).
The vacua corresponding to ω = (ω1, . . . , ωn) and 1 = (1, . . . , 1) have a positive
scalar product:

(Ωω|Ω1) =

n∏
j=1

√
2

ω
1
2
j + ω

− 1
2

j

> 0. (7.64)

The Schrödinger representation does not work for n = ∞, since there is
no generalization of the Lebesgue measure to R∞. However, the Fock space
Γs(l

2) is well defined. Thus we can define creation/annihilation operators a∗i , aj ,
i = 1, 2, . . . .
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For any infinite sequence ω = (ω1, ω2, . . . ) we can represent the commutation
relations

[x̂i, p̂j ] = iδij (7.65)

by setting

x̂ω,i =
1√
2ωi

(a∗i + ai), p̂ω,i = i

√
ωi√
2

(a∗i − ai). (7.66)

However, if 1 = (1, 1 . . . , . . . ), the infinite product

(Ωω|Ω1) =

∞∏
j=1

√
2

ω
1
2
j + ω

− 1
2

j

. (7.67)

is usually zero. One can show that if (7.67) is zero then the representations
given by ω and 1 are inequivalent.

7.9 Two steps of quantization with an infinite number of
degrees of freedom

Description of quantum systems with an infinite number of degrees of freedom
(especially free systems) usually proceeds in two steps.

1. First one describes the symplectic space of classical fields. This automat-
ically fixes commutation relations satisfied by quantum fields.

2. Then one chooses a Hilbert space where the quantum fields are repre-
sented. (Typically, this is a Fock space)

In the mathematically oriented literature there exist several equvalent ways
of presenting CCR relations. Probably, the most economical way involves the
notion of a CCR representation, which we introduced above. An alternative
way is to use a ∗ algebra of CCR. Then the two steps described above can be
described as foillows:

1. Introduce an abstract ∗-algebra of CCR over the space (Y, ω).

2. Find a representation of this algebra.

This approach has a minor problem: there are several, essentially equivalent
but mathematically different ∗-algebras that can be used to describe Canonical
Commutation Relations. Let us describe two of them (there are others).

The “Weyl CCR C∗-algebra” is the C∗ algebra generated by {Ŵ (y) | y ∈ Y}
satisfying

Ŵ (y)∗ = Ŵ (−y), Ŵ (0) = 1l, (7.68)

Ŵ (y)Ŵ (y′) = e−
i
2y·ωy

′
Ŵ (y + y′). (7.69)
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The “field CCR ∗-algebra” is the ∗-algebra generated by {φ̂(y) | y ∈ Y}
satisfying

φ̂(αy + α′y′) = αφ̂(y) + α′φ̂(y′), φ̂(y)∗ = φ̂(y), (7.70)

[φ̂(y), φ̂(y′)] = iy · ωy′1l. (7.71)

The advantage of the Weyl CCR C∗-algebra is that it is a true C∗-algebra,
hence it is prefered by numerous “C∗-algebras lovers”. It also allows us to con-
sider irregular representations. On the other hand, it consists of “almost periodic
functions on the phase space”, whose physical significance can be doubted.

The “field CCR ∗-algebra” seems “closer to the physics”. However, it is not
a C∗-algebra, and its representations involve unbounded operators, which could
be problematic.

The second step of quantization, that is fixing a representation, can be per-
formed by fixing a state, and then using the GNS representation. For instance,
the Fock state σ in the setting of Subsection 7.7 is given by

σ(Ŵ (z)) = e−
(z|z)

2 . (7.72)

The GNS representation wrt σ acts naturally in the bosonic Fock space, as
described in Subsection 7.7. The state σ corresponds to the Fock vacuum:
σ = (Ω| · Ω).

7.10 Positive energy Fock quantization

Consider a quadratic Hamiltonian on a phase space Y. If we fix coordinate
functions φi, it can be written as

H =
1

2

∑
i,j

hijφ
iφj (7.73)

for some symmetric matrix [hij ]. As we discussed above, if Y is finite dimen-
sional, we could quantize H as

Ĥsym =
1

2

∑
i,j

hij φ̂
iφ̂j . (7.74)

Because of a finite number of degrees of freedom this is well defined and essen-
tially unique, since all irreducible representations are equivalent, so that this
quantization is essentially unique.

If the number of degrees of freedom is infinite, usually only the phase space
with its symplectic structure is given beforehand. In the quantum theory one
also needs a CCR representation on a Hilbert space, which is less canonical and
more tricky to choose. How to select a physically motivated CCR representation,
if we are given a symplectic space?
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Suppose that the symplectic form is given by the matrix [ωij ], with its in-
verse denoted [ωij ]. This is expressed by two equivalent identities, one for the
symplectic form, the other for the Poisson bracket:

ω =
∑
ij

ωijφ
i ⊗ φj =

1

2
ωijφ

i ∧ φj ; (7.75)

{φi, φj} = ωij . (7.76)

Introduce the operator k := ω−1h, or

kij := ωikhkj . (7.77)

For ζ ∈ R2n, note that kζ = ω−1dH(ζ) is the Hamiltonian vector field generated
by H. Thus the dynamics generated by H is rt = etk. Thus on the classical
level we have the dynamics t 7→ φi(t) with φi(0) = φi is given by the linear
transformation

φi(t) = rit,jφj . (7.78)

We would like to have a quantization, such that the analogous identity is true
on the quantum level. In other words, we would like to have a Hilbert space H
equipped with operators φ̂i and Ĥ such that

eitĤ φ̂ie−itĤ = rit,j φ̂j . (7.79)

If the number of degrees of freedom is finite this is achieved by (7.74). We
can also subtract from (7.74) any real number and (7.79) will still hold.

Let us now assume that H is strictly positive. We will describe the whole
procedure as if the number of degrees of freedom were finite, so that Y = R2n,
but it is easy to generalize it to the general case.

The matrix [hij ] defining the Hamiltonian can be used to fix a sesquilinear
scalar product on the complexification of the phase space, that is on C2n:

ζ
i
hijξ

j =: 〈ζ|hξ〉, (7.80)

Note that −ik is self-adjoint in the scalar product (7.80). Therefore, we can
diagonalize −ik in a basis orthonormal in (7.80). Note that all eigenvalues of −ik
are nonzero and real. Besides, if vi is an eigenvector of −ik with eigenvalue εi,
then vi is an eigenvector with eigenvalue −εi, because −ik is purely imaginary.
Thus

〈ζ|hξ〉 =
∑
i

(
〈ζ|hvi〉〈vi|hξ〉+ 〈ζ|hvi〉〈vi|hξ〉

)
, (7.81)

i〈ζ|ωξ〉 = 〈ζ|h(−ik)−1ξ〉 =
∑
i

ε−1
i

(
〈ζi|hvi〉〈vi|hξ〉 − 〈ζi|hvi〉〈vi|hξ〉

)
,
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where we can assume that all εi are positive. Introduce the following functionals
acting on real vectors ζ:

〈ai|ζ〉 :=
1
√
εi
〈vi|hζ〉, (7.82)

〈a∗i |ζ〉 :=
1
√
εi
〈vi|hζ〉 =

1
√
εi
〈vi|hζ〉. (7.83)

Then for real ζ, ξ (7.81) yields

〈H|ζ〉 =
∑
i

εi〈a∗i |ζ〉〈ai|ζ〉, (7.84)

i〈ζ|ωξ〉 = 〈ζ|h(−ik)−1ξ〉 =
∑
i

(
〈a∗i |ζ〉〈ai|ξ〉 − 〈ai|ζ〉〈a∗i |ξ〉

)
,

which can be rewritten as

H =
∑

εia
∗
i ai, (7.85)

iω =
∑

a∗i ∧ ai, (7.86)

where the last line is equivalent to

{ai, a∗j} = −iδij , {ai, aj} = {a∗i , a∗j} = 0. (7.87)

Now we quantize the fields on a Hilbert space with the vector Ω, so that

[âi, â
∗
j} = δij , [âi, âj ] = [â∗i , â

∗
j ] = 0, âiΩ = 0. (7.88)

Clearly, what we obtain is the bosonic space with the 1-particle space spanned
by â∗iΩ. We choose the Hamiltonian

Ĥ =
∑

εiâ
∗
i âi. (7.89)

Note that Ĥ is positive, ĤΩ = 0 and (7.79) holds. If Ĥsym is well defined, then
it differs from Ĥ by a constant 1

2

∑
λi.

Let us now describe the above procedure in a basis independent way. Sup-
pose that H is a positive quadratic form on a real vector space Y equipped with
a symplectic form ω. We first extend H to a bilinear form on Y by polarization
identity. This form is generated by an operator from Y to the dual of Y, which
we denote by h

〈ζ|hξ〉 := H(ζ + ξ)−H(ζ)−H(ξ), ζ, ξ ∈ Y. (7.90)

Equivalently, hζ = dH(ζ). Thus H(ζ) = 1
2 〈ζ|hζ〉 and for k := ω−1h, the

symplectic dynamics is rt = etk.
We extend h and iω as maps from CY to the dual of CY. We consider the

sesquilinear forms
〈ζ|hζ〉 (7.91)
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as a scalar product on CY called the energy scalar product. We easily check
that −ik is a self-adjoint operator on CY. We can diagonalize −ik. Because of
nondegeneracy of ω, this operator has a zero nullspace. Hence we have also a
nondegenerate sesquilinear form

i〈ζ|ωζ〉 = 〈ζ|h(−ik)−1ζ〉

Let W(+) and W(−) be the positive and negative subspace of CY of the
self-adjoint operator −ik. We have

W(+) =W(−), (7.92)

iω endows Z :=W(+) with the positive scalar product

(z|z′) = i〈z|ωz′〉 (7.93)

and −ik is self-adjoint wrt (7.93). Let us set

Ĥ := dΓ
(
− ik

∣∣
Z

)
. (7.94)

We have
eitĤW (z)e−itĤ = W (etkz), z ∈ Z. (7.95)

The scalar product (7.93) will be treated as the basic one on Z and called
the dynamical scalar product. We have

〈z|hz′〉 = (z| − ikz′). (7.96)

Thus using (·|·) we can identify −ik restricted to Z with h restricted to Z.
The above construction guarantees that

(1) There exists a unitary group on the Hilbert space Γs(Z) that implements
the dynamics, see (7.95).

(2) The Hamiltonian Ĥ generating the dynamics is positive, because h
∣∣∣
Z

is

positive.

(3) The Fock vacuum Ω is a nondegenerate ground state of the Hamitonian.

7.11 Positive energy quantization for charged systems

Suppose that the symplectic space Y is equipped with a U(1) symmetry. More
precisely, we assume that it is Y = YR ⊕YI and its coordinates are spanned by
φiR, φiI satisfying

{φiR, φ
j
R} = ωij , {φiI, φ

j
I} = ωij , {φiR, φ

j
I} = 0, (7.97)

for some symplectic matrix ω on YR ' YI. The element eiθ ∈ U(1) acts on the
coordinates as

φiR 7→ cos θφiR − sin θφiI, φiR 7→ sin θφiR + cos θφiI. (7.98)
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In such a case it is customary to treat the space Y as a complex space
Y = CYR, setting

ψi =
1√
2

(φiR + iφiI), ψi∗ =
1√
2

(φiR − iφiI), (7.99)

so that
{ψi, ψj} = {ψi∗, ψj∗} = 0, {ψi, ψj∗} = −ωij , (7.100)

and the action of the group is ψi 7→ eiθψi, ψi∗ 7→ e−iθψi∗.
Note that the space Y is equipped with complex conjugation c. It satisfies

cψic = ψi∗, c2 = 1l. It can be interpreted as the charge conjugation.
Suppose that H is a (real) quadratic Hamiltonian that is invariant wrt U(1).

Then it can be written as
H =

∑
ij

hijψ
i∗ψj (7.101)

for some Hermitian matrix [hij ]. The symplectic form leads to the following
sesquilinear form, which will be called the charge:

Q = i
∑
ij

ωijψ
i∗ψj (7.102)

We diagonalize simultaneously H and Q obtaining I = I+ t I−

H =
∑
i∈I

εia
∗
i ai, (7.103)

Q =
∑
i∈I+

a∗i ai −
∑
i∈I−

a∗i ai, (7.104)

{ai, a∗j} = 0, i 6= j, {ai, a∗i } = ∓i, i ∈ I±. (7.105)

(Note that (7.104) and (7.105) are equivalent). We rename ai = b∗i , a
∗
i = bi for

i ∈ I−. Thus

H =
∑
i∈I+

εia
∗
i ai +

∑
i∈I−

εib
∗
i bi, (7.106)

Q =
∑
i∈I+

a∗i ai −
∑
i∈I−

b∗i bi, (7.107)

{ai, a∗j} = {bi, b∗j} = −iδij . (7.108)

Note that the space Y = Y+ ⊕ Y−.
The quantization of this system yields Γs(Y+⊕ cY−). The Hamiltonian and

charge are

Ĥ = dΓ
(
h
∣∣∣
Y+

⊕ chc
∣∣∣
cY−

)
, Q̂ = dΓ

(
1l
∣∣∣
Y+

⊕−1l
∣∣∣
cY−

)
.

The quantized charge conjugation is Ĉ := dΓ(c)
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If in addition the matrix [hij ] is real then we have

H =
1

2

∑
ij

hij
(
φiRφ

j
R + φiIφ

j
I

)
(7.109)

Clearly, then H = H ◦ c, Q = −Q◦ c Then then we can choose the diagonalizing
functionals so that caic = bi, ca

∗
i c = b∗i .

After quantization we have ĈâiĈ = b̂i, Ĉâ
∗
i Ĉ = b̂∗i , ĈĤĈ = Ĥ, ĈQ̂Ĉ = −Q̂.

8 Free neutral scalar bosons

8.1 Classical fields off-shell and on-shell

In the Lagrangian formalism of neutral field theory one starts from a field φ(x),
where x ∈ R1,3, which can be treated as a linear functional on, say, real smooth
functions on R1,3, such that

〈φ(x)|f〉 := f(x), f ∈ C∞(R1,3,R). (8.1)

(The choice of smooth functions does not matter much, since the Lagrangian
formalism serves mainly to obtain formal identities). One also chooses a local
Lagrangian density L(x), which is a function of the field φ(x), ∂µφ(x) =: φ,µ(x)
and of x ∈ R1,3. The Euler-Lagrange equation reads then

∂φ(x)L(x)− ∂µ
∂L(x)

∂φ,µ(x)
= 0 (8.2)

To obtain the Klein-Gordon equation, we use the Lagrangian density

L(x) = − 1
2∂µφ(x)∂µφ(x)− 1

2m
2φ(x)2. (8.3)

The Euler-Lagrange equation then yields

(−2 +m2)φ(x) = 0. (8.4)

Let ζ ∈ C∞(R1,3) solve the Klein-Gordon equation

(−2 +m2)ζ(x) = 0. (8.5)

Recall the identity (4.33):

ζ(t, ~x) =

∫
R3

ĠPJ(t, ~x− ~y)ζ(0, ~y)d~y +

∫
R3

GPJ(t, ~x− ~y)ζ̇(0, ~y)d~y. (8.6)

Recall that a function on R1,3 is called space compact if there exists a com-
pact K ⊂ R1,n such that suppf ⊂ J(K). The set of space compact smooth
functions will be denoted C∞sc (R1,3). Therefore all solutions of (8.5) with com-
pactly supported Cauchy data are space compact.
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Let YKG denote the space of real, resp. space-compact solutions of the Klein-
Gordon equation We can endow the space YKG with the standard topology of
C∞c (R3)⊕C∞c (R3) given by the initial conditions. The space of real continuous
functionals on YKG will be denoted by YT

KG. The action of T ∈ CYT
KG on

ζ ∈ YKG will be denoted by 〈T |ζ〉, and sometimes simply by Tζ.
The field φ(x) understood as (8.1) will be called an off-shell field. It is used

in the Lagrangian formalism. When we go from the Lagrangian to Hamiltonian
formalism, we enforce the on-shell condition, that is, we restrict ourselves to
solutions of the E-L equation. We are also more careful in the choice of the
space on which the fields act. We restrict ourselves to YKG. Thus, for x ∈ R1,3,
the on-shell field φ(x) acting on ζ ∈ YKG gives

〈φ(x)|ζ〉 := ζ(x),

We will not distinguish the notation for on-shell and off-shell fields.
Clearly, for any ζ ∈ YKG we have

(−2 +m2)〈φ(x)|ζ〉 = 0.

Thus the equation (8.4) for on-shell fields is a tautology.
In the on-shell formalism we also introduce the variable conjugate to φ(x):

π(x) :=
∂L(x)

∂φ,0(x)
= φ,0(x) = φ̇(x). (8.7)

Clearly, φ̇(x) = π(x) and by (8.6)

φ(t, ~x) =

∫
ĠPJ(t, ~x− ~y)φ(0, ~y)d~y +

∫
GPJ(t, ~x− ~y)π(0, ~y)d~y. (8.8)

The Poincaré group R1,3 oO(1, 3) acts on YKG by

r(y,Λ)ζ(x) := ζ
(
(y,Λ)−1x

)
.

Equivalently,
rT−1
(y,Λ)φ(x) = φ(Λx+ y). (8.9)

8.2 Symplectic form and Poisson bracket

For ζ1, ζ2 ∈ C∞sc (R1,3) we define

jµ(x, ζ1, ζ2) := ∂µζ1(x)ζ2(x)− ζ1(x)∂µζ2(x). (8.10)

Writing jµ(x) for brevity, we easily check that

∂µj
µ(x) = (2−m2)ζ1(x)ζ2(x)− ζ1(x)(2−m2)ζ2(x),
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This implies Green’s identity∫
j0(t+, ~x)d~x−

∫
j0(t−, ~x)d~x (8.11)

=

∫
t−<x0<t+

(
(−2 +m2)ζ1(x)ζ2(x)− ζ1(x)(−2 +m2)ζ2(x)

)
dx. (8.12)

Thus if ζ1, ζ2 ∈ YKG, then
∂µj

µ(x) = 0.

One says that jµ(x) is a conserved 4-current.
A space-like subspace of codimension 1 will be called a Cauchy subspace.

The flux of jµ across any Cauchy subspace S does not depend on its choice. It
defines a symplectic form on YKG

ω(ζ1, ζ2) =

∫
S
jµ(x, ζ1, ζ2)dsµ(x)

=

∫ (
−ζ̇1(t, ~x)ζ2(t, ~x) + ζ1(t, ~x)ζ̇2(t, ~x)

)
d~x. (8.13)

Thus (YKG, ω) is an (infinite dimensional) symplectic space.
Clearly, the form (8.13) is well defined also if only ζ2 ∈ YKG, and ζ1 is a

distributional solution of the Klein-Gordon equation.
r(y,Λ) are symplectic (preserve the symplectic form) for Λ ∈ O↑(1, 3), other-

wise they are antisymplectic (change the sign in front of the symplectic form).
By (8.13), the symplectic form can be written as

ω(ζ1, ζ2) =

∫ (
− 〈π(t, ~x)|ζ1〉〈φ(t, ~x)|ζ2〉+ 〈φ(t, ~x)|ζ1〉〈π(t, ~x)|ζ2〉

)
d~x,

or more simply,

ω =

∫
φ(t, ~x) ∧ π(t, ~x)d~x. (8.14)

The conserved 4-current can be written as

jµ(x) = φ(x) ∧ ∂µφ(x).

By (8.14), the symplectic structure on the space YKG leads to the Poisson
bracket

{φ(t, ~x), φ(t, ~y)} = {π(t, ~x), π(t, ~y)} = 0,

{φ(t, ~x), π(t, ~y)} = δ(~x− ~y). (8.15)

Using (8.8) we obtain

{φ(x), φ(y)} = −GPJ(x− y). (8.16)

Therefore, the Pauli-Jordan solution is often called the commutator function.
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The relations (8.15) can be viewed as mnemotechnic identities that yield the
correct Poisson bracket for more regular functions, eg. the smeared out fields

φ[f ] :=

∫
f(x)φ(x)dx. (8.17)

We have

{φ[f ], φ[g]} = −
∫ ∫

f(x)g(x)GPJ(x− y)dxdy. (8.18)

Note that formally φ(t, ~x) and π(t, ~x) generate the algebra of all functions
on YKG.

8.3 Stress-energy tensor

The Noether Theorem suggests to introduce the stress-energy tensor

T µν(x) := − ∂L(x)

∂φ,µ(x)
φ,ν(x) + gµνL(x) (8.19)

= ∂µφ(x)∂νφ(x)− gµν 1

2

(
∂αφ(x)∂αφ(x) +m2φ(x)2

)
.

It is easy to check that the stress-energy tensor is conserved on solutions of
the Klein-Gordon equation (on shell):

∂µT µν(x) = 0.

We express the stress-energy tensor in terms of φ(x) and π(x). Its compo-
nents with the first temporal coordinate are called the Hamiltonian density and
momentum density:

H(x) := T 00(x) =
1

2

(
π(x)2 +

(
~∂φ(x)

)2
+m2φ(x)2

)
,

Pi(x) := T 0i(x) = −π(x)∂iφ(x).

They are examples of quadratic functionals on YKG: One easily checks

{φ(t, ~x),H(t, ~y)} = φ̇(t, ~x)δ(~x− ~y), (8.20)

{π(t, ~x),H(t, ~y)} = π̇(t, ~x)δ(~x− ~y), (8.21)

{φ(t, ~x),Pi(t, ~y)} = −∂iφ(t, ~x)δ(~x− ~y), (8.22)

{π(t, ~x),Pi(t, ~y)} = −∂iπ(t, ~x)δ(~x− ~y). (8.23)

We introduce the (total) Hamiltonian and momentum:

H :=

∫
S
T µ0(x)dsµ(x) =

∫
H(t, ~x)d~x, (8.24)

P i :=

∫
S
T µi(x)dsµ(x) =

∫
Pi(t, ~x)d~x. (8.25)
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where S is any Cauchy subspace. They are examples of quadratic functionals:

〈H|ζ〉 =

∫
1

2

(
ζ̇(t, ~x)2 +

(
~∂ζ(t, ~x)

)2
+m2ζ(t, ~x)2

)
,

〈Pi|ζ〉 = −
∫
ζ̇(t, ~x)∂iζ(t, ~x).

H and ~P are the generators of the time and space translations:

φ̇(x) = {φ(x), H}, π̇(x) = {π(x), H},
~∂φ(x) = −{φ(x), ~P}, ~∂π(x) = −{π(x), ~P}.

The observables H, P 1, P 2 and P 3 are in involution. (This means that the
Poisson bracket of every pair among these observables vanishes).

8.4 Simultaneous diagonalization of the symplectic form,
Hamiltonian and momentum

Let us stress that the space YKG is real, which reflects the fact that in this
section we consider neutral fields. It is however useful to complexify the space
YKG, that is to consider the space of smooth space-compact complex solutions
of the Klein-Gordon equation. A possible notation for this space is CYKG, but
we will also use a different letter WKG := CYKG.

We multiply the current (8.10) by i and extend it by sesquilinearity to CYKG,
obtaining the Hermitian form

ijµ(x, ζ1, ζ2) := i
(
∂µζ1(x)ζ2(x)− ζ1(x)∂µζ2(x)

)
. (8.26)

After integrating on a Cauchy surface we obtain the Hermitian form

iω(ζ1, ζ2) = i

∫ (
− ζ̇1(t, ~x)ζ2(t, ~x) + ζ1(t, ~x)ζ̇2(t, ~x)

)
d~x. (8.27)

We also extend by sesquilinearity to CYKG the Hamiltonian and the mo-
mentum:

〈H|ζ〉 =
1

2

∫ (
|ζ̇(t, ~x)|2 + |~∇ζ(t, ~x)|2 +m2|ζ(t, ~x)|2

)
d~x, (8.28)

〈Pj |ζ〉 = −1

2

∫ (
ζ̇(t, ~x)∇jζ(t, ~x) +∇jζ(t, ~x)ζ̇(t, ~x)

)
d~x. (8.29)

We are going to diagonalize simultaneously (8.27), (8.28) and (8.29).

For ~k ∈ R3, set ε = ε(~k) :=
√
~k2 +m2.

Every ζ ∈ CYKG can be written in a unique way as

ζ = ζ(+) + ζ(−), (8.30)

where

ζ(±)(x) =

∫
ζ(±)(k)| ± k)d~k. (8.31)
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where we smear out ζ(±)(k) and with “positive”, resp. “negative frequency
plane waves”

|k) =
1√

(2π)3

√
2ε(~k)

ei(−ε(~k)x0+~k~x), (8.32)

| − k) = |k) =
1√

(2π)3

√
2ε(~k)

e−i(−ε(~k)x0+~k~x). (8.33)

We obtain

iω(ζ1, ζ2) =

∫
ζ

(+)
1 (k)ζ

(+)
2 (k)d~k −

∫
ζ

(−)
1 (k)ζ

(−)
2 (k)d~k (8.34)

〈H|ζ〉 =
1

2

∫
ε(~k)

(
ζ(+)(k)ζ(+)(k) + ζ(−)(k)ζ(−)(k)

)
d~k (8.35)

〈P i|ζ〉 =
1

2

∫
ki
(
ζ(+)(k)ζ(+)(k) + ζ(−)(k)ζ(−)(k)

)
d~k. (8.36)

8.5 Plane wave functionals

If T ∈ CYT
KG, we define T ∗ ∈ CYT

KG by

〈T ∗|ζ〉 := 〈T |ζ〉, ζ ∈ YKG.

Note that in this context the star does not denote the Hermitian conjugation
(which in our text is the standard meaning of the star).

Let k := (ε(~k),~k). k ∈ R1,3 of this form will be called on shell. Recall that

YKG is a real space and therefore if ζ ∈ YKG, then ζ(+) = ζ(−). For k on shell,
we define plane wave functionals a(k), a∗(k) as functionals on the real space
YKG by

〈a(k)|ζ〉 := ζ(+)(k), 〈a∗(k)|ζ〉 := ζ(−)(k) = 〈a(k)|ζ〉 (8.37)

Clearly, from 〈φ(x)|ζ〉 = ζ(x), we obtain

φ(x) =

∫
d~k√

(2π)3

√
2ε(~k)

(
eikxa(k) + e−ikxa∗(k)

)
,

π(x) =

∫ d~k

√
ε(~k)

i
√

(2π)3
√

2

(
eikxa(k)− e−ikxa∗(k)

)
.

After setting x0 = 0, we can invert these relations:

a(k) =

∫
d~x√
(2π)3

e−i~k~x

(√
ε(~k)

2
φ(0, ~x) +

i√
2ε(~k)

π(0, ~x)

)
, (8.38)

a∗(k) =

∫
d~x√
(2π)3

ei~k~x

(√
ε(~k)

2
φ(0, ~x)− i√

2ε(~k)
π(0, ~x)

)
. (8.39)
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(8.34) can be rewritten with ζ1, ζ2 ∈ YKG as

iω(ζ1, ζ2) =

∫ (
〈a(k)|ζ1〉〈a(k)|ζ2〉 − 〈a(k)|ζ1〉〈a(k)|ζ2〉

)
d~k. (8.40)

Rewriting it in a shorter form we see that a(k), a∗(k) diagonalize the symplectic
form:

iω =

∫
d~ka∗(k) ∧ a(k). (8.41)

They also diagonalize simultaneously the Hamiltonian and the momentum:

H =

∫
d~kε(~k)a∗(k)a(k), (8.42)

~P =

∫
d~k~ka∗(k)a(k). (8.43)

(8.41) is equivalent to

{a(k), a(k′)} ={a∗(k), a∗(k′)} = 0, (8.44)

{a(k), a∗(k′)} =− iδ(~k − ~k′). (8.45)

Hence,

{a(k), H} = −iε(~k)a(k), {a∗(k), H} = iε(~k)a∗(k), (8.46)

{a(k), ~P} = −i~ka(k), {a∗(k), ~P} = i~ka∗(k), (8.47)

8.6 Positive frequency space

(8.30) gives a decomposition of the space CYKG into two subspaces

CYKG =W(+)
KG ⊕W

(−)
KG . (8.48)

(8.34) restricted to W(+)
KG is positive definite. For ζ

(+)
1 , ζ

(+)
2 ∈ W(+) we will

write

(ζ
(+)
1 |ζ(+)

2 ) := iζ
(+)
1 ωζ

(+)
2 . (8.49)

The Hilbert space of positive energy solutions is denoted Z(+)
KG , and is the com-

pletion of W(+)
KG in this scalar product. Z(+)

KG can be identified with L2(R3),
(8.49) rewritten as

(ζ
(+)
1 |ζ(+)

2 ) =

∫
ζ(+)(k)ζ(+)(k)d~k. (8.50)

and ζ(+)(k) = (k|ζ(+)).
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We can use f ∈ ZKG to smear out the functionals a(k) and a∗(k):

〈a(f)|ζ〉 =

∫
f(k)ζ(+)(k)d~k, a(f) =

∫
f(k)a(k)d~k; (8.51)

〈a∗(f)|ζ〉 =

∫
f(k)ζ(+)(k)d~k, a∗(f) =

∫
f(k)a∗(k)d~k; (8.52)

{a(f), a(f ′)} ={a∗(f), a∗(f ′)} = 0, {a(f), a∗(f ′)} = −i(f |f ′). (8.53)

Using the “smeared notation” on the right we can write

a∗(k) = a∗
(
|k)
)
. (8.54)

In this section we will not use W(−)
KG for quantization, however we will do

this when we consider charged fields. Anticipating our discussion of charged

fields of the next section, we introduce the space complex conjugate to W(−)
KG ,

denoted W(−)
KG and equipped with the scalar product

(ζ
(−)

1 |ζ
(−)

2 ) := iζ
(−)
1 ωζ

(−)
2 . (8.55)

We set Z(−)
KG to be the completion of W(−)

KG in this scalar product. (The bar is

again the complex conjugation). Z(−)
KG can be identified with L2(R3) and (8.55)

rewritten as

(ζ
(−)

1 |ζ
(−)

2 ) =

∫
ζ

(−)
1 (k)ζ

(−)
2 (k)d~k

and ζ(−)(k) = (−k|ζ(−)
).

Note that W(−)
KG = W(+)

KG , where we use the usual (internal) complex con-

jugation in WKG. Therefore in principle we could identify Z(−)
KG and Z(+)

KG . In
particular, with this identification

| − k) = |k). (8.56)

This identification is consistently applied in this section, however in the next

section we treat Z(−)
KG and Z(+)

KG as two separate Hilbert spaces.

R1,3 oO↑(1, 3) acts on Z(+)
KG and Z(−)

KG in a natural way.

We have a natural identification of YKG withW(+)
KG . Indeed, ζ ∈ YKG can be

projected onto ζ(+) ∈ W(+)
KG , as in (8.30).This identification allows us to define

a real scalar product on YKG:

〈ζ1|ζ2〉Y := Re(ζ
(+)
1 |ζ(+)

2 ).

We can compute explicitly this scalar product:

〈ζ1|ζ2〉Y =

∫ ∫
ζ̇1(0, ~x)G(+)(0, ~x− ~y)ζ̇2(0, ~y)d~xd~y (8.57)

+

∫ ∫
ζ1(0, ~x)(−∆~x +m2)G(+)(0, ~x− ~y)ζ2(0, ~y)d~xd~y.
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8.7 Quantization of scalar fields

There are several equivalent presentations of free scalar quantum fields.
The description in typical physics textbooks can be described more or less

as follows. We want to construct H, Ĥ,Ω such that H is a positive self-adjoint
operator on H, Ω is a normalized eigenvector of H with eigenvalue 0 and a
self-adjoint operator valued distribution

R1,3 3 x 7→ φ̂(x), (8.58)

such that, with π̂(x) :=
˙̂
φ(x),

(1) (−2 +m2)φ̂(x) = 0,

(2) [φ̂(0, ~x), φ̂(0, ~y)] = [π̂(0, ~x), π̂(0, ~y)] = 0,

[φ̂(0, ~x), π̂(0, ~y)] = iδ(~x− ~y).

(3) eitĤ φ̂(x0, ~x)e−itĤ = φ̂(x0 + t, ~x).

(4) Ω is cyclic for φ̂(x).

Let us describe quantum scalar fields following the above strategy, as an
(essentially unique) solution of the above problem. Let R1,3 3 x 7→ φ̂(x), π̂(x)

satisfy (1). Then the Fourier transform of φ̂ has to be supported on the mass
hyperboloid. Therefore, by the same argument as in the classical case we can
intorduce â∗(k) and â(k) such that

φ̂(x) =

∫
d~k√

(2π)3

√
2ε(~k)

(
eikxâ(k) + e−ikxâ∗(k)

)
, (8.59)

π̂(x) =

∫ d~k

√
ε(~k)

i
√

(2π)3
√

2

(
eikxâ(k)− e−ikxâ∗(k)

)
, (8.60)

with the inverse transformation

â(k) =

∫
d~x√
(2π)3

e−i~k~x

(√
ε(~k)

2
φ(0, ~x) +

i√
2ε(~k)

π(0, ~x)

)
, (8.61)

â∗(k) =

∫
d~x√
(2π)3

ei~k~x

(√
ε(~k)

2
φ̂(0, ~x)− i√

2ε(~k)
π̂(0, ~x)

)
. (8.62)

(These are identities (8.38) and (8.39) decorated with hats). Again, repeating
the classical arguments, (2) implies

[â(k), â(k′)] =[â∗(k), â∗(k′)] = 0, (8.63)

[â(k), â∗(k′)] =δ(~k − ~k′). (8.64)

We still need the Hilbert space and the Hamiltonian. Since we have an
infinite number of degrees of freedom we cannot use the symmetric quantization
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to define Ĥ, because this would produce an infinite constant. Differentiating
(3) wrt time we obtain

i[Ĥ, φ̂(x)] = π̂(x). (8.65)

This is equivalent to

[â(k), Ĥ] = ε(~k)â(k), [â∗(k), Ĥ] = −ε(~k)a∗(k), (8.66)

ĤΩ = 0 implies Ĥâ(k)Ω = −ε(~k)â(k)Ω. But Ĥ ≥ 0. Thus we should
assume

â(k)Ω = 0. (8.67)

By (4), Ω is cyclic for â(k) and â∗(k). Using the commutation relations and
(8.67) we see that Ω is cyclic just for â∗(k). In other words, H is spanned by
vectors of the form

Ψ =

∫
Ψ(~k1, . . . ,~kn)â∗(k1) · · · â∗(kn)Ωd~k1 · · · d~kn.

From the commutation relations and (8.67) we obtain

(Ψ|Ψ′) = n!

∫
Ψ(~k1, . . . ,~kn)Ψ′(~k1, . . . ,~kn)d~k1 · · · d~kn.

This is exactly the scalar product for Γs(L
2(R3)).

Besides the Hamiltonian Ĥ satisfying (8.66), we also want the momentum

operator
~̂
P , which satisfies

[â(k),
~̂
P ] = ~kâ(k), [â∗(k),

~̂
P ] = −~kâ∗(k). (8.68)

This fixes Ĥ and
~̂
P up to a constant. We choose the normal ordered form for

these operators, which guarantees that they annihilate Ω:

Ĥ :=

∫
â∗(k)â(k)ε(~k)d~k,

~̂
P :=

∫
â∗(k)â(k)~kd~k.

Recall that L2(R3) coincides with ZKG, the completion of W(+)
KG . Thus the

Hilbert space H can be identified with Γs

(
ZKG

)
, Ω with the Fock vacuum, â∗(k)

with the creation operators in the “physicist’s notation”.
As usual, we can also introduce the smeared versions of (8.61), (8.62) for

f ∈ ZKG:

â(f) =

∫
f(k)â(k)d~k; (8.69)

â∗(f) =

∫
f(k)â∗(k)d~k; (8.70)

[â(f), â(f ′)] = [â∗(f), â∗(f ′)] = 0, [â(f), â∗(f ′)] = (f |f ′). (8.71)
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Using the “smeared notation” on the right we can write

â∗(k) = â∗
(
|k)
)
. (8.72)

The group R1,3 o O↑(1, 3) acts on W(+)
KG , and hence on ZKG by unitary

transformations r(y,Λ)

∣∣∣
ZKG

. It acts unitarily also on Γs(ZKG) by U(y,Λ) :=

Γ
(
r(y,Λ)

∣∣∣
ZKG

)
. On classical fields the Poincare group acts by φ(Λx + y), see

(8.9). On quantum fields the analog of this action is unitarily implemented:

U(y,Λ)φ̂(x)U(y,Λ)∗ = φ̂
(
(y,Λ)x

)
.

This is true even though we only required that time translations are imple-
mented.

One of possible alternative presentations of quantization of the free scalar
field in the mathematical style goes as follows. We have the symplectic space
(YKG, ω). This symplectic space is equipped with a symplectic dynamics rt
generated by a positive classical Hamiltonian H. We would like to find a CCR
representation

YKG 3 ζ 7→W (ζ) ∈ U(H) (8.73)

We want the quantum Hamiltonian to be compatible with the classical Hamil-
tonian, so that

W (rt(ζ)) = eitĤW (ζ)e−itĤ . (8.74)

We assume that the representation is Fock. Then we apply the method of a
positive energy representations, as described in Subsection 7.10.

8.8 Two-point functions

Introduce the time-ordering operations for space-time dependent operators:

T
(
A(x)B(y)

)
= θ(x0 − y0)A(x)B(y) + θ(y0 − x0)B(y)A(x), (8.75)

T
(
A(x)B(y)

)
= θ(y0 − x0)A(x)B(y) + θ(x0 − y0)B(y)A(x). (8.76)

Note the identities

[φ̂(x), φ̂(y)] = −iGPJ(x− y)1l, (8.77a)

(Ω|φ̂(x)φ̂(y)Ω) = G(+)(x− y), (8.77b)

(Ω|T(φ̂(x)φ̂(y))Ω) = −iGF(x− y), (8.77c)

(Ω|T(φ̂(x)φ̂(y))Ω) = iGF(x− y). (8.77d)
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In fact,

(Ω|φ̂(x)φ̂(y)Ω) =

∫ ∫
d~kd~k′

(2π)3
√

2ε
√

2ε′
eikx−ik′y(Ω|â(k)â∗(k′)Ω)

=

∫
d~k

(2π)32ε(~k)
eik(x−y)

= G(+)(x− y);

(Ω|T(φ̂(x)φ̂(y))Ω) = θ(x0 − y0)(Ω|φ̂(x)φ̂(y)Ω) + θ(y0 − x0)(Ω|φ̂(y)φ̂(x)Ω)

= θ(x0 − y0)G(+)(x− y) + θ(y0 − x0)G(−)(x− y)

= −iGF(x− y),

where at the end we used (4.19).
Differentiating if needed (8.77b) with respect time we obtain the equal time

correlation functions expressed as real symmetric kernels:

(Ω|φ̂(0, ~x)φ̂(0, ~y)Ω) = G(+)(0, ~x− ~y), (8.78)

(Ω|φ̂(0, ~x)π̂(0, ~y)Ω) = 0, (8.79)

(Ω|π̂(0, ~x)π̂(0, ~y)Ω) = −∂2
tG

(+)(0, ~x− ~y)

= (−∆~x +m2)G(+)(0, ~x− ~y). (8.80)

8.9 Spacetime smeared fields

For f ∈ C∞c (R1,3,R) set

φ̂[f ] :=

∫
f(x)φ̂(x)dx. (8.81)

The operators φ̂[f ] are essentially self-adjoint for f ∈ C∞c (O,R) on, say, smooth
vectors in the Fock space with compact supports. Therefore, we can define

W (f) := eiφ̂[f ].
We have

[φ̂[f ], φ̂[g]] = −i

∫ ∫
f(x)g(x)GPJ(x− y)dydy. (8.82)

In particular, if supp(f)× supp(g), then φ̂[f ] and φ̂[g] commute.
(8.77b) implies the following identities for spacetime smeared fields and Weyl

operators:

(Ω|φ̂[f ]2Ω) =

∫ ∫
f(x)G(+)(x− y)f(y)dxdy, (8.83)

(Ω|eiφ̂[f ]Ω) = exp

(
−1

2

∫ ∫
f(x)G(+)(x− y)f(y)dxdy

)
. (8.84)

(8.81) satisfy the Wightman axioms with D := Γfin
s (ZKG).
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For an open set O ⊂ Rd we set

A(O) := {exp(iφ̂[f ]) : f ∈ C∞c (O,R)}′′.

The algebras A(O) satisfy the Haag-Kastler axioms.

8.10 Physical meaning of the 2-point functions and Feyn-
man propagators

Let us now describe Gedankenexperiments measuring the 2-point function and
the Feynman propagator.

First let us note a general fact. Suppose that we are able to create a state
Φ ∈ H, ‖Φ‖ = 1. On the measurement side, let us select two non-parallel vectors
Ψi ∈ H, i = 1, 2. Suppose for any i, j we can measure

Ai := |Ψi)(Ψi|+ |Ψi)(Ψi|, i = 1, 2, (8.85)

B := |Ψ1)(Ψ2|+ |Ψ2)(Ψ1|, C := i|Ψ1)(Ψ2| − i|Ψ2)(Ψ1|. (8.86)

Measuring Ai we obtain (Φ|AiΦ) = |(Φ|Ψi)|2, i = 1, 2. Measuring B,C, we

can determine (Φ|Ψ1)
(Φ|Ψ2) . Thus from these measurements we can determine the

amplitudes (Ψi|Φ), i = 1, 2 up to an overall phase factor.
Gedankenexperiment 1. Let us choose spacetime functions f, gi. Suppose
we prepare the state given by Φ := φ̂[f ]Ω. We can assume that it is normalized.

Set Ψi := φ̂[gi]Ω. Then up to an overall phase factor we are able to measure
the amplitudes

(Ψi|Φ) =

∫
(Ω|φ̂(y)φ̂(x)Ω)gi(y)f(x)dxdy, (8.87)

which can be expressed in terms of the 2-point function.
Gedankenexperiment 2. Suppose now that we can perturb the dynamics
by adding to the Lagrangian −λf(x)φ(x). Then the interaction Hamiltonian
becomes

ĤInt(t) = λ

∫
f(t, ~x)φ̂(t, ~x)d~x, (8.88)

where φ̂(x) are the free fields. Suppose we measure the vaccum–vacuum ampli-
tude. The resulting quantity is(

Ω|Texp
(
− i

∫
ĤInt(t)dt

)
Ω
)

(8.89)

=

∞∑
n=0

(−i)n
∫
· · ·
∫

tn>···>t1

(Ω|ĤInt(tn) · · · ĤInt(t1)Ω)dtn · · · dt1 (8.90)

= exp
(
− λ2

2

∫ ∫
f(x)f(y)(Ω|T{φ̂(x)φ̂(y)}Ω)dxdy

)
, (8.91)

which is expressed in terms of the Feynman propagator.
Note that the second scenario is probably more realistic. Thus one can argue

that the Feynman propagator is more physical than the 2-point function.
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9 Free charged scalar bosons

The formalism used in physics to describe complex fields, and especially to
quantize them, is different from the real case, therefore we devote to it a separate
section.

9.1 Lagrangian formalism

Consider the space of complex smooth functions on the spacetime C∞(R1,3) =
C∞(R1,3,C). Clearly, the space C∞(R1,3) is equipped with a complex conjuga-
tion f 7→ f and a U(1) symmetry f 7→ eiθf , θ ∈ R/2πZ = U(1).

If T is a real linear functional on C∞(R1,3), then we have two kinds of natural
complex conjugations of T :

〈T |ζ〉 := 〈T |ζ〉, 〈T ∗|ζ〉 := 〈T |ζ〉. (9.1)

Both maps T 7→ T and T 7→ T ∗ are antilinear. When restricted to the real
subspace YKG ⊂ C∞(R1,3), the functionals T and T ∗ coincide. (Note that here
∗ does not denote the Hermitian conjugaton!)

A special role is played by complex linear functionals on C∞(R1,3). The
space of such functionals will be denoted C∞(R1,3)T. If T ∈ C∞(R1,3)T, then
T ∈ C∞(R1,3)T, unlike T ∗, which is antilinear.

Let ψ(x), ψ∗(x) be the linear functionals on C∞(R1,3)

〈ψ(x)|f〉 := f(x), 〈ψ∗(x)|f〉 := f(x).

If L(x) is a Lagrangian density, which is a function of x, ψ(x), ψ∗(x), ψ,µ(x)
and ψ∗,µ(x), then the Euler-Lagrange equations read

∂ψ∗L − ∂µ
∂L
∂ψ∗,µ

= 0, (9.2)

∂ψL − ∂µ
∂L
∂ψ,µ

= 0. (9.3)

If L(x) is real, then (9.2) implies (9.3).
We consider the Lagrangian density

L(x) = −∂µψ∗(x)∂µψ(x)−m2ψ∗(x)ψ(x). (9.4)

Then the Euler-Lagrange equations are equivalent to the (complex) Klein-Gordon
equation:

(−2 +m2)ψ(x) = 0. (9.5)

The variables conjugate to ψ(x) and ψ∗(x) are

η∗(x) :=
∂L

∂ψ,0(x)
= ∂0ψ

∗(x),

η(x) :=
∂L

∂ψ∗,0(x)
= ∂0ψ(x).
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WKG will denote the space of smooth space-compact complex solutions of the
Klein-Gordon equation

(−2 +m2)ζ = 0. (9.6)

(In the context of neutral fields, it was denoted CYKG, because it was an aux-
iliary object, the complexification of the phase space YKG. Now it is the basic
object, the phase space itself). In the on-shell formalism we will consider ψ(x),
ψ∗(x), η∗(x) and η(x) as functionals on WKG.

(8.6) implies

ψ(t, ~x) =

∫
ĠPJ(t, ~x− ~y)ψ(0, ~y)d~y +

∫
GPJ(t, ~x− ~y)η(0, ~y)d~y. (9.7)

9.2 Charged fields as a pair of neutral fields

Let us go back to the Lagrangian formalism. For x ∈ R1,3 let us introduce the
fields φR(x), φI(x) as the functionals on C∞(R1,3) given by

〈φR(x)|f〉 :=
√

2Ref(x), 〈φI(x)|f〉 :=
√

2Imf(x). (9.8)

or equivalently

ψ(x) =
1√
2

(
φR(x) + iφI(x)

)
, ψ∗(x) =

1√
2

(
φR(x)− iφI(x)

)
.

Clearly, the Lagrangian density can be rewritten as

L(x) =− 1

2
∂µφR(x)∂µφR(x)− 1

2
m2φR(x)2 (9.9)

− 1

2
∂µφI(x)∂µφI(x)− 1

2
m2φI(x)2. (9.10)

The usual real formalism yields a pair of neutral fields with the usual equal time
Poisson brackets (we write only the non-vanishing ones):

{φR(t, ~x), πR(t, ~y)} = {φI(t, ~x), πI(t, ~y)} = δ(~x− ~y). (9.11)

The fields with an additional symmetry

φθR = cos θφR − sin θφI, (9.12)

φθI = sin θφR + cos θφI. (9.13)

The equal-time Poisson brackets, which follow from (9.11) are

{ψ(t, ~x), η∗(t, ~y)} = {ψ∗(t, ~x), η(t, ~y)} = δ(~x− ~y). (9.14)

(We write only non-vanishing ones). Using (9.7) we obtain

{ψ(x), ψ(y)} = {ψ∗(x), ψ∗(y)} = 0,

{ψ(x), ψ∗(y)} = −GPJ(x− y).
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9.3 Classical 4-current

The Lagrangian is invariant w.r.t. the U(1) symmetry ψ 7→ e−iθψ. The Noether
4-current associated to this symmetry is called simply the 4-current. It is

J µ(x) := i
(
ψ∗(x)

∂L(x)

∂ψ∗,µ
− ∂L(x)

∂ψ,µ
ψ(x)

)
= i

(
∂µψ∗(x)ψ(x)− ψ∗(x)∂µψ(x)

)
.

It is conserved on shell and real:

∂µJ µ(x) = 0,

J µ(x)∗ = J µ(x).

Up to a coefficient, it coincides with the current (8.26) evaluated at ζ = ζ1 = ζ2.

〈J µ(x)|ζ〉 = ijµ(ζ, ζ, x)

= i
(
∂µζ(x)ζ(x)− ζ(x)∂µζ(x)

)
.

The 0th component of the 4-current is called the charge density

Q(x) := J 0(x) = i
(
−η∗(x)ψ(x) + ψ∗(x)η(x)

)
.

We have the relations

{Q(t, ~x), ψ(t, ~y)} = iψ(t, ~y)δ(~x− ~y),

{Q(t, ~x), η(t, ~y)} = iη(t, ~y)δ(~x− ~y),

{Q(t, ~x),Q(t, ~y)} = 0. (9.15)

The (total) charge

Q :=

∫
Q(t, ~x)d~x

is conserved (does not depend on time) and coincides with the quadratic form
obtained from (8.27):

〈Q|ζ〉 = iζωζ. (9.16)

9.4 Stress-energy tensor

The Lagrangian is invariant w.r.t. space-time translations. This leads to the
stress-energy tensor

T µν(x) := − ∂L(x)

∂ψ,µ(x)
∂νψ(x)− ∂νψ∗(x)

∂L(x)

∂ψ∗,µ(x)
+ gµνL(x)

= ∂µψ∗(x)∂νψ(x) + ∂νψ∗(x)∂µψ(x)

−gµν
(
∂αψ

∗(x)∂αψ(x) +m2ψ∗(x)ψ(x)
)
.

It is conserved on shell
∂µT µν(x) = 0.
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The components of the stress-energy tensor with the first temporal coordinate
are called the Hamiltonian density and momentum density. We express them
on-shell in terms of ψ(x), ψ∗(x), η(x) and η∗(x):

H(x) := T 00(x) = η∗(x)η(x) + ~∂ψ∗(x)~∂ψ(x) +m2ψ∗(x)ψ(x),

Pi(x) := T 0i(x) = −η∗(x)∂iψ(x)− ∂iψ∗(x)η(x).

H(x) and ~P(x) acting on ζ ∈ WKG yield

〈H(x)|ζ〉 = |ζ̇(x)|2 + |~∂ζ(x)|2 +m2|ζ(x)|2,

〈~P(x)|ζ〉 = −ζ̇(x)~∂ζ(x)− ~∂ζ(x)ζ̇(x).

We easily check

{ψ(t, ~x),H(t, ~y)} = ψ̇(t, ~x)δ(~x− ~y), (9.17)

{η(t, ~x),H(t, ~y)} = η̇(t, ~x)δ(~x− ~y), (9.18)

{ψ(t, ~x),Pi(t, ~y)} = −∂iψ(t, ~x)δ(~x− ~y), (9.19)

{η(t, ~x),Pi(t, ~y)} = −∂iη(t, ~x)δ(~x− ~y). (9.20)

We introduce the (total) Hamiltonian and momentum:

H :=

∫
S
T µ0(x)dsµ(x) =

∫
H(t, ~x)d~x, (9.21)

P i :=

∫
S
T µi(x)dsµ(x) =

∫
Pi(t, ~x)d~x. (9.22)

where S is any Cauchy subspace.
H and ~P are the generators of the time and space translations:

ψ̇(x) = {ψ(x), H}, η̇(x) = {η(x), H},
~∂ψ(x) = −{ψ(x), ~P}, ~∂η(x) = −{η(x), ~P}.

The observables H, P 1, P 2, P 3 and Q are in involution.

9.5 Simultaneous diagonalization

We have the following observables in involution:

〈Q|ζ〉 = i

∫ (
− ζ̇(x)ζ(x) + ζ(x)ζ̇(x)

)
d~x, (9.23)

〈H|ζ〉 =

∫ (
|ζ̇(x)|2 + |~∇ζ(x)|2 +m2|ζ(x)|2

)
d~x, (9.24)

〈Pj |ζ〉 = −
∫ (

ζ̇(x)∇jζ(x) +∇jζ(x)ζ̇(x)
)
d~x. (9.25)

Note that (8.28) and (8.29) from the neutral case differ from (9.24) and (9.25)
only by the prefactor 1

2 .
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We use the Fourier transformation and (8.30):

〈Q|ζ〉 =

∫ (
ζ(+)(k)ζ(+)(k)d~k − ζ(−)(k)ζ(−)(k)

)
d~k (9.26)

〈H|ζ〉 =

∫
ε(~k)

(
ζ(+)(k)ζ(+)(k) + ζ(−)(k)ζ(−)(k)

)
d~k (9.27)

〈P i|ζ〉 =

∫
ki
(
ζ(+)(k)ζ(+)(k) + ζ(−)(k)ζ(−)(k)

)
d~k. (9.28)

9.6 Negative frequency space

Recall that for ~k ∈ R3, set ε = ε(~k) :=
√
~k2 +m2 and every ζ ∈ WKG can be

written in a unique way as
ζ = ζ(+) + ζ(−), (9.29)

where

ζ(±)(x) =

∫
ζ(±)(k)

1√
(2π)3

√
2ε(~k)

e±i(−ε(~k)x0+~k~x)d~k. (9.30)

(9.29) gives a decomposition of the space CYKG into two subspaces

CYKG =W(+)
KG ⊕W

(−)
KG . (9.31)

We have already introduced the positive energy space W(+) together with its

completion Z(+). We will also need the negative frequency space W(−)
KG . Let

c denote the complex conjugation on W(−)
KG . We actually have two distinct

interpretations of c: as the usual complex conjugation inside W, so that c :

W(−)
KG →W

(+)
KG and In particular, c| − k) = |k), or as the identity on W(−), such

that ci = −ic. We have the scalar product

(cζ
(−)
1 |cζ(−)

2 ) := iζ
(−)
1 ωζ

(−)
2 . (9.32)

We set Z(−)
KG to be the completion of cW(−)

KG in this scalar product. Z(−)
KG can be

identified with L2(R3) and (9.32) rewritten as

(cζ
(−)
1 |cζ(−)

2 ) =

∫
ζ

(−)
1 (k)ζ

(−)
2 (k)d~k

R1,3 oO↑(1, 3) acts on Z(+)
KG and Z(−)

KG in a natural way.

9.7 Plane wave functionals

Plane wave functionals are defined as linear or antilinear functionals on the
complex space WKG, for any ζ ∈ WKG given by

〈a(k)|ζ〉 = ζ(+)(k), 〈a∗(k)|ζ〉 = ζ(+)(k) (9.33)

〈b(k)|ζ〉 = ζ(−)(k) 〈b∗(k)|ζ〉 = ζ(−)(k). (9.34)
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Thus

a(k) =

∫ (√ε(~p)

2
ψ(0, ~x) +

i√
2ε(~k)

η(0, ~x)
)

e−i~k~x d~x√
(2π)3

,

a∗(k) =

∫ (√ε(~k)

2
ψ∗(0, ~x)− i√

2ε(~k)
η∗(0, ~x)

)
ei~k~x d~x√

(2π)3
,

b(k) =

∫ (√ε(~k)

2
ψ∗(0, ~x) +

i√
2ε(~k)

η∗(0, ~x)
)

e−i~k~x d~x√
(2π)3

,

b∗(k) =

∫ (√ε(~k)

2
ψ(0, ~x)− i√

2ε(~k)
η(0, ~x)

)
ei~k~x d~x√

(2π)3
,

The only non-vanishing Poisson bracket are

{a(k), a∗(k′)} = {b(k), b∗(k′)} = −iδ(~k − ~k′).

We have the following expressions for the fields:

ψ(x) =

∫
d~k√

(2π)3

√
2ε(~k)

(
eikxa(k) + e−ikxb∗(k)

)
,

η(x) =

∫ d~k

√
ε(~k)

i
√

(2π)3
√

2

(
eikxa(k)− e−ikxb∗(k)

)
.

We have accomplished the diagonalization of the basic observables:

H =

∫
d~kε(~k)

(
a∗(k)a(k) + b∗(k)b(k)

)
,

~P =

∫
d~k~k

(
a∗(k)a(k) + b∗(k)b(k)

)
,

Q =

∫
d~k
(
a∗(k)a(k)− b∗(k)b(k)

)
.

As usual, for f ∈ K(+)
KG , g ∈ K(−)

KG , we have smeared versions of the above
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functionals:

〈a(f)|ζ〉 =

∫
f(k)ζ(+)(k)d~k, a(f) =

∫
f(k)a(k)d~k; (9.35)

〈a∗(f)|ζ〉 =

∫
f(k)ζ(+)(k)d~k, a∗(f) =

∫
f(k)a∗(k)d~k; (9.36)

〈b(g)|ζ〉 =

∫
b(k)ζ(−)(k)d~k, b(g) =

∫
g(k)b(k)d~k; (9.37)

〈b∗(g)|ζ〉 =

∫
g(k)ζ(−)(k)d~k, b∗(g) =

∫
g(k)b∗(k)d~k; (9.38)

{a(f), a∗(f ′)} = −i(f |f ′); {b(g), b∗(g′)} = −i(g|g′). (9.39)

Thus, for k on the mass shell, using physicist’s notation on the left and
mathematician’s on the right, we can write

a∗(k) = a∗
(
|k)
)
, (9.40)

b∗(k) = b∗
(
c| − k)

)
. (9.41)

9.8 Quantization

In principle, we could quantize the complex Klein-Gordon equation as a pair of
real Klein-Gordon fields. However, we will use the formalism of quantization of
charged bosonic systems, see Subsect. 7.11.

We want to construct (H, Ĥ,Ω) satisfying the usual requirements of QM
(1)-(3) and an operator valued distribution

R1,3 3 x 7→ ψ̂(x) (9.42)

satisfying, with η̂(x) :=
˙̂
ψ(x),

(1) (−2 +m2)ψ̂(x) = 0;

(2) the only non-vanishing 0-time commutators are

[ψ̂(0, ~x), η̂∗(0, ~y)] = iδ(~x− ~y), [ψ̂∗(0, ~x), η̂(0, ~y)] = iδ(~x− ~y); (9.43)

(3) eitĤ ψ̂(x0, ~x)e−itĤ = ψ̂(x0 + t, ~x);

(4) Ω is cyclic for ψ̂(x), ψ̂∗(x).

The above problem has an essentially unique solution, which we describe
below.

We set
H := Γs(Z(+)

KG ⊕Z
(−)
KG ).

Creation/annihilation operators for the particle space Z(+)
KG ' L2(R3) are de-

noted with the letter a and for the antiparticle space Z(−)
KG ' L2(R3) with the
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letter b. Thus we put hats and do all the obvious modifications to the classical
formulas. Ω is the Fock vacuum. The quantum field is

ψ̂(x) :=

∫
d~k√

(2π)3

√
2ε(~k)

(
eipxâ(k) + e−ikxb̂∗(k)

)
,

η̂(x) :=

∫ d~k

√
ε(~k)

i
√

(2π)3
√

2

(
eikxâ(k)− e−ikxb̂∗(k)

)
.

The quantum Hamiltonian, momentum and charge are

Ĥ :=

∫ (
â∗(k)â(k) + b̂∗(k)b̂(k)

)
ε(~k)d~k, (9.44)

~̂
P :=

∫ (
â∗(k)â(k) + b̂∗(k)b̂(k)

)
~kd~k,

Q̂ :=

∫ (
â∗(k)â(k)− b̂∗(k)b̂(k)

)
d~k.

Equivalently, for any t

Ĥ =

∫
:
(
η̂∗(t, ~x)η̂(t, ~x) + ~∂ψ̂∗(t, ~x)~∂ψ̂(t, ~x) +m2ψ̂∗(t, ~x)ψ̂(t, ~x)

)
:d~x,

~̂
P =

∫
:
(
−η̂∗(t, ~x)~∂ψ̂(t, ~x)− ~∂ψ̂∗(t, ~x)η̂(t, ~x)

)
:d~x,

Q̂ = i

∫
:
(
−η̂∗(t, ~x)ψ̂(t, ~x) + ψ̂∗(t, ~x)η̂(t, ~x)

)
:d~x.

Thus all these operators are expressed in terms of the Wick quantization of their
classical expressions.

Note that the whole group R1,3 oO↑(1, 3) acts unitarily on H by U(y,Λ) :=

Γ
(
r(y,Λ)

∣∣∣
Z(+)

KG

)
⊗ Γ

(
r(y,Λ)

∣∣∣
Z(−)

KG

)
, with

U(y,Λ)ψ̂(x)U(y,Λ)∗ = ψ̂
(
(y,Λ)x

)
.

Moreover,
[ψ̂(x), ψ̂∗(y)] = −iGPJ(x− y), [ψ̂(x), ψ̂(y)] = 0.

Note the identities for the 2-point functions:

[ψ̂(x), ψ̂∗(y)] = −iGPJ(x− y)1l, (9.45a)

(Ω|ψ̂(x)ψ̂∗(y)Ω) = G(+)(x− y), (9.45b)

(Ω|ψ̂∗(x)ψ̂(y)Ω) = G(−)(x− y), (9.45c)

(Ω|T(ψ̂(x)ψ̂∗(y))Ω) = −iGF(x− y), (9.45d)

(Ω|T(ψ̂(x)ψ̂∗(y))Ω) = iGF(x− y). (9.45e)

85



9.9 Smeared fields

For f ∈ C∞c (R1,3,C) we set

ψ̂[f ] :=

∫
f(x)ψ̂(x)dx, ψ̂∗[f ] :=

∫
f(x)ψ̂∗(x)dx. (9.46)

We obtain an operator valued distribution satisfying the Wightman axioms with

D := Γfin
s (Z(+)

KG ⊕Z
(−)
KG ).

For an open set O ⊂ R1,3 the field algebra is defined as

F(O) :=
{

exp
(

iψ̂∗[f ] + iψ̂[f ]
)

: f ∈ C∞c (O,C)
}′′

.

The observable algebra A(O) is the subalgebra of F(O) fixed by the automor-
phism

B 7→ eiθQ̂Be−iθQ̂.

The algebras F(O) and A(O) satisfy the Haag-Kastler axioms.

10 Some historical remarks on QFT

This section should be treated as a collection of gossips and loose statements.
I will discuss only quantum field theory in its traditional sense such as QED or
Standard Model. Various more modern constructions that grew out of Quan-
tum Field Theory, such as String Theory, 2-dimensional Conformal Theories,
topological field theories, Chern-Simons Theory, supersymmetric theories, etc,
are outside of the scope of these remarks.

In this section I will consider both bosons and fermions. Bosons will be
denoted φ and fermions ψ.

10.1 Physicist’s strategy in QFT

Here is an outline of the usual physicist’s strategy. It was essentially developed
by Feynman, Schwinger, Tomonaga and Dyson in the late 40’s.

1. Start with free fields. They are given by quantizing the following La-
grangians:

L(x) =− 1

2
∂µφ(x)∂µφ(x)− m2

2
φ2(x) for bosons, (10.1)

L(x) =iψ(x)γµ∂
µψ(x) +mψ(x)ψ(x), for fermions. (10.2)

2. Add a perturbation local in fields. Typical perturbations include λφ(x)4,
Yukawa λφ(x)ψ(x)ψ(x). Often these perturbations are obtained by the
minimal coupling prescription and lead to a gauge theory. Usually one
assumes that the perturbation is Lorentz invariant, even in fermions, and
the resulting Hamiltonian is positive.
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3. Compute formally the perturbation expansion of the scattering operator
between in states Φ− and out states Φ+:

lim
t→∞

(Φ+|eitH0e−i2tHλeitH0Φ−) = (Φ+|S(λ)Φ−) (10.3)

=

∞∑
n=0

λn(Φ+|SnΦ−), (10.4)

expressing it in Feynman diagrams.

4. The terms Sn given by the above prescriptions are ill defined in many
ways. Give them a meaning by renormalization, which leads to a well-
defined formal series expressing scattering amplitudes.

5. From scattering amplitudes compute scattering cross-sections of physical
processes.

10.2 Renormalizability

Consider the Lagrangian of the form (10.1) or (10.2) in d spacetime dimensions.
We want the action to be scalar and the kinetic term to have no dimensionful
coefficient. This implies that in the units of length the boson field has the
dimension [φ] = 1− d

2 and the fermion field the dimension [ψ] = 1
2 −

d
2 . Clearly

deg ∂ = −1.
The full Lagrangian is typically the sum of monomials in fields. The action

integral should be dimensionless. The integral includes the Lebesgue measure
ddx, which has dimension d. Therefore, if the dimension of a monomial is c,
then one has to put a coupling constant in front of dimension −d− c.

We will say that a monomial is

1. super-renormalizable if the corresponding coupling constant has a negative
dimension.

2. marginally or just renormalizable if it has a dimensionless coupling con-
stant.

3. non-renormalizable if it has a coupling constant of a positive dimension.

Super-renormalizable and marginally renormalizable terms are joiuntly called
renormalizable. One can show that in renormalizable theories one needs only
a finite number of parameters to fix renormalization conditions. In super-
renormalizable theories it is enough to renormalize Feynman diagrams up to
a certain finite order—in marginally renormalizable theories one has to do it in
any order (but still the number of parameters is finite).

In the old days, physicists used to believe that physical theories should be
renormalizable. Nowadays physicists view non-renormalizable Lagrangians as
useful tools for the description of the matter as well. The dominant view says
that all known quantum field theories that we use are only effective, and their
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validity is limited to low energies. Therefore, one should not treat them as
ultimate theories.

Nevertheless, renormalizable theories are distinguished. In fact, they have
clearly a better predictive power than non-renormalizable theories. There are
also well-known arguments attributed to Kenneth Wilson, involving the change
of scale, often called the renormalization group, which explain a different role
of renormalizable and non-renormalizable terms in the Lagrangian.

Let us review the renormalizability of various monomials in the Lagrangian
in various dimensions.

• d=2. deg φ = 0, degψ = − 1
2 .

super-renormalizable P (φ), P (φ)∂φ P (φ)ψψ;

marginally renormalizable P (φ)(ψψ)2, P (φ)ψ∂ψ, P (φ)(∂φ)2.

• d=3. deg φ = − 1
2 , degψ = −1.

super-renormalizable φ3, φ4, φ5, φ2∂φ, φψψ;

marginally renormalizable φ6, φ3∂φ, φ2ψψ.

• d=4. deg φ = −1, degψ = − 3
2 .

super-renormalizable φ3;

marginally renormalizable φ4, φ2∂φ, φψψ.

• d=6. deg φ = −2, degψ = − 5
2 .

marginally renormalizable φ3.

φ, φ2, ∂φ, φ∂φ and ψψ are always super-renormalizable (this includes the
mass terms).

(∂φ)2 and ψ∂ψ are always marginally renormalizable (this includes the ki-
netic terms).

10.3 Counterterms

Let us consider for instance the λφ4
4 theory. Naive computations based on the

Lagrangian

L(x) = −1

2
∂µφ(x)∂µφ(x)− m2

2
φ2(x)− λφ(x)4 (10.5)

lead to ill-defined quantities. In order to obtain sensible predictions one has to
consider the Lagrangian involving counterterms, which is traditionally written
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as

L(x) =− Z
(1

2
∂µφ(x)∂µφ(x) +

m2

2
φ2(x)

)
− Z2gφ(x)4 (10.6)

Z =

∞∑
n=0

Znλ
n, Z0 = 1; (10.7)

m =

∞∑
n=0

mnλ
n, m0 = m; (10.8)

g =

∞∑
n=1

gnλ
n, g1 = 1. (10.9)

Then one recursively computes the time-ordered N -point correlation function

G(xN , . . . , x1) :=
(

Ω|
(
T
(
φ(xN ) · · ·φ(x1)

)
Ω
)
.

Usually one introduces some regularization depending on a parameter Λ
(a cut-off, Pauli-Villars, dimensional, etc.). Regularized quantities are finite,
and then one takes the limit Λ → ∞. It is also possible to avoid the use of
a regularization (this is the case of the BPHZ method, and also the Epstein-
Glaser method). All these schemes give the same answers, which depend on 3
parameters.

There are various ways to fix these parameters. Typically, one imposes the
“mass shell condition” on G(p), the Fourier transform of the 2-point function:

G(p) ≈ (p2 +m2)−1, p2 ≈ −m2. (10.10)

One needs also a condition on the 4-point function.
From the time-ordered N -point functions the LSZ formulas lead to scattering

amplitudes (matrix elements of the scattering operator).
The situation is different in the massless case. The mass-shell condition

cannot be usually applied. Besides, scattering amplitudes are ill defined because
of the infra-red problem. Instead, one can compute inclusive cross-sections.

Let us replace φ4 with φn for n > 4. This perturbation is non-renormalizable.
There exist solutions of the recursive procedure indicated above, however in
order to fix them one needs an infinite number of parameters.

10.4 Asymptotic freedom

Some classes of Feynman diagrams can be summed up. For instance, when com-
puting the 2-point function for interacting photon in QED using the geometric
series, one can sum up diagrams that consist of repeated 1-particle irreducible
terms. One obtains

G(k) =
1

1− Σ(k)
G0(k). (10.11)

The quantity Σ(k), usually called the self-energy, can be computed in the lowest
order. One obtains a function that grows for large k. Therefore, at least in
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this approximation, there is a pole for large energies and it is clear that (10.11)
becomes worthless. Its discovery is attributed to Landau, and the corresponding
pole is called the Landau pole. The same phenomenon can be seen for most other
QFT’s, such as λφ4.

There exists a version of the above argument based on the renormalization
group equation that also predicts the existence of a pole in these theories and
is even more convincing.

Landau, after discovering the pole named after him, announced the death of
Quantum Field Theory. In reality, if the coupling constant is very small, the pole
is very far in high energies and one can ignore it in perturbative calculations—
this is the case of QED. However, when the coupling constant is not so small,
problems related to the Landau pole may appear close to physical energies. This
is the case of the Standard Model, where there is a φ4 term in the Higgs field.

Quantization of the Yang-Mills theory is much more difficult than that of
fields with an Abelian gauge or no local gauge at all. Nevertheless, by the early
70’s it was well understood and it was proven by t’Hooft and Veltman that
the gauge invariance survives renormalization. In the Yang-Mills theory instead
of photons we have gluons. Gluons interact with themeselves, therefore in the
gluon self-energy beside fermion loops we have (bosonic) gluon loops. They
change the sign of the self-energy, and therefore (if there are not too many
fermions) there is no Landau pole in the ultraviolet and the gluon propagator
becomes suppressed for large energies. This property of the Yang-Mills theory
is called asymptotic freedom. It was discovered in the early 70’s. It implies that
the Yang-Mills theory can be applied in large energies. This lead in the 70’s to
an enthusiastic revival of QFT.

Apparently, t’Hooft did first the computation proving the asymptotic free-
dom of the Yang-Mills theory, but did not recognize its physical importance.
The asymptotic freedom of Yang-Mills was shown (simultaneously?) by Gross-
Wilczek and Politzer. For many years they were on the list of candidates for
the Nobel Prize, until eventually they got it.

10.5 Axiomatic Quantum Field Theory

Axiomatic Quantum Field Theory tries to derive theorems starting from axioms,
such as the Wightman and Haag-Kastler axioms. Here are some of its early
successes:

• The existence of the CPT transformation (in the framework of Wightman
axioms).

• The link between spin and statistics (in the framework of Wightman ax-
ioms).

• The Haag-Ruelle scattering theory—construction of the scattering matrix
starting from Haag-Kastler axioms with a discrete mass shell.

• The Doplicher-Haag-Roberts theory—description of superselection sectors
and their relationship to global gauge groups.
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Another current of mathematical research has been devoted to perturbative
Quantum Field Theory. There is good understanding of renormalization of
quantum fields, and also on a curved background.

10.6 Constructive Field Theory

Essentially all computations in Quantum Field Theory are perturbative around
one of free theories. Free theories are not very interesting, because they have
a trivial scattering operator. It is natural to ask whether there exist models of
Quantum Field Theory other than free theories. This question was posed by
Wightman, who formulated the set of axioms called nowadays after him. He
proposed to try to construct interacting models satisfying these axioms.

It is natural to expect that mathematically constructible theories should be
renormalizable. Wightman proposed to start constructions from the simplest,
theories, in 1+1 dimensions, going up the ladder of difficulty, so that eventually
one will be able to construct physically relevant models, expected to be difficult.

This program was initiated in the late 60’s. Probably the most famous team
in this program was that of James Glimm and Arthur Jaffe. They started
with constructing the least complicated of the models from the list in Subsect.
10.2, that is P (φ)2. To define this model in a finite volume one only needs
to Wick order the interaction and to subtract a divergent constant from the
Hamiltonian. It took several papers and ingenious ideas before this model was
fully constructed and all axioms were verified. An especially successful method
turned out to be the Euclidean approach, which starts from a classical model on
a Euclidean space with a local interaction and then applies the Wick rotation.

A similar successful construction has been accomplished for the Yukawa
model in 2 dimensions, φψψ2, and for λφ4

3. These models are much more difficult
and they require more complicated renormalization. Still, they are quite far
from physical interest. In particular, they are super-renormalizable and live in
dimension < 4.

A major problem with more physical models such as QED4 and λφ4
4 was the

Landau pole, which essentially means that they are not likely to be constructed,
at least using the perturbative strategy. This problem seems to be absent in
the YM4. A Polish mathematician Tadeusz Ba laban wrote a series of extremely
difficult papers where he studied YM4 in a finite volume. He considered Eu-
clidean YM4 on a lattice and apparently proved that the partition function is
bounded away from zero uniformly in the lattice spacing. YM4 on continuous
Euclidean spacetime, also in a finite volume, was studied by Rivasseau, Magnen
and Seneor by different methods. Both Ba laban and Rivasseau et al. claim
that the ultraviolet problem of in a finite volume can be controlled. Neither has
written a proof of this.

To my knowledge there exists one marginally renormalizable model that has
been constructed: the Gross-Neveu model in dimension 2 with the Lagrangian

ψa(iγµ∂µ −m)ψa +
g2

2N
(ψaψ

a)2. (10.12)
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(N is the number of fermion species. For N = 1 the model reduces to the com-
pletely integrable Thirring model). It was constructed by Gawedzki–Kupiainen,
and by Rivasseau et al.

In the early 90’s the interest in constructive field theory waned and essen-
tially this topic was abandoned by researchers. One reason for the collapse of
the topic was that it became prohibitively complicated. Another reason was
the philosophy proclaimed by Wilson saying that quantum field theories that
we know are probably only low-energy effective approximations and one should
not be surprised if they cannot be expressed in a mathematically satisfactory
way.

Nowadays it is even very difficult to determine what has been proven and
what are the proofs—the old literature is mostly unreadable. I know only one
recent result in some kind of constructive field theory. Unfotunately, it is nega-
tive: Aizenman and Duminil-Copin proved that the λφ4

4 theory is trivial. More
precisely, if one tries to approximate it on a lattice, then in the limit one obtains
a trivial theory.

At the turn of millenium the Clay Institute funded prizes of 1 milion dollars
each for proving 7 important mathematical conjectures. One of them was proven
(The Poincare Conjecturé by Grigorii Perelman, who declined the prize). Other
are still open, including two conjectures in mathematical physics.

One of them is the existence of solutions to the Navier–Stokes equation. The
problem is clearly formulated (by Charles Fefferman).

The other is the construction of the Yang-Mills Theory and the proof of
the existence of a positive mass gap, (formulated by Arthur Jaffe and Edward
Witten).

To my understanding, the formulation of the problem is vague. The descrip-
tion of the problem mentions Wightman axioms, however they seem not suitable
for gauge theories. What is worse, even if we construct something that the Prize
Committee will accept as the quantized Yang-Mills Theory, we have to prove
the positivity of the mass gap (which involves controlling not only ultraviolet
divergencies, but also the large volume limit). In other words, we need to show
that the lightest glueball is massive—which is supposed to be the expression of
the confinement.

11 Gaussian integrals

11.1 Gaussian integrals of real variable

Suppose that ν, p ∈ C and Reν > 0. Then∫
e−

1
2x·νx+p·xdx =

√
2π√
ν

e
1
2p·ν

−1p. (11.1)

Suppose that ν is a complex n×n matrix with strictly positive definite Reν
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and p ∈ Cn. Then we can diagonalize ν and we obtain∫
e−

1
2x·νx+p·xdx = (2π)

d
2 (det ν)−

1
2 e

1
2p·ν

−1p. (11.2)

If ν, ν0 and p, p0 are as above, then∫
e−

1
2x·νx+p·xdx∫

e−
1
2x·ν0x+p0·xdx

(11.3)

= det
(
1l + (ν − ν0)ν0

)− 1
2 e

1
2p·ν

−1p− 1
2p0·ν

−1
0 p0 ,

ln

∫
e−

1
2x·νx+p·xdx∫

e−
1
2x·ν0x+p0·xdx

(11.4)

=− 1

2
Tr ln

(
1l + (ν − ν0)ν0

)− 1
2 +

1

2
p·ν−1p− 1

2
p0 · ν−1

0 p0.

Remark 11.1. (??) makes sense only in finite dimension. However, (11.3) and
(11.4) can be used in infinite dimension as well.

Remark 11.2. (11.2) can be rewritten as follows. Suppose that S is a second
degree polynomial on Rd with Re∂2

xS bounded from below.∫
e−S(x)dx = (2π)

d
2 (det ∂2

xS)−
1
2 e−S(xcl), (11.5)

where ∂xS(xcl) = 0. (Note that in general xcl ∈ Cd). To see this we write

S(x) = S(xcl) +
1

2
(x− xcl)

∂2S

∂x2
(x− xcl), (11.6)

and if needed we deform the contour of integration in the imaginary direction.

Suppose that ν, p ∈ R. Then∫
e

i
2x·νx+ip·xdx =

√
−2iπ√
ν + i0

e−
i
2p·(ν+i0)−1p. (11.7)

Suppose that Reν is a real n× n matrix and p ∈ Rn. Then∫
e

i
2x·νx+ip·xdx =

(√
−2iπ

)d
det(ν + i0)−

1
2 e−

i
2p·(ν+i0)−1p. (11.8)

If ν, ν0 and p, p0 are as above, then∫
e

i
2x·νx+ip·xdx∫

e
i
2x·ν0x+ip0·xdx

(11.9)

= det
(
1l + (ν − ν0)(ν0 + i0)

)− 1
2 e−

i
2p·(ν+i0)−1p+ i

2p0·(ν0+i0)−1p0 ,

ln

∫
e

i
2x·νx+ip·xdx∫

e
i
2x·ν0x+ip0·xdx

(11.10)

=− 1

2
Tr ln

(
1l + (ν − ν0)(ν0 + i0)−1

)− 1
2 − i

2
p·(ν + i0)−1p+

i

2
p0 · (ν0 + i0)−1p0.
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Remark 11.3. Adding i0 in the square root of (11.8) matters, because it se-
lects the branch of the square root. Adding i0 in the exponent does not matter.
However, it may matter in (11.9) and (11.10) in infinite dimension.

11.2 Integration by differentiation in real variables

The following two identities are sometimes called “integration by differentia-
tion”. They imply the Feynman diagrams:∫

Ψ(x)e−
1
2x·νxdx∫

e−
1
2x·νxdx

= e
1
2∂x·ν

−1∂xΨ(0) (11.11)

= Ψ(i∂p)e
− 1

2p·ν
−1p
∣∣∣
p=0

. (11.12)

To show (11.11), we note that by (11.2) the Fourier transform of f(p) =

e−
1
2p·ν

−1p is
f̂(x) = (2π)

d
2 (det ν)

1
2 e−

1
2x·νx. (11.13)

Hence ∫
e−

1
2y·νyΨ(x+ y)dy∫

e−
1
2y·νydy

= (2π)−
d
2 (det ν)

1
2

∫
e−

1
2y·νyΨ(x+ y)dy

= e−
1
2 p̂·ν

−1p̂Ψ(x) = e
1
2∂x·ν

−1∂xΨ(x). (11.14)

As an exercise let us check (11.14) for polynomial Ψ by a direct computation.
By diagonalizing ν and then changing the variables, we can reduce ourselves to
1 dimension and ν = 1. Thus we want to show

e
1
2∂

2
xxn = (2π)−

1
2

∫
e−

1
2y

2

(y + x)ndy. (11.15)

Obviously,

e
1
2∂

2
xxn =

∞∑
k=0

n!

2k(n− 2k)!k!
xn−2k. (11.16)

Now

(2π)−
1
2

∫
e−

1
2y

2

y2k+1dy = 0, (11.17)

(2π)−
1
2

∫
e−

1
2y

2

y2kdy =
(2k)!

2kk!
. (11.18)

Indeed, (11.17) is obvious and the lhs of (11.18) is

π−
1
2 2k

∫ ∞
0

e−
1
2y

2
(1

2
y2
)k− 1

2

d
(1

2
y2
)

= π−
1
2 2kΓ

(
k +

1

2

)
,
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which using

Γ
(
k +

1

2

)
= π

1
2

(2k)!

22kk!

equals the rhs of (11.18).
Hence

(2π)−
1
2

∫
e−

1
2y

2

(y + x)ndy =

n∑
m=0

n!xn−m

(n−m)!m!
(2π)−

1
2

∫
e−

1
2y

2

ymdy

=

n∑
m=0

n!xn−2k

(n− 2k)!(2k)!

(2k)!

2kk!
. (11.19)

Therefore, (11.15) is true.

11.3 Gaussian integrals in complex variables

Consider the space Rd ⊕ Rd with the generic variables x, p. It is often natural
to identify it with the complex space Cd by introducing the variables

ai = 2−1/2(xi + ipi),

a∗i = 2−1/2(xi − ipi),

so that
xi = 2−1/2(a+ a∗), pi = −i2−1/2(a− a∗). (11.20)

The Lebesgue measure dxdp will be denoted i−dda∗da. To justify this notation
note that

da∗j ∧ daj =
1

2

(
dx− idp

)
∧
(
dx+ idp

)
= idx ∧ dp.

Gaussian integrals are especially nice if they can be written with a Hermitian
quadratic form β with Reβ ≥ 0. We then have (with the complex variable w)∫

e−w
∗·βw+a1·w∗+a∗2 ·wdw∗dw = (2πi)d(detβ)−1ea1·β

−1a∗2 , (11.21)

Note that the Gaussian integral (11.21) is nice because the quadratic form
is sesquilinear. If we consider a general Gaussian integrals involving symmetric
matrices γ1, γ2 as below, the formula is more ugly:∫

e−w
∗·βw− 1

2w
∗γ1w

∗− 1
2wγ2w+a1·w∗+a∗2 ·wdw∗dw

= (2πi)d
(

det

[
β γ1

γ2 βT

])− 1
2

exp
(1

2
[a1, a

∗
2]

[
β γ1

γ2 βT

]−1 [
a∗2
a1

])
. (11.22)
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11.4 Integration by differentiation in complex variables

Here is the “integration by differentiation” formula:∫
Φ(w∗, w)e−w·βw

∗
dw∗dw∫

e−w·βw∗dw∗dw
= e∂w∗ ·β

−1∂wΦ(0, 0) (11.23)

= Φ(∂a, ∂a∗)e
a∗·β−1a

∣∣∣
a=a∗=0

. (11.24)

Indeed∫
e−b

∗·βbΦ(a∗ + b∗, a+ b)db∗db∫
e−b∗·βbdb∗db

= (2πi)−d(detβ)

∫
e−b

∗·βbΦ(a∗ + b∗, a+ b)db∗db.

= e∂w∗ ·β
−1∂wΦ(a∗, a) (11.25)

As an exercise let us check (11.25) by direct computation. By diagonalizing
β and then changing the variables, we can reduce ourselves to 1 (complex)
dimension and β = 1. We can also assume that Φ is a polynomial. Thus we
want to show

e∂a∗∂aa∗nam = (2πi)−1

∫
e−b

∗b(a∗ + b∗)n(a+ b)mdb∗db (11.26)

Obviously.

e∂a∗∂aa∗nam =

∞∑
k=0

n!m!

(n− k)!(m− k)!k!
a∗(n−k)am−k.

Now

(2πi)−1

∫
e−b

∗bb∗kbldb∗db = k!δkl. (11.27)

Indeed, if we use the polar coordinates with b∗b = 1
2r

2, the lhs of (11.27) becomes

(2π)−1

∫ ∞
0

e−
1
2 r

2
(1

2
r2
) 1

2 (k+l)

ei(n−m)φrdrdφ

= δkl

∫ ∞
0

e−
1
2 r

2
(1

2
r2
)k

d
(1

2
r2
)

which equals the rhs of (11.27).

(2πi)−1

∫
e−b

∗b(a∗ + b∗)n(a+ b)mdb∗db (11.28)

=

∞∑
k,l=0

a∗(n−k)a(m−l) n!m!

k!(n− k)!l!(m− l)!
(2πi)−1

∫
e−b

∗bb∗kbldb∗db

=

∞∑
k=0

a∗(n−k)a(m−k) n!m!

(k!)2(n− k)!(m− k)!
k!. (11.29)
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12 Symplectic and metaplectic group

12.1 Classical and quantum mechanics over a symplectic
vector space

A symplectic form on a vector space Y is a nondegenerate antisymmetric form.
A vector space equipped with a symplectic form is called a symplectic vector
space. It has to have an even dimension.

Let Y ' R2d be a finite dimensional symplectic vector space. Let φj , j =
1, . . . , 2d denote the canonical coordinates in Y. Let ω = [ωij ] be a symplectic
form. We will denote by [ωij ] the inverse of [ωij ]. The symplectic form and the
corresponding Poisson bracket can be written as

ω = ωijφ
i ∧ φj , (12.1)

{φi, φj} = ωij . (12.2)

Proposition 12.1. In every finite dimensional symplectic space we can choose
a basis φi = xi, φ

d+i = pi so that the Poisson bracket has the usual form, that
is

ωi,i+d = 1, ωi+d,i = −1.

Thus every finite dimensional symplectic space is isomorphic to the space
Rd ⊕ Rd with the usual structure.

We say that a linear transformation r = [rji ] is symplectic if it preserves the
symplectic form. Explicitly, rTωr = ω, or

rpi ωpqr
q
j = ωij

The set of such transformations is denoted Sp(R2d). It is a Lie group.
In parallel with the classical system described by functions on the phase space

Y we also consider a quantum system described by operators acting irreducibly
on a certain Hilbert space H equipped with distinguished operators φ̂j , j =
1, . . . , 2d satisfying (formally)

[φ̂j , φ̂k] = iωjk1l. (12.3)

In other words, we have an irreducible regular CCR representation of the sym-
plectic space R2d on H.

Suppose that ρ is a linear transformation on Y. Suppose there exists a
unitary operator U ∈ U(H) such that

Uφ̂iU−1 = ρij φ̂
j . (12.4)

The transformation (12.4) is often called a Bogoliubov transformation. We will
say that U is a Bogoliubov implementer of ρ. We easily check that if there exists
a Bogoliubov implementer of ρ, then ρ ∈ Sp(Y). We define Mpc(Y) to be the
set of all Bogoliubov implementers.

Obviously, Mpc(Y) is a group and the map

Mpc(Y) 3 U 7→ ρ ∈ Sp(Y). (12.5)

is a homomorphism. By the Stone–von Neumann Theorem it is onto.
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12.2 Quadratic Hamiltonians

We say that a linear transformation k = [kji ] is infinitesimally symplectic if it
infinitesimally preserves the symplectic form. In other words, 1l + εk is for small
ε approximately symplectic. Explicitly, kTω + ωk = 0, or

kpi ωpj + ωipk
p
j = 0.

The set of such transformations is denoted sp(R2d). It is a Lie algebra.

Proposition 12.2. k is an infinitesimally symplectic transformaton iff h = ωk
is symmetric Define the corresponding classical and quantum Hamiltonian by

H =
1

2
hjkφ

jφk, Ĥ =
1

2
hjkφ̂

j φ̂k.

Let r(t) := etk be the corresponding dynamics, which is a 1-parameter group in
Sp(R2d) and introduce the corresponding classical and quantum flow

φj(t) := rjk(t)φk(0), φ̂j(t) := rjk(t)φ̂k(0),

Then φ̂j(t) = eitĤ φ̂je−itĤ and

d

dt
φ(t) = {φ(t), H}, i

d

dt
φ̂(t) = [φ̂(t), Ĥ].

Remark 12.3. Note that dH =
∑
ij hijφ

idφj and with k = ω−1h we can write

ω−1dH = kri φ
i∂φr . This is often written as

k = ω−1dH. (12.6)

Thus if Ĥ is a quadratic Hamiltonian, then eitĤ implements etk, as in the

above proposition. Therefore, operators eitĤ belong to the c-metaplectic group.

We define the metaplectic group Mp(Y) as the group generated by eiĤ where
Ĥ is of the form (13.25). Clearly, it is a subgroup of Mpc(Y).

The following theorem is most conveniently proven in the Fock representa-
tion:

Theorem 12.4. We have a 2− 1 epimorphism (surjective homomorphism)

Mp(Y)→ Sp(Y). (12.7)

12.3 Weyl-Wigner quantization for a symplectic vector
space

For a function b on R2d we can define its Weyl-Wigner quantization:

Op(b) := (2π)−2d

∫ ∫
ei(φ̂i−ξi)·ζib(ξ)dξdζ.
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Write
φ(ζ) = φiζi, φ̂(ζ) = φ̂iζi. (12.8)

Note that
Op
(
eiφ(ζ)

)
= eiφ̂(ζ). (12.9)

More generally, for any Borel function f on R

Op
(
f
(
φ(ζ)

))
= f

(
φ̂(ζ)

)
. (12.10)

Proposition 12.5.

Op
(
φ(ζ1) · · ·φ(ζn)

)
=

1

n!

∑
σ∈Sn

φ̂(ζσ(i)) · · · φ̂(ζσ(n)). (12.11)

Proof. We have
Op
(
φ(ζ)n

)
= φ̂(ζ)n. (12.12)

This follows from (12.9) by expanding into a power series. Let t1, . . . , tn ∈ R.
By (12.12),

Op
((
t1φ(ζ1) + · · ·+ tnφ(ζn)

)n)
=
(
t1φ̂(ζ1) + · · ·+ tnφ̂(ζn)

)n
. (12.13)

The coefficient at t1 · · · tn on both sides is

Op
(
n!φ(ζ1) · · ·φ(ζn)

)
=
∑
σ∈Sn

φ̂(ζσ−1(1)) · · · φ̂(ζσ−1(n)).

2

12.4 The Weyl-Wigner symbol of the exponential of a
quadratic Hamiltonians

Consider a quadatic Hamiltonian

H =
1

2
hijφ

iφj , (12.14)

Op(H) =
1

2
hij φ̂

iφ̂j . (12.15)

Then

1

2

(
Op(H)Op(b) + Op(b)Op(H)

)
= Op(Hb)− 1

8
hii′ω

ijωi
′j′∂j∂j′b. (12.16)

Suppose H is a quadratic Hamiltonian such as (13.24) with ImH ≤ 0. In-
troduce the symplectic generator k := ω−1h. We have

eitOp(H)φ̂ie
−itOp(H) = (etk)ji φ̂j . (12.17)

Let us compute the symbol of eitOp(H).
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Theorem 12.6. We have

eitOp(H) = Op(ut), (12.18)

ut(φ) =
(

det cosh
tk

2

)− 1
2

exp
(
φi
(
ω tanh

tk

2

)
ij
φj
)
. (12.19)

Proof. We have

∂te
itOp(H) =

1

2

(
Op(H)eitOp(H) + eitOp(H)Op(H)

)
. (12.20)

Let us look for ut in the form

ut = ceiγijφ
iφj . (12.21)

Differentiating (12.21), and using (12.20) with (12.16) we obtain

∂tut = ċeiγijφ
iφj + icγ̇ijφ

iφjeiγijφ
iφj , (12.22)

∂tut =
i

2
hijφ

iφjceiγijφ
iφj − i

8
hii′ω

ikωi
′k′
(
i2γkk′ − 4γkjγk′j′φ

jφj
′)

(12.23)

This yields

γ̇jj′ =
1

2
hjj′ +

1

2
hii′ω

ikωi
′k′γkjγk′j′ , (12.24)

ċ = −c1

4
hii′ω

ikωi
′k′γkk′ . (12.25)

Setting pji = ωjkγkj we can rewrite (12.24) as

ṗ =
1

2
k − 1

2
pkp, (12.26)

which is solved by

p =
e
tk
2 − e

tk
2

e
tk
2 + e

tk
2

= tanh
tk

2
. (12.27)

2

Corollary 12.7. For small t we have

e−itOp(H) = Op
(

e−itH
)

+O(t2), (12.28)

(Note that (12.28) is exact if H depends only on the momentum.)

13 Metaplectic group in the Schrödinger repre-
sentation

13.1 Generating functions of symplectic transformations

Consider a symplectic space Rn ⊕ Rn with the symplectic form dxi ∧ dpi.

100



Proposition 13.1. Consider a real function

Rn × Rn 3 (x+, x−) 7→ S(x+, x−). (13.1)

Set
p+ = ∇x+

S(x+, x−), p− = −∇x−S(x+, x−). (13.2)

Suppose that there exists a transformation

ρ

[
x−
p−

]
=

[
x+

p+

]
. (13.3)

Then ρ is a symplectic transformation.

Proof. We see that the following 2-forms are equal:

dx− ∧ dp− = −dx− ∧ dx+
∂2S(x+, x−)

∂x+∂x−
,

dx+ ∧ dp+ = dx+ ∧ dx−
∂2S(x+, x−)

∂x−∂x+
.

2

S(x+, x−) is called a generating function of the transformation ρ.
Note that sometimes one prefers other variables for the generating function.

For instance, one can consider

Rn × Rn 3 (x+, p−) 7→ S(x+, p−),

p+ = ∂x+
S(x+, p−), x− = ∂p−S(x+, p−).

13.2 Action integral

Consider a time dependent Hamiltonian H(s, x, p). Let [0, t] 3 s 7→ x(s), p(s)
be a trajectory in the phase space, which for brevity will be often denoted x, p.
We define the action on this trajectory by

J(x, p) :=

∫ t

0

(
ẋ(s)p(s)−H(s, x(s), p(s)

)
ds (13.4)

Theorem 13.2. Let [0, t] 3 s 7→ x(s, α), p(s, α) be a family of trajectories
depending on an additional parameter α and satisfying the Hamilton equations.
Then

∂αJ(t, x, p) = p(t)∂αx(t)− p(0)∂αx(0). (13.5)

101



Proof.

∂αJ(x, p) =

∫ t

0

(
∂αp(s)ẋ(s) + p(s)∂αẋ(s)

)
ds (13.6)

−
∫ t

0

(
∂xH(s, x(s), p(s))∂αx(s) + ∂pH(s, x(s), p(s))∂αp(s)

)
ds

=

∫ t

0

(
∂αp(s)ẋ(s)− ṗ(s)∂αx(s)

)
ds+ p(s)∂αx(s)

∣∣∣t
0

+

∫ t

0

(
ṗ(s)∂αx(s)− ẋ(s)∂αp(s)

)
ds.

2

Set v(s, x, p) := ∂pH(s, x, p) and assume that we can express p as a function
of s, x, v. Define the Lagrangian

L(s, x, v) := vp(s, x, v)−H(s, x, p(s, x, v)). (13.7)

If [0, t] 3 s 7→ x(s) is a trajectory in the configuration space, we define the action

I(x) :=

∫ t

0

L(s, x(s), ẋ(s))ds. (13.8)

Clearly, I(x) = J(x, p), where p(s) = p(s, x(s), ẋ(s)).
We have the following configuration space analog of the above theorem:

Theorem 13.3. Let [0, t] 3 s 7→ x(s, α) be a family of trajectories depending on
an additional parameter α and satisfying the Euler-Lagrange equations. Then

∂αI(t, x) = p
(
t, x(t), ẋ(t)

)
∂αx(t)− p

(
0, x(0), ẋ(0)

)
∂αx(0). (13.9)

Corollary 13.4. Suppose that x(s) = x(s, xt, x0), p(s) = p(s, xt, x0) are trajec-
tories satisfying the equation of motion with x(0) = x0 and x(t) = xt. Then

S(xt, x0) = J
(
x(xt, x0), p(xt, x0)

)
= I
(
x(xt, x0)

)
(13.10)

is the generating function of the transformation (x0, p0)→ (xt, pt).

13.3 Composition of generating functions

Suppose that

Rn ⊕ Rn 3 (x+, x) 7→ S+(x+, x), Rn ⊕ Rn 3 (x, x−) 7→ S−(x, x−) (13.11)

are two generating functions. Given x+, x−, we look for x(x+, x−) satisfying

∇xS+(x+, x(x+, x−)) +∇xS−(x(x+, x−), x−) = 0. (13.12)

Suppose such x(x+, x−) exists and is unique. Then we define

S+−(x+, x−) := S+(x+, x(x+, x−)) + S−(x(x+, x−), x−). (13.13)
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Proposition 13.5. Suppose S− is a generating function of a symplectic map
ρ− and S+ is a generating function of a symplectic map ρ+. Then S+− is a
generating function of ρ+ ◦ ρ−. Moreover,

∇x+∇x−S(x+, x−) = −∇x+∇xS+(x+, x(x+, x−)) (13.14)

×
(
∇(2)
x S+(x+, x(x+, x−)) +∇(2)

x S−(x(x+, x−), x−)
)−1

×∇x∇x−S−(x(x+, x−), x−).

Proof. Differentiating (13.12) we obtain

(∇x+
x)(x−, x+)

(
∇(2)
x S+(x+, x(x+, x−)) +∇(2)

x S−(x(x+, x−), x−)
)

+∇x∇x+
S+(x+, x(x+, x−)) = 0. (13.15)

Differentiating (13.13) we obtain

∇x−S(x−, x+) = ∇x−S−(x(x−, x+), x−),

∇x+∇x−S(x−, x+) = (∇x+x)(x−, x+)∇x∇x−S−(x(x−, x+), x−). (13.16)

Then we use (13.15) and (13.16). 2

13.4 Linear symplectic transformations

Let ρ be a linear transformation on Rd ⊕ Rd. Write ρ as a 2×2 matrix and
introduce a symplectic form:

ρ =

[
a b
c d

]
, ω :=

[
0 −1l
1l 0

]
. (13.17)

ρ ∈ Sp(Rd ⊕ Rd) iff
ρTωρ = ω,

which means
aTd− cTb = 1l, cTa = aTc, dTb = bTd. (13.18)

Let ρ be as above with b invertible. We then have the factorization

ρ =

[
a b
c d

]
=

[
1l 0
e 1l

] [
0 b

−bT−1 0

] [
1l 0
f 1l

]
, (13.19)

where
e = db−1 = bT−1dT,

f = b−1a = aTbT−1.

are symmetric. Then the symplectic transformation ρ possesses a generating
function

Rn×Rn 3 (x−, x+) 7→ S(x−, x+) :=
1

2
x+·ex+−x−·b−1x+ +

1

2
x−·fx−. (13.20)
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Thus [
a b
c d

] [
x−
p−

]
=

[
x+

p+

]
(13.21)

iff
∇x+

S(x+, x−) = p+, ∇x−S(x+, x−) = −p−, . (13.22)

Note that S is uniquely defined by the condition S(0, 0) = 0. For linear symplec-
tic transformations, (13.20) will be called the generating function of a symplectic
transformation.

13.5 The metaplectic group

1-parameter symplectic groups have the form

exp t

[
β γ
−α −β

]
, (13.23)

where [αij ], [γij ], [βji ] are real matrices, α, γ being symmetric.

[
β γ
−α −β

]
can

be written as ω−1dH, where H is the quadratic Hamiltonian

H =
1

2
αijx

ixj + βji x
ipj +

1

2
γijpipj . (13.24)

Let Ĥ be its symmetric quantization, that is,

Ĥ =
1

2

(
αij x̂

ix̂j + βji (x̂
ip̂j + p̂j x̂i) + γij p̂ip̂j

)
. (13.25)

Recall that the metaplectic group Mp(Rn⊕Rn) is defined as the group generated

by eiĤ where Ĥ is of the form (13.25).
Let us describe a few examples of metaplectic transformations in the case of

a one degree of freedom.

Example 13.6. Pure quadratic potential

The multiplication operator e−
i
2 tx̂

2

belongs to the metaplectic group.

Example 13.7. Free Hamiltonian

The operator e−
i
2 tp̂

2

belongs to the metaplectic group. Its integral kernel
equals

(2πit)−
1
2 e

i
2

(x−y)2
t .

Example 13.8. Harmonic oscillator.

Let Ĥ = 1
2 p̂

2 + 1
2 x̂

2. The Weyl-Wigner symbol of e−tĤ equals

w(t, x, ξ) = (ch t2 )−1 exp(−(x2 + ξ2)th t2 ). (13.26)
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Its integral kernel is given by

W (t, x, y) = (2π)−
1
2 (sht)−

1
2 exp

(
−(x2 + y2)cht+ 2xy

2sht

)
.

e−itĤ has the Weyl-Wigner symbol

w(it, x, ξ) = (cos t2 )−1 exp
(
−i (x2 + ξ2)tg t2

)
(13.27)

and the integral kernel

W (it, x, y) = (2π)−
1
2 | sin t|− 1

2 e−
iπ
4 e−

iπ
2 [ tπ ] exp

(
−(x2 + y2) cos t+ 2xy

2i sin t

)
.

Above, [c] denotes the integral part of c.
We have W (it+ 2iπ, x, y) = −W (it, x, y). Note the special cases

W (0, x, y) = δ(x− y),

W ( iπ
2 , x, y) = (2π)−

1
2 e−

iπ
4 e−ixy,

W (iπ, x, y) = e−
iπ
2 δ(x+ y),

W ( i3π
2 , x, y) = (2π)−

1
2 e−

i3π
4 eixy.

Corollary 13.9. Let us list some symplectic transformations and the distribu-
tional kernels of the corresponding elements of the metaplectic group:[

1 0
0 1

]
± δ(x− y) (13.28)[

0 1
−1 0

]
±
√

i√
2π

eixy, (13.29)[
−1 0
0 −1

]
± iδ(x+ y), (13.30)[

0 −1
1 0

]
±
√
−i√
2π

e−ixy. (13.31)

Example 13.10. Scaling

Let Ĥ = 1
2 (x̂·p̂ + p̂·x̂). Then e−itĤ belongs to the metaplectic group and

implements

[
e−t 0
0 et

]
. We have

e−itĤΨ(x) = e−
1
2 tΨ(e−tx), Ψ ∈ L2(R).

Example 13.11. Scaling with the negative sign.
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The following transformation belongs to the metaplectic group and imple-

ments

[
−e−t 0

0 −et

]
:

UΨ(x) = ±ie−
1
2 tΨ(−e−tx), Ψ ∈ L2(R).

This follows from (13.30) and Example 13.10

Example 13.12. Scaling in any dimension

Let m ∈ GL(Rn). Then

UΨ(x) := ±
√

detmΨ(mx) (13.32)

belongs to the metaplectic group and implements

[
m 0
0 mT−1

]
. This follows

from Examples 13.10 and 13.11

Proposition 13.13. Let ρ be a linear symplectic transformation, as in (13.17),
with b invertible. Let S be the corresponding generating function. Then the pair
of operators U with the integral kernels

U(x+, x−) = ±(2π)−
d
2

√
det i∇x+

∇x−S eiS(x+,x−) (13.33)

are the unique elements of Mp(Rn ⊕Rn) that implement the transformation ρ.

Proof. We will only prove that (13.33) belong to Mp(Rn ⊕ Rn). Let us
rewrite (13.19) as

ρ =ρ4ρ3ρ2ρ1

=

[
a b
c d

]
=

[
1l 0
e 1l

] [
b 0
0 bT−1

] [
0 1
−1 0

] [
1l 0
f 1l

]
,

Then we ρ4, . . . , ρ1 are implemented by U4, . . . , U1, where

U4 = e
i
2 x̂ex̂,

U3Ψ(x) =
√

det bΨ(bx),

U2(x+, x−) =
(−i)

n
2

(2π)
n
2

e−ix+x− ,

U1 = e
i
2 x̂fx̂.

U4, . . . , U1 clearly belong to the metaplectic group. 2

Let S+, S− and S+− be generating functions as in Subsection 13.3, and ±U+,
±U−, ±U+− the corresponding operators (actually, pairs of operators differing
by a sign). Then the identity

U+U− = ±U (13.34)

follows from Proposition 13.5.
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13.6 The Weyl-Wigner quantization in the Schrödinger
representation

Let b ∈ S ′(R2 ⊕ Rd).

Proposition 13.14. The Weyl-Wigner quantization of the symbol b has the
integral kernel

B(x, y) = (2π)−d
∫

dpb
(x+ y

2
, p
)

ei(x−y)p. (13.35)

Proof. We have

ei(ξix̂i+ηip̂i) = e
i
2 ξix̂ieiηip̂ie

i
2 ξix̂i . (13.36)

Hence the integral kernel of ei(ξix̂i+ηip̂i) is

(2π~)−d
∫

dpei( 1
2 ξixi+ηipi+

1
2 ξivi)+

i
~ (xi−vi)pi .

Therefore,
Op(ei(ξixi+ηipi)) = ei(ξix̂i+ηip̂i). (13.37)

2

For instance, if

H(x, p) =
1

2
(p−A(x))2 + V (x), (13.38)

then Op(H) =
1

2
(p̂−A(x̂))2 + V (x̂), (13.39)

14 Pseudounitary spaces

14.1 From complex to real spaces and back

Let W be a complex vector space. An antilinear involution v 7→ v on W will be
called a conjugation. For an operator R on W we set

Rv := Rv, RT := R
∗
. (14.1)

If R satisfies R = ±R, it will be called real resp. anti-real. The real subspace of
W is defined as

WR := {w ∈ W : w = w}. (14.2)

Conversely, to pass from a real space to a complex one, suppose now that Y
is a real space. Then Y ⊗ C = CY will denote the complexification of Y (i.e.,
for every w ∈ W we can write w = wR + iwI with wR, wI ∈ Y), and we have
the natural conjugation vR + ivI = vR − ivI .
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14.2 Bilinear forms

Let Y be a real vector space. Let

〈v|qw〉, v, w ∈ V (14.3)

be a bilinear form on Y. We say that a linear map r preserves q if

〈rv|qrw〉 = 〈v|qw〉. (14.4)

Equivalently, rTqr = q.
Every symmetric form q on Y, and thus in particular every scalar product,

extends to a Hermitian form on CY given by

〈v|qw〉 =
(
vR + ivI |q(wR + iwI)

)
:= 〈vR|qwR〉+ 〈vI |qwI〉
− i〈vI |qwR〉+ i〈vR|qwI〉.

(14.5)

Note the additional property (v|qw) = (v|qw).
Extending an antisymmetric form 〈v|ωw〉 on Y to a Hermitian form on CY

involves an additional imaginary unit

i〈v|ωw〉 =
(
vR + ivI |Q(wR + iwI)

)
:= 〈vI |ωwR〉 − 〈vR|ωwI〉

+ i〈vR|ωwR〉+ i〈vI |ωwI〉.
(14.6)

Note the additional property (v|Qw) = −(v|Qw), which also differs from the
symmetric case above. Note also that we use the angular brackets for bilinear
forms and round brackets for sesquilinear forms.

14.3 Sesquilinear forms

Let W be a complex vector space. Let

〈v|Qw〉, v, w ∈ W (14.7)

be a bilinear form on W. We say that a linear map R preserves Q if

(Rv|QRw) = (v|Rw). (14.8)

Equivalently, R∗QR = Q.
We say that a conjugation · preserves Q if

(v|Qw) = (v|Qw). (14.9)

In that case,
Re(v|Qw), v, w ∈ WR, (14.10)

is a symmetric form on WR. Note that Im(v|Qw) = 0 on WR.
Similarly, we say that a conjugation · anti-preserves Q if

(v|Qw) = −(v|Qw). (14.11)

In that case,
Im(v|Qw), v, w ∈ WR, (14.12)

is an antisymmetric form on WR. Note that Re(v|Qw) = 0 on WR.
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14.4 Involutions

Definition 14.1. We say that a pair (Z(+)
• ,Z(−)

• ) of subspaces of a vector space
W is complementary if

Z(+)
• ∩ Z(−)

• = {0}, Z(+)
• + Z(−)

• =W.

A pair of projections Π
(+)
• and Π

(−)
• is called complementary if

Π
(−)
• Π

(+)
• = Π

(+)
• Π

(−)
• = 0, Π

(+)
• + Π

(−)
• = 1l. (14.13)

Definition 14.2. An operator S• on W is called an involution, if S2
• = 1l.

We can associate various objects with S•:

Π
(±)
• :=

1

2
(1l± S•), Z(±)

• := Ran(Π
(±)
• ). (14.14)

(Π
(+)
• ,Π

(−)
• ) is a pair of complementary projections and (Z(+)

• ,Z(−)
• ) is the

corresponding pair of complementary subspaces.

A possible name for Z(+)
• is the positive space, and for Z(−)

• is the negative
space (associated with S•). We will however prefer names suggested by QFT:

Z(+)
• is the particle space, and Z(−)

• the antiparticle space.

14.5 Admissible involutions

Let W be a complex vector space equipped with a Hermitian form Q.

Definition 14.3. An involution S• onW will be called admissible if it preserves
Q and the scalar product

(v|w)• := (v|QS•w) = (S•v|Qw) (14.15)

is positive definite. Sometimes we will write W• to denote the space W equipped
with the scalar product (14.15).

Proposition 14.4. If S• is an admissible involution on (W, Q), then S• is
self-adjoint and unitary on W•.

For any admissible involution S•, we define the corresponding particle pro-

jection Π
(+)
• and particle space Z(+)

• , as well as the antiparticle projection Π
(−)
•

and antiparticle space Z(−)
• , as in (14.14). Note the following relations:

(v|w)• = (Π
(+)
• v|Π(+)

• w)• + (Π
(−)
• v|Π(−)

• w)•,

(v|Qw) = (Π
(+)
• v|Π(+)

• w)• − (Π
(−)
• v|Π(−)

• w)•.

A space W equipped with a Hermitian form is called a Krein space if it
possesses an admissible involution S• such that W is a Hilbert space wrt the
scalar product (·|·)•.
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14.6 Pseudo-unitary transformations as 2x2 matrices

S1 and S2 are two admissible involutions on a Krein space (W, Q). As explained
above, W1 and W2 denote the space W with the Hilbert structure given by S1

resp. S2.

Proposition 14.5. Let R be a bounded operator R on W. The following are
equivalent:

1. R is pseudo-unitary (preserves Q).

2. R is invertible and

R∗S2R = S1. (14.16)

3. R satisfies

R∗S2R = S1, (14.17a)

RS1R
∗ = S2. (14.17b)

Above, the Hermitian adjoint is understood in the sense of R :W1 →W2.

Proof. (1)⇒(2). Suppose that R is pseudo-unitary.

(v|R∗S2Rw)1 = (Rv|S2Rw)2 = (Rv|QRw) = (v|Qw) = (v|S1w)1, (14.18)

proves (14.16).
(2)⇒(3). (14.16) and the invertibility of R yields

R−1 = S1R
∗S2, R∗−1 = S2RS1, (14.19)

S2 = R∗−1S1R
−1. (14.20)

Inserting (14.19) into (14.20) yields (14.17b).
(3)⇒(1). By (14.17), S1R

∗S2 is the inverse of R. Now we rewrite (14.18) in
a different order:

(Rv|QRw) = (Rv|S2Rw)2 = (v|R∗S2Rw)1 = (v|S1w)1 = (v|Qw). (14.21)

Every bounded operator R on W can be written as

R =

[
R++ R+−
R−+ R−−

]
, (14.22)

with the matrix in the sense of R : Z(+)
1 ⊕ Z(−)

1 → Z(+)
2 ⊕ Z(−)

2 . If R is
pseudo-unitary, its components satisfy various relations:

Proposition 14.6. An operator R on W is pseudo-unitary if and only if

R∗++R++ −R∗−+R−+ = 1l, R∗++R+− −R∗−+R−− = 0,

R∗+−R++ −R∗−−R−+ = 0, R∗+−R+− −R∗−−R−− = −1l,
(14.23)

R++R
∗
++ −R+−R

∗
+− = 1l, R++R

∗
−+ −R+−R

∗
−− = 0,

R−+R
∗
++ −R−−R∗+− = 0, R−+R

∗
−+ −R−−R∗−− = −1l.

(14.24)
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Proof. Using S1 =
(

1l 0
0 −1l

)
and S2 =

(
1l 0
0 −1l

)
with respect to the decompo-

sitions Z(+)
1 ⊕Z(−)

1 and Z(+)
2 ⊕Z(−)

2 , respectively, one easily sees that (14.17a)
is equivalent to (14.23), and (14.17b) is equivalent to (14.24).

Corollary 14.7. If R is a pseudo-unitary operator on W, then

R∗++R++ ≥ 1l, R++R
∗
++ ≥ 1l,

R∗−−R−− ≥ 1l, R−−R
∗
−− ≥ 1l,

Hence R−1
++ and R−1

−− are well-defined.

Proposition 14.8. Suppose that R is a pseudo-unitary operator on W. If we
set

c(R) := R∗−+R
∗−1
−− = R−1

++R+−, (14.25a)

d(R) := R+−R
−1
−− = R∗−1

++ R∗−+, (14.25b)

one has the factorizations:

R =

[
1l d(R)
0 1l

] [
R∗−1

++ 0
0 R−−

] [
1l 0

c(R)∗ 1l

]
(14.26)

=

[
1l 0

d(R)∗ 1l

] [
R++ 0

0 R∗−1
−−

] [
1l c(R)
0 1l

]
. (14.27)

Moreover, we have the identities

R∗++R++ =
(
1l− c(R)c(R)∗

)−1
, R∗−−R−− =

(
1l− c(R)∗c(R)

)−1
, (14.28)

R++R
∗
++ =

(
1l− d(R)d(R)∗

)−1
, R−−R

∗
−− =

(
1l− d(R)∗d(R)

)−1
. (14.29)

Proof. The equality of the two formulas for c(R) and d(R) follows from
the off-diagonal relations in (14.23)–(14.24). The decomposition (14.26) can be
seen by multiplying the operator matrices on the right-hand side and using the
first equation of (14.23).

14.7 Symplectic transformations as 2x2 matrices

Let us specialize some of the above discussion to Krein spaces with conjugation.

Proposition 14.9. Suppose that W is a space with a Hermitian form Q and a
conjugation. If S• is an admissible anti-real involution, then iS• is real and we
have

Π
(+)
• = Π

(−)
• , Z(+)

• = Z(−)
• .

Then we will usually write Z• for Z(+)
• , so that W = Z• ⊕Z•.

The conjugation, which for typographical reasons is written as J acts as
follows

J

[
z1

z2

]
=

[
z2

z1

]
. (14.30)
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Suppose that S1 and S2 are admissible anti-real involutions, so that W =
Zi ⊕Zi, i = 1, 2. Then

R−− = R++ =: p,

R−+ = R+− =: q,

and thus every real operator R can be written as

R =

[
p q
q p

]
, (14.31)

in the sense of R : Z1 ⊕Z1 → Z2 ⊕Z2.
Here is the real version of Prop. 14.8: Note that real pseudounitary trans-

formations after restriction to WR are symplectic transformations.

Proposition 14.10. Suppose that R is real pseudo-unitary. The definitions
(14.25a) and (14.25b) can be rewritten as

c(R) := q∗p∗−1 = p−1q = c(R)T, (14.32a)

d(R) := qp−1 = p∗−1q∗ = d(R)T, (14.32b)

and one has the factorization:

R =

[
1l d(R)
0 1l

] [
p∗−1 0

0 p

] [
1l 0

c(R)∗ 1l

]
. (14.33)

14.8 Pseudo-unitary generators

Let (W, Q) be a Krein space.

Definition 14.11. We say that a densely defined operator B on W infinites-
imally preserves Q if B is a generator of a one-parameter group e−itB on W
and

(v|QBw) = (Bv|Qw), v, w ∈ Dom(B). (14.34)

If in addition Q is non-degenerate, then we will say that B is a pseudo-unitary
generator. The quadratic form defined by (14.34) will be called the energy or
Hamiltonian quadratic form of B on Dom(B).

Proposition 14.12. Let B be a generator of a one-parameter group on W.
Then e−itB, t ∈ R, preserves Q if and only if B infinitesimally preserves Q.

Proof. Let us show ⇐. Assume first that v, w ∈ Dom(B). Then

d

dt
(e−itBv|Qe−itBw)

=i(Be−itBv|Qe−itBw)− i(e−itBv|QBe−itBw) = 0. (14.35)

Hence
(e−itBv|Qe−itBw) = (v|Qw). (14.36)

112



By the density of Dom(B) and the boundedness of Q and e−itB , (14.36) extends
to the whole W.

In the proof of the⇒ we use the above arguments in the reverse order (with
the exception of the density argument, which is not needed). 2

14.9 Unitary operators on Krein spaces

The following proposition describes a large class of pseudo-unitary transforma-
tions and pseudo-unitary generators on Krein spaces.

Proposition 14.13. Suppose that (W, Q) is a Krein space and S• is an admis-
sible involution with the corresponding scalar product (·|·)•.

1. Let W is a real unitary operator on W• commuting with S•. Then it is
symplectic and it has the form

W =

[
W++ 0

0 W−−

]
, (14.37)

with W++, W−− unitary.

2. If B is a densely defined operator on W, self-adjoint in the sense of W•
and commuting with S•, then B is a pseudo-unitary generator on (W, Q)
in the sense of Def. 14.11 and has the form

B =

[
B++ 0

0 B−−

]
, (14.38)

with B++, B−− self-adjoint.

Definition 14.14. A densely defined operator B on a Krein space (W, Q) is
called a stable pseudo-unitary generator if it is similar to self-adjoint, Ker(B) =
{0}, and sgn(B) is an admissible involution. B is called a strongly stable
pseudo-unitary generator if in addition it is invertible.

In other words, a stable pseudo-unitary generator has a positive Hamiltonian
and a strongly stable generator has a positive Hamiltonian bounded away from
zero.

14.10 Positive symplectic transformations

Suppose that S• is an antireal involution. Suppose that R is symplectic and
positive on W• Then it is of the form (14.31) with p = p∗ > 0, q = qT ,
p2 − qq = 1l. We have d = d1 = d2, so that

d = qpT−1 = p−1qT.
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It is easy to check that one can find g = gT such that

p = cosh
√
gg∗, q = i

sinh
√
gg∗√

gg∗
g, d = i

tanh
√
gg∗√

gg∗
g, (14.39)

R =

[
cosh

√
gg∗ i sinh

√
gg∗√

gg∗
g

−i sinh
√
g∗g√

g∗g
g∗ cosh

√
g∗g

]
= exp

[
0 ig
−ig∗ 0

]
. (14.40)

14.11 Pairs of admissible involutions

Let S1, S2 be a pair of admissible involutions on a Krein space (W, Q). We will
describe some structural properties of such a pair.

Let Π
(+)
i ,Π

(−)
i ,Z(+)

i ,Z(−)
i , i = 1, 2, be defined as in (14.14). Set

K := S2S1, c := Π
(+)
1

1l−K
1l +K

Π
(−)
1 , (14.41)

where c is interpreted as an operator from Z(−)
1 to Z(+)

1 .

Proposition 14.15. K is pseudo-unitary and invertible. K is positive and
‖c‖ < 1 with respect to (·|·)1 and (·|·)2. We have

S1KS1 = S2KS2 = K−1, (14.42)

S1
1l−K
1l +K

S1 = S2
1l−K
1l +K

S2 = −1l−K
1l +K

. (14.43)

Proof. K is pseudo-unitary as the product of two pseudo-unitary trans-
formations. The inequality

(v|Kv)1 = (S1v|QS2S1v) = (S1v|S1v)2 ≥ a(S1v|S1v)1 = a(v|v)1

with a > 0 shows the positivity of K wrt (·|·)1 and its invertibility. This implies
‖ 1l−K

1l+K ‖ < 1. Hence ‖c‖ < 1.
The identities (14.42) and (14.43) are direct consequences of the definition

of K and S2
1 = S2

2 = 1l.

Proposition 14.16. Using the decomposition W = Z(+)
1 ⊕Z(−)

1 we have

1l−K
1l +K

=

[
0 c
c∗ 0

]
, (14.44a)

K =

[
(1l + cc∗)(1l− cc∗)−1 −2c(1l− c∗c)−1

−2c∗(1l− cc∗)−1 (1l + c∗c)(1l− c∗c)−1

]
, (14.44b)

Π
(+)
1 =

[
1l 0
0 0

]
, Π

(+)
2 =

[
(1l− cc∗)−1 c(1l− c∗c)−1

−c∗(1l− cc∗)−1 −c∗c(1l− c∗c)−1

]
, (14.44c)

Π
(−)
1 =

[
0 0
0 1l

]
, Π

(−)
2 =

[
−cc∗(1l− cc∗)−1 −c(1l− c∗c)−1

c∗(1l− cc∗)−1 (1l− c∗c)−1

]
, (14.44d)

S1 =

[
1l 0
0 −1l

]
, S2 =

[
(1l + cc∗)(1l− cc∗)−1 2c(1l− c∗c)−1

−2c∗(1l− cc∗)−1 −(1l + c∗c)(1l− c∗c)−1

]
.

(14.44e)

114



Moreover, if S1 is an admissible involution and ‖c‖ < 1, then S2 given as in
(14.44e) is an admissible involution.

Proof. (14.43) implies (14.44a). From the definition of c (or (14.44a)) we
obtain

K =

[
1l −c
−c∗ 1l

] [
1l c
c∗ 1l

]−1

=

[
1l −c
−c∗ 1l

] [
(1l− cc∗)−1 −c(1l− c∗c)−1

−c∗(1l− cc∗)−1 (1l− c∗c)−1

]
.

This yields (14.44b).
From S2 = KS1 we obtain (14.44c), (14.44d) and (14.44e).
The involutions S1 and S2 correspond to the pairs of complementary sub-

spaces (Z(+)
1 ,Z(−)

1 ), resp. (Z(+)
2 ,Z(−)

2 ). The following proposition implies the
existence of two other direct sum decompositions. This fact plays an important
role in the construction of the (in-out) Feynman inverse.

Proposition 14.17. The pairs of subspaces (Z(+)
1 ,Z(−)

2 ) and (Z(+)
2 ,Z(−)

1 ) are
complementary. Here are the corresponding projections:

Λ
(+)
12 =

[
1l c
0 0

]
= Π

(+)
1 Υ−1Π

(+)
2 projects onto Z(+)

1 along Z(−)
2 , (14.45a)

Λ
(−)
21 =

[
0 −c
0 1l

]
= Π

(−)
2 Υ−1Π

(−)
1 projects onto Z(−)

2 along Z(+)
1 , (14.45b)

Λ
(+)
21 =

[
1l 0
−c∗ 0

]
= Π

(+)
2 Υ−1Π

(+)
1 projects onto Z(+)

2 along Z(−)
1 , (14.45c)

Λ
(−)
12 =

[
0 0
c∗ 1l

]
= Π

(−)
1 Υ−1Π

(−)
2 projects onto Z(−)

1 along Z(+)
2 , (14.45d)

where

Υ−1 =

[
1l− cc∗ 0

0 1l− c∗c

]
=

4

(2 + S2S1 + S1S2)
=

4

(1l +K)(1l +K−1)
.

(14.46)

Proof. We apply Prop. ??.
We can reformulate Prop. 14.17 as follows.

Proposition 14.18. Let Z1 be an m-positive subspace and Z2 an m-negative
space. Then they are complementary.

Proof. By Prop. ?? there exist admissible involutions S1 and S2 such that

Z1 = Z(+)
1 and Z2 = Z(−)

2 . Hence, it suffices to apply Prop. 14.17. 2

As a side remark, not used in what follows, let us record the following con-
struction. Remember that K is positive (with respect to both (·|·)1 and (·|·)2).
Hence it possesses a unique positive square root. Now

M :=
√
K.

is a natural similarity transformation between S1 and S2 (see e.g. [?]):
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Proposition 14.19. M is pseudounitary, invertible and positive with respect
to (·|·)1 and (·|·)2. Moreover,

S2 = MS1M
−1, (14.47)

M =

[
(1l− cc∗)− 1

2 −c(1l− c∗c)− 1
2

−c∗(1l− cc∗)− 1
2 (1l− c∗c)− 1

2

]
(14.48)

=

[
1l −c
0 1l

] [
(1l− cc∗) 1

2 0

0 (1l− c∗c)− 1
2

] [
1l 0
−c∗ 1l

]
. (14.49)

M−1 =

[
(1l− cc∗)− 1

2 c(1l− c∗c)− 1
2

c∗(1l− cc∗)− 1
2 (1l− c∗c)− 1

2

]
(14.50)

=

[
1l c
0 1l

] [
(1l− cc∗) 1

2 0

0 (1l− c∗c)− 1
2

] [
1l 0
c∗ 1l

]
. (14.51)

Proof. By definition of K, it holds that

KS1K = S1. (14.52)

Since K is invertible, (14.52) can be rewritten as

K = S1K
−1S1.

The positive square root of a positive operator is a unitary invariant, and S1 is
self-adjoint and unitary. Therefore,

M = S1M
−1S1.

Using this, we obtain

S2 = KS1 = M2S1 = MS1M
−1.

We easily check that (14.48) = (14.49) ≥ 0. We also check that its square is K.
By the uniqueness of the square root it is M .

In the real case the operators c, K have additional properties:

Proposition 14.20. Suppose that (W, Q) is a Krein space with conjugation.
Let S1, S2 be two admissible anti-real involutions on W. Let K and c be defined
as in (14.41). Then K = K and cT = c.

15 Fock representation in the real (or neutral)
formalism

15.1 Canonical commutation relations

Suppose that Y is a real vector space equipped with an antisymmetric form ω,
i.e., (Y, ω) is a pre-symplectic space.

Let CCR(Y) denote the complex unital ∗-algebra generated by φ(w), w ∈ Y,
satisfying
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1. φ(w)∗ = φ(w),

2. the map Y 3 w 7→ φ(w) is linear,

3. and the canonical commutation relations hold,[
φ(v), φ(w)

]
= i〈v|ωw〉, v, w ∈ Y. (15.1)

Let W := CY be the complexification of Y and Q the corresponding Hermitian
form, as described in (14.6):

(v|Qw) := i〈v|ωw〉, v, w ∈ W. (15.2)

We extend φ to W, so that it is complex antilinear:

φ(wR + iwI) := φ(wR)− iφ(wI), wR, wI ∈ Y.

Then we have, for all v, w ∈ W,

φ∗(w) := φ(w)∗ = φ(w),[
φ(v), φ∗(w)

]
= (v|Qw).

15.2 Fock representation

Assume in addition thatW is Krein. Let S• be an admissible anti-real involution
on W, see Subsect. 14.5. Let Π• be the corresponding particle projection, so
that S• = Π• −Π• Z• := RanΠ• see Subsect. 14.4.

The Fock representation associated with S• acts on the bosonic Fock space
Γs(Z•). The representation is given by

φ•(w) := a•(Π•w) + a∗•(Π•w),

φ∗•(w) := a∗•(Π•w) + a•(Π•w), w ∈ W.

Here, for z ∈ Z•, and a•(z) and a∗•(z) are the standard annihilation, resp.
creation operators on Γs(Z•). The state given by the vacuum Ω• ∈ Γs(Z•):
satisfies (

Ω•|φ(v)φ∗(w)Ω•
)

= (Π•v|QΠ•w), v, w ∈ W.

Note that if z ∈ Z•, then

φ•(z) = a•(z), φ•(z) = a∗•(z);

φ∗•(z) = a∗•(z), φ∗•(z) = a•(z).

15.3 Squeezed vectors

Let c be a Hilbert–Schmidt operator from Z• to Z• satisfying cT = c (see (14.1)
for the definition of cT). Let {ei}i be an orthonormal basis of Z•. The operator
c can be written as ∑

i,j

λij |ei)(ej |, (15.3)
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where
∑
i,j

|λij |2 <∞. We then define

a∗•(c) :=
∑
i,j

λija
∗
•(ei)a

∗
•(ej),

a•(c) :=
∑
i,j

λija•(ej)a•(ei).

Clearly, a•(c) and a∗•(c) do not depend on the choice of basis {ei}i.

Proposition 15.1. If ‖c‖ < 1, then e
1
2a
∗
•(c) defines a closed operator. If c1, c2

are two such operators, then(
e

1
2a
∗
•(c1)Ω•|e

1
2a
∗
•(c2)Ω•

)
=

1√
det(1l− c∗1c2)

. (15.4)

In particular, the vector

Ω•,c := det(1l− c∗c) 1
4 e

1
2a
∗
•(c)Ω• (15.5)

is normalized.

Proof. See e.g. Theorem 11.28 in [?].
The vector Ω•,c defined in (15.5) is called a squeezed vector. It satisfies(

a•(z)− a∗•(cz)
)
Ω•,c = 0, z ∈ Z.

15.4 Metaplectic group in the Fock representation

Assume that Y is a finite dimensional symplectic space.

Theorem 15.2. If R ∈ Sp(Y), then the corresponding pair of metaplectic
Bogoliubov implementers, that is, elements of Mp(Y) implementing R, has the
form

±R̂met := ±(det p∗)−
1
2 e−

1
2 â
∗(d)Γ

(
(p∗)−1

)
e

1
2 â(c), (15.6)

Before we prove the above theorem, let us describe some classes of Bogoli-
ubov transformations.

Example 15.3. Bogoliubov transformations preserving the particle number.

Suppose that W is a J-real unitary operator on Cm ⊕ Cm. Then it is sym-
plectic and for some unitary w on Cm it is of the form

W =

[
w 0
0 w

]
, (15.7)
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We can write w = eih. Hence W is implemented by

Ĥ :=
1

2

∑
hij
(
â∗i âj + âj â

∗
i

)
= dΓ(h) +

1

2
Trh. (15.8)

Now
eiĤ = e

i
2 TrhΓ(eih) = (detw)

1
2 Γ(w). (15.9)

Example 15.4. Positive symplectic transformations.

Suppose that R is symplectic and positive. Then it is of the form (14.31)
with p = p∗ > 0, q = qT , p2 − qq = 1l. We have d = d1 = d2, so that

d = qpT−1 = p−1qT.

It is easy to check that one can find g = gT such that

p = cosh
√
gg∗, q = i

sinh
√
gg∗√

gg∗
g, d = i

tanh
√
gg∗√

gg∗
g, (15.10)

R =

[
cosh

√
gg∗ i sinh

√
gg∗√

gg∗
g

−i sinh
√
g∗g√

g∗g
g∗ cosh

√
g∗g

]
= exp

[
0 ig
−ig∗ 0

]
. (15.11)

This is implemented by

R̂met := (det p)−
1
2 e−

1
2a
∗(d)Γ

(
p−1
)
e

1
2a(d).

Note that for positive symplectic transformations there is a distinguished
element in the pair of metaplectic implementers: the one with a positive vacuum
expectation value.

Proof of Theorem 15.2. Let R be an arbtrary symplectic transformation.
By the polar decomposition in the space W equipped with the (positive) scalar
product.It can be written as

R = WR0 (15.12)

where R0 > 0 and W is unitary. Both are real. Unitary real operators are
automatically symplectic. Therefore, W is symplectic, and hence so is R0.
Then we apply Example 15.3 to W and Example 15.4 to R0. We check that
ŴmetR̂met has the form (15.6).

15.5 Implementation of symplectic transformations

Let us go back to a symplectic space (Y, ω) of arbitrary dimension with com-
plexification (W, Q) Let R be a symplectic (that is, real pseudo-unitary) trans-
formation on (W, Q). As before, we fix an anti-real admissible involution S•.
Let us specialize (12.4) to the Fock representation given by S•. We say that an
operator R̂ implements R in the representation W 3 w 7→ φ•(w) if it satisfies

R̂φ•(w)R̂−1 = φ•(Rw), w ∈ W.
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Recall from (14.33), that in the sense of Z• ⊕Z• we can write R as

R =

[
p q
p q

]
=

[
1l d(R)
0 1l

] [
p∗−1 0

0 p

] [
1l 0

c(R)∗ 1l

]
. (15.13)

For brevity we will write c, d instead of c(R), d(R).
The following theorem is called the Shale criterion. It is proven e.g. in [?].

Theorem 15.5. The following are equivalent:
(1) q is Hilbert–Schmidt, (2) pp∗− 1l is trace class, (3) c is Hilbert–Schmidt,
(4) d is Hilbert–Schmidt, (5) R is implementable.

If this is the case, then all implementers of R coincide up to a phase fac-
tor. Among them there exists a unique one, called the natural implementer and
denoted R̂nat, which satisfies (Ω|R̂natΩ) > 0. It is equal to

R̂nat = (det p∗p)−
1
4 e−

1
2a
∗
•(d)Γ(p∗−1)e

1
2a•(c). (15.14)

Unfortunately, the natural implementer defined in (15.14) does not give a
representation of the symplectic group, and only a projective representation.
Under more restrictive conditions one can obtain a 1 − 2 representation, by
choosing the metaplectic implementer, see e.g. [?].

Proposition 15.6. If p − 1l is trace class, then the assumptions of Thm. 15.5
are satisfied. Besides, there exist two metaplectic implementers, differing with
the sign, which implement R of the form (15.6).

Let us go back to the Shale criterion, so that R̂nat is well defined. Then

(det p∗p)−
1
4 = det(1l + q∗q)−

1
4 = det(1l− cc∗) 1

4 = det(1l− dd∗) 1
4 (15.15)

is a positive number less that 1. (15.15) has an important physical meaning: it
is the vacuum–vacuum amplitude and equals (Ω2|R̂natΩ1).

Instead of (15.14), one could introduce the “renormalized Bogoliubov imple-
menter”

R̂ren :=
R̂nat

(Ω|R̂natΩ)
, (15.16)

which is always well defined as a quadratic form, even if (15.15) is zero.
If (15.15) is zero, so that R̂nat is ill-defined, we can still compute ratios of

scattering cross-sections with help of (15.16). Thus a consequence, in Quantum
Field Theory (at least, in its linear version) we do not need to worry too much
about the Shale criterion and the implementability of the scattering operator.

15.6 Comparison of two Fock representations

Suppose now that S1, S2 are two admissible anti-real involutions on W. Let
Z1 and Z2 be the corresponding particle spaces. Let φ1 and φ2 be the Fock
representations on Γs(Z1), resp. Γs(Z2) corresponding to S1, resp. S2. We will
assume that

(Ω2|Ω1) > 0, (15.17)
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which can always be achieved by multiplying Ω2 with a phase factor.
Let K, c and Υ be defined as in (14.41) and (14.46), that is

K = S2S1, c = Π1
1l−K
1l +K

Π1, Υ =
2 + S1S2 + S2S1

4
. (15.18)

The first part of the following theorem is another form of the Shale criterion:

Proposition 15.7. 1. The following conditions are equivalent: (1) c is Hilbert-
Schmidt, (2) K−1l is trace class, (3) Υ−1l is trace class. This is equivalent
to the equivalence of the representations φ1 and φ2.

2. Suppose that c is Hilbert–Schmidt. Let Ω1 ∈ Γs(Z1) be the vacuum in the
φ1 representation. Then the state ω2 coincides with (Ω2| · Ω2), where Ω2

is the squeezed vector

Ω2 := det(1l− c∗c) 1
4 e

1
2a
∗
1(c)Ω1. (15.19)

Moreover, we have

(Ω2|Ω1) = det(1l− c∗c) 1
4 = det Υ−

1
4 , (15.20)(

Ω2|φ2(v)φ∗2(w)Ω1

)
(Ω2|Ω1)

= (v|QΠ2Υ−1Π1w). (15.21)

Proof. (1) is proven e.g. in [?].
Let us prove (2). Recall that in (14.49) we defined the operator

M =

[
1l −c
0 1l

] [
(1l− cc∗) 1

2 0

0 (1l− c∗c)− 1
2

] [
1l 0
−c∗ 1l

]
(15.22)

satisfying S2 = MS1M
−1. By Thm 15.5 we have

M̂nat = det(1l− cc∗)− 1
4 e

1
2a
∗
1(c)Γ(1l− cc∗) 1

2 e−
1
2a1(c), (15.23)

M̂natφ1(v)M̂nat−1 = φ2(v), M̂natΩ1 = Ω2. (15.24)

This implies (15.19) and (15.20).
Let us show (15.21). By (14.45c), z ∈ Z1 implies z− cz ∈ Z2. Therefore, we

can write

φ1(v) = φ1

(
Π1v + cΠ1v

)
+ φ1

(
Π1v − cΠ1v

)
= a1

(
Π1v + cΠ1v

)
+ a∗2

(
Π1v − cΠ1v

)
φ∗1(w) = φ∗1

(
Π1w

)
+ φ∗1

(
Π1w

)
= a∗1

(
Π1w

)
+ a1

(
Π1w

)
.

After putting (Ω2| · Ω1) around φ1(v)φ∗1(w), we move the a∗2 terms to the left so
that they annihilate Ω2, and the a1 terms to the right, so that they annihilate
Ω1. Hence,

(Ω2|φ1(v)φ∗1(w)Ω1)

(Ω2|Ω1)
=
[
φ1

(
Π1v + cΠ1v

)
, φ∗1
(
Π1w

)]
(15.25)

=
(
(Π1 + cΠ1)v|QΠ1w

)
. (15.26)
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Now, by (14.45a),
Π1 + cΠ1 = Π1Υ−1Π2.

Finally, we use the Q-self-adjointness of Υ. 2

16 Fock representation in the complex (or charged)
formalism

In this section we will describe the complex or charged formalism of bosonic
quantization. At first sight it seems more complicated than the neutral formal-
ism discussed in the previous section. However there are some points where it is
more convenient than the neutral formalism. For instance, calculations involv-
ing gauge-invariant squeezed vectors of Subsect. 16.3 are slightly simpler than
those using squeezed vectors of Subsect. 15.3.

16.1 Charged canonical commutation relations

Suppose that W is a complex vector space equipped with a Hermitian form

(v|Qw), v, w ∈ W.

Let CCR(W) denote the complex unital ∗-algebra generated by ψ(w) and
ψ∗(w), w ∈ W, such that

1. ψ∗(w) = ψ(w)∗,

2. the map W 3 w 7→ ψ∗(w) is linear,

3. and the canonical commutation relations hold,[
ψ(v), ψ∗(w)

]
= (v|Qw),

[
ψ∗(v), ψ∗(w)

]
= 0, v, w ∈ W. (16.1)

The transformation

αs(ψ(w)) := e−isψ(w), αs(ψ
∗(w)) := eisψ∗(w), (16.2)

extends uniquely to a ∗-automorphism on CCR(W) and is sometimes called the
gauge transformation. Usually observables are restricted to the gauge invariant
part of CCR(W):

CCRgi(W) := {A ∈ CCR(W) | αs(A) = A}. (16.3)
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16.2 Fock representations

Assume, in addition, that (W, Q) is Krein. Let S• be an admissible involution

on W and introduce Π
(±)
• , Z(±)

• as in Subsect. 14.4.
Then we have a unique centered pure quasi-free state on CCR(W) defined

by

ω•
(
ψ(v)ψ∗(w)

)
= (v|QΠ

(+)
• w),

ω•
(
ψ∗(v)ψ(w)

)
= (w|QΠ

(−)
• v),

ω•
(
ψ∗(v)ψ∗(w)

)
= 0,

ω•
(
ψ(v)ψ(w)

)
= 0.

Let us describe explicitly the GNS representation of ω•. It acts on the
bosonic Fock space

Γs

(
Z(+)
• ⊕Z(−)

•
)
' Γs(Z(+)

• )⊗ Γs(Z(−)
• ).

The state ω• is represented by the Fock vacuum (Ω| · Ω). Denote the creation
and annihilation operators by a∗• and a•. The fields ψ in the representation
given by ω•. will be denoted by ψ•. More generally, A• denotes A ∈ CCR(W)
in this representation. We have

ψ•(w) := a•(Π
(+)
• w) + a∗•(Π

(−)
• w),

ψ∗•(w) := a∗•(Π
(+)
• w) + a•(Π

(−)
• w).

The operator dΓ(S•) plays the role of a charge. This means, representation
given by S•, then

αs(A)• = eisdΓ(S•)A•e
−isdΓ(S•). (16.4)

16.3 Gauge invariant squeezed vectors

In typical applications of the charged formalism the evolution and observables
are assumed to be invariant with respect to the U(1) group (??). Similarly,
the natural class of squeezed vectors in the charge formalism consists of gauge
invariant squeezed vectors, which we introduce below.

Let c be a Hilbert–Schmidt operator from Z(−)
• to Z(+)

• . Let {ej}i be an

orthonormal basis in Z(−)
• and {fi}i be an orthonormal basis in Z(+)

• . The
operator c can be written as ∑

i,j

cij |fi)(ej |, (16.5)
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where
∑
i,j

|cij |2 <∞. We then define

a∗•,gi(c) :=
∑
i,j

cija
∗
•(fi)a

∗
•(ej),

a•,gi(c) :=
∑
i,j

cija•(ej)a•(fi).

Clearly, neither a∗•,gi(c) nor a•,gi(c) depend on the bases {ei}i and {fi}i.

Proposition 16.1. If ‖c‖ < 1, then ea
∗
•,gi(c)Ω• is well-defined as a vector in

Γs

(
Z(+)
• ⊕Z(−)

•
)
. Moreover, if c1, c2 are two such operators, then

(
ea
∗
•,gi(c1)Ω•|ea

∗
•,gi(c2)Ω•

)
=

1

det(1l− c∗1c2)
. (16.6)

In particular, the vector

Ω•,gi(c) := det(1l− c∗c) 1
2 ea

∗
•,gi(c)Ω• (16.7)

is normalized.

(16.7) is called a gauge-invariant squeezed vector. It satisfies(
a•,gi(w)− a∗•,gi(cw)

)
Ω•,gi(c) = 0, w ∈ Z(−)

• ,(
a•,gi(w)− a∗•,gi(c

∗w)
)
Ω•,gi(c) = 0, w ∈ Z(+)

• .

16.4 Comparison of squeezed vectors in the real and com-
plex formalism

Gauge-invariant squeezed vectors can be treated as usual ones, introduced in
Subsect. 15.3. Recall that to define a squeezed vector in the charged formalism

we consider the Fock space Γs(Z(+)
• ⊕ Z(−)

• ) and a Hilbert–Schmidt operator

c : Z(−)
• → Z(+)

• . We set Z• := Z(+)
• ⊕Z(−)

• and consider

c̃ :=

[
0 c
cT 0

]
,

which is an operator Z• → Z• such that c̃T = c̃. Now,

a∗•,gi(c) =
1

2
a∗•(c̃), (16.8)

det(1l− c∗c)2 = det(1l− c̃∗c̃), (16.9)

Ω•,gi(c) = Ω•,c̃. (16.10)

Therefore, the formulas (16.6) and (15.4) are consistent with one another.
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16.5 Implementation of pseudo-unitary transformations

This subsection and the next are analogous to Subsections 15.5 and 15.6 from
the neutral case. There are some subtle differences between theneutral and the
charge case, therefore we give the details.

Let R be a pseudo-unitary transformation on (W, Q). As before, we fix
an admissible involution S•. We say that an operator R̂ implements R in the
representation W 3 w 7→ ψ∗•(w) if it satisfies

R̂ψ∗•(w)R̂−1 = φ∗•(Rw), w ∈ W.

Recall from (14.26), that in the sense of Z(+)
• ⊕Z(−)

• we can write R as

R =

[
1l d
0 1l

] [
R∗−1

++ 0
0 R−−

] [
1l 0
c∗ 1l

]
(16.11)

=

[
1l 0
d∗ 1l

] [
R++ 0

0 R∗−1
−−

] [
1l c

1l

]
. (16.12)

For brevity we will write c, d instead of c(R), d(R).
The following theorem is a complex version of Thm 15.5.

Theorem 16.2. The following are equivalent:
(1) R+− is Hilbert–Schmidt, (2) R−+ is Hilbert-Schmidt,
(3) R++R

∗
++ − 1l is trace class, (4) R−−R

∗
−− − 1l is trace class,

(5) c is Hilbert–Schmidt, (6) d is Hilbert–Schmidt, (7) R is implementable.
If this is the case, then all implementers of R coincide up to a phase factor.
Among them there exists a unique one, called the natural implementer and de-
noted R̂nat, which satisfies (Ω|R̂natΩ) > 0. It is equal to

R̂nat = |detR∗++R
T
−−|−

1
2 e−a

∗
•gi(d)Γ(R∗−1

++ ⊕RT−1
−− )ea•gi(c).

Proof. Take the complex conjugate of (16.12) and reverse the order of the

components, obtaining, in the sense of Z(−)
• ⊕Z(+)

• ,

R =

[
1l dT

0 1l

] [
RT−1
−− 0
0 R++

] [
1l 0
c 1l

]
. (16.13)

Then insert (16.13) in the middle of (16.11), obtaining the operator on Z•⊕Z•,
where Z• := Z(+)

• ⊕Z(−)
• :

R =


1l 0 0 d
0 1l dT 0
0 0 1l 0
0 0 0 1l



R∗−1

++ 0 0 0

0 RT−1
−− 0 0

0 0 R++ 0
0 0 0 R−−




1l 0 0 0
0 1l 0 0
0 c 1l 0
c∗ 0 0 1l

 (16.14)

Then we apply Thm. 15.5 from the neutral formalism, and take into account
(16.8).
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Here is the complex version of Prop. 15.6:

Proposition 16.3. If R++ − 1l and R−− − 1l are trace class, the assumptions
of Thm. 15.5 are satisfied. Besides, there exist two metaplectic implementers,
differing with the sign:

±R̂met =
(
detR∗++R

T
−−
)− 1

2 e−a
∗
•,gi(d)Γ(R∗−1

++ ⊕RT−1
−− )ea•,gi(c).

16.6 Comparison of two Fock representations

Suppose now that S1, S2 are two admissible involutions on W. Let Z(±)
1 and

Z(±)
2 be the corresponding particle spaces, ψ∗1 and φ∗2 be the Fock representa-

tions, etc. Let K, c and Υ be defined as in (14.41) and (14.46).
The following proposition is the complex version of Prop. 15.7.

Proposition 16.4. 1. The representations ψ∗1 and ψ∗2 are equivalent if and
only if c is Hilbert–Schmidt.

2. Suppose that c is Hilbert–Schmidt. Let Ω1 ∈ Γs(Z(+)
1 ⊕ Z(−)

1 ) be the vac-
uum in the ψ∗1 representation. Then the state ω2 coincides with (Ω2| · Ω2),
where Ω2 is the squeezed vector

Ω2 := det(1l− c∗c) 1
2 ea

∗
gi1(c)Ω1. (16.15)

Moreover, we have

(Ω2|Ω1) = det(1l− c∗c) 1
2 = det Υ−

1
2 , (16.16)(

Ω2|ψ2(v)ψ∗2(w)Ω1

)
(Ω2|Ω1)

= (v|QΠ
(+)
2 Υ−1Π

(+)
1 w). (16.17)

Proof. Let us prove (2). Note that the operator M defined in (14.49) and
recalled in (15.22) can still be used. It satisfies satisfying S2 = MS1M

−1. By
Thm 16.2 we have

M̂nat = det(1l− cc∗)− 1
2 ea

∗
gi1(c)Γ

(
(1l− cc∗) 1

2 ⊕ (1l− cc∗) 1
2

)
e−agi1(c),

(16.18)

M̂natψ∗1(v)M̂nat−1 = ψ∗2(v), M̂natΩ1 = Ω2. (16.19)

This implies (16.15) and (16.16).

Let us show (15.21). By (14.45b), z ∈ Z(−)
1 implies z−cz ∈ Z(−)

2 . Therefore,
we can write

ψ1(v) = ψ1

(
Π

(+)
1 v + cΠ

(−)
1 v

)
+ ψ1

(
Π

(−)
1 v − cΠ(−)

1 v
)

= a1

(
Π

(+)
1 v + cΠ

(−)
1 v

)
+ a∗2

(
Π

(+)
1 v − cΠ(+)

1 v
)

ψ∗1(w) = ψ∗1
(
Π

(+)
1 w

)
+ ψ∗1

(
Π

(−)
1 w

)
= a∗1

(
Π

(+)
1 w

)
+ a1

(
Π

(+)
1 w

)
.
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After putting (Ω2| · Ω1) around ψ1(v)ψ∗1(w), we move the a∗2 terms to the left so
that they annihilates Ω2, and the a1 terms to the right, so that they annihilate
Ω1. Hence,

(Ω2|ψ1(v)ψ∗1(w)Ω1)

(Ω2|Ω1)
=
[
ψ1

(
Π

(+)
1 v + cΠ

(−)
1 v

)
, ψ∗1

(
Π

(+)
1 w

)]
(16.20)

=
(
(Π

(+)
1 + cΠ

(+)
1 )v|QΠ

(+)
1 w

)
. (16.21)

Finally, by (14.45a),

Π
(+)
1 + cΠ

(−)
1 = Π

(+)
1 Υ−1Π

(+)
2 .

17 Coherent states

17.1 General coherent states in the Schrödinger represen-
tation

Fix a normalized vector Ψ ∈ L2(Rd). The family of coherent vectors associated
with the Ψ is defined by

Ψ(y,w) := e
i
~ (−yp̂+wx̂)Ψ, (y, w) ∈ Rd ⊕ Rd.

The orthogonal projection onto Ψ(y,w), called the coherent state, will be denoted

P(y,w) := |Ψ(y,w))(Ψ(y,w)| = e
i
~ (−yp̂+wx̂)|Ψ)(Ψ|e i

~ (yp̂−wx̂).

It is natural to assume that(
Ψ|x̂Ψ

)
= 0,

(
Ψ|p̂Ψ

)
= 0.

This assumption implies that(
Ψ(y,w)|x̂Ψ(y,w)

)
= y,

(
Ψ(y,w)|p̂Ψ(y,w)

)
= w.

Note however that we will not use the above assumption in this section.
Explicitly,

Ψ(y,w)(x) = e
i
~ (w·x− 1

2y·w)Ψ(x− y),

P(y,w)(x1, x2) = Ψ(x1 − y)Ψ(x2 − y)e
i
~ (x1−x2)·w.

Theorem 17.1.

(2π~)−d
∫
P(y,w)dydw = 1l. (17.1)

Proof. Let Φ ∈ L2(Rd). Then∫ ∫
(Φ|P(y,w)Φ)dydw

=

∫ ∫ ∫ ∫
Φ(x1)Ψ(x1 − y)Ψ(x2 − y)e

i
~ (x1−x2)·wΦ(x2)dx1dx2dydw

= (2π~)d
∫ ∫

Φ(x)Ψ(x− y)Ψ(x− y)Φ(x)dxdy = (2π~)d‖Φ‖2‖Ψ‖2.
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17.2 From Schrödinger to Fock representation

Let ν = [νij ] be a positive symmetric matrix, with ν−1 = [νij ] denoting its
inverse. Consider the Gaussian vector

Ω(x) := π−
d
4 (det ν)

1
2 e−

1
2xν

2x. (17.2)

Let us define the creation/annihilation operators in their classical and quantum
versions:

a∗(i) =
1√
2

(νijx
j − νij ipj), a(i) =

1√
2

(νijx
j + νij ipj), (17.3)

â∗(i) =
1√
2

(νij x̂
j − νij ip̂j), â(i) =

1√
2

(νij x̂
j + νij ip̂j), (17.4)

xi =
1√
2
νij
(
a(i) + a∗(i)

)
, pj =

1

i
√

2
νji
(
a(i)− a∗(i)

)
, (17.5)

x̂i =
1√
2
νij
(
â(i) + â∗(i)

)
, p̂j =

1

i
√

2
νji
(
â(i)− â∗(i)

)
. (17.6)

We have the commutation relations

{a(i), a(j)} = {a∗(i), a∗(j)} = 0, (17.7)

{a(i), a∗(j)} = −iδij , (17.8)

[â(i), â(j)] = [â∗(i), â∗(j)] = 0, (17.9)

[â(i), â∗(j)] = δij . (17.10)

The annihilation operators annihilate the vacuum:

â(i)Ω = 0. (17.11)

The complexified phase space has a direct sum decomposition

Cn ⊕ Cn = Z ⊕ Z, (17.12)

Z = {(y, w) ∈ Cn ⊕ Cn | 〈a∗(i)|y, w〉 = 0}, (17.13)

Z = {(y, w) ∈ Cn ⊕ Cn | 〈a(i)|y, w〉 = 0}. (17.14)

Thus a(i), resp. a∗(i) can be treated as linear functionals on Z, resp. Z.
We have the identity

iwix̂
i − iyip̂i = b(i)â∗(i)− b∗(i)â(i), (17.15)

where

b∗(i) =
1√
2

(νijy
j − νij iwj) = 〈a∗(i)|y, w〉, (17.16)

b(i) =
1√
2

(νijy
j + νij iwj) = 〈a(i)|y, w〉. (17.17)
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Consider coherent vectors associated with the vector Ω (17.2). We have two
notations for these vectors, the real and complex notation:

Ω(y,w) : = eiwx̂−iyp̂Ω (17.18)

= ebâ
∗−b∗âΩ =: Ωb, (y, w) ∈ Rn ⊗ Rn, b ∈ Cn. (17.19)

The Lebesgue measure on the phase space has also a real and a complex notation,
as in Subsection 11.3:

(2π)−ddydw = (2πi)−ddb∗db. (17.20)

Thus the decomposition of identity (17.1) can be written in two ways:

1l =(2π)−d
∫
|Ω(y,w))(Ω(y,w)|dydw (17.21)

=(2πi)−d
∫
|Ωb)(Ωb|db∗db. (17.22)

17.3 Bargmann-Segal representation

Recall that for b ∈ Cn the coherent vector Ωb is given by

Ωb = e−b
∗â+bâ∗Ω = e−

b∗b
2 ebâ

∗
Ω. (17.23)

Instead of coherent vectors it is sometimes more convenient to use exponential
vectors ebâ

∗
Ω, which in the position representation are given by

ebâ
∗
Ω(x) = π−

d
4 (det ν)

1
2 e−

1
2xν

2x+
√

2bνx− 1
2 b

2

. (17.24)

We can rewrite (17.22) in terms of exponential vectors:

1l = (2πi)−d
∫ ∣∣ebâ∗Ω)(ebâ∗Ω|e−b∗bdb∗db. (17.25)

We introduce the complex wave or Bargmann(-Segal) transformation

U cwF (b∗) :=
(
ebâ
∗
Ω|F

)
. (17.26)

U cw maps L2(Rd) onto the Bargmann(-Segal) space, that is the space of anti-
holomorphic functions on Cd with the scalar product given by

(F |G)cw := (2πi)−d
∫
F (b∗)G(b∗)e−b

∗bdb∗db. (17.27)

We have

U cwΩb1(b∗) = eb
∗b1 , (17.28)

(U cwâ∗(i)F )(b∗) = b∗(i)(U cwF )(b∗), (17.29)

(U cwâ(i)F )(b∗) =
∂

∂b∗(i)
(U cwF )(b∗). (17.30)

Indeed, (17.28) is immediate and so is (17.30). (17.29) follows from (17.30) and
the Hermitian conjugation. Note also that (11.27) can be viewed as an analysis
of a 1-dimensional Bargmann-Segal representation, and also can be used in a
proof of (17.29), (17.30).
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17.4 Bargmann kernel

Let ν± = [ν±ij ] be two positive symmetric matrix. We introduce various objects

as in Subsection 19.4, such related to ν±. All of them are decorated by the
indices ±, e.g. Ω±, â±(i),

Let C be an operator. We define its Bargmann kernel, which for b+, b− ∈ Cd
is defined by

Ccw(b∗+, b−) :=
(
eb+â

∗
+Ω+|Ceb−â

∗
−Ω−

)
(17.31)

= e
1
2 b
∗
+b+e

1
2 b
∗
−b−(Ω+

b+
|CΩ−b−). (17.32)

The word “ kernel” is justified by the identity(
Φ|CΨ

)
=

∫ ∫
(U cw

+ Φ)(b∗+)Ccw(b∗+, b−)(U cw
− Ψ)(b∗−)

×
e−b

∗
+b+db∗+db+

(2πi)d
e−b

∗
−b−db∗−db−

(2πi)d
. (17.33)

If we fix ν+, ν0, ν− and the corresponding complex wave representations, we can
write the formula for the Bargman kernel of the product:

(AC)cw(b∗+, b−) =

∫
Acw(b∗+, b0)Ccw(b∗0, b−)

e−b
∗
0b0db∗0db0
(2πi)d

. (17.34)

17.5 Examples of Bargmann kernels

Example 17.2. Identity operator.

Here is the Bargmann kernel of the identity operator 1l:

1lcw(b∗+, b−) =(eb+â
∗
+Ω+|eb−â

∗
−Ω−)

= det
(
∂b∗+∂b−T

+−
0

) 1
2 eT

+−
0 (b∗+,b−), (17.35)

T+−
0 (b∗+, b−) :=b∗+ν+

2

(ν2
+ + ν2

−)
ν−b−

+b∗+ν+
1

(ν2
+ + ν2

−)
ν+b
∗
+ −

1

2
b∗2+ + b−ν−

1

(ν2
+ + ν2

−)
ν−b− −

1

2
b2−,

∂b∗+∂b−T
+−
0 =ν+

2

(ν2
+ + ν2

−)
ν−. (17.36)

Note that

∂b−T
+−
0 (b∗+, b−) = b∗−, ∂b∗+T

+−
0 (b∗+, b−) = b+. (17.37)

Example 17.3. Particle number preserving transformations.
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Let Z− and Z+ be the spaces defined as in (17.12). Consider now a sym-
plectic operator U whose complexification maps Z− onto Z+. We can define
the operator Γ(U) by demanding that

Γ(U)Ω− = Ω+, Γ(U)ba∗ = (Ub)a∗. (17.38)

Clearly, this is the usual Γ(U) defined in the formalism of the second quanti-
zation, where we identify the Hilbert space L2(Rn) once with Γs(Z−) and the
second time with Γs(Z+). Then the Bargmann kernel is

Γ(U)cw(b∗+, b−) = eb
∗
+·Ub− . (17.39)

Example 17.4. Metaplectic transformations.

Consider a metaplectic transformation U with the integral kernel as in
(13.33):

U(x+, x−) = ±(2π)−
d
2

√
det i∇x+

∇x−S eiS(x+,x−). (17.40)

Let us compute its Bargmann kernel. First we rewrite the exponential vectors
as follows:

eb−â
∗
−Ω−(x−) = (2π)−

d
4 (det ∂x−∂b−T

−)
1
2 eT−(x−,b−), (17.41)

eb+â
∗
+Ω+(x+) = (2π)−

d
4 (det ∂b∗+∂x+

T+)
1
2 eT

+(b∗+,x+), (17.42)

where

T−(x−, b−) = −1

2
x−ν

2
−x− +

√
2b−ν−x− −

1

2
b2−, (17.43)

T+(b∗+, x+) = −1

2
x+ν

2
+x+ +

√
2b∗+ν+x+ −

1

2
b∗2+ . (17.44)

Thus

U cw(b∗+, b−) =
(
eb+â

∗
+Ω+

)
(x+)U(x+, x−)

(
eb−â

∗
−Ω−(x−)

)
dx+dx− (17.45)

=(2π)−d
(

det
(
∂b∗+∂x+

T+
)

det
(
i∇x+

∇x−S
)

det
(
∂x−∂b−T

−)) 1
2

×
∫

eT
+(b∗+,x+)+iS(x+,x−)+T−(x−,b−),dx+dx−. (17.46)

As generating functions, we have

−iT− transforms (b−, ib
∗
−)→ (x−, p−), (17.47)

S transforms (x−, p−)→ (x+, p+), (17.48)

−iT+ transforms (x+, p+)→ (b+,−ib+), (17.49)

where we have the usual relations

b− =
1√
2

(ν−x− + iν−1
− p−), (17.50)

b∗+ =
1√
2

(ν+x− iν−1
+ p+). (17.51)
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We find the stationary point (x+, x−) =
(
x+(b∗+, b−), x−(b∗+, b−)

)
of the expo-

nent given by the conditions

∂x−
(
T+(b∗+, x+) + iS(x+, x−) + T−(x−, b−)

)
= 0, (17.52)

∂x+

(
T+(b∗+, x+) + iS(x+, x−) + T−(x−, b−)

)
= 0. (17.53)

Set

T+−(b∗+, b−) := T+
(
b∗+, x+(b∗+, b−)

)
(17.54)

+ iS
(
x+(b∗+, b−), x−(b∗+, b−)

)
+ T−

(
x−(b∗+, b−), b−

)
.

By the general theory, −iT+− is the generating function of the transformation
(b−, ib

∗
−)→ (b∗+,−ib+) and we have

U cw(b∗+, b−) =
(

det ∂b∗+∂b−T
+−) 1

2 eT
+−(b∗+,b−).. (17.55)

17.6 Wick symbol of an operator

It is not difficult to see that the span â∗+(i) and â−(i) coincides with the span
of x̂i, p̂j . This can be used in the following definition.

Let C be an operator, which can be written as a polynomial in x̂i, p̂j . It can
be also rewritten as a polynomial in â∗+(i) and â−(i), where we put all â∗+(i) to
the left and â−(i) to the right. Thus

C =
∑
γ+,γ−

cγ+,γ− â
∗γ+
+ â

γ−
− ,

where γ+, γ− are multiindices. Now the polynomial

c = c(a∗+, a−) =
∑
γ+,γ−

cγ+,γ−a
∗γ+
+ a

γ−
− (17.56)

will be called the Wick symbol of the operator C (adapted to the vacua Ω+,Ω−).
We will sometimes write c(â∗+, â−) for C.

We can easily compute the Wick symbol using the coherent vectors:

〈c|y, w〉 =
(Ω+

y,w|CΩ−y,w)

(Ω+|Ω−)
, (y, w) ∈ Rn ⊕ Rn. (17.57)

Srtrictly speaking, (17.57) yields the Wick symbol restricted to the real phase
space, but then we can extend it by analyticity.

If we restrict the Bargmann kernel to the real phase space it is related to
the Wick symbol (17.56) as follows:

Ccw(b∗+, b−) = e
1
2 b
∗
+b++ 1

2 b
∗
−b−c(b∗+, b−), (17.58)

b+ = 〈a+|y, w〉, b− = 〈a−|y, w〉. (17.59)

The full Bargmann kernel is then obtained by the analytic continuation of
(17.59).
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18 Time-dependent Hamiltonians

18.1 Schrödinger and Heisenberg picture

Suppose that H is a (time-independent) Hamiltonian. It generates the dynamics
e−itH on the Hilbert space H. If we prepare a state ρ at time 0 and measure an
observable A at time t > 0, then the expectation value of the measurement is

TrρeitHAe−itH . (18.1)

In quantum physics two equivalent ways of expressing (18.1) are used:

(1) The Schrödinger picture: We let the state evolve ρ(t) := e−itHρeitH and
keep the observable constant. Then (18.1) equals Trρ(t)A.

(2) The Heisenberg picture: We let the observable evolve A(t) := eitHAe−itH

and keep the state constant. Then (18.1) equals TrρA(t).

(By the Schrödinger picture one also means the unitary evolution Ψ(t) :=
e−itHΨ on H.)

18.2 Time-ordered exponential

We will often use the formalism of time-dependent Hamiltonians. In this sub-
section we describe the main concepts of this formalism.

Let t 7→ Bn(t), . . . , B1(t) be time dependent operators. Let tn, . . . , t1 be
pairwise distinct. We define the time-ordered product of Bn(tn),..., B1(t1) by

T (Bn(tn) · · ·B1(t1)) := Bσn(tσn) · · ·Bσ1
(tσ1

),

where (σ1, . . . , σn) is the permutation such that tσn ≥ · · · ≥ tσ1
.

Consider a family of self-adjoint operators

t 7→ H(t). (18.2)

For t+ > t−, we define the time-ordered exponential

Texp

(
−i

∫ t+

t−

H(t)dt

)
(18.3)

:=

∞∑
n=0

(−i)n
∫
· · ·
∫

t+≥tn≥···≥t1≥t−

H(tn) · · ·H(t1)dtn · · · dt1

=

∞∑
n=0

(−i)n
∫ t+

t−

· · ·
∫ t+

t−

1

n!
T (H(tn) · · ·H(t1)) dtn · · · dt1.

For brevity, we will write U(t+, t−) for (18.3) and call it the dynamics generated
by t 7→ H(t). Note that U(t+, t−) are unitary. (The above constructions can
be easily made rigorous if H(t) are bounded. If they are unbounded, the above
definition should be viewed only as a heuristic indication how to define the
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family of unitary operators U(t+, t−). In most of this subsection we are not
very precise about the boundedness of operators, types of limits, etc.)

We also set U(t−, t+) := U(t+, t−)−1. Thus U(t+, t−) is the solution of the
following two equivalent equations:

d

dt+
U(t+, t−) = −iH(t+)U(t+, t−), U(t, t) = 1l; (18.4)

equivalently,
d

dt−
U(t+, t−) = U(t+, t−)iH(t−), U(t, t) = 1l. (18.5)

Clearly, if H(t) = H does not depend on time, then U(t+, t−) = e−i(t+−t−)H .
We also have

U(t+, t−) = lim
n→∞

n∏
j=1

exp
(
− i(t+ − t−)

n
H
(jt+ + (n− j)t−

n

))
, (18.6)

where in the product the indices increase from the right to the left:

n∏
j=1

Aj := An · · ·A1. (18.7)

18.3 Schrödinger and Heisenberg picture for time-dependent
Hamiltonians

The formalism of the Schrödinger and Heisenberg picture described for time-
independent Hamiltonians in Subsection 18.1 is somewhat more complicated if
the Hamiltonian is time-dependent. Then the Hamiltonian in the Schrödinger
picture and the Hamiltonian in the Heisenberg picture can be different.

Let us assume that the evolution U(t+, t−) defined as in (18.3) corresponds
to the Schrödinger picture, that is the evolution of vector states is

Ψt+ = U(t+, t−)Ψt− . (18.8)

Thus the family of self-adjoint operators (18.2) can be called the Hamiltonian
in the Schrödinger picture. Hence the evolution of a density matrix ρ in the
Schrödinger picture from time 0 to time t is

ρ(t) = U(t, 0)ρU(0, t), (18.9)

and satisfies the equation

d

dt
ρ(t) = −i [H(t), ρ(t)] , (18.10)

ρ(0) = ρ. (18.11)

Let us introduce the evolution of an observable A in the Heisenberg picture:

A(t) := U(0, t)AU(t, 0), (18.12)
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where we treat t = 0 as the reference time. We then have two ways to express
the time evolution of the expectation value:

Trρ(t)A = TrρA(t). (18.13)

Equivalently, A(t) is the solution of

d

dt
A(t) = i

[
HHp(t), A(t)

]
, (18.14)

A(0) = A,

where the Hamiltonian in the Heisenberg picture is defined as

t 7→ HHp(t) := U(0, t)H(t)U(t, 0). (18.15)

Thus a quantum dynamics is described by two time-dependent Hamiltonians:
t 7→ H(t) and t 7→ HHp(t). If they do not depend on time, they coincide.

The dynamics can be obtained as a solution of equations similar to (18.4)
and (18.5), involving the Hamiltonian in the Heisenberg picture. However, one
of the times has to be the reference time (in our case 0), and the Hamiltonian
appears “on the wrong side”:

d

dt
U(t, 0) = −U(t, 0)iHHp(t); (18.16)

d

dt
U(0, t) = iHHp(t)U(0, t). (18.17)

Thus we can compare:

U(t, 0) = Texp

(
−i

∫ t

0

H(s)ds

)
, (18.18)

U(t, 0)−1 = U(0, t) = Texp

(
i

∫ t

0

HHp(s)ds

)
. (18.19)

18.4 Classical dynamics

To define an evolution on a classical phase space Rd we need to fix a vector field

R× Rd 3 (t, x) 7→ X(t, x) ∈ Rd (18.20)

The equation
d

dt
x(t) = X

(
t, x(t)

)
. (18.21)

for any initial condition x(0) = x0 ∈ Rd, we obtain a solution R 3 t 7→ x(t, x0).
This defines a flow R(t, 0)on Rd such that R(t, 0)x0 = x(t, x0) and (18.22) can
be rewritten as

d

dt
R(t, 0)x0 = X

(
t, R(t, 0)x0

)
. (18.22)
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In classical mechanics the phase space is described by coordinates (φ, π) ∈
Rm × Rm with the Poisson bracket

{φi, φj} = {πi, πj} = 0,

{φi, πj} = δij .

The time evolution is described by a Hamiltonian

R× R2m 3 (t, φ, π) 7→ H(t, φ, π) ∈ R, (18.23)

and the Hamilton equations

φ̇(t) = {φ(t), H(t)}
π̇(t) = {π(t), H(t)}. (18.24)

Note that the classical evolution equations (18.22) and (18.24) are analogs
of the quantum equations in the Heisenberg picture (18.14). In particular, the
classical Hamiltonian (18.23) is the analog of the quantum Hamiltonian in the
Heisenberg picture (18.15).

There exists also a dual picture, which is the analog of the Schrödinger
picture of Quantum Mechanics. Consider the evolution given by the backward
flow. The analog of the equation (18.22) is

d

dt
R(0, t)x0 = −XSp

(
t, R(0, t)x0

)
, (18.25)

where
XSp(t, y) = R′(0, t)X

(
t, R(t, 0)y

)
. (18.26)

Thus the vector field is minus the backward transport of the original field.
R′(0, t) is the derivative of the flow.

In the Hamiltonian case we have the dynamics(
φSp(t), πSp(t)

)
= R(0, t)

(
φ, π

)
. (18.27)

The map R(0, t) is symplectic, therefore the Hamiltonian equation is transported
to a Hamiltonian equation, however for a different Hamiltonian:

HSp(t, φ, π) = H
(
t, R(t, 0)(φ, π)

)
. (18.28)

More precisely, there is also the change of the sign:

φ̇Sp(t) = −{φSp(t), HSp(t)}
π̇Sp(t) = −{πSp(t), HSp(t)}. (18.29)

Thus the classical and the quantum cases are analogous. However, whereas
in the quantum case the Schrödinger picture seems preferred, in the classical
case the analog of the Heisenberg picture seems to be more common. Therefore,
in the quantum case we put the superscript Hp but not Sp, and the other way
around in the classical case.
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18.5 Time-dependent perturbations

Our time-dependent Hamiltonians will usually have the form

H(t) := Hfr + λV (t),

where Hfr is a self-adjoint operator and R 3 t 7→ V (t) is a family of self-adjoint
operators.

We can introduce the so-called interaction picture or the Furry picture. The
evolution in the interaction picture is

UInt(t+, t−) := eit+HfrU(t+, t−)e−it−Hfr .

Note that UInt(t, t) = 1l and

d

dt+
UInt(t+, t−) = −iHInt(t+)UInt(t+, t−); (18.30)

d

dt−
UInt(t+, t−) = UInt(t+, t−)iHInt(t−), (18.31)

where the Hamiltonian for the interaction picture is

HInt(t) = eitHfrV (t)e−itHfr . (18.32)

Therefore, we can write

UInt(t+, t−) = Texp

(
−i

∫ t+

t−

HInt(t)dt

)
.

Thus if

ρInt(t) = UInt(t, 0)ρUInt(0, t)

= eitHfrU(t, 0)ρU(0, t)e−itHfr , (18.33)

Afr(t) = eitHfrAe−itHfr , (18.34)

then the expectation value (18.13) coincides with

TrAfr(t)ρInt(t). (18.35)

We define the scattering operator by

S := lim
t+,−t−→∞

UInt(t+, t−)

= Texp

(
−i

∫ ∞
−∞

HInt(t)dt

)
. (18.36)
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We also introduce the Møller operators

S− := lim
t→∞

U(0,−t)eitHfr = lim
t→∞

UInt(0,−t)

= Texp

(
−i

∫ 0

−∞
HInt(t)dt

)
, (18.37)

S+ := lim
t→∞

U(0, t)e−itHfr = lim
t→∞

UInt(0, t)

= Texp

(
−i

∫ ∞
0

HInt(t)dt

)−1

. (18.38)

Clearly, S = S+(−1)S−.
Note that both Møller operators and the scattering operator trivially exist

if V (t) decays sufficiently fast as |t| → ∞. In fact, this is a typical situation in
QFT, where we usually impose a temporal “adiabatic cutoff”.

In quantum mechanics one often applies this formalism to time independent
potentials, but this is a different story.

The interaction picture described above has also its “Heisenberg picture
version”:

UHp
Int (t+, t−) := U(0, t+)e−i(t+−t−)HfrU(t−, 0) (18.39)

= Texp

(
−
∫ t+

t−

HHp
Int (t)dt

)
, (18.40)

HHp
Int (t) := UInt(0, t)HInt(t)UInt(t, 0) = U(0, t)V (t)U(t, 0). (18.41)

19 Path integrals

In this section we describe the path integral approach. We restrict ourselves
to quadratic Hamiltonians, for which this approach can be fully justified. Note
that on the heuristic level, and in some cases rigorously, it can be also applied
to more general Hamiltonians.

The evolution generated by quadratic Hamiltonians always stays within the
metaplectic group. Therefore, the evolution is always determined by the classical
transformation–up to the sign. In some sense, the computations involving path
integrals reproduce the results that we already know concerning the integral or
Bargmann kernel of elements of the metaplectic group. There is one additional
information that we obtain: the path integral allows us to determine the missing
sign.

19.1 Real paths in the phase space

Consider a time dependent classical Hamiltonian and its quantization

s 7→ H(s), (19.1)

s 7→ Ĥ(s) = Op
(
H(s)

)
. (19.2)
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At first we do not restrict the class of Hamiltonians, assuming that they are
“sufficiently nice”. We would like to compute the integral kernel of

U(t) := Texp

(
−i

∫ t

0

Ĥ(s)ds

)
= lim
n→∞

n∏
j=1

e−i tn Ĥ
(
jt
n

)
, (19.3)

where we use the product with time increasing to the left, see (18.7).
By the properties of the Weyl quantization, we expect that

e−iuĤ = Op
(

e−iuH
)

+O(u2), (19.4)

Op
(

e−iuH
)

(x, y) =

∫
exp

(
− iuH

(x+ y

2
, p
)

+ i(x− y)p
) dp

(2π)d
. (19.5)

Therefore,

n∏
j=1

e−i tn Ĥ
(
jt
n

)
=

n∏
j=1

(
Op
(
e−i tnH

(
jt
n

))
+O(n−2)

)
, (19.6)

=

n∏
j=1

Op
(
e−i tnH

(
jt
n

))
+O(n−1), (19.7)

and consequently U(t) = lim
n→∞

n∏
j=1

Op
(
e−i tnH

(
jt
n

))
. (19.8)

Thus by (19.8) and (19.5) on the level of integral kernels we obtain

U(t, x+, y−) = lim
n→∞

∫
· · ·
∫ n∏

j=1

exp
(
− it
nH

(
jt
n ,

xj+xj−1
2 , pj

)
+ i(xj − xj−1)pj

)
×
n−1∏
j=1

dxj

n∏
j=1

dpj
(2π)d

∣∣∣ x− = x0,
x+ = xn.

(19.9)

= lim
n→∞

∫
· · ·
∫

exp

 it
n

n∑
j=0

(
(xj−xj−1)

t
n

pj −H
(
jt
n ,

xj+xj−1
2 , pj

))
×
n−1∏
j=1

dxj

n∏
j=1

dpj
(2π)d

∣∣∣ x− = x0,
x+ = xn.

. (19.10)

Heuristically, this is written as follows:

U(t, x+, x−) =

∫
D

x+,x−
xDpeiJ(x,p), (19.11)
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where [0, t] 3 s 7→ (x(s), p(s)) is an arbitrary phase space trajectory with x(0) =
x−, x(t) = x+,

J(x, p) := lim
n→∞

t

n

n∑
j=0

(
(xj−xj−1)

t
n

pj −H
(
jt
n ,

xj+xj−1
2 , pj

))
(19.12)

=

∫ t

0

(ẋ(s)p(s)−H(s, x(s), p(s)) ds (19.13)

is the action expressed in terms of positions and momenta and the “measure on
the phase space paths” is the “limit” of

D
x+,x−

x = lim
n→∞

n−1∏
j=1

dx
(jt
n

)
, Dp = lim

n→∞

n∏
j=1

dp
(
j tn

)
(2π)d

. (19.14)

In what follows we will restrict ourselves to quadratic Hamiltonians. We will
allow non-real symbols with ImH(s) ≤ 0. It will be convenient to represent the
Hamiltonians in a slightly different way than in (13.24):

H(s) :=
1

2
xiαij(s)x

j +
1

2

(
pi −Aik(s)xk

)
γij(s)

(
pj −Ajk(s)xk

)
, (19.15)

Ĥ(s) :=
1

2
x̂iαij(s)x̂

j +
1

2

(
p̂i −Aik(s)x̂k

)
γij(s)

(
p̂j −Ajk(s)x̂k

)
. (19.16)

In the sequel we will usually omit the indices in the above expressions. Note
that by the gauge transformation p→ p+ 1

2 (A+AT)x we could assume that A
is antisymmetric, which we will however not do in the sequel.

For quadratic Hamiltonians (19.4) is justified, see Corollary 12.28.
Let [0, t] 3 s 7→

(
xcl(x+, x−, s), pcl(x+, x−, s)

)
be the trajectory that satisfies

the equations of motion and the boundary conditions xcl(0) = x−, xcl(t) = x+

(no boundary conditions on pcl). It is a stationary point of J(x, p):

∂(x,p)J(xcl, pcl) = 0. (19.17)

Along the classical trajectory, the action is the generating function of x(0), p(0)→
x(t), p(t):

S(x+, x−) = J
(
xcl(x+, x−), pcl(x+, x−)

)
(19.18)

Let
z(s) = x(s)− xcl(s), w(s) = p(s)− pcl(s) (19.19)

be the ”quantum fluctuation”. To deal with quantum fluctuations, we introduce
the following operator on L2([0, t],Cn ⊕ Cn)

M =

[
0 −∂s
∂s 0

]
−
[
AT(s)γ(s)A(s) + α(s) −AT(s)γ(s)

−γ(s)A(s) γ(s)

]
(19.20)
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with the boundary conditions x(0) = x(t) = 0. After integrating by parts, we
can rewrite the part of the action due to quantum fluctuations as follows:

J(x, p)−S(x+, x−) =

∫ t

0

(
ż(s)w(s)

− 1

2
z(s)α(s)z(s)− 1

2

(
w(s)−A(s)z(s)

)
γ(s)

(
w(s)−A(s)z(s)

))
ds

=
1

2

[
z w

]
M

[
z
w

]
, hence ∂2

(z,w)J(z, w) = M. (19.21)

Suppose H0 is another quadratic Hamiltonian, with the corresponding U0,
S0, M0. Then using (11.5), we obtain

U(t, x+, x−)

U0(t, x+, x−)
=

∫
D

x+,x−
xDpeiJ(x,p)∫

D
x+,x−

xDpeiJ0(x,p)
(19.22)

=
(

detMM−1
0

)− 1
2 eiS(x+,x−)−iS0(x+,x−), (19.23)

which often has a rigorous meaning.

19.2 Real paths in the configuration space

Introduce the Lagrangian corresponding to the Hamiltonian (19.15). More pre-
cisely, if γ−1 = [γij ] denotes the inverse of γ = [γij ], then the Lagrangian is

L(s, x, ẋ) =
1

2
ẋiγij(s)ẋ

j + ẋiAij(s)x
j − 1

2
xiαij(s)x

j . (19.24)

The exponent in the phase space path integral (19.11) depends quadratically
on p. Therefore, we can integrate it out, obtaining a configuration space path
integral. More precisely, first we make the change of variables

vj = γ
(jt
n

)
pj −A

(jt
n

) (xj + xj−1)

2
,

and then we do the integration wrt vi:

U(t, x+, x−) (19.25)

= lim
n→∞

Cn

∫
· · ·
∫

exp

 it
n

n∑
j=1

L

(
jt

n
,
xj + xj−1

2
,

(xj − xj−1)
t
n

)
×
n−1∏
j=1

dxj

∣∣∣ x− = x0,
x+ = xn

,

Cn = (2π it
n )−n

d
2

n

Π
j=1

(
det[γ(jt/n)

)− 1
2 .

141



Heuristically, we can rewrite this as

U(t, x+, x−) = Cγ

∫
eiI(x) D

x+,x−
x, (19.26)

where [0, t] 3 s 7→ x(s) is a configuration space trajectory with x(0) = x−,
x(t) = x+, the formal “measure on the configuration space paths” is the same
as above, the formal constant Cγ depends only on s 7→ γ(s) and

I(x) = lim
n→∞

t

n

n∑
j=1

L

(
jt

n
,
xj + xj−1

2
,

(xj − xj−1)
t
n

)
(19.27)

=

∫ t

0

L(s, x(s), ẋ(s))ds (19.28)

is the action.
Let [0, t] 3 s 7→ xcl(x+, x−, s) be the trajectory that satisfies the equations

of motion and the boundary conditions xcl(0) = x−, xcl(t) = x+. We have

I
(
xcl(x+, x−)

)
= S(x+, x−). (19.29)

Let
z(s) = x(s)− xcl(s), (19.30)

be the ”quantum fluctuation”. Introduce the following operator on L2([0, t],Cn)
with the Dirichlet boundary conditions:

K := −∂sγ−1(s)∂s +AT(s)∂s − ∂sA(s)− α(s). (19.31)

The fluctuation part of the action is

I(x)− S(x+, x−) (19.32)

=
1

2

∫ t

0

(
ż(s)γ−1(s)ż(s) + z(s)AT(s)ż(s) + ż(s)A(s)z(s)− z(s)α(s)z(s)

)
ds

=
1

2
(z|Kz), hence ∂2

zI(z) = K. (19.33)

Suppose H0 is another quadratic Hamiltonian, which has the same s 7→ γ(s)
as H. Let L0, I0, K0 be the corresponding Lagrangian, action and fluctuation
operator. Then we can write

U(t, x+, x−)

U0(t, x+, x−)
=

∫
eiI(x) D

x+,x−
x∫

eiI0(x) D
x+,x−

x
(19.34)

=
(

detKK−1
0

)− 1
2 exp

(
iS(x+, x−)− iS0(x+, x−)

)
, (19.35)
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19.3 Example–the harmonic oscillator

Let

H =
1

2
p2 +

1

2
x2.

It is well-known that for t ∈]0, π[,

e−itH(x, y) = (2πi sin t)−
1
2 exp

(−(x2 + y2) cos t+ 2xy

2i sin t

)
. (19.36)

(19.36) is called the Mehler formula.
We will derive (19.36) from the path integral formalism. We will use the

explicit formula for the free dynamics with H0 = 1
2p

2:

e−itH0(x, y) = (2πit)−
1
2 exp

(−(x− y)2

2it

)
. (19.37)

For t ∈]0, π[, there exists a unique trajectory for H starting from y and ending
at x. Similarly (with no restriction on time) there exists a unique trajectory for
H0:

xcl(x, y, s) =
cos(s− t

2 )

cos t2
(x+ y) +

sin(s− t
2 )

sin t
2

(x− y), (19.38)

x0,cl(x, y, s) = x
s

t
+ y

(t− s)
t

. (19.39)

Now

I(x) =

∫ t

0

1

2

(
ẋ2(s)− x2(s)

)
ds, (19.40)

I(xcl(x, y)) =
(x2 + y2) cos t− 2xy

2 sin t
, (19.41)

K = −1

2
(∆ + 1) (19.42)

Similarly,

I0(x) =

∫ t

0

1

2
ẋ2(s)ds, (19.43)

I0(x0,cl(x, y)) =
(x− y)2

2t
, (19.44)

K0 = −1

2
∆. (19.45)

Therefore,

e−itH(x, y)

e−itH0(x, y)
=

∫
eiI D

x+,x−
x∫

eiI0 D
x+,x−

x
(19.46)

= det

(
∆

∆ + 1

) 1
2 exp

(
i (x2+y2) cos t−2xy

2 sin t

)
exp

(
i (x−y)2

2t

) (19.47)
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Here ∆ denotes the Laplacian with the Dirichlet boundary conditions on the

interval [0, t]. Its spectrum is
{
π2k2

t2 | k = 1, 2, . . .
}

. Therefore,

det

(
∆

∆ + 1

)
=

1

det
(

1l + ∆−1
) (19.48)

=

∞∏
k=1

(
1− t2

π2k2

)
=

t

sin t
. (19.49)

Now (19.37) implies (19.36).

19.4 Vacuum amplitude by path integrals

Consider a time dependent Hamiltonian, as in Subsections 19.1 and 19.2. Con-
sider two Fock representations as in Subsection 19.4. Let ν± = [ν±,ij ] be two
symmetric matrices with Reν2

± > 0. Consider the Gaussian vectors

Ω±(x) := π−
d
4 (det ν±)

1
2 e−

1
2xν

2
±x. (19.50)

We will compute the vacuum expectation value by the method of path integrals.(
Ω+|U(t)Ω−

)
=π−

d
2 (det ν∗+)

1
2 (det ν−)

1
2

∫
U(t, x+, x−)dx+dx−e−

1
2x+ν

∗2
+ x+− 1

2x−ν
2
−x−

=π−
d
2 (det ν∗+)

1
2 (det ν−)

1
2

∫
eiJ+−(x,p)DxDp, (19.51)

where we used
dx+dx− D

x+,x−
x = Dx, (19.52)

and

J+−(x, p) (19.53)

:=
i

2
x+ν

∗2
+ x+ + J(x, p) +

i

2
x−ν

2
−x−

=
i

2
x(t)ν∗2+ x(t) +

i

2
x(0)ν2

−x(0)

+

∫ t

0

(
ẋ(s)p(s)− 1

2
x(s)α(s)x(s)− 1

2

(
p(s)−A(s)x(s)

)
γ(s)

(
p(s)−A(s)x(s)

))
ds

=
i

2
ν∗+x(t)

(
ν∗+x(t)− iν∗−1

+ p(t)
)
− i

2
ν−x(0)

(
ν−x(0) + iν−1

− p(0)
)

+
1

2

∫ t

0

(
p(s)ẋ(s)− x(s)ṗ(s)

− x(s)α(s)x(s)−
(
p(s)−A(s)x(s)

)
γ(s)

(
p(s)−A(s)x(s)

))
ds.
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We would like to write J+− as a quadratic form defined by a certain operator
M+−. This is a little problematic, since J+− is not bounded from below, and
even not Hermitian. Nevertheless, one can argue that if we define the operator
on L2([0, t],Cn ⊕ Cn)

M+− :=

[
0 −∂s
∂s 0

]
−
[
AT(s)γ(s)A(s) + α(s) −AT(s)γ(s)

−γ(s)A(s) γ(s)

]
(19.54)

with the boundary conditions

ν∗+x(t)− iν∗−1
+ p(t) = 0, ν−x(0) + iν−1

− p(0) = 0, (19.55)

then

J+−(x, p) =
1

2

([
x
p

] ∣∣∣M+−
[
x
p

])
. (19.56)

Therefore, we obtain the heuristic formula(
Ω+|U(t)Ω−

)
= C(detM+−)−

1
2 . (19.57)

We can do the same for another Hamiltonian H0. Taking the logarithm of
the ratio of two versions of (19.57) we obtain

ln
(Ω+|U(t)Ω−)

(Ω+|U0(t)Ω−)
= −1

2
Tr
(

ln(M+−)− ln(M+−
0 )

)
= −1

2
Tr ln

(
M+−(M+−

0 )−1
)
. (19.58)

For instance we could take H0 = 0. Of course, the corresponding evolution is
simply the identity. The fluctuation operator is simple but not entirely trivial:

M+−
0 :=

[
0 ∂s
−∂s 0

]
(19.59)

with the boundary conditions (19.55).
We can also use the configuration space method. After doing the integration

wrt p in (19.51) we obtain(
Ω+|U(t)Ω−

)
=Cγπ

− d2 (det ν∗+)
1
2 (det ν−)

1
2

∫
eiI+−(x)Dx, (19.60)

where

I+−(x) :=
i

2
x(t)ν∗2+ x(t) + I(x) +

i

2
x(0)ν2

−x(0)

=
i

2
x(t)ν∗2+ x(t) +

i

2
x(0)ν2

−x(0)

+
1

2

∫ t

0

(
ẋ(s)γ−1(s)ẋ(s) + ẋ(s)A(s)x(s) + x(s)AT(s)ẋ(s)− x(s)α(s)x(s)

)
ds
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and Cγ , I(x) are the same as in Subsection 19.2.
The quadratic form is not Hermitian, however it should be bounded from

below. It can be written as the expectation value of the following operator on
L2([0, t],Cn)

K+− = −∂sγ−1(s)∂s +AT(s)∂s − ∂sA(s)− α(s). (19.61)

with the boundary conditions

ν∗+x(t)− iν∗−1
+

(
ẋ(t) +A(t)x(t)

)
=0, (19.62)

ν−x(0) + iν−1
−
(
ẋ(0) +A(0)x(0)

)
=0. (19.63)

Thus

I+−(x) =
1

2
(x|K+−x). (19.64)

Thus we obtain a heuristic formula

(Ω+|U(t)Ω−) = Cγ

∫
eiI+−(x)Dx, (19.65)

Let L0 be another Lagrangian that has the same s 7→ γ(s) as L. For L0 we
introduce and K+−

0 . Taking the logarithm of the ratio of two versions of (19.65)
we obtain

ln
(Ω+|U(t)Ω−)

(Ω+|U0(t)Ω−)
= −1

2
Tr
(

ln(K+−)− ln(K+−
0 )

)
= −1

2
Tr ln

(
K+−(K+−

0 )−1
)
. (19.66)

19.5 Scattering operator and path integral

Let Ω± be as in (19.50). Fix also asymptotic Hamiltonians

H± :=
1

2
xiα±ijx

j +
1

2

(
pi −A±ikx

k
)
γij±
(
pj −A±jkx

k
)
, (19.67)

such that 0 = α± + (−iν2
± +A±)γ±(−iν2

± +A±). (19.68)

(19.68) guarantees that Ω± is the ground state of Ĥ±.
Suppose that R 3 t 7→ H(t) is a quadratic Hamiltonian of the form (19.15).

Assume that
H(s) = H±, ±s > T0. (19.69)

We define the following operator on L2(R,Cn ⊕ Cn)

M :=

[
0 −∂s
∂s 0

]
−
[
AT(s)γ(s)A(s) + α(s) −AT(s)γ(s)

−γ(s)A(s) γ(s)

]
, (19.70)
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and another operator on L2([0, t],Cn)

K : = −∂sγ−1(s)∂s +AT(s)∂s − ∂sA(s)− α(s). (19.71)

Note that in both M and K we do not need to impose boundary conditions at
±∞. In particular, if H is real, then both operators are essentially self-adjoint
on C∞c .

We can do the same for another Hamiltonian H0 satisfying the same condi-
tions. Suppose now that ImH± > 0. Then we can expect that M0 and K0 are
invertible and

lim
t→∞

ln
(Ω+|U(t,−t)Ω−)

(Ω+|U0(t,−t)Ω−)
= −1

2
Tr ln

(
1l + (M −M0)M−1

0

)
(19.72)

= −1

2
Tr ln

(
1l + (K −K0)K−1

0

)
. (19.73)

To see the existence of this limit introduce the eigenvalues

H±Ω± = E±Ω±. (19.74)

Then for t > T ,

(Ω+|U(t,−t)Ω−) = e−i(t−T )E+−i(T−t)E−(Ω+|U(T,−T )Ω−), (19.75)

(Ω+|U0(t,−t)Ω−) = e−i(t−T )E+−i(T−t)E−(Ω+|U0(T,−T )Ω−). (19.76)

Hence

lim
t→∞

(Ω+|U(t,−t)Ω−)

(Ω+|U0(t,−t)Ω−)
=

(Ω+|U(T,−T )Ω−)

(Ω+|U0(T,−T )Ω−)
(19.77)

Suppose now thatH(s) is real and positive. Introduce the scattering operator

S := lim
t→∞

eitH+U(t,−t)eitH− . (19.78)

We set

H0(t) :=

{
H− t < 0;

H+ t > 0.
(19.79)

Then

(Ω+|SΩ−)

(Ω+|Ω−)
= lim
t→∞

(Ω+|eitH+U(t,−t)eitH−Ω−)

(Ω+|Ω−)
(19.80)

= lim
t→∞

(Ω+|U(t,−t)Ω−)

(Ω+|U0(t,−t)Ω−)
. (19.81)

M0 and K0 are usually not invertible and the formulas (19.72) and (19.73)
are problematic. In fact, the spectrum of M0 covers the whole line, and the
spectrum of K0 is a halfline that starts at a negative number (because α > 0)
We can however do replace H(s) and H0(s) with H(s)(1− iε) and H0(s)(1− iε).
Then the second term in (19.70) defining M0, which is negative, is multiplied by
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(1− iε), hence has a positive imaginary part. Therefore, M0 becomes invertible.
Similarly for K0, defined in (19.71): the term −∂sγ−1∂s is positive, and is
multiplied by (1 − iε)−1. The last term −α is negative and is multiplied by
(1− iε). So K0 acquires a positive imaginary part and becomes invertible. Thus
we can apply (19.72) and (19.73). Then we take ε ↘ 0. Thus for real positive
Hamiltonians we obtain

ln
(Ω+|SΩ−)

(Ω+|Ω−)
= −1

2
Tr ln

(
1l + (M −M0)(M0 + i0)−1

)
(19.82)

= −1

2
Tr ln

(
1l + (K −K0)(K0 + i0)−1

)
. (19.83)

19.6 Path integrals and the Wick rotation

Let us describe an alternative treatment of the setup from Subsection 19.5 based
on the Wick rotation.

Introduce the “Euclidean” versions of the action, of the fluctuation operator
on L2(R,Cn) and of the path integral:

IE(z) =

∫ ∞
−∞

1

2

(
ż(s)γ−1(s)ż(s)− iż(s)A(s)z(s)− iz(s)AT(s)ż(s)

+ z(s)α(s)z(s)
)

ds =
1

2
(z|KEz), (19.84)

KE = −∂sγ−1(s)∂s −AT(s)i∂s + i∂sA(s) + α(s), (19.85)∫
e−I

E(z)Dz∫
e−I

E
0 (z)Dz

=
(

detKE(KE
0 )−1

)− 1
2

. (19.86)

The Wick rotation involves replacing the Euclidean time s with eiθs. In the
Wick rotated objects we will use the superscript θ, which for θ = 0 can be
replaced with E:

Iθ(z) =

∫ ∞
−∞

1

2

(
e−iθ ż(s)γ−1(s)ż(s)− iż(s)A(s)z(s)− iz(s)AT(s)ż(s)

+ eiθz(s)α(s)z(s)
)

ds = eiθ 1

2
(z|Kθz), (19.87)

Kθ = −e−i2θ∂sγ
−1(s)∂s − e−iθAT(s)i∂s + e−iθi∂sA(s) + α(s), (19.88)

where we replaced ds with eiθds.
For θ = −π2 the variable s corresponds to the “physical time”, and we

retrieve the usual action and the fluctuation operator:

−Iθ
∣∣∣
θ=−π2

= iI(z), (19.89)

−Kθ
∣∣∣
θ=−π2

= K + i0, (19.90)
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The +i0 appears because Ime−i2θ > 0 for θ ↘ −π2 and −∂sγ−1(s)∂s is positive.
Thus (

detKθ(Kθ
0 )−1

)− 1
2
∣∣∣
θ=−π2

=
(

detK(K0 + i0)−1
)− 1

2

. (19.91)

20 Euclidean fields and spectral shift function

20.1 Trace

Let A be a positive operator on a Hilbert space H. Let {ei, i ∈ I} be an
orthonormal basis in H. One can show that

TrA :=
∑
i∈I

(ei|Aei) (20.1)

does not depend on the choice of a basis and defines a number ∈ [0,∞] called
the trace of A. We say that A is trace class if TrA <∞.

If A is any operator, then it is trace class if it can be written as a linear
combination of positive trace class operators

Ai =

n∑
i=1

ciAi. (20.2)

Then one sets

TrA =

n∑
i=1

ciTrAi. (20.3)

One can show that (20.3) does not depend on the decomposition (20.2). Note
that for any unitary U

TrA = TrUAU∗. (20.4)

If A is an operator on L2(Rd), and A(x, y) is its distributional kernel, then
under some conditions one can show that

TrA =

∫
A(x, x)dx. (20.5)

For instance, if A = f(x̂)g(p̂), then

A(x, y) =

∫
f(x)g(p)ei(x−y)p dp

(2π)d
, TrA =

∫
f(x)g(p)

dxdp

(2π)d
. (20.6)

Suppose that A is an operator such that ]−∞, 0] is disjoint from its spectrum.
Then we can define ln(A). Suppose in addition that A− 1l is trace class. Then
it is easy to show that ln(A) is trace class. We then can define the so-called
Fredholm determinant of A:

detA := eTr ln(A). (20.7)
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20.2 Neutral Euclidean fields

Suppose that I(φ) is a function of (classical) fields describing the Hamiltonian
(or the “Euclidean Action for a field theory”). Then∫

e−βI(φ)Dφ (20.8)

is called the partition function. The parameter β has the interpretation of 1
kT ,

where T is the temperature. Anyway, we will assume β = 1.
In many situations, e.g. the thermodynamic limit, the partition function is

infinite and instead it is more natural to consider the ratio of partition functions
for two Hamiltonians, I and I0. We can then introduce the parameter E equal
to the logarithm of its relative partition function:

e−E :=

∫
e−I(φ)Dφ∫
e−I0(φ)Dφ

. (20.9)

Depending on circumstances, E is called the free energy, pressure or effective
action.

Consider R4 with the Euclidean signature and the Euclidean neutral field
with the mass squared perturbed by κ ∈ S(R4):

I(φ) =

∫
1

2

(
∂µφ(x)∂µφ(x) +m2φ2(x) + κ(x)φ2(x)

)
dx (20.10)

I0(φ) =

∫
1

2

(
∂µφ(x)∂µφ(x) +m2φ2(x)

)
dx. (20.11)

We would like to compute the renormalized value of E . Formally we have

e−E =
( det(p̂2 +m2)

det(p̂2 +m2 + κ(x̂))

) 1
2

= det
(

1l + κ(x̂)(p̂2 +m2)−1
)− 1

2

, (20.12)

E =
1

2
Tr
(

log(p̂2 +m2 + κ(x̂))− log(p̂2 +m2)
)

=
1

2
Tr log

(
1l + κ(x̂)(p̂2 +m2)−1

)
. (20.13)

Unfortunately, (20.13) are divergent. We will show how to renormalize E . This
means, we will show how to modify the Hamiltonian by adding local countert-
erms so that we obtain a finite expression.

Let us try to analyze E , in spite of the fact that it is ill defined. We have

E =

∞∑
n=1

(−1)n+1

2n
Tr
(
κ(x̂)(p̂2 +m2)−1

)n
=:

∞∑
n=1

En.

Let us compare this with the classical approximation of E :

Ecl :=
1

2

∫ (
log(p2 +m2 + κ(x)

)
− log(p2 +m2)

) dxdp

(2π)4
(20.14)

=

∞∑
n=1

(−1)n+1

2n

∫ (
κ(x)(p2 +m2)−1

)n dxdp

(2π)4
=:

∞∑
n=1

Ecl
n . (20.15)
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Note that

E1 = Ecl
1 =

1

2

∫
κ(x)dx

∫
dp

(2π)4(p2 +m2)
(20.16)

is divergent. But the classical and quantum quantities coincide. We will simply
drop them.
E2 and Ecl

2 are also divergent, but in general different:

−E2 =
1

4
Tr
(
κ(x̂)(p̂2 +m2)−1κ(x̂)(p̂2 +m2)−1

)
=

1

4

∫
κ(p1 − p2)

dp2

(2π)4(p2
2 +m2)

κ(p2 − p1)
dp1

(2π)4(p2
1 +m2)

(20.17)

=
1

4

∫
dk

(2π)4

dq

(2π)4

|κ(k)|2

((q + 1
2k)2 +m2)((q − 1

2k)2 +m2)
(20.18)

=

∫
|κ(k)|2π(k2)

dk

(2π)4
, (20.19)

−Ecl
2 =

1

4

∫ ∫
κ(x)2dx

dp

(2π)4(p2 +m2)2
(20.20)

=
1

4

∫ ∫
|κ(k)|2 dk

(2π)4

dp

(2π)4(p2 +m2)2
, (20.21)

=

∫
|κ(k)|2π(0)

dk

(2π)4
, (20.22)

where in (20.18) and (20.19) we used κ(−k) = κ(k) and we set p1 = q − 1
2k,

p2 = q + 1
2k, and we introduced

π(k2) =
1

4

∫
d4q

(2π)4

1

((q + 1
2k)2 +m2)((q − 1

2k)2 +m2)
, (20.23)

We will see that the following renormalized expressions are finite:

Eren
2 :=E2 − Ecl

2 =

∫
|κ(k)|2πren(k2)

dk

(2π)4
, (20.24)

πren(k2) :=π(k2)− π(0). (20.25)

All the terms En and Ecl
n with n ≥ 3 are convergent.

To rigorously define the above expressions we need first to perform some
kind of regularization. For instance, we can use the the Pauli-Villars method
with m0 = m, C0 = 1, m1 = M , and C1 = −1. (See Subsection 20.4 for more
about this method). Let us set π(m, k2) to be the formal expression (20.23).
Set

πreg(k2) := π(m, k2)− π(M,k2) =

1∑
i=0

Ciπ(mi, k
2). (20.26)

(20.26) is given by a convergent integrals. The rigorous definition of πren(k2) is

πren(k2) := lim
M→∞

(
πreg(k2)− πreg(0)

)
. (20.27)

151



We will compute πren(k2).
In order not to clutter the formulas, in the following computations we use the

ill defined π(k2). The following formulas become well defined when we replace

m with mi and insert
1∑
i=0

Ci, so that instead of π(k2) we obtain πreg(k2):

4π(k2) =

∫
d4q

(2π)4

1

((q + 1
2k)2 +m2)((q − 1

2k)2 +m2)

=

∫
d4q

(2π)4

∫ ∞
0

dα1

∫ ∞
0

dα2 exp

(
−(α1 + α2)

(
q2 +

1

4
k2 +m2

)
− (α1 − α2)qk

)
=

1

(4π)2

∫ ∞
0

dα1

∫ ∞
0

dα2
1

(α1 + α2)2
exp

(
−(α1 + α2)m2 − α1α2

α1 + α2
k2

)
=

1

(4π)22

∫ 1

−1

dv

∫ ∞
0

dρ

ρ
exp

(
−ρ
(
m2 +

(1− v2)k2

4

))
=

1

(4π)22

∫ 1

−1

dv log
(
m2 +

k2(1− v2)

4

)
=

1

(4π)22

∫ 1

−1

dv

(
log

(
1 +

(1− v2)k2

4m2

)
+ logm2

)
.

We used the identities (20.28) and (20.29):

1

A
=

∫ ∞
0

dα exp(−αA), (20.28)∫
dp

(2π)4
exp

(
−(ap2 + bp)

)
=

1

(4π)2a2
exp

(
b2/4a

)
. (20.29)

Then we changed the variables to

α1 = ρ
(1− v)

2
, α2 = ρ

(1 + v)

2
, (20.30)

so that α1 + α2 = ρ, − α1 + α2 = ρv, dα1dα2 =
1

2
ρdvdρ.

At the end we use the identity (20.31):∫ ∞
0

∑
i

Ci
dρ

ρ
e−ρAi = −

∑
i

Ci log(Ai). (20.31)

valid if
∑
Ci = 0.

Now the renormalized π is given by

πren(k2) := lim
M→∞

(
πreg(k2)− πreg(0)

)
= lim

M→∞

1

4(4π)22

∫ 1

−1

(
log
(

1 +
k2(1− v2)

4m2

)
− log

(
1 +

k2(1− v2)

4M2

))
dv

=
1

4(4π)22

∫ 1

−1

log
(

1 +
k2(1− v2)

4m2

)
dv. (20.32)
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Note that
πren(0) = 0, (20.33)

which is our renormalization condition. Finally, we evaluate πren using∫
log(1− w2)dw = w log(1− w2)− 2w + log

(1 + w)

(1− w)
, 0 < w < 1. (20.34)

We obtain

πren(k2) =
1

4(4π)2

(1

θ
log

1 + θ

1− θ
− 2
)
, θ =

√
k2

k2 + 4m2
. (20.35)

Here are operator-theoretic formulas for the renormalized quantities:

Eren
2 = −1

4
Tr
((
κ(x)(p̂2 +m2)−1

)2 − κ(x)2(p̂2 +m2)−2
)
,

Eren =
1

2
Tr
(

log
(
1l + κ(x)(p̂2 +m2)−1

)
− κ(x)(p̂2 +m2)−1

+
1

2
κ2(x)(p̂2 +m2)−2

)
. (20.36)

20.3 Charged Euclidean fields

Consider Euclidean charged field on R4 in the presence of magnetic potential
[Aµ]. Formally we have∫

exp
(
−
∫ (

(∂µ + ieAµ(x))ψ(x)
)∗(

∂µ + ieAµ(x)
)
ψ(x) +m2ψ∗(x)ψ(x)

)
dx
)

Dψ∗Dψ∫
exp

(
−
∫ (
∂µψ∗(x)∂µψ(x) +m2ψ∗(x)ψ(x)

)
dx
)

Dψ∗Dψ

=
detK0

detK
= exp

(
− Tr

(
log(K)− log(K0)

))
, (20.37)

where

K0 := p̂2 +m2, K := −
(
∂µ + ieAµ(x)

)(
∂µ + ieAµ(x)

)
+m2. (20.38)

are operators on L2(R4).
Our goal is to compute the renormalized value of

E := Tr
(

log(K)− log(K0)
)
. (20.39)

We have

E =Tr log
(

1l +
(
− ieAµ∂µ − ie∂µA

µ + e2AµA
µ
)
(p̂2 +m2)−1

)
(20.40)

=

∞∑
n=1

(−1)n+1

n
Tr
((
− ieAµ∂µ − ie∂µA

µ + e2AµA
µ
)
(p̂2 +m2)−1

)n
.
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We have E(A) = E(−A). Besides, E(A) is real (because of the self-adjointness
of K and K0). Therefore, terms of odd order in e vanish. This is the content of
Furry’s theorem for charged bosons. Hence (20.40) can be written as

E =

∞∑
n=1

e2nEn.

The expressions for En are convergent for n ≥ 3. E2 is logarithmically divergent,
but its physically relevant gauge invariant part is convergent. E1 is quadratically
divergent and its gauge-invariant part is logarithmically divergent. It needs an
infinite renormalization, which will be described below.

The lowest nonzero terms are of the second order in e, and hence of the first

order in α = e2

4π .

−2e2E1 = e2

∫
(p1 + p2)µAµ(p1 − p2)

dp2

(2π)4(p2
2 +m2)

× (p2 + p1)νAν(p2 − p1)
dp1

(2π)4(p2
1 +m2)

(20.41)

− e2

∫
2Aµ(−k)Aµ(k)

dk

(2π)4

dp

(2π)4(p2 +m2)
(20.42)

=:

∫
dk

(2π)4
Aµ(−k)Aν(k)2Πµν(k). (20.43)

(20.43) defines the vacuum energy tensor Πµν(k).
We will compute Πµν(k) using the Pauli-Villars regularization. The ultra-

violet problem is more severe now than it was for the mass-like perturbation,
where a single additional fictitious particle sufficed to make the expressions well
defined. Now we need two fictitious particles:

m2
0 := m2, C0 := 1,

m2
1 := m2 + 2Λ2, C1 := 1,

m2
2 := m2 + Λ2, C2 := −2.

Using
2∑
i=0

Ci =

2∑
i=0

Cim
2
i = 0 (20.44)

we can check that with this choice the sums used in the following computations
are integrable.
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2Πµν(k) = e2

∫
d4q

(2π)4

( 4qµqν(
(q + 1

2k)2 +m2
i − i0

)(
(q − 1

2k)2 +m2
)

− gµν(
(q + 1

2k)2 +m2
) − gµν(

(q − 1
2k)2 +m2

))
= e2

∫
d4q

(2π)4

4qµqν − 2gµν(q2 + 1
4k

2 +m2)(
(q + 1

2k)2 +m2
)(

(q − 1
2k)2 +m2

)
= e2

∫
d4q

(2π)4

∫ ∞
0

dα1

∫ ∞
0

dα2

(
4qµqν − 2gµν

(
q2 +

1

4
k2 +m2

))
× exp

(
−(α1 + α2)

(
q2 +

1

4
k2 +m2

)
− (α1 − α2)qk

)
= e2

∫
d4q

(2π)4

∫ ∞
0

dα1

∫ ∞
0

dα2

(
4∂zµ∂zν − 2gµν

(
∂2
z +

1

4
k2 +m2

))
× exp

(
−(α1 + α2)

(
q2 +

1

4
k2 +m2

)
− (α1 − α2)qk + zq

) ∣∣∣
z=0

=
e2

(4π)2

∫ ∞
0

dα1

∫ ∞
0

dα2
1

(α1 + α2)2

(
4∂zµ∂zν − 2gµν

(
∂2
z +

1

4
k2 +m2

))
× exp

(
−(α1 + α2)

(1

4
k2 +m2

)
+

1

4(α1 + α2)

(
(α1 − α2)k − z

)2
) ∣∣∣

z=0

=
e2

(4π)2

∫ ∞
0

dα1

∫ ∞
0

dα2

(
− (α1 − α2)2

(α1 + α2)4
(gµνk

2 − kµkν)

−2gµν

(
α1α2

(α1 + α2)4
k2 +

1

(α1 + α2)3
+

m2

(α1 + α2)2

))

× exp

(
−(α1 + α2)m2 − α1α2

α1 + α2
k2

)
=: (−gµνk2 + kµkν)2Πgi(k2) + 2Πgd

µν(k2).
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Let us compute the gauge dependent part of the vacuum energy tensor:

Πgd
µν(k2)

=
e2

(4π)2

∫ ∞
0

dα1

∫ ∞
0

dα2 exp

(
−(α1 + α2)m2 − α1α2

α1 + α2
k2

)
× gµν

(
α1α2k

2

(α1 + α2)4
+

1

(α1 + α2)3
+

m2

(α1 + α2)2

)
=

e2

(4π)22

∫ 1

−1

dv

∫ ∞
0

dρ exp

(
−ρm2 − (1− v2)ρ

4
k2

)
gµν

(
(1− v2)

4ρ
k2 +

1

ρ2
+
m2

ρ

)
=− e2

(4π)22

∫ 1

−1

dv

∫ ∞
0

dρ
d

dρ

1

ρ
exp

(
−ρm2 − (1− v2)ρ

4
k2

)
gµν

=− e2

(4π)22

∫ 1

−1

dv
1

ρ
exp

(
−ρm2 − (1− v2)ρ

4
k2

)
gµν

∣∣∣ρ=∞
ρ=0

.

It vanishes (remember to insert the sum including “fictitious particles”!). To
compute the gauge invariant part we proceed similarly as in Subsection 20.2,
and we obtain

Πgi(k2) =
e2

2(4π)2

∫ ∞
0

dα1

∫ ∞
0

dα2
(α1 − α2)2

(α1 + α2)4

× exp

(
−(α1 + α2)m2 − α1α2

α1 + α2
k2

)
=

e2

4(4π)2

∫ 1

−1

dv

∫ ∞
0

dρ

ρ
v2 exp

(
−ρ
(
m2 +

(1− v2)k2

4

))
=

e2

4(4π)2

∫ 1

−1

dvv2 log

(
m2 +

(1− v2)k2

4

)
.

We define

Πren(k2) := lim
Λ→∞

(
Πgi(k2)−Πgi(0)

)
(20.45)

=
e2

4(4π)2

∫ 1

−1

dvv2 log

(
1 +

(1− v2)k2

4m2

)
.

Using ∫
w2 log(1− w2)dw =

w3

3
log(1− w2)− 2w3

9
− 2w

3

+
1

3
log

(1 + w)

(1− w)
, 0 < w < 1, (20.46)

we obtain

Πren(k2)

=
e2

2 · 3(4π)2

(
1

θ3
log

1 + θ

1− θ
− 2

3
− 2

θ2

)
, θ =

√
k2

k2 + 4m2
.
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Note that the Fourier transform of the electromagnetic field is

Fµν(k) = kµAν(k)− kνAµ(k). (20.47)

Hence

−1

2
Fµν(k)Fµν(k) = −k2|A(k)|2 + |kA(k)|2. (20.48)

Thus the renormalized 1st order contribution to the vacuum energy is

Eren
1 = −

∫
dk

2(2π)4
Πren(k2)Fµν(k)Fµν(k). (20.49)

with the renormalization condition

Πren(0) = 0. (20.50)

20.4 Spectral shift function

Suppose H and H0 be two self-adjoint operators. We say that the pair H,
H0 possesses the spectral shift function if for any f ∈ C∞c (R), the operator
f(H)− f(H0) is trace class. Clearly, the map

C∞c (R) 3 f 7→ f(H)− f(H0) ∈ R (20.51)

is a linear functional. Under some conditions on H,H0 there exists a function
ξ(s) = ξH,H0

(s) such that

Tr
(
f(H)− f(H0)

)
=

∫
ξ(s)f ′(s)ds. (20.52)

ξ(s) is defined up to an additive constant. If H,H0 are bounded from be-
low, which will always be true in our applications, then one can assume that

lim
s→−∞

ξ(s) = 0. ξH,H0
(s) is called the spectral shift function.

Suppose for the moment that H,H0 are trace class. Then they can be
diagonalized. Let En, E0,n be the eigenvalues of H, resp. H0, in the increasing
order, counting with multiplicities. Then

Tr
(
f(H)− f(H0)

)
=

∞∑
n=1

(
f(En)− f(E0,n)

)
=

∞∑
n=1

∫ En

E0,n

f ′(s)ds, (20.53)

which explains the name “spectral shift function”.
Let us describe the basic method of computing the spectral shift. Let us

write H = H0 + λV . We introduce

DH,H0(z) = D(z) : = Tr
(

log(H − z)− log(H0 − z)
)

= Tr log
(
(H − z)(H0 − z)−1

)
= Tr log(1l + λV (H0 − z)−1

)
=

∞∑
n=1

λn(−1)n+1

n
Tr
(
V (H0 − z)

)n
.
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Clearly, if the spectral shift function is well defined, then

D(z) =

∫
ξ(s)(s− z)−1ds, (20.54)

which can be inverted:

ξ(s) =
1

2πi

(
D(s+ i0)−D(s− i0)

)
. (20.55)

This method can fail if the rhs of (20.54) is not integrable. Suppose that
n ∈ N, the spectral shift exists and satisfies∫

|ξ(s)|(|s|+ 1)−n−1ds <∞. (20.56)

Then there exists an improved method of computing the spectral shift, which
is essentially an adaptation of the Pauli-Villars method from QFT. Choose
c0, , . . . cn and Λ0, . . . ,Λn such that

c0 + · · ·+ cn = 0,

c0Λ0 + · · ·+ cnΛn = 0,

. . .

c0Λn0 + · · ·+ cnΛnn = 0.

Now we easily check that for s→∞
n∑
i=0

ci(s+ Λi − z)−1 = O(s−1−n), (20.57)

Hence

Dreg(z) :=Tr
(

log
n

Π
i=0

(H + Λi − z)ci − log
n

Π
i=0

(H0 + Λi − z)ci
)

=

∫
ξ(s)

n∑
i=0

ci(s+ Λi − z)−1ds. (20.58)

is well defined. Now

n∑
i=0

ciξ(s+ Λi) =
1

2πi

(
Dreg(s+ i0)−Dreg(s− i0)

)
. (20.59)

In practice, we set c0 = 1, Λ0 = 0, Λi = αiΛ with ci and αi > 0 fixed for
i = 1, . . . , n. Then

ξ(s) = lim
Λ→∞

1

2πi

(
Dreg(s+ i0)−Dreg(s− i0)

)
. (20.60)
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21 Scalar field with a masslike perturbation

21.1 Lagrangian and Hamiltonian formalism

Consider the Lagrangian density

L(x) = −1

2
∂µφ(x)∂µφ(x)− 1

2
(m2 + κ(x))φ(x)2, (21.1)

where R1,3 3 x 7→ κ(x) is a given function. In most of this subsection we will
assume that κ is Schwartz and m > 0. (21.1) leads to the equations

(−2 +m2)φ(x) = −κ(x)φ(x), (21.2)

The variable conjugate to φ(x) is π(x) := φ̇(x), so that

{φ(t, ~x), φ(t, ~y)} = {π(t, ~x), π(t, ~y)} = 0,

{φ(t, ~x), π(t, ~y)} = δ(~x− ~y). (21.3)

The theory of the Klein-Gordon equation with a variable mass is very similar
to the one with a constant mass. We can define the corresponding retarded and
advanced propagators as the unique distributional solutions of(

−2x +m2 + κ(x)
)
G∨/∧(x, y) = δ(x− y), (21.4)

satisfying
suppG∨/∧ ⊂ {x, y : x ∈ J∨/∧y)}.

The Pauli-Jordan function:

GPJ(x, y) := G∨(x, y)−G∧(x, y)

satisfies
suppGPJ ⊂ {x, y : x ∈ J(y)}.

and can be used to solve the initial value problem of (21.2):

φ(t, ~x) =−
∫
∂sG

PJ(t, ~x, s, ~y)
∣∣∣
s=0

φ(0, ~y)d~y

+

∫
GPJ(t, ~x, 0, ~y)π(0, ~y)d~y. (21.5)

Using (21.5) we obtain

{φ(x), φ(y)} = −GPJ(x− y).

The free (constant mass) field will be denoted by φfr, πfr. We can use the
same phase space YKG for the free and perturbed scalar particle, identifying
them for the initial condition at t = 0:

φfr(0, ~x) = φ(0, ~x), πfr(0, ~x) = π(0, ~x). (21.6)
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Thus we can introduce the plane wave functionals a(k), a∗(k) as in the free case,
since they depend only on the Cauchy data at time 0.

We easily obtain the Hamiltonian density from the Lagrangian:

H(x) =
1

2
π2(x) +

1

2

(
~∂φ(x)

)2
+

1

2
(m2 + κ(x))φ2(x),

so that the full Hamiltonian generating the dynamics, first in the “Heisenberg
picture” and then in the “Schrödinger picture”, are

H(t) =

∫
H(t, ~x)d~x

=

∫ (1

2
π2(t, ~x) +

1

2

(
~∂φ(t, ~x)

)2
+

1

2
(m2 + κ(t, ~x))φ2(t, ~x)

)
d~x, (21.7)

HSp(t) =

∫ (1

2
π2(~x) +

1

2

(
~∂φ(~x)

)2
+

1

2
(m2 + κ(t, ~x))φ2(~x)

)
d~x, (21.8)

where φ(~x) = φ(0, ~x), π(~x) = π(0, ~x).

21.2 Dynamics in the interaction picture

The classical interaction picture Hamiltonian can be expressed in terms of plane
wave functionals:

HInt(t) =
1

2

∫
κ(t, ~x)φ2

fr(t, ~x)d~x (21.9)

=
1

2

∫
d~k1d~k2κ(t,~k1 + ~k2)

(2π)3

√
2ε(~k1)

√
2ε(~k2)

(
e−itε(~k1)−itε(~k2)a(−k1)a(−k2)

+2eitε(~k1)−itε(~k2)a∗(k1)a(−k2) + eitε(~k1)+itε(~k2)a∗(k1)a∗(k2)
)
.

We can also introduce the creation operators in the interaction picture:

a∗t (k) := UInt(0, t)a
∗(k)UInt(t, 0). (21.10)

They satisfy the equations generated by the Heisenberg picture interaction
Hamiltonian HHp

Int :

HHp
Int (t) = UInt(0, t)HInt(t)UInt(t, 0) (21.11)

=
1

2

∫
d~k1d~k2κ(t,~k1 + ~k2)

(2π)3

√
2ε(~k1)

√
2ε(~k2)

(
e−itε(~k1)−itε(~k2)at(−k1)at(−k2)

+2eitε(~k1)−itε(~k2)a∗t (k1)at(−k2) + eitε(~k1)+itε(~k2)a∗t (k1)a∗t (k2)
)
.
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We obtain

ȧ∗t (k) =
{
a∗t (k), HHp

Int (t)
}

= i

∫
d~k1κ(t,−~k + ~k1)

(2π)3

√
2ε(~k)

√
2ε(~k1)

×
(

e−itε(~k)−itε(~k1)at(−k1) + e−itε(~k)+itε(~k1)a∗t (k1)
)
,

a∗0(k) = a∗(k).

We obtain a symplectic evolution of the firm of the form[
pt+,t− qt+,t−

qt+,t− pt+,t−

]
(21.12)

more precisely,[
a∗t+(k)

at+(k)

]
=

∫
d~k1

[
pt+,t−(k, k1) qt+,t−(k, k1)

qt+,t−(k, k1) pt+,t−(k, k1)

][
a∗t−(k1)

at−(k1)

]
.

(21.12) has a limit as t+,−t− →∞, which can be called the classical scattering
operator.

One can try to solve the equations of motion by iterations. The first iteration
is often (at least in the quantum context) called the Born approximation, and
it gives the following formula for the elements of (21.12):

pBorn
t+,t−(k, k1) = δ(~k − ~k1) + i

∫ t+

t−

ds
κ(s,−~k + ~k1)

(2π)3

√
2ε(~k)

√
2ε(~k1)

e−isε(~k)+isε(~k1),

qBorn
t+,t−(k, k1) = i

∫ t+

t−

ds
κ(s,−~k + ~k1)

(2π)3

√
2ε(~k)

√
2ε(~k1)

e−isε(~k)−isε(~k1).

21.3 Quantization

We are looking for quantum fields R1,3 7→ φ̂(x) satisfying

(−2 +m2)φ̂(x) = −κ(x)φ̂(x), (21.13)

with the conjugate field π̂(x) :=
˙̂
φ(x) having the equal time commutators

[φ̂(t, ~x), φ̂(t, ~y)] = [π̂(t, ~x), π̂(t, ~y)] = 0,

[φ̂(t, ~x), π̂(t, ~y)] = iδ(~x− ~y). (21.14)
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and coinciding with the free field at time 0. The solution is given by putting
“hats” onto (21.5):

φ̂(t, ~x) =−
∫
∂sG

PJ(t, ~x, s, ~y)
∣∣∣
s=0

φ̂(0, ~y)d~y

+

∫
GPJ(t, ~x, 0, ~y)π̂(0, ~y)d~y. (21.15)

Clearly,
[φ̂(x), φ̂(y)} = −iGPJ(x− y).

We would like to check whether the classical scattering operator and the
classical dynamics are implementable in the Fock space for nonzero κ. By Thm
15.5, we need to check the Shale condition, that is, whether the off-diagonal
elements of (21.12) are square integrable. For simplicity, we will restrict our-
selves to the Born approximation; the higher order terms do not change the
conclusion.

The verification of the Shale condition is easier for the scattering operator.
Consider

qBorn
∞,−∞(k, k1) = i

∫ ∞
−∞

ds
κ(s,−~k + ~k1)

(2π)3

√
2ε(~k)

√
2ε(~k1)

e−isε(~k)−isε(~k1). (21.16)

Recall that κ is a Schwartz function. Therefore, we can integrate by parts as
many times as we want:

qBorn
∞,−∞(k, k1) = in+1

∫ ∞
−∞

ds
∂ns κ(s,−~k + ~k1)

(2π)3

√
2ε(~k)

√
2ε(~k1)

e−isε(~k)−isε(~k1)(
ε(~k) + ε(~k1)

)n . (21.17)

This decays in ~k and ~k1 as any inverse power, and hence is square integrable on
R3 × R3. Therefore the classical scattering operator is implementable.

Next let us check the implementability of the dynamics, believing again that
it is sufficient to check the Born approximation. We integrate by parts once:

qBorn
t+,t−(k, k1)

=
−κ(t+,−~k + ~k1)e−it+ε(~k)−it+ε(~k1) + κ(t−,−~k + ~k1)e−it−ε(~k)−it−ε(~k1)

(2π)3

√
2ε(~k)

√
2ε(~k1)

(
ε(~k) + ε(~k1)

)
+

∫ t+

t−

ds
∂sκ(s,−~k + ~k1)e−isε(~k)−isε(~k1)

(2π)3

√
2ε(~k)

√
2ε(~k1)

(
ε(~k) + ε(~k1)

) . (21.18)

Using that κ(s,~k + ~k1) decays fast in the second variable, we see that (21.18)
can be estimated by

C

(ε(~k) + ε(~k1))2
,
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which is square integrable. Therefore, the dynamics is implementable for any
t−, t+.

By a similar computation we check that if we freeze t0 ∈ R, the dynamics
generated by the momentary Hamiltonian HInt(t0) is implementable.

21.4 Quantum Hamiltonian

We would like to find a time-dependent Hamiltonian Ĥ(t) such that

φ̂(t, ~x) = Texp

(
−i

∫ t

0

Ĥ(s)ds

)−1

φ̂(0, ~x)Texp

(
−i

∫ t

0

Ĥ(s)ds

)
. (21.19)

Formally, the quantum Hamiltonians, first in the Heisenberg, then in the Schrödinger
picture, are given by

ĤHp(t) :=

∫ (1

2
π̂2(t, ~x) +

1

2

(
~∂φ̂(t, ~x)

)2
+

1

2
(m2 + κ(t, ~x))φ̂2(t, ~x)

)
d~x, (21.20)

Ĥ(t) :=

∫ (1

2
π̂2(~x) +

1

2

(
~∂φ̂(~x)

)2
+

1

2
(m2 + κ(t, ~x))φ̂2(~x)

)
d~x. (21.21)

We will treat the Schrödinger picture Hamiltonian, that is (21.21), as the stan-
dard one. It is expressed in terms of zero time fields. It is clear that it is
ill-defined. One could improve it by putting : · · · :, that is by the Wick order-
ing. We will see later on that even the Wick-ordered expression (21.21) does
not define an operator.

Formally (21.47) remains true if we add a time dependent constant C(t)
to (21.21). We will see that in order to define correct Hamiltonians Ĥ(t) this
constant has to be infinite, even after Wick ordering. We will obtain bounded
from below Hamiltonians Ĥren(t), however the vacuum will not be contained in
their form domain. Therefore, the condition (Ω|Ĥren(t)Ω) = 0 for all t, which
is equivalent to the Wick ordering, cannot be imposed.

The interaction Hamiltonian is formally given by

ĤInt(t) =
1

2

∫
κ(t, ~x)φ̂2

fr(t, ~x)d~x, (21.22)

φ̂fr(x) =

∫
d~k√

(2π)3

√
2ε(~k)

(
e−itε(~k)+i~k~xâ(k) + eitε(~k)−i~k~xâ∗(k)

)
, (21.23)

where (21.23) is taken from (8.59). Here is the Wick ordered interaction Hamil-
tonian:

:ĤInt(t): =
1

2

∫
d~k1d~k2κ(t,~k1 + ~k2)

(2π)3

√
2ε(~k1)

√
2ε(~k2)

(
e−itε(~k1)−itε(~k2)â(−k1)â(−k2)

+2eitε(~k1)−itε(~k2)â∗(k1)â(−k2) + eitε(~k1)+itε(~k2)â∗(k1)â∗(k2)
)
.

where κ(t,~k) is a partial Fourier transform of κ(t, ~x).
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21.5 The vacuum energy

We would like to compute

e−iE := (Ω|ŜΩ) =

(
Ω|Texp

(
−
∫

iĤInt(t)dt
)

Ω

)
. (21.24)

Not surprisingly, (21.24) will require a renormalization. So eventually we will
compute its renormalized version:

e−iEren := (Ω|ŜrenΩ) =

(
Ω|Texp

(
−
∫

iĤren
Int (t)dt

)
Ω

)
. (21.25)

Anyway, we treat (21.24) as the starting point of our computations. The
path integrals approach leads to the following expression for (21.24) in terms of
Gaussian integrals:

e−iE =

∫
exp(i

∫
L(x, φ, φµ)dx)Dφ∫

exp(i
∫
L0(x, φ, φµ)dx)Dφ

, (21.26)

where the Lagrangians are

L(x) =− 1

2
∂µφ(x)∂µφ(x)− 1

2
(m2 + κ(x))φ(x)2,

L0(x) =− 1

2
∂µφ(x)∂µφ(x)− 1

2
m2φ(x)2,

and we use the Minkowski signature x = (x0, . . . , x3). (21.26) can be evaluated
as

E = − i

2
Tr
(

ln(−2 +m2 + κ− i0)− ln(−2 +m2 − i0)
)
. (21.27)

It is much more convenient to do computations in the Euclidean setting.
Various symbols from the Euclidean case will be decorated by the subscript E.
In particular, the Euclidean version of the path integrals becomes

e−E
E

=

∫
exp(−

∫
LE(x, φ, φµ)dx)Dφ∫

exp(−
∫
LE

0 (x, φ, φµ)dx)Dφ
, (21.28)

where the Euclidean Lagrangians are

LE(x) =
1

2
∂µφ(x)∂µφ(x) +

1

2
(m2 + κ(x))φ(x)2,

LE
0 (x) =

1

2
∂µφ(x)∂µφ(x) +

1

2
m2φ(x)2,

and we use the Euclidean signature x = (x1, . . . , x4). We have

e−E
E

=
(

det(p̂2 +m2 + κ)(p̂2 +m2)−1
)− 1

2

, (21.29)

EE =
1

2
Tr
(

ln(p̂2 +m2 + κ)− ln(p̂2 +m2)
)
, (21.30)
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where p̂2 is the 4-dimensional Laplacian.
As we computed in Subsection 20.2, EE needs to be renormalized and equals

(see (20.35)):

EE,ren = EE,ren
2 +

∞∑
n=3

EE
n , (21.31)

EE,ren
2 = −

∫
|κ(k)|2 dk

(2π)4
πE,ren(k2), (21.32)

πE,ren(k2) =
1

4(4π)2

(1

θ
log

1 + θ

1− θ
− 2
)
, θ =

√
k2

k2 + 4m2
. (21.33)

We would like to find the Minkowskian analogs of EE and EE
2 :

E = Eren
2 +

∞∑
n=2

En, (21.34)

Eren
2 =

∫
|κ(k)|2 dk

(2π)4
πren(k2). (21.35)

The Wick rotation consists in replacing x4 with ix0 everywhere except for
κ(x), where we do not change anything. More precisely, we replace x4 with zx0,
where z is a complex parameter which is continued as eiα with α ∈ [0, π2 ]. Thus
the Euclidean quantities are treated as functions F (z), where F (z)

∣∣
z=1

is the

Euclidean value and F (z)
∣∣
z=i

the Wick rotated value.

This implies replacing p4 with −ip0. Moreover, the Euclidean x2 and p2

are replaced with Minkowskian x2 + i0 and p2 − i0. The Euclidean Lebesgue
measures dx and dk are replaced in the Minkowski space by idx, resp. −idk.
Consequently, the Euclidean action

∫
LE(x, φ, φ,µ)dx becomes after the Wick

rotation −i
∫
L(x, φ, φ,µ)dx. Thus e−E

E

(z)
∣∣
z=i

= e−iE , and consequently

E = −iEE(z)
∣∣
z=i

(21.36)

E2 = −iEE,ren
2 (z)

∣∣
z=i

= −i
(
−
∫
|κ(k)|2 (−i)dk

(2π)4
πE,ren(k2 − i0)

)
=

∫
|κ(k)|2 dk

(2π)4
πE,ren(k2 − i0). (21.37)

Thus comparing with (21.35) we obtain

πren(k2) = πE,ren(k2 − i0). (21.38)
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Taking into account (21.33), we obtain

πren(k2) =
1

4(4π)2

(1

θ
log

1 + θ

1− θ
− 2
)
, θ =

√
k2

√
k2 + 4m2

, 0 < k2; (21.39)

=
1

4(4π)2

(2

θ
arctan θ − 2

)
, θ =

√
−k2

√
k2 + 4m2

, −4m2 < k2 < 0; (21.40)

=
1

4(4π)2

(1

θ

(
log

θ + 1

θ − 1
− iπ

)
− 2
)
, θ =

√
−k2

√
−k2 − 4m2

, k2 < −4m2. (21.41)

Here is the calculation. First we assume that k2 > 0. Then we just take the
Euclidean value. Then we use analytic continuation, remembering that k2 may

have negative imaginary part. As k2 decreases, θ :=
√
k2√

k2+4m2
first varies from

1 to 0, then from 0 to −i∞, finally, from ∞ to 1. Therefore, 1+θ
1−θ first varies

from ∞ to 1, then goes over the lower semicircle, finally, from −1 to −∞. Next
we use log 1+iy

1−iy = 2i arctan y, and for y < 0, log(y − i0) = log |y| − iπ.

(21.39) corresponds to a spatial transfer of energy-momentum. In (21.40)
the transfer is time-like, but the energy is below the 2-particle threshold. In
(21.41) it is above this threshold, and πren acquires a nonzero imaginary part
responsible for the decay of the vacuum.

Here are operator-theoretic formulas for the renormalized vacuum energies:

Eren
2 = − i

4
Tr
((
κ(x)(−2 +m2 − i0)−1

)2 − κ(x)2(−2 +m2 − i0)−2
)
,

Eren = − i

2
Tr
(

log
(
1l + κ(x)(−2 +m2 − i0)−1

)
− κ(x)(−2 +m2 − i0)−1

+
1

2
κ2(x)(−2 +m2 − i0)−2

)
. (21.42)

21.6 Renormalized scattering operator and Hamiltonian

The naive Hamiltonian Ĥ(t) and the naive scattering operator Ŝ are ill defined.
However, in Ŝ only the overall coefficient is ill defined. We can renormalize Ŝ
by multiplying it by a divergent phase:

Ŝren = eiC
∫
κ(x)dx+iπ(0)

∫
κ(x)2dxŜ, (21.43)

where C is the constant responsible for the Wick ordering and π(0) is the 2nd
order renormalization. Note that both infinite quantities are quite well behaved
– they depends locally on the interaction, and therefore the renormalization
preserves the Einstein causality. This manifests itself in the identity

Ŝren(κ2)Ŝren(κ1) = Ŝren(κ2 + κ1), (21.44)

whenever suppκ2 is later than suppκ1.
If we cut off the perturbation in time by setting κt+,t−(x) := 1l[t−,t+](x

0)κ(x),
then we can repeat the same constructions, obtaining the renormalized scatter-
ing operator Ŝren(t2, t1). For t3 > t2 > t1, as a special case of (21.44), we
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have
Ŝren(t3, t2)Ŝren(t2, t1) = Ŝren(t3, t1). (21.45)

Thus we get a unitary evolution given by

U ren(t+, t−) := e−it+H0 Ŝren(t+, t−)eit−H0 . (21.46)

Its generator will be called Ĥren(t), so that

φ̂(t, ~x) = Texp

(
−i

∫ t

0

Ĥren(s)ds

)−1

φ̂(0, ~x)Texp

(
−i

∫ t

0

Ĥren(s)ds

)
, (21.47)

Formally, we can write for the Hamiltonian and Lagrangian density

Ĥren(t) = Ĥ(t)− π(0)

∫
κ(t, ~x)2d~x− C

∫
κ(t, ~x)d~x, (21.48)

Lren(x) = L(x) +
1

2
π(0)κ(x)2 +

1

2
Cκ(x). (21.49)
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