Introduction to Quantization–Problems-1

Jan Dereziński

Dept. of Math. Methods in Phys., Faculty of Physics, University of Warsaw ul. Pasteura 5, 02-093 Warszawa, Poland email Jan.Derezinski@fuw.edu.pl

June 17, 2020

Problem 0.1. Compute the Fourier transforms of

 $e^{x^2 - xy - y^2}$, $e^{i\alpha x^2}$, $e^{ix + ixy}$.

Problem 0.2. Which limits exist? Compute them

$$\lim_{R \to \infty} \int_{-R}^{R} e^{i\alpha x^2} dx, \qquad (0.1)$$

$$\lim_{\epsilon \to 0} \int e^{i\alpha x^2 - \epsilon x^2} dx, \qquad (0.2)$$

$$\lim_{R \to \infty} \int_0^R x \mathrm{e}^{\mathrm{i}\alpha x^2} \mathrm{d}x,\tag{0.3}$$

$$\lim_{\epsilon \to 0} \int_0^\infty x \mathrm{e}^{\mathrm{i}\alpha x^2 - \epsilon x^2} \mathrm{d}x. \tag{0.4}$$

Problem 0.3. Let $\phi \in C_c^{\infty}(\mathbb{R})$ such that $\phi = 1$ on a neighborhood of 0. Show that the following limit exists and does not depend on the choice of ϕ :

$$\lim_{R \to \infty} \int x^n \mathrm{e}^{\mathrm{i}\alpha x^2} \phi(x/R) \mathrm{d}x. \tag{0.5}$$

Hint. Consider the operator $L := (1+2i\alpha x)^{-1}(1+\partial_x)$. Note that $Le^{i\alpha x^2} = e^{i\alpha x^2}$. Hence for any N we have $L^N e^{i\alpha x^2} = e^{i\alpha x^2}$. After inserting this operator, we can integrate by parts. Note that (0.5) is called the *oscillatory integral of* $x^n e^{i\alpha x^2}$.

Problem 0.4. Find an operator U such that

$$U\mathrm{Op}(a)U^{-1} = \mathrm{Op}(a_1),$$

where

1. $a_1(x,p) = a(-x,-p)$ 2. $a_1(x,p) = a(-p,x)$ 3. $a_1(x,p) = a(x+\alpha,p+\beta)$ 4. $a_1(x,p) = a(x+p,p)$

Problem 0.5. For which values of $t \in \mathbb{R}$ the following operators are positive:

- 1. $Op(p^2 + \omega^2 x^2 + t)$,
- 2. $Op(x^2p^2 + t)$.

Problem 0.6. Consider $a, b \in C_c^{\infty}(\mathbb{R}^2)$.

- 1. Compute the star product $a \star b$ as a formal power series in \hbar up to the term of the order \hbar^4 .
- 2. Suppose that $\operatorname{supp}(a) \cap \operatorname{supp}(b) = \emptyset$. Show that as a formal power series in \hbar we have $a \star b = 0$. Give an example of such a, b such that $\operatorname{Op}(a)\operatorname{Op}(b) \neq 0$. (One can show that $\operatorname{Op}(a)\operatorname{Op}(b) = O(\hbar^{\infty})$)
- 3. Let b = 1 on supp(a). Show that $a \star b b \star a = 0$ as a formal power series.

Problem 0.7. Compute the Weyl, x, p- and p, x-symbols of

- 1. $\hat{x}\hat{p}$,
- 2. $\hat{x}^2 \hat{p}^2$,
- 3. the orthogonal projection onto $e^{-\frac{1}{2t}x^2}$,
- 4. $e^{i\xi\hat{x}+\eta\hat{p}}$
- 5. $e^{-\frac{1}{2}\hat{x}^2}e^{-\frac{1}{2}\hat{p}^2}$.

Problem 0.8. Express the following operator in terms of \hat{x} , \hat{p} :

- 1. $Op(x^3p)$,
- 2. $Op(x^2p^2)$.