Introduction to Quantization–Problems 2

Jan Dereziński

Dept. of Math. Methods in Phys., Faculty of Physics, University of Warsaw ul. Pasteura 5, 02-093 Warszawa, Poland email Jan.Derezinski@fuw.edu.pl

June 17, 2020

Problem 0.1. Find the x,p-, p,x-, Weyl, Wick, anti-Wick symbols of the following operators:

1. $\hat{x}^2 + \hat{p}^2$, $(\hat{x}^2 + \hat{p}^2)^2$; 2. $\hat{x}\hat{p}$, $(\hat{x}\hat{p})^2$.

Problem 0.2. Let $a \in C^{\infty}(\mathbb{R}^d \oplus \mathbb{R}^d)$ and a(x, p) is everywhere nonzero. Using the semiclassical (\hbar -dependent) quantization Op_{\hbar} , show that

$$\operatorname{Op}_{\hbar}(a)\operatorname{Op}_{\hbar}(a^{-1}) = 1 + \operatorname{Op}_{\hbar}(r),$$

where r is of order 2 in \hbar . Compute the principal and subprincipal symbol of r.

Problem 0.3. Let $a, b \in C_c^{\infty}(\mathbb{R}^d \oplus \mathbb{R}^d)$ and a = 1 on supply. Show that

$$\operatorname{Op}_{\hbar}(a)\operatorname{Op}_{\hbar}(b) = \operatorname{Op}(b) + O(\hbar^{\infty})$$

Problem 0.4. Given $a \in C_c^{\infty}(\mathbb{R}^d \oplus \mathbb{R}^d)$, compute b:

- 1. $e^{\frac{i}{\hbar}\hat{p}^2}Op_{\hbar}(a)e^{-\frac{i}{\hbar}\hat{p}^2} = Op_{\hbar}(b),$
- 2. $e^{\frac{i}{\hbar}\hat{x}^2} \operatorname{Op}_{\hbar}(a) e^{-\frac{i}{\hbar}\hat{x}^2} = \operatorname{Op}_{\hbar}(b),$
- 3. $\mathcal{F}_{\hbar} \operatorname{Op}_{\hbar}(a) \mathcal{F}_{\hbar}^{-1} = \operatorname{Op}_{\hbar}(b),$
- 4. $e^{\frac{it}{\hbar}(\hat{p}^2 + \hat{x}^2)} Op_{\hbar}(a) e^{-\frac{it}{\hbar}(\hat{p}^2 + \hat{x}^2)} = Op_{\hbar}(b),$

Problem 0.5. Compute b:

- 1. $Op(b) = \hat{x}^2 \hat{p}^2 + \hat{p}^2 \hat{x}^2$,
- 2. $Op(b) = Op(xp)^2 Op(x^2p^2),$

3. $\operatorname{Op}(x^2 + p^2)^2 - \operatorname{Op}((x^2 + p^2)^2).$

Problem 0.6. Compute the integral kernel of

1. $Op\left(\frac{1}{x^2+p^2+1}\right)$, 2. $Op(e^{-|x|-|p|})$.

Problem 0.7. Suppose that the operator A on $L^2(\mathbb{R})$ has the integral kernel A(x, y) and the symbol a(x, p). What is the integral kernel and the symbol of

$$[\hat{x}, A], \quad [\hat{p}, A]?$$

Problem 0.8. Compute the Wick symbol of the operators \hat{x}^n and \hat{p}^n . For which n it is equal to x^n and p^n ?

Problem 0.9. Compute the anti-Wick quantization of x^n , p^n . For which n it is equal to \hat{x}^n and \hat{p}^n ?

Problem 0.10. Prove that if $f, x^n f \in L^1(\mathbb{R})$, then $e^{it\Delta}f$ is n times differentiable.

Problem 0.11. Prove that if $f, f^{(n)} \in L^1$, then $|\hat{f}(\xi)| \leq c \langle \xi \rangle^{-n}$.

Problem 0.12. What is the semiclassical prediction of the number of eigenvalues below the energy E for the following Hamiltonians on $L^2(\mathbb{R}^3)$:

- (1) $-\Delta + (\vec{x})^2$,
- (2) $-\Delta \frac{1}{|\vec{x}|},$
- (3) $-\Delta \theta(1 |\vec{x}|).$

Problem 0.13. For what $\alpha, \beta \geq 0$ the operator $Op(e^{-\alpha x^2 - \beta p^2})$

- (1) is proportional to a projection;
- (2) is positive;
- (3) is trace class;
- (4) is self-adjoint;
- (5) belongs to Ψ_{00}^0 ;

Problem 0.14. Let $\alpha, \beta, \gamma \in \mathbb{R}$.

- (1) Does $a(x,p) = e^{i\alpha x^2 + i\beta xp + i\gamma p^2}$ belong to S_{00}^0 ?
- (2) Show that if $4\alpha\gamma = \beta^2$, then Op(a) is unitary.
- (3) Show that Op(a) is always proportional to a unitary operator.

Problem 0.15. Let $a(x) \neq 0$ everywhere. Consider the expansion

$$(1+a\Delta)^{-1} \simeq \sum_{n=-\infty}^{-2} \operatorname{Op}(b_n),$$

where $b_n(x,\xi)$ is homogeneous in ξ of degree n. Compute b_2, b_3, b_4 .

Problem 0.16. Which of the following functions belong to $S^m(T^{\#}\mathbb{R})$?

- (1) $\sqrt{1+\xi^2}$, (2) $\frac{\sqrt{1+x^2+\xi^2}}{\sqrt{1+x^2}}$, (3) $(1+x^2+\xi^2)^{-\frac{1}{2}}$, (4) $e^{-\xi^2(1+x^2)}$,
- (5) $e^{i\xi^2}$.

Problem 0.17. Consider the following operators on \mathbb{R}^2

- (1) $-\mathrm{i}\partial_x \partial_y^2$, (2) $-\left(\partial_x + \frac{\mathrm{i}y}{\sqrt{x^2 + y^2 + 1}}\right)^2 - \left(\partial_y - \frac{\mathrm{i}x}{\sqrt{x^2 + y^2 + 1}}\right)^2$, (3) $\partial_x \partial_y$,
- (4) $\frac{1}{\sqrt{x^2+y^2+1}}(x\partial_x+y\partial_y),$
- (5) $(1+x^2)\partial_x^2 + (1+y^2)\partial_y^2 + x^2 + y^2$.
 - a What are their principal symbols?
 - b What are their subprincipal symbols?
 - c Which ones are elliptic?
 - d If they are not elliptic, what are the subsets of \mathbb{R}^2 where they are elliptic?
 - e If they are not elliptic, what are the conical subsets of $T^{\#}\mathbb{R}^2$ where they are elliptic?

Problem 0.18. What is the singular support and the wave front set of the following distributions on \mathbb{R}^2 with the coordinates denoted (x, y):

- (1) $\delta(x)$,
- (2) $e^{-\sqrt{x^2+y^2}}$,
- (3) |x+y|
- (4) $\theta(1-x^2-y^2),$
- (5) $\frac{1}{x-\mathrm{i}0} := \lim_{\epsilon \searrow 0} \frac{1}{x-\mathrm{i}\epsilon},$
- (6) $\frac{1}{(x-i0)(y-i0)}$.
- (7) $\frac{1}{(x-i0)}|y|$.