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1 Introduction

1.1 Basic classical mechanics

Basic classical mechanics takes place in phase space R? @R?. The variables are the positions
z', i =1,...,d, and the momenta p;, i = 1,...,d. Real-valued functions on R% @ R? are
called observables. (For example, positions and momenta are observables). The space of
observables is equipped with the (commutative) product be and with the Poisson bracket

{b, C} = 8707 bapic - 8pi bé)wic.
(We use the summation convention of summing wrt repeated indices). Thus in particular

The dynamics is given by a real function on R? @ R? called the (classical) Hamiltonian
H(z,p). The equations of motion are

dﬁ(f) = 9,H(z(t), p(t),
d%f) = —0,H(x(t), p(t)).

We treat z(t), p(t) as the functions of the initial conditions



More generally, the evolution of an observable b(z,p) is given by

S b(a(r),p(1)) = (b H} (1), p(t).

The dynamics preserves the product (this is obvious) and the Poisson bracket:
be(x(t), p(t)) = b(z(t), p(t))c(x(t), p(t)),
{0, c}(z(t), p(t)) = {b(z(t), p(t)), c(x(t), p(t))},

Examples of classical Hamitonians:

particle in electrostatic and

magnetic potentials %(p — A(x))* + V(z),
particle in curved space %pigij (x)pj,
harmonic oscillator %p2 + %2x2,
particle in constant magnetic field %(Pl — Bxo)* + %(pz + Brp)?,
general quadratic Hamiltonian %a” piD; + bz xipj + %Cijxixj .

1.2 Basic quantum mechanics

Let h be a positive parameter, typically small.

Basic quantum mechanics takes place in the Hilbert space L2(R?). Self-adjoint operators
on L?(R?) are called observables. For a pair of such operators A, B we have their product
AB. (Note that we disregard the issues that arise with unbounded operators for which the
product is problematic). From the product one can derive their commutative Jordan product
%(AB + BA) and their commutator [A, B]. The dynamics is given by a self-adjoint operator
H called the Hamiltonian. On the level of the Hilbert space the evolution equation is

dw

so that U(t) = e~ #HW. On the level of observables,

dA(t) B
T - I[Hv A(t)]7 A(O) - Aa

so that A(t) = en# Ae=% . The dynamics preserves the product:
(AB)(t) = A(t)B(t).

We have distinguished observables: the positions 2¢, i = 1,...,n, and the momenta p; :=
Th(%i, i=1,...,n. They satisfy

[#',27] = [pi,p;] =0, [2',p;] = ihd}.



Examples of quantum Hamiltonians

particle in electrostatic and

magnetic potentials

particle in curved space

harmonic oscillator

particle in constant magnetic field

o U B
general quadratic Hamiltonian ia” pip; + bl&'p; + icijzlxj.

1.3 Concept of quantization

Quantization usually means a linear transformation, which to a function on phase space
b : R?® — C associates an operator Op®(b) acting on the Hilbert space L?(R?), and in
addition has various good properties. (The superscript e stands for a possible decoration
indicating the type of a given quantization).

(Sometimes we will write Op®(b(z,p)) for Op®(b)—in this notation z, p play the role of
coordinate functions on the phase space and not concrete points).

Here are desirable properties of a quantization:

(1) Op*(1) =1, Op*(z') = &*, Op°(p;) = p;-
(2) 3(0p*(b)Op*(c) 4+ Op®(c)Op°® (b)) ~ Op*(be).
(3) [(Op®(b),Op*(c)] = ihOp®*({b, c}).

Above, &~ denotes equality modulo terms small in terms of . The function b will be
called the symbol (or dequantization) of the operator B.

Note that (1) implies that (3) is true with &~ replaced with = if b is a 1st degree polyno-
mial.

1.4 The role of the Planck constant

Recall that the position operator z;, is the multiplication by x; and the momentum operator
is p; 1= ?(% Thus we treat the position Z as the distinguished physical observable, which
is the same in the classical and quantum formalism. The momentum is scaled by the Planck
constant. This is the usual convention in physics.

Let Op®(b) stand for the quantization with i = 1. The quantization with any & will be
denoted by Opy,(b). Note that we have the relationship

Op;i(b) = Op.(bh)7 bﬁ,(l’,ll) = b([E, hp)

However this convention breaks the symplectic invariance of the phase space. In some
situations it is more natural to use the Planck constant differently and to use the position



operator #; which is the multiplication operator by vAz;, and the momentum operator
pi= @&r Note that they satisfy the usual commutation relations

[.’fi,ﬁj] = ihéij.
The corresponding quantization of a function b is
Opy(b) := Op*(by),  bu(w,p) = b(vha, Vhp). (1.2)

so that e e
Opp(zi) = i,  Opg(pi) = Pi-
The advantage of (1.2) is that positions and momenta are treated on the equal footing.

This approach is typical when we consider coherent states.
Of course, both approaches are unitary equivalent. Indeed, introduce the unitary scaling

o (z) = /\7d/2‘1>(/\71/25€).

Then .
Oph(bh) = Tp1/2 Op. (bh)Thq/z .

1.5 Aspects of quantization

Quantization has many aspects in contemporary mathematics and physics.

1. Fundamental formalism
— used to define a quantum theory from a classical theory;
— underlying the emergence of classical physics from quantum physics (Weyl-Wigner-
Moyal, Wentzel-Kramers-Brillouin).

2. Technical parametrization
— of operators used in PDE’s (Maslov, 4 volumes of Hérmander);
— of observables in quantum optics (Nobel prize for Glauber);
— signal encoding.

3. Subject of mathematical research
— geometric quantization;
— deformation quantization (Fields medal for Kontsevich!);

4. Harmonic analysis
— on the Heisenberg group;
— special approach for more general Lie groups and symmetric spaces.

We will not discuss (3), where the starting point is a symplectic or even a Poison manifold.
We will concentrate on (1) and (2), where the starting point is a (linear) symplectic space,
or sometimes a cotangent bundle.

A seperate subject is quantization of systems with an infinite number of degrees of
freedom, as in QF'T, where it is even nontrivial to quantize linear dynamics.



2 Preliminaries

2.1 Integral kernel of an operator

Every linear operator A on C" can be represented by a matrix [A7].

One would like to generalize this concept to infinite dimensional spaces (say, Hilbert
spaces) and continuous variables instead of a discrete variables 4,j. Suppose that a given
vector space is represented, say, as L?(X), where X is a certain space with a measure.
One often uses the representation of an operator A in terms of its integral kernel X x X >
(z,y) — A(z,y), so that

AV (z) = / Al )% (y)dy.

Note that strictly speaking A(-,-) does not have to be a function. E.g. in the case X = R? it
could be a distribution, hence one often says the distributional kernel instead of the integral
kernel. Sometimes A(-, ) is ill-defined anyway. Below we will describe some situations where
there is a good mathematical theory of integral/distributional kernels.

At least formally, we have

AB(z,y) = /A(x,z)B(z,y)dz,

A*(z,y) = Ay, ).
Example 2.1. Let &,V € L?(R%). Consider the operator A

Av = U(d|v), v € L*(RY). (2.1)
Then the integral kernel of A is
Az, y) = U(2)2(y). (2.2)
Note that often (especially in physics) A is written in the bra-ket notation:
A= |T)(D|. (2.3)

Example 2.2. Let the variable in R? be called x. Usually, we will denote by the same
symbol the operator of multiplication by the variable x. If it causes confusion, and then we
use the notation & for this operator. Thus

(Z0)(z) = 2P (z). (2.4)
Then f(&) is the operator of the multiplication by f(x).
(f(@)¥)(x) = f(z)¥(x). (2.5)
Here are the integral kernels of some operators:
f@)(@,y) = f(@)d(z —y), (2.6)
(£(@)A9(@)) (@,9) = f (@) Al 1)g(y). (2.7)

Note that we will usually write x for .



2.2 Distributions

Distributions are linear functionals on D(RY) := C>°(R?) satisfying some continuity rela-
tions. Thus they are functions

D(RY) 2 ¥ — (T|¥) € C. (2.8)

The set of distributions is denoted D’(R?). Elements of D(R?) are often called test functions,
If where f € LL _(R%), then the following is a distribution:

loc
/f(x)\I/(x)dx (2.9)

Distributions given by locally integrable functions, as in (2.9), are called regular. We will
typically use the integral notation also for non-regular distributions:

(1) = /T(x)\ll(x)dx

Here are some examples of non-regular distributions:
/ 5()D(t)dt := B(0), (2.10)

i0)* = lim ie)? . .
/(tj:10) Bt = lim [ (t:+10@(0)a (2.11)

2.3 Tempered distributions
The space of Schwartz functions on R™ is defined as
S(R"):={V e C*[R") : [[2°VEV¥(z)’dz < o0, «a,B€N"}. (2.12)
Remark 2.3. The definition (2.12) is equivalent to
S(R™) = {¥ € C*(R") : [2°VEV(z)| < cap, «a,BEN} (2.13)

S'(R™) denotes the space of continuous functionals on S(R™), ie. S(R") 3 ¥ — (T|¥) €
C belongs to S’ iff there exists N such that

i< ( X [eevieera)
la+|BI<N

The Fourier transformation is a continuous map from &’ into itself. We have continuous

inclusions
S(R") c L*(R™) c S'(R™).

Theorem 2.4 (The Schwartz kernel theorem). B is a continuous linear transformation
from S(RY) to S'(R?) iff there ewists a distribution B(-,-) € S'(R? @ R?) such that

(¥]B®) = [ FT@B(o,y)@()dedy, ¥.0 € SR,

10



Note that < is obvious. The distribution B(-,-) € S'(R¢@R?) is called the distributional
kernel of the transformation B. All bounded operators on L2(R?) satisfy the Schwartz kernel
theorem.

Examples:

(1) e~'*¥ is the kernel of the Fourier transformation
(2) 0(z —y) is the kernel of identity.
(3) 0.0(x — y) is the kernel of 9. .

2.4 Fourier tranformation

Let R? > 2+ f(2). We adopt the following definition of the Fourier transform.

F1(©) = [ e fla)da.
The inverse Fourier transform is given by
Fig(w) = (2 [ e*eg(e)de.
Formally, F~'F = 1 can be expressed as

(27r)_d/ei(x_y)£d£ =d0(z —y).

(2m) ¢ / / e*tdedr = 1.

F maps S(RY) and S'(R?) into itself.
Suppose the variable has a generic name, say x. Then we set

Hence

1
DZD = *81
i
Clearly,
P d (1) = (x4 t), (2.14)
9D wy) = ZZD or (o(DIN)@) = s [(Fe =iy @15)
’ (2m)d (2m)d
Proposition 2.5. The Fourier transform of R4 @ RY 3 (n, &) — e~ 11 s (2;)demf:p. Hence
(2P0 f) @) = g [ A (2.16)
(2mt)d
Proof.
/efitnEfipnfizﬁdndg = ei%” //e—it(n+%)(§+§)dnd§
O

11



2.5 Semiclassical Fourier transformation

If we use the parameter A, it is natural to use the semiclassical Fourier tranformation

Frf(p) = /e_%mf(x)dw

Its inverse is given by

Filg(e) = (2mh)~ / e#7Pg(p)dp.

Recall that we defined p; := 8 Ji=1,.

Proposition 2.6. The semiclassical Fourier transformation swaps the position and mo-

mentum:
FilaF, = p,
Fp '9Fn = &
Proof.
(Fp "2 FR0) (p) de | dkerP*ze” 7 0w (k)

= 19 e7PTe mhT
(27rh)d /dx/dk‘hl@kef e n (k)

1 ; i
= @k / do / dkerPe” HERiOL U (k)
m

Hence, for Borel functions f, g

FilF@)Fn = f(),
]:h 9( )]:h

I
Q
0

>
~

(2.23) can be rewritten as

(909)) () = m i [ [y

(2 h) (]:hg)( ).

12
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2.6 Hilbert-Schmidt operators
We say that an operator B is Hilbert-Schmidt if
00 >TrB*B =) (ei|B*Be;) = Y (Bei|Be;),
iel el

where {e; };ecs is an arbitrary basis and the RHS does not depend on the choice of the basis.
Hilbert-Schmidt are bounded.

Proposition 2.7. Suppose that H = L?(X) for some measure space X. The following
conditions are equivalent

(1) B is Hilbert-Schmidt.
(2) The distributional kernel of B is L*(X x X).
Moreover, if B,C are Hilbert-Schmidt, then

TrB*C = /B(x,y)C’(a:,y)d:cdy.

2.7 'Trace class operators

B is trace class if
00 > TrvB*B =) (ei|VB*Be;).
iel
If B is trace class, then we can define its trace:
TrB := Z(ei|Bei).
iel

where again {e; };cs is an arbitrary basis and the RHS does not depend on the choice of the
basis.
Trace class operators are Hilbert-Schmidt:

B*B = (B*B)Y*(B*B)"*(B*B)'/* < (B*B)"/*|B|(B"B)"/* = | B|(B"B)"/*.

Hence
TrB*B < ||B||Trv B*B.

Consider a trace class operator C' and a bounded operator B. On the formal level we
have the formula

TrBC = /B(y,x)C’(x,y)dxdy. (2.26)

In particular by setting B = 1, we obtain formally

TrC = /C(w,x)dx.

13



3 z,p- and Weyl-Wigner quantizations

3.1 z,p-quantization

Suppose we look for a linear transformation that to a function b on phase space associates
an operator Op®(b) such that

Op*(f(x)) = f(2), Op*(9(p)) = 9(p)-

The so-called x, p-quantization, often used in the PDE community, is determined by the
additional condition

Op™"(f(x)g(p)) = f(2)g(p)-

Note that
~ N _ i(z—y)p
(F(@)9(3) ¥(x) = )" [ dp [ dyrilgo)e T w(y) (3.1)
Hence we can generalize (3.1) for a general function on the phase space b
(05 (1)¥)(z) = (2n) " [ dp [ dybla,p)e T (o). (3.2
In the PDE-community one writes
Op™?(b) = b(x, kD). (3.3)

We also have the closely related p, x-quantization, which satisfies

Op”*(f(x)g(p)) = 9(p) f(2).

It is given by the formula

(09 ()W) (z) = (2n) " [ dp [ dybiy. pie T W (0. (3.4)
Thus the kernel of the operator as x, p- and p, x-quantization is given by:
Op""(bey) = B, Blawy) = (2n) [ dpby (o p)e™ 7", (35)
Op"* (by) = B, Blawy) = (7)™ [ dpbyayp)e 7" (36)
Proposition 3.1. We can compute the symbol from the kernel: If (3.5), then
by p(z,p) = /B(x,x - z)e_iszdz. (3.7)

Proof. We set y =z — z in (3.5):
B(z,x —z) = (27rh)_d/ei27pbm,p(a:,p)dp.

Thus z +— B(z,z — z) is obtained from b, ,(z,p) by F; ! in the second variable. We apply
Fr. O

14



Proposition 3.2. (Op”™?(b))" = Op?*(b).

Proposition 3.3. We can go from x,p- to p, x-quantization: If (3.5) and (3.6) hold, then

e_ithDPbm}p(x,p) = bpo(z,p). (3.8)
Proof.
beplz,p) = /B(x,:z:fz)ef%z’)dz
= (27rh)*d//bpyz(m—z,w)e%z(w*p)dzdw
= (27Th)_d//bp~z(y7w)e%(x_y)(w_p)dydw
e MDDrp  (z,p).
O

Therefore, formally,

Op®*(b) = Op”*(b) + O(h).

3.2 Weyl-Wigner quantization

The definition of the Weyl-Wigner quantization looks like a compromise between the x,p
and p, z-quantizations:

_ T+ i(x—y);
(0p()¥)(2) = 21)* [ dp [ dyp(*Lp)e T (o) (3.9)
In the PDE-community it is usually called the Weyl quantization and denoted by
Op(b) = b¥(x,hD).

If Op(b) = B, the kernel of B is given by:

B(z,y) = (27rh)_d/dpb(xT+y,p)e@. (3.10)
Proposition 3.4. We can compute the symbol from the kernel:
b(z,p) = /B(fv + g,x - g)e*i?dz. (3.11)

Proof.

2 2
which is Fr—1 applied to b(z,-). We apply Fp. O

B(m+ E,m - E) = (QWh)fd/eiszb(xap)dp’

b is usually called in the PDE community the Weyl symbol and in the quantum physics
community the Wigner function.
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Example 3.5. Let Py be the orthogonal projection onto the normalized vector T ie 3%

The integral kernel of Py equals

Poay) = demb A,

Its various symbols equal

d _1g2 1.2 oo
x, p-symbol: 22¢ 27 2P TP
d 1.2 102000
p, x-symbol: 22 2% ~ap HTP
. d 1,2 1,2
Weyl- Wigner symbol: 227 2% 2P|

Proposition 3.6. We can go from the x,p- to the Weyl quantization:
if  Op™ (b)) = Op(b), then
e2PaDop(z p) = bep(z,p).
Consequently,

bep = b+ O(h).

3.3 Weyl operators
Proposition 3.7 (Baker-Campbell-Hausdorff formula). Suppose that

[[A,B],A] = [[A,B],B] =0.

Then
-1
A+B AeBe—3[A,B]

Proof. We will show that for any t € R

_142
ol (A+B) _ (tA B~ 5t°[A,B]

First, using the Lie formula, we obtain

oo

tn
tA —tA v n
e Be = 2:0 n!adA(B)
= B+ t[A, B].
Now
%etAetBe—%ﬁ[AB] _ AetAetBe—%tz[A,B]

+etABetBefét2[A,B]
—etAetBt[A, B}efit"‘[A,B]

= (A + B)eMetBe2t’ 48],

16
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Besides, (3.13) is true for t =0. O
Let &€ = (&1,..-,84), n = (m,..-,ma) € R% Clearly,
(i, n5D5] = ihEimi-
Therefore,

oléifiginibi o= B&mi oi(&iditmipi)

e 1€ giniPi gl&ids

The operators e!(§:%:+71:%4) are sometimes called Weyl operators. They satisfy the relations

that involve the symplectic form:
el(€iZitnipi) ol (§iTi+nip:) _ e—%(fi”]é_ﬂigé)ei((€i+5£)ii+(ni+n;)ﬁi)

They translate the position and momentum:

oF (CUptwE) ook (yp—wi) i—y,

e (CUpTwd) ey (p—wd) 5 g

3.4 Weyl-Wigner quantization in terms of Weyl operators

Note that ) )
el(&'ii+mﬁi) — o28iBigiMiDi g3 &i®i

Hence the integral kernel of e!(§i%i+n:Pi) ig
(Q,ITh)*d/dpei(%ﬁiIierPiJr%Siyi)ﬁL%(Ii*yi)pi.

Therefore,
Op(ei(&zﬂrmm)) — oil&iditmipi)

Every function b on R? @ R? can be written in terms of its Fourier transform:

bop) = (2m) 2 [ [ [ [eltemmesiominy gy wayduddn,

Applying Op to both sides of (3.17), and then using (3.16), we obtain

Op(b) = (2m) 2 / / / / 1@yt —winip(y ) dydwdédn,

which can be treated as an alternative definition of the Weyl-Wigner quantization.
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3.5 Weyl-Wigner quantization and functional calculus

Let (&,7) € R?@ RY). Let f be a function on R, say, f € L>(R). Then f(¢z + np) belongs
to L>®(R? @ R%). By functional calculus of selfadjoint operators, f(£2 + np) € B(L°° (Rd))
We have

Op(f(&x +np)) = f(EE + 1p). (3.19)

To see this we just use the Fourier transform of f, denoted Ff and the property (3.16):
fei ) = ot [ Froe
femitnp) = @0t [ Froee it

Suppose that we have functionals £, n0) e R¢ @& R?, j =1,...,m, satisfying
(€D 4+ n0peWi 4 9Wpy =0, jk=1,...,m. (3.20)

Then ' '
€Dz 4+nWp eWa4y®pl =0, jk=1,....m (3.21)

Therefore, by the functional calculus for commuting self-adjoint operators, for a function
F € L*°(R™) we have

F(EWg +qWp,. . 6™ 4 pmp) = Op(F(EWz +7Wp, ..., Mz 4 5Mp)).  (3.22)

Note that the maximal number of linearly independent functionals satisfying (3.20) is d.
Here is an example in R? @ R

cos(ag)zy + sin(a)pr =0, cos(az)xz + sin(az)pz = 0. (3.23)

3.6 Classical and quantum mechanics over a symplectic vector space

A symplectic form is a nondegenerate antisymmetric form. A vector space equipped with a
symplectic form is called a symplectic vector space. It has to have an even dimension.

Let R?? be an even dimensional vector space. Let ¢/, j = 1,...,2d denote the canonical
coordinates in R??. Let w = [w;;] be a symplectic form. We will denote by [w%] the inverse
of [wij].

On every symplectic vector space we have a natural Poisson bracket for functions b, ¢ on
R2:
{b,c} = Dyibw dysc.

Proposition 3.8. In every symplectic space we can choose a basis ¢* = x;, ¢+ = p; so
that the Poisson bracket has the form (1.1), that is

Wiitd =1, wipq; =—1.
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Thus every symplectic space is isomorphic to the space R?@®R? with the usual structure.
We say that a linear transformation r = [r7] is symplectic if it preserves the symplectic
form. Explicitly, r#wr = w, or

wapqr,? = Wiy
The set of such transformations is denoted Sp(R2d). It is a Lie group.
We say that a linear transformation b = [b]] is infinitesimally symplectic if it infinites-

imally preserves the symplectic form. In other words, 1 + €b is for small € approximately
symplectic. Explicitly, b#w + wb = 0, or

b‘prj + wipb§ =0.
The set of such transformations is denoted sp(R?¢). It is a Lie algebra.

In parallel with the classical system described by functions on the phase space R2¢ we
also consider a quantum system described by operators on a certain Hilbert space equipped
with distinguished operators ¢7, j = 1,...,2d satisfying (formally)

(&7, 0] = iw’*1. (3.24)
Proposition 3.9. b is an infinitesimally symplectic transformaton iff c = w™'b is symmet-

ric, so that b; = wikckj. Then

1 , . 1 ..
H = §Cjk¢]¢ka H =Op(H) = §Cjk¢J¢k

18 the corresponding classical and quantum Hamiltonian. Let [Tf(t)] be the corresponding dy-
namics, which is a 1-parameter group in Sp(R?4). Then the classical and quantum dynamics
generated by this Hamiltonian are given by the flow r(t):

¢ (t) = ri()e"(0), (1) = rl(1)$"(0),
3.7 Weyl quantization for a symplectic vector space

Let ¢; satisfy the relations (3.24). For ¢ = (C1,- - -, Coa) € R? set

$C=>"diGi, W(CQ) =2,

Then .
W(OW(8) = e 2¢“W (¢ +6).

For a function b on R2? we can define its Weyl-Wigner quantization:

Op(b) := (2m)~ % / / el =)' () dypdc.

Note that _ .
Op(eld"() = ¢, (3.25)
More generally, for any Borel function f
Op(f(¢0)) = F(é¢). (3.26)

19



Proposition 3.10.

Op(¢¢1 -+ ¢Cn) = % > GCotiy Poiny- (3.27)

" oeS,

Proof. We have .
Op((¢0)") = (p0)™. (3.28)

This is a special case of (3.27), it is also seen directly from (3.25) by expanding into a power
series. Let t1,...,t, € R. By (3.28),

OD((16:Cu+++ + tndGa)") = (151 +++ + tnG)™ (3.29)

The coefficient at ¢; - - - t,, on both sides is

Op(nlg-Cr--¢Ga) = Y dCor1)+ 0Comi(n)-

O'ESn

3.8 Positivity
Clearly,

Op(b)* = Op(b).
Therefore, b is real iff Op(b) is Hermitian. What about positivity? We will see that there is
no implication in either direction between the positivity of b and of Op(b).
We have
(2 —1p)(2 +1p) = 2>+ p* — h > 0.

Therefore
Op(z? +p? —h) >0, (3.30)

even though 2 + p? — h is not everywhere positive.
The converse is more complicated. Consider the generator of dilations

(& + $%) = 4 — - = Op(ep).

A= - =
2

N | =

Its name comes from the 1-parameter group it generates:
D (z) = et/ 2P (elx).

Note that sp A = R. Indeed, A preserves the direct decomposition L*(R) = L?(0,00) &
L?(—00,0). We will show that the spectrum of A restricted to each of these subspaces
is R. Consider the unitary operator U : L?(0,00) — L?*(R) given by U®(s) = e*/2®(e*)
with the inverse U*W¥(z) = = /2¥(logx). Then U*pU = A. But spp = R. Therefore,
sp A2 = (sp A)? = [0, .

20



We have A2 = Op(xp)? = Op(b), where

L (Dp,Dyy—Dyy D
b(z,p) = e%(PrDry=Day ”Z)xlplmpz‘ o — 2
* i

b :=Dp1 = p2.

hQ
= x2p2 + 72Dp1Dx2Dx1Dp2x1p1x2p2’

4.2 T =T = X9,
P = p1 = P2,
hQ
_ 2.2 v
= I°p°+ 1
Hence
h2
Op(a?p?) = A* - a1

Therefore Op(z2p?) is not a positive operator even though its symbol is positive

3.9 Parity operator
Define the parity operator

More generally, set A ‘
Tiyw) = en (—yp+w?) roy (yp—wi)

Clearly, _
Iy () = 7 00 (2y — ).
Let 0, denote the delta function at (y, w) € R* & R<.

Proposition 3.11.
Op((ﬂ'h)d(S(O,o)) =1.

More generally,
Op((7h)*8(y.u)) = L(y.w)-

Proof.
- T+Yy i(g—y)-
Op((ﬂh)d(s(o,o))(x,y) = 2 d/(i( 5 ,g)en( ) 5d§
- r+y
= 2 d5( 5 ) =0z +y).
To see the last step we substitute 4 = § below and evaluate the delta function:
Tty = Ay Nod 17 _ odg(_
/5( 5 )<I>(y)dy—/5(2 +y)‘1>(2y)2 dj = 2%®(—x).
O
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Theorem 3.12. Let Op(b) = B.

(1) If b € LY(R? @ R?), then B is a compact operator. In terms of an absolutely norm

convergent integral, we can write

Bzwwm*f/qamm%pmmm.

Hence,
1B < (w72)~||blls.

(2) If B is trace class, then b is continuous, vanishes at infinity and
b(x,p) = 2"Trl, ) B.

Hence
|b(z, p)| < 29Tx|B|.

Proof. Obviously,
b:/b(x,p)éx,pdmdp.

Hence
Op(b) = /b(@p)Op(ém’p)dxdp
= (Wh)_d/b(x,p)l(z’p)dxdp.
Next,
= (27Th)dTI‘Op(5(w’p))Op(b)
= 2dTI‘I(x7p)Op(b).
O

3.10 Special classes of symbols

Proposition 3.13. The following conditions are equivalent
(1) B is continuous from S to S'.

(2) The x,p-symbol of B is Schwartz.

(3) The p,x-symbol of B is Schwartz.

(4) The Weyl-Wigner symbol of B is Schwartz.
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Proof. By the Schwartz kernel theorem (1) is equivalent to B having the kernel in §’. The
formulas (3.5), (3.6) and (3.10) involve only partial Fourier transforms and some constant
coefficients. O

Proposition 3.14. The following conditions are equivalent
(1) B is Hilbert-Schmidt.

(2) The x,p-symbol of B is L2.

(3) The p,x-symbol of B is L?.

(4) The Weyl-Wigner symbol of B is L.

Moreover, if b,c are L?, then

TrOp®?(b)*Op™P(c) = TrOp(b)*Op(c) = (27rh)_d/b(m,p)c(x,p)dxdp. (3.39)

3.11 Trace and quantization

Let us rewrite (3.39) as
TrOp?®(a)Op™?(b) = (27h) d/a b(x, p)dzdp, (3.40)
TrOp(a)Op(b) = (27h) d/a b(x, p)dzdp. (3.41)

Setting a(x,p) = 1 we formally obtain
TrOp(b) = TrOp™?(b) = (2rh)~? / b(x, p)dadp. (3.42)

One can try to use (3.41) and (3.41) when A = Op(a) is, say, bounded and describes an
observable, and B = Op(b) is trace class, and describes a density matrix, so that it expresses
the expectation value of the state B in an observable A. The left hand sides are then well
defined. Usually there are no problems with the integrals on the right hand sides, and (3.41)
and (3.41) give the epectation value by a “classical” formula.

For instance, consider a function of the position f(x) and a function of the momentum
g(p). Their p,x quantizations are obvious

(&) = 0p™ (f(x)), g(p) = Op"™ (9(p))-
Inserting this into (3.41) we obtain

Trf(2)Op™P( (2mh)™ /f b(z, p)dadp,

Trg(5)Op™(b) = (2rh) / 9(p)b(z, p)dadp.

Thus with help of the x, p-quantization we can compute the so-called marginals involving
(separately) the position and momentum.
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With the Weyl-Wigner quantization we have much more possibilities. E.g. for any o we
have

f(&& +np) = Op(f(&x +np)).

Therefore,
Trf (4 + np)Op(b) = (2mh) / f(€x + np)blz, p)dadp.

3.12 Star product for the x,p and p, xr quantization

Proposition 3.15. Suppose that b,c, say, belong to S(R? @ R?Y) We have the following
formula for the symbol of the product: If

Op™?(b)Op™?(c) = Op™P (b+" ¢), (3.43)
then ‘
(b *T:P C) (J;,p) — o~ ihDp; Dayy b(xl,pl)c(xz,pQ)‘ ri=ay =@, (3,44)
P :i=Pp1 = D2
Similarly, we have
Op”®(b)OpP*(c) = Op™* (b " ¢), (3.45)
then _
(b *PT c) (:L’,p) = e*lthl Dy, b(xl,pl)c(l'z,pz)‘ Ti=x =29, °
P =Dp1 = DPp2.
Proof.

Op™?(b)Op™?(c)(x,y)
= (27Th)_2d///b(xvpﬂc(x%pz)e%<(w7w2)pl+($27'y)p2)dp1d902d102

= (27rh)_d/dp2eih(z_y)p2
X(QWh)_d//b(%pl)0(332,p2)e%(m2_m)(m_pl)dp1d$2

= (27rh)—d/der%(f—y)PQG—ithl sz b(ml’pl)c(x27p2) T =11 = 9, R

p:=p1 = Dp2.
which proves (3.44). O

Note that with the assumption b,c € S(R? @ RY), (3.44) is well defined. However, one
can expect that the above formula has a much wider range of validity. For instance, it makes
sense and is valid if either b € S(R? @ R?) and ¢ is a polynomial or the other way around.
Obviously,

[Z,0p™P(b)] = ihOp™P(dpb) = ihOp™* ({z,b}),
[p,Op™P(b)] = —ihOp™P(d,b) = ihOP™ P ({p,b}).
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Note that

(b*7 ) (@.p) = blx,p)e(x,p) — ihd,b(x, p)duc(z,p) + O(H2),
(c* P b)(x,p) = blx,p)c(z,p) — ihd,b(z,p)dyc(z,p) + O(2).
Hence,
Op™P(b)Op™P(c) = Op™P(be) + O(h),

[Op™*(5),0p™(c)] = $hOP"({b,c}) + O(R?),

or in other words,

b*"P ¢ =be+ O(h),
b*"P ¢ — c%P b =ih{b,c} + O(h?).

3.13 Star product for the Weyl-Wigner quantization

Proposition 3.16. Suppose that b,c, say, belong to S(R? @ R?Y) We have the following
formula for the symbol of the product:
if  Op(a)Op(b) = Op(a*b), then (3.46)

F‘L(Dp1 Dyy—Dgy Dyy,) (

a*b(z,p) =e? 1, p1)b(x2, p2)

T =] = Tg,
b= Dp1 = P2

Proof. Let
A=0p(a), B=0p(), AB=:C=O0p(c).

Then

1 xl +y Y+ x2 NG ) I ORI
Clz1,22) = (27h 2d/// b(T,m)e o Pre P2 dydpydps,
c(z,p) = /C(m+2 7) W du
:c+2 u+y y+x—2"tu
e (o)

1‘+2 1y ju= 7+2

P21 Qudydp dps

9i Z=z1) (= Pz) (P p1)(z—23)
- (wh Qd//// a(z1, p1)b(22, p2)e” dz1dzedpidpe,

where we substituted

z+27u+y z—2"tu+y

B 5 Z9 = 2 5 (347)

zZ1 =
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Proposition 3.17. If h is a polynomial of degree < 1, then

(Op(7)Op(b) + Op(b)Op(h)) = Op(bh),

N |

Proof. Consider for instance h = z.

AP Pes DDl by po)| L = ab(ep) 20, ),
D:=p1=Pp2.
e%h(DpleQ—Dlepz)b(xhpl)xQ‘ vim e —ay, = ab@p) - %@,b(%p).
p:=p1 = Dp2.
O
Consequently,
(h-A@)" = op((p—A@)?),
Op(aijzizj + 2bijxip; + cijpip;) = @ijdidj + bij@ip; + bijpjdi + cipip;-
Proposition 3.18. Let h be a polynomial of degree < 2. Then
(1)
[Op(R), Op(b)] = iROP({h, b}). (3.48)

(2) Let x(t),p(t) solve the Hamilton equations with the Hamiltonian h. Then the affine
symplectic transformation

satisfies _ _
et OPMQOp(b)e= #OPM) = Op(hor; ).

Proof.

e%h(D“D”7D”D”z)h(ﬂﬂlapl)b(%apz)’ €=, = 24
. - )

p=Pp1=Dp2.
in
= h(z,p)b(x, p) + 5 (Dyph(,p) Dub(z, p) — Dph(w, p) Dab(e, p)),
(ih)* 2
+ 5 (Dy, Doy = D, D) bl p)ba,p2)| oy —
pi=p1 = Dp2-

When we swap h and b, we obtain the same three terms except that the second has the
opposite sign. This proves (1).
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To prove (2) note that

d
qoor = Ahbor]
[Op(h),Op(bory)] = ihOp({h,bor}).
Now, ¢~ #OPMOp(hor)ek M| = Op(b) and
t=0

%e 50BN Op(b o 1¢)e FOP()

—it

i d it
= e Op(h)( — ﬁ[Op(h),Op(bort)] +Op(&bo7’t))eh0p(h) =0

O
Note that
5 (OP(B)OP(e) + Op(c)Op(H)) = Op(be) + O(R?), (3.49)
[Op(b),0p(c)] = ihOp({b,c}) + O(%),  (3.50)
if suppbNsuppc =0, then Op(b)Op(c) = O(R™). (3.51)

4 Coherent states and Wick ordering

4.1 General coherent states

Fix a normalized vector ¥ € L?*(R%). The family of coherent vectors associated with the
vector ¥ is defined by

Uiy w) = eiﬁ(_y’;+w‘i)\ll, (y,w) € R? @ RY.
The orthogonal projection onto W, .., called the coherent state, will be denoted
Py = ¥ () (P (g | = e 0D 0) (D[ 09702,
It is natural to assume that
(\II|§3\I/) =0, (\If|ﬁ\11) =0.
This assumption implies that

(TuwliPyw) =y (Pywp¥yw) = 0.

Note however that we will not use the above assumption in this section.
Explicitly,

\I/(y,w)(x) _ e%(uzm—%y-w)\l/(x_y)’
Py (w1,22) = W(zy —y)U(zg — y)er@rmm2w,
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Theorem 4.1.
(2mh) ¢ / Py uydydw = 1. (4.1)

Proof. Let ® € L?(RY). Then

//(‘I)|P(y,w)¢)dydw
////@\p(xl — ) U(zy — y)er 172 WP (1)) day dapdydw

Ca)! [ [ F@(@ - )T = (o) dady = (2mh) 0] 0]

4.2 Contravariant quantization

Let b be a function on te phase space. We define its contravariant quantization by
Op®*(b) := (27rh)_d/P(zyp)b(amp)dxdp. (4.2)

If B = Op®*(b), then b is called the contravariant symbol of B.
We have

(1)
(2)
(3) Op(1) = 1;
(4)
(5)

4.3 Covariant quantization

The covariant quantization is the operation dual to the contravariant quantization. Strictly
speaking, the operation that has a natural definition and good properties is not the covariant
quantization but the covariant symbol of an operator.

Let B € B(H). Then we define its covariant symbol by

b(l’,p) = TI‘P(x7p)B = (\I/(x7p)|B\I/($7p)).
B is then called the covariant quantization of b and is denoted by
Op®(b) = B.
(1) Op
(2) Op™(b )* Op™ (D).
(3) [10p** (b)[| = sup, , [b(z,p)]-
(4) Let Op®(b) > 0. Then b > 0.
(5) TrOp™ (b) = (2rrh) =4 [ b(z,p)dzdp.
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4.4 Connections between various quantizations
Let us compute various symbols of P, ,):
) |(\I/|\I/(y—:c,w—p))|27
Weyl symbol(z,p) = 24V (s wp) ¥ (y—z0—p))»
) = @rh)(a —y)d(p — w).

covariant symbol(z, p

contravariant symbol(z, p

Let us now show how to pass between the covariant, Weyl-Wigner and contravariant
quantization. Note that there is a preferred direction: from contravariant to Weyl, and then
from Weyl-Wigner to covariant. Going back is less natural.

Proposition 4.2. Let
Op (b) = Op(B) = Op™ (1),

Then
o) = ) [0 (Wi V-
A RGO Rl RTCRIL ZP ] ZER—n 1
b (2,p) = (2mh)~C / B (5, 0)| (21T (o py) Py,

Proof. We use

Op(b) = (1) [ Ty b(a. o,
b(z,p) = 29TrI(, ;) Op(b),
7 (1) = (2mh) [ Pl (2. p)dac
b (2, p) = TPl ) O (b)) = (U (4, [OP (b)) 4 )

O

Proposition 4.3. We have
TrOp® (a)Op°* (b) = (27rh)*d/a(x,p)b(m,p)dxdp. (4.3)
Proof. Indeed, let A= Op®(a). Then the lhs of (4.3) is
TeAR) [ b )W) (Vo ldadp

— (2nh) / (¥ o |AI¥ (2. )b, p)dclp,

which is the rhs of (4.3). O
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4.5 Gaussian coherent vectors

Consider the normalized Gaussian vector scaled appropriately with the Planck constant
Q(z) = (rh)~Ge~ 2" (4.4)
The corresponding coherent vectors are equal to

Qo) () = (wh) T erramsmy = (e=u)”, (4.5)

In the literature, when one speaks about coherent states, one has usually in mind (4.5).
They are also called Gaussian or Glauber’s coherent states. In the case of Gaussian states,
there are several alternative names of the covariant and contravariant symbol of an opera-
tor:

(1) For contravariant symbol:
(i) upper symbol,
(ii) anti-Wick symbol,
(iii) Glauber-Sudarshan function,
(iv) P-function;
(2) For covariant symbol:
(i) lower symbol,
(if) Wick symbol,
(iii) Husimi or Husimi-Kano function,
(iv) Q-function.

We will use the terms Wick/anti- Wick quantization/symbol.
Proposition 4.2 specified to Gaussian coherent states becomes

Proposition 4.4. Let Op®*(b°t) = Op(b) = Op¥ (b°"). Then

b(z,p) = //th(y,w)(ﬂh)_de_%(x_y)z_%(p_w)zdydw, b= e & (PEHDpct,
b (x,p) = //b(y,w)(Wh)_de_%(I_y)z_%(p_w)zdydw, b = e_%(DiJ”Dg)b;
bY(z,p) = //b“(y,w)(27rh)7defﬁ(x7y)27%(p7w)2dydw, b = o~ 5 (DatDp)pet,

4.6 Creation and annihilation operator
Set

ai = (2h)Y2(z +ips),
al = (2h)7Y3(z; —ip;).
We have

i

{ai, a;} = —ﬁéij.
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Ri/2 . Rl/2 .
Ii:m(aﬂrai), pizw(ai*ai)- (4.6)

In this way, the classical phase space R¢ @ R% has been identified with the complex space
C?. The Lebesgue measure has also a complex notation:

7
i—dda*da = dadp. (4.7
To justify the notation (4.7) we write in terms of differential forms:
daj Ada; = % (dz —idp) A (dz + idp) = i~ 'dz A dp.
On the quantum side we introduce the operators
a = (20)7V2 (@i + i),
a; = (2072 (&i - ip)-
We have
(G, a5] = 04j.
Bl/2 Bl/2
&; = m(&i"‘d?)a ﬁz‘:m(di—&r)- (4.8)
Let y,w € R? ® R?. We introduce classical complex variables
b o= (2h)72(y+iw),
bt o= (2h)72(y — iw).
Note that .
%(—yﬁ +wd) = —b*a + ba*. (4.9)
We have
of (CUPTwd) g — (3 4 y)oh (~ubtwE) en (C¥Ptwd)p — (5 4 p)en (CuPTwWE) (4 10)
o(=b"atba™) ax _ @ + b*>e(—b*&+b&*)7 ol=bra+ba™) s _ (a+ b)e(—b*a+b&*)_ (4.11)
Recall that in the real notation we had coherent vectors
Q. = er (CuPtUiQ (4.12)

In the complex notation they become
Q= e(70atbaN (4.13)
Using Q(z) = e~ % and a; = (2h) "2 (2; + hdy,) we obtain
a; Q) = 0.
This justifies the name “annihilation operators” for a;. More generally, by (4.11),
a; € = b,
Note that the identity (4.1) can be rewritten as

1= (2xi)~¢ / 1) (2 |da*da. (4.14)
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4.7 Quantization by an ordering prescription

Consider a polynomial function on the phase space:

w(557p) = Zwa.ﬂxap6~ (415)
a,B

It is easy to describe the z,p and p, x quantizations of w in terms of ordering the positions
and momenta:

Op™*(w)

Z wa,ﬁi'aﬁﬁa
o,

OpP®(w) > wa, i
a,p

The Weyl quantization amounts to the full symmetrization of #; and p;, as described in
(3.27).
We can also rewrite the polynomial (4.15) in terms of a;, a} by inserting (4.6). Thus we
obtain
w(z,p) = Zw775a*7a5 =: w(a", a). (4.16)
~,0

Then we can introduce the Wick quantization

Op” “(w) =Y by 54"7a° (4.17)

and the anti- Wick quantization

Op™™ (w) = Y " by,5°0". (4.18)
~,0

Theorem 4.5. (1) The Wick quantization coincides with the covariant quantization for
Gaussian coherent states.

(2) The anti-Wick quantization coincides with the contravariant quantization for Gaussian
coherent states.

Proof. (1)

Qe |OP* (W) Q) = (Rl Y dy,567a°20)
v,0

= E U~}%5a*7a5
¥,8

= w(z,p).
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Op™ (w) = 3 500 (2mi)~ / 100) (2 |da*daa™
~,8

= (27ri)*dZ/ﬁ)%ga‘;a*“’ma)(ﬁa\da*da
6

(2mh) / () o) (Vo gy |ddlp.

The Wick quantization is widely used, especially for systems with an infinite number of
degrees of freedom. Note the identity

(Q]0p® *(w)) = w(0,0). (4.19)

4.8 Connection between the Wick and anti-Wick quantization

As described in equation (4.15), there are two natural ways to write the symbol of the Wick
(or anti-Wick) quantization. We can either write it in terms of x, p, or in terms of a*,a. In
the latter notation we decorate the symbol with a tilde.

Let . i
Opa,a (wa,a ): Opa ,a(wa ,a)'
Then
wa*7a(x’p) _ eg(a§,+a§)wa7a*($,p)
= (271'71)7‘1//e_ﬁ((z_y)z"'(p_w)z)wa’“* (y, w)dydw, (4.20)
wa*7a(a*’ a) _ eaa*aawa,a* ((l*, a)

= (2mi)~¢ / / e~ (@ =00 @=b)gaa” (p* pydb*db.. (4.21)

(4.20) was proven before. To see that (4.21) and (4.20) are equivalent we note that

h1/2

0, = m(aﬁiap),
h1/2

O = Fi73(05 —i0),

hence 5
Ogx04 = 5(893 + 85)

One can also see (4.21) directly. To this end it is enough to consider a*"a™ (a and a* are
now single variables). To perform Wick ordering we need to make all possible contractions.
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Each contraction involves a pair of two elements: one from {1,...,n} and the other from
{1,...,m}. The number of possible k-fold contractions is

n! m! | 1 n! m)!

El(n — k) E!(m — k)!k' T K (n—k)! (m—k)

But

4.9 Wick symbol of a product

Let us use the complex notation for the Wick quantization. Suppose that
Op®"“(w) = Op®*(w)Op" " (wy).

Then
P2y (a3, )i (@) (4.22)
= a2 = ai.

w(a*,a) =e
(Clearly a = ay = a; implies a* = a} = a}). This follows essentially by the same argument
as the one used to show (4.21). Using (?7), one can rewrite (4.22) as an integral:

w(a*,a) = / / e~ Py (a*, a + by (a* + b*, a) ébﬂgz. (4.23)

Note that in (4.23) we treat w; and ws as functions of two independent variables obtained
by analytic continuation: a and b do not have to coincide. For the product we will prefer
however it is more convenient to use the Bargmann kernel instead of the Wick symbol, which
will be described in the next subsection.

4.10 Berezin diagram

One can distinguish 5 most natural quantizations. Their respective relations are nicely
described by the following diagram, called sometimes the Berezin diagram:

anti-Wick
quantization

2 2
lef%(Dz‘FDp)

ih . ih
p,x g2 DDy Weyl-Wigner e DaDp xz,p
quantization — quantization — quantization

J/e_%(Df"'D[z))

Wick

quantization
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All these five quantizations assign to a function b on R &R an operator Op®(b) (where
we e stands for the appropriate name). They have the properties:

(1) Op*(1) = 1, Op*(2’) = &*, Op*(p;) = p;.
(2) %( ( )Op'( )+ Op'(C)Op'(b)) = Op*(be) + O(h).
(3) [(Op *(c)] = ihOp* ({b, c}) + O(R?).
(4) [(Op *(c)] = ihOp°®({b,c}) if b is a 1st degree polynomial.
(5) et yp+w>0p (B)et 67=09) = Op* (b(ar — y,p — w)).
In the case of the Weyl quantization some of the above properties can be strengthened:
(2) %( ) + Op(c)Op(b)) = Op(be) + O(h?).
(3) [(Op = ihOp({b, c}) + O(R3).
(4) [(Op = ihOp({b, c}) if b is a 2nd degree polynomial.

4.11 Symplectic invariance of quantization

The phase space R? @ R? is equipped with the symplectic form w = (?1 0]1) . Recall that

a linear transformation  is called symplectic if r#wr = w. If we write

then this is equivalent to

ca—a*c =0, (4.24)

They form a group, denoted Sp(R? & R?).
Symplectic transformations preserving the decomposition R? @ R¢ satisfy b = ¢ = 0 and
d = a#~!. Thus they have the form
a 0
r= 0 a#—l )

where a € GL(RY). We will denote this group by GL(R?).
R? @ R? can be identified with C? by (x,p) 2*%71’%@ +ip). Suppose that R? is
equipped with a scalar product x - 2. Then we equip C? with a (sesquilinear) scalr product

(x+iple’ +ip)i=x-2"+p-p' +i(z-p —p-2). (4.25)

Transformations preserving this scalar product are called unitary and form a group denoted
U(C%). Elements of U(C?) have the form

_(a b
"T\b a)
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where
a¥a +b%b =1,
b*a —a”b =0 -
Note that unitary transformations are symplectic. This follows e.g. from the fact that

the imaginary part of the scalar product is the symplectic form.
Thus we defined two subgroups of Sp(R¢ @ R%): GL(R?) and U(C¢).

(4.26)

Theorem 4.6. (1) Let r € Sp(R? @ R?). Then there exists a unitary transformation U,
on L2(R?) such that for any symbol m

Op(mor~') = U,0p(m)U;. (4.27)

The operator U, is defined uniquely up to a phase factor. It yields a projective repre-
sentation: for some phase factors c;, r, we have

UpUry = Cry oy Upyiey (4.28)
(2) If r € GL(RY), then
Op*(mor™') =U,0p*(m)U; (4.29)
where Op® stands for the xp and px quantization.

(3) Ifr € U(CY), then
Op*(mor™') =U,0p*(m)U; (4.30)

where Op® stands for the Wick and anti- Wick quantization.

Proof. (1) Every element of the symplectic group is a product of e, where «a is infinitesi-
mally symplectic. For such transformations we can apply Prop. 3.18.
(2) is follows by a change of variables.
To prove (3) we note that the coherent state Py o = Op(po,0) has the symbol
pog = 28e—doi—br?

)

which is invariant under the group U(C%). O

4.12 Bargmann-Segal representation

Recall that for b € C™ the coherent state {2 is given by

Qp = e bathaT = e et Q. (4.31)
Hence (4.14) can be rewritten as
1= (2ri)~¢ / €2 ) (" Qe 1" db*db. (4.32)

We introduce the complex wave or Bargmann(-Segal) transformation

Uew F(b%) := (" QIF). (4.33)
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Uew maps L2(R?) onto the Bargmann(-Segal) space, that is the space of antiholomorphic
functions on C¢ with the scalar product given by

(F|G)ew = (27ri)‘d/F(b*)G(b*)e"b‘de*db. (4.34)
We have
Uew = 1, (4.35)
(Uew@i F)(b") = b (Uew F') (0%), (4.36)
UenisF)O) = 5 U PYE). (437)

4.13 Bargmann kernel
Let W be an operator. We define its Bargmann kernel

16112 byl?
2

W (b7,b2) := (ebld*mWebZdQ) =e 2 e

(Qp, W, ). (4.38)

The Bargmann kernel is closely related to the Wick symbol. Indeed, when we restrict it to
b1 = by we retrieve the Wick symbol:

i W=y sa*a’, (4.39)
v¥,8
then W (b*,b) =" 3" @, 56707, (4.40)
v,0

The advantage of the Bargmann kernel is its analyticity wrt its arguments. In fact, analyti-
cally continuing the Wick symbol and multiplying it by an appropriate factor we obain the
Bargmann kernel:

W (b7, bo) = €122 > by 50785, (4.41)
v,6
(4.42)

The name “Bargmann kernel” comes from the identity

e—\b1|2 * e—|}72|2 *
(@) = [ [T w1, ba) Ve 85) 3 T gy

Here is the formula for the Bargman kernel, which is essentially a different presentation of
the identity (4.23):

e~ 1P db*db

i (4.44)

(mm@@m#/%@@mm@
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5 Formal semiclassical calculus

5.1 Algebras with a filtration/gradation

Let U be an (associative) algebra (over C).
We say that it is an algebra with filtration {¥™ : m € Z} iff U™ are linear subspaces
of ¥ such that

v = (5.1)
meZ

YU, m<m (5.2)

gy gt (5.3)

We write U~ := | ¥™. Clearly, U~ is an ideal and so are U™ with m < 0.
Let ¥ be an ;nlgebra with filtration. We say that it is an algebra with a gradation if
there exist linear subspaces ¥(™ such that
o =gl g plm) (5.4)
p(m) . g(m) - glm+m’) (5.5)

Let 8 be an algebra. Let /i be a real variable. Then we can consider the algebra of

formal power series
m

> b, bje®B. (5.6)

Jj=—00
We will denote it by B[[#]]. if it is equipped with the usual multiplication, that is

m+m'

Em: hIb; i hhep= > h" Em: biCn—i (5.7)
j=—o00 k=—o00 n=-—oo i=n—m’'

Set B™[[1]] to be the space of formal power series of degree < m and B [[A]] = h~™B.

Clearly, B[[R]] is an algebra with a gradation and filtration.

An example of a commutative algebra is C°(R? @ R?). Clearly, C>=(R? @ R9)[[A]] is
a commutative algebra with a gradation and filtration. We will later equip it with other
noncommutative multiplications.

5.2 The z,p star product on the formal semiclassical algebra

It is natural to interpret the x™P star product on the space of formal power series with
coefficients in C*(R? @ R?). Clearly, if

b(a,p) = > h77bj(x,p), b; € C*(RI@GRY), (5.8)
Jj=—00
c(z,p) = S Kk C>(R? d
p)= > hFe(x,p), o eCRI@RY), (5.9)
k=—o00
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then - .
(b KEP c) (z,p) = Z M

n=0

b($1,p1)0($2,p2) T =T = Io,

P =p1 = Pp2.

n!

equips C°(R? @ R?)[[A]] with a noncommutative product, so that it becomes an algebra
which will be denoted ¥(R? @ R%)[[A]] = ¥[[R]]. Clearly, we have a filtration given by the
space of formal power series of degree at most m, denoted ¥™|[[h]]. However, A" O (RYGRY)
is not a gradation of our algebra: If b,c € C*®°(R% @ R?), then

bx"Pe=> Kd_j, (5.10)
j=0

where in general d_; # 0 for 7 > 0.
We will use two notations for elements of U[[#]]. Either we will use symbols, and then
the multiplication will be denoted by the appropriately decorated star:

bx®Pc=d
or we will use the operator notation
Op™?(b)Op™*(c) = Op™*(d)

The passage between these two notations is obtained by applying Op®?* to a symbol.
Now if b € U™[[A]], ¢ € ™ [[A]], then

b+"P ¢ € Uk [[p]], bx"Pc=bc  mod(TFF™=1[[H])),
ba®P ¢ —cxP b e WHHMTL[H]], ba®P ¢ —cx®P b=ih{b,c} mod(T*™2[[])).

5.3 The Moyal star product on the formal semiclassical algebra
Again, we can interpret the star product on the space of formal power series with coefficients

in C=(R? @ R?):

axb(z,p) = (3/(Dp, Dy, — Dy, Dy,))

n=0

a(@1,p1)b(w2,p2)| . T =g, *

p:=p1 = Dp2.

n!

Again, we have two notations for elements and the product: using symbols,
bxc=d,

or in the operator notation
Op(b)Op(c) = Op(d).
b« c is called the star product or the Moyal product of b and c.
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Note that this star product is just a different representation of the algebra ¥[[h]]. We
can pass from one representation to the other by the operators described in the Berezin
diagram:

bkc=e i5D:Dp ((ei%D‘”DPb) * P (ei%DmDPc)) (5.11)

Now if b € U[[h]], ¢ € U™[[A]], then

bxc e UFM[h]], bxc=bc mod(TFT™=2[[H]]),
bxc—cxbe UMM R] bxec—cxb=ih{b,c} mod(T* ™ 3[[n]]).

if suppbNsuppc=0, then bxc = 0. (5.12)

5.4 Principal and extended principal symbols

We have equipped W[[A]] with 5 products, as in the Berezin diagram. They yield isomorphic
algebras—we can pass from one representation to another using the transformations given
in the Berezin diagram.

Let

A= op°( 3 anh_"), 3 anh e U [A]. (5.13)
Then
sp (A) :==h""ay,,
does not depend on the quantization. It is called the principal symbol of the operator A (wrt
v [Al])-
Let A € ¥™[[n]], B € V*[[h]]. Then
AB € U™ [[A]),
m+k m k
ST (AB) = s (A)sh(B),
[A, B] € W[ [A]),
m+k— s m k
sp (A, B]) = ihf{sy' (A),sp(B)}-

P

If we use the Weyl quantization in (5.13) holds, then

Sep(A) = A a,,

is called the subprincipal symbol. The sum of the principal and subprincipal symbol, which
we will denote
Sgn%sp(A) =h""am + h_m+1am—1

has remarkable properties:

Sy (A + BA) = (A (B) + O~ 42),
s[4, B)) = ih{spp(A), 5 (B) } + O(A"7459),

p+sp p+sp
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5.5 Inverses

Let A € ™ [[Rh]]. We say that A is elliptic if it has an everywhere non-zero principal symbol,

that is
sp (A)(z,p) #0, z,p€ R? @ R%.

(5.14)

Theorem 5.1. Let A € U™[[h]] be elliptic. Then there exists a unique B € U~™[[A]] such

that
AB=BA=1.

Besides,

Proof. Let s)'(A) = h™™a,,. Set

By = hmop(i) e U [[H]).

Am

Then ABj € ¥O[[h]] and

SP(AB()) =1.
Hence

ABy=1+C
where C' € U~1[[R]]. Now

M+C)~t = (-nren
n=0

is a well defined element of WO[[A]], because C™ € ¥—"[[A]]. We set
B:=By(1+C)~" e ¥ [[n]],

which is an inverse of A. O

5.6 More about star product

The star product can be written in the following asymmetric form:

h h
b*C(l’,p) = b<z_§Dpap+ §D$)C(I‘,p)

= C(IE + gDp,p — gDI>b(x,p).

(5.15)

(5.16)

(5.17)

(5.18)

Note that the operators b(- - ) in (5.17) and (5.18) can be understood as the quantization
with “z,p to the left and D, D, to the right”, written in the PDE notation, see (3.3).

There is another way to interpret these formulas. Note that the operators x F %Dp
and p + %Dm commute. Thus we can understand the operators b(---) as a function of two

commuting operators.
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Alternatively (and we will do it in the sequel) the operators b(- - -) can be interpreted in
terms of the Weyl quantization. Indeed, define the following symbols on the doubled phase
space

(5,6 &) == (7~ 560+ 560,

2
1 1
(w069 6) 1= e+ 360 p = 362)-
Then (5.17) and (5.18) can be rewritten as
bxc(x,p) = Op(b)e(z,p) (5.19)
= Op(e)b(z,p) (5.20)

Let us prove (5.17). We start from

bxc(x,p) = e%h(DplDI"’7D21D”2)b($17p1)c(332,p2)‘ (5.21)

X=X =Tg,
P = Dp1 = Dp2-

We treat b(zx, p) as the operator of multiplication. We move e3Py Doy =Dy Diy) ¢ the right
obtaining

h h
b($1 - §Dp27]91 + §Dx2)6(9527292)‘

T =T =9, ’
b =Dp1 = Ppa2.
which equals the RHS of (5.17) (using the first interpretation).
We have similar formulas for the product in the x, p-quantization.
b*"P c(x,p) = b(:c,p + th)c(:c,p)
c(x + th,p)b(a:,p).

5.7 The exponential

The formulas (5.17) and (5.18) are a good starting point for the formal functional calculus.
For a function f let us write

f(Op(9)) = Op(f.(9))-
For instance
exp (i0p(g)) = Op(exp,(ig))-
We then have

Proposition 5.2.

exp, (ig) = exp, (%g) exp, (%g) = exp (%Op(gl + gr)) 1, (5.22)
exp, (ihg) * bx exp, ( - %g) = exp (%Op(gl - gr))b~ (5.23)
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In other words,

exp (iOp(g)) = Op(eXp (%Op(gl + gr)) 1), (5.24)

exp (%Op(g))Op(b) exp ( - %Op(g)) = Op(@cp (ﬁOp(gl - gr))b> : (5.25)
To see (5.22) we first note that

exp, (%g) *b = exp (iOp(gl))b,

2
b % exp, (%g) = exp (%Op(gr)) b,
and then . )
exp, (ig) = exp, (%g) * 1 % exp, (%g) (5.26)
O

To see the usefulness of (5.22) and (5.23), introduce the “Taylor tails” of g and g, at
& &p =0

—1)lel
gl,n(xapv gmv&p) = Z 8?85g(:r,p) (2 Q‘lm 51?55, (527)
n<lal+|B]
a9 (_1)‘m a ¢
gr,n(‘r?p7 £l7§p) = <|z: ‘ﬂl 81, apg(x?p) 2\C¥|+B\ fp 51 (528)
n<|a|+

Note that Op(g1,») and Op(gi ) are O(A™). We can rewrite (5.22) and (5.23) as

. , i
exp, (ig) = exp (lg(xm) + §Op(gl,2 + gr,2)> 1, (5.29)

i

exp, (%g) * bx exp, ( - %g) = exp (g7x(z,p)6p —gp(z,p)0s + %Op(gl,g — gng))b. (5.30)

6 Uniform symbol class

6.1 The boundedness of quantized uniform symbols

Let us set A = 1.
In practice quantization is applied to symbols that belong to certain classes with good
properties. Hormander introduced the following class of symbols: f € S;’?a(Rd @ RY) if

f € C®(R? @ R?) and the following estimate holds:
105205 f(x,p)| < Cap(p)™1*PHP0 a5, (6.1)

There are some deep reasons for considering such symbol classes, however for the moment
we will use only the simplest one, corresponding to m =9 = p = 0.
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Thus we will denote by S§,(R? @ R?) the space of b € C*>(R? @ R?) such that
105050 < Cap, o, .

We will often write S3, for S§,(R? @ R9).
Here is one of the classic results about the pseudodifferential calculus:

Theorem 6.1 (The Calderon-Vaillancourt Theorem). If a € S8, then Op™?(a) and Op(a)
are bounded.

We will present a proof of the above theorem in the following subsections.

6.2 Quantization of Gaussians

Consider the harmonic oscillator
H =3+ p° (6.2)

The quantization of Gaussians can be expressed in terms of the harmonic oscillator.

Proposition 6.2.

. (1—)\2)_d/QeXp(—%log(“—)‘)H), 0< A<,
Op(e = HP)) = $o=dq 0 (H), =1, (6.3)
(A2 = 1)=4/2(=1)(H=d/2 oxp ( — 5 log &t’}g ), 1< A

I~

1
2
Proof. It is enough to consider d = 1. Let us make an ansatz

e~ = Op(ce? @77, (6.4)

We have

d 1
aeftH — i(HeitH +eftHH)
:%Op((ﬁ + pz) % o~ M@ +p%) + co— M@ Hp?) (x2 +p2))
d .
Eop(Ce)\(w2+p2)) :Op((é _ c)\(x2 +p2))e—A(w2+p2)).
Now

%(W - p?) e M g e A (a2 4 ) )

1 2
(@2 + p)ee M) = (04,0, — OOy ) (2 + pR)ee N7

T =1 = T,
P =p1 = p2,

A
:c<(:r2 +p?)(1 = \?) + E)e*t(ﬁ“ﬂ)
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We obtain the system of equations

A=—-14+X, = @,
2
solved by A = tanht, ¢ = (cosht)2. Therefore,
e " = (cosh t)%Op (etanh(t)(‘”%rpz)). (6.5)

Expressing t in terms of A we obtain the case 0 < A < 1. Taking the limit at A = 1 we
obtain the second case. Then, by analytic continuation in A we obtain 1 < A < co. O

There are 3 distinct regimes of the parameter \: For 0 < A < 1, the quantization of
the Gaussian is proportional to a thermal state of H. As A increases to 1, it becomes “less
mixed”—its “temperature” decreases. At A = 1 it becomes pure—its “temperature” becomes
zero and it is the ground state of H. For 1 < A < oo, when we compress the Gaussian, it is
no longer positive—due to the factor (—1)#~9/2 it has eigenvalues with alternating signs.
Besides, it becomes “more and more mixed”, contrary to the naive classical picture.

Thus, at A = 1 we observe a kind of a “phase transition”: For 0 < A < 1 the quantization
of a Gaussian behaves more or less according to the classical intuition. For 1 < X the
classical intuition stops to work—compressing the classical symbol makes its quantization
more “diffuse”.

It is easy to compute the trace and the tracial norm of (8.18):

Proposition 6.3.

(22 4p? 1
TrOp(e Alz"+p )) :W (6.6)
sz A<1
T ‘O —A(z?+p?) ‘ — ) 29xd = 6.7
" |O(e il 67

Proof. Let us restrict ourselves to d = 1, using that sp(H) = {14+ 2n | n=0,1,2,...}.
Let us prove (6.7):

.- 3 n
Tr ‘Op(e—/\(z2+p2))‘ — Z(l _ /\2)_% (1 — )\) 1(14+2n)

= 1+ A
1
:ﬁ’ 0<>\§1,
NS 2 gyod (A 1y E0
_T;)()‘ 1 2<1+/\)
1
= - 1<)
2) —

Evidently, the trace (6.6) does not see the “phase transition” at A = 1. However, if
we consider the trace norm, this phase transition appears—(6.7) is differentiable except at
A = 1. Note that (6.7) can be viewed as a kind of quantitative “uncertainty principle”.
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6.3 Proof of the Calderon-Vaillancourt Theorem
We start with the following proposition.

Proposition 6.4. For s > %, define the functions

vl = (2m) 0 [dc (14 ¢y,
Ps(z,p) = s (x)s(p).
Then Op(Ps) is trace class and

Proof. Let us use the so-called Schwinger parametrization

- 1 /OO X 51
X% = — e T dt
L'(s) Jo

to get

¢s(€) 227r / dt/d( —t(14¢? )ts 1 145

1
= —FQ— / dtté_i_l _t_i.
7224T(s) Jo

1 o 22
Ps(z,p) = 71'7(8)/0 du dve_“_”_ﬂ_iﬁ(uv)s—%—l_

y (6.7), we have

1
Tr’Op(e ax 7ﬁp2))’ . NIk Oéﬁ < 1’
37 1<af
Hence,
Te|Op(P)
1 u—v _p2 s_d_q
SW}_’\Q() du dve Tr Op(e ros 4u)‘(uv) 5
_2d sz ( /du dv e ™V (uv)* ! + /du dv e~ y(uv)g_%_l
4<uv, u,v>0 wo<d, u >0
247dL2(s)
]
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Proposition 6.5. Let B be a self-adjoint trace class operator and h € L>=(R?*?). Then

dy [ dwh(y, w)e WPHiwe peivp—ive (6.15)

1s bounded and

[ All < Tr|B] ||| - (6.16)

Proof. Define Ty : L?(R?) — L2(R%¢) by

TeO(y,w) = (27)" 2 (D|eVP~EQ)  © € L2(R2). (6.17)
We check that Ty is an isometry. This implies that for ®, ¥ € L?(R?) of norm one
W/dy/dwh(y,w)e_iyﬁ+iw“3|<I>)(\I/|eiyﬁ_iw5” (6.18)

is bounded and its norm is less than ||h||s. Indeed, (6.18) can be written as the product of
three operators
TihTy, (6.19)

(Note that the proof of the boundedness of the contravariant quantizatio for bounded
symbols is essentially the same. The transformation 7' is sometimes called the FBI trans-
formation, for Fourier-Bros-Iagolnitzer).

Now it suffices to write

B=3 Mo, (6.20)

where ®;, ¥; are normalized, A\; > 0 and Tr|B| = > ;.
i=1
O

Proof of Theorem 6.1. Set

h:=(1-2A,)°1-Ap)°. (6.21)
Then
a(z,p) = (1 = Az)"*(1 = Ap)*h(z,p) (6.22)
/dy/de —y,p—w)h(y,w). (6.23)
Hence
@) = [ dy [ awOp(P.a ~y.p— w)hiyw) (6.24)
= 7/dy/dwh y, w)e WPHWEQp(p)elvpTiv (6.25)
(2m)d
Therefore, by Proposition 6.5,
10p(a)|| < Tr[Op(Py)|[|Al]oc- (6.26)
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6.4 Beals criterion

We will write adg(A) := [B, A].
ly, ) will denote the Gaussian coherent state centered at y,q € RERY.

Remark 6.6. The implication (2)=(3) in the following theorem is called the Beals Crite-
rion.
The function
R* < R* > (y,4, y'd') = (y. 4| Bly'd)

is called the phase space correlation function.

Theorem 6.7. The following conditions are equivalent:
(1) For any n there exists C,, such that |(y,q|Bly'¢")| < Cn{(y,q) — (¥'¢'))™™
(2) adjad, B € B(L*(R%)), a,p.
(3) B =0p(b), be SR RY).
(4) B=0p""(b), be SGH(R!@SRY),
Proof. We will prove (1)=(3)=(2)=-(1). We omit (4).
(1)=(3): We have
b(x, p) = 29Trl(y ) B
2(1

:WTT//dydqdy'dQ’ v, ) (Y, @y’ d) Y d'|B

1
=W//dydqdy’dq’ @ d @y, )Y, ¢ | Bly, q)-

Now
W al Lyl ) = oW —ay) gi(a(a—a ) —p(y—y") o~ (2= L5 )2 (p— 152 )2
Therefore,
10205 (y, dl ey, d)| < Capla — )Ny — )7
Hence

bz, )
<, / / dydgdy'dq’ (g — )ty — )P (o, ¢ |Bly, )]

(3)=(2): Let b € S§,. We have
adgad’Op(b) = i"*I=1PlOp(850200). (6.27)

Now 0505b € S(y. Hence the Calderon-Vaillancourt Theorem implies that (6.27) is bounded.
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(2)=(1): Iterating
(y—y')(y,q|Bly'q)
=—(y,ql(z —y)Bly'q") + (y,qllz, Blly'q") + (v, a| Bz — y)|y'q")
we obtain
(y—y")"(y,qa|Bly'd)
=" Crn (.4l — ) adi™ " (BYE ~ )"l 1)
k,m

Similarly, we get
(¢—4)"(y,4|Bly'd)
=" Clan (v 10— @)*ady " (B)3 — )" ) -

k.m

Cearly,
& —y)"ly,q0), (B—a)"ly.q) € L*R?).
Therefore,
(v—y)"(w.adBly'd), (a—d)"(y,adBly'd)
are bounded. O

6.5 The algebra ¥},

Let us denote by ¥Q, the set of operators described in Theorem 6.7.
Theorem 6.8. U, is a x-algebra.

Proof. We use repeatedly the Leibnitz rule and then the Beals criterion:
adz (AB) = ad; (A)B + Aad; (B),

and similarly with p. O

Theorem 6.9. Let B € U), be boundedly invertible. Then B~! € ¥9,.

Proof. Similarly as above, using

ads (Ail) = 7A71adi (A)A71

Theorem 6.10.
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1. Let f be a function holomorphic on a neighborhood of sp B, where B € ¥3,. Then
f(B) € ¥g,.

2. Let f be a function smooth on sp B, where B € W3, and B is self-adjoint. Then
f(B) € ¥g,.

Proof. (1): We write

and use

(2) We write
£ = 5 [ ate 4 ),

noting that sp (A4) is compact and we can assume that f € C>°(R). Then we apply

1
ad@efim :/ dTefit'rAadi‘(A)efit(lf'r)A.
0

O

For example, if H € ¥, then ¢ € W§,. Therefore, if also B € ¥, then
el Be~1tH ¢ @) .

Without much difficulty, we can show that if H is a 2nd order polynomial plus an element
of ¥, and B € \118,0, then el Be~itH ¢ \11870. However, without a small Planck constant
this does not sound very interesting.

6.6 Gaussian dynamics on uniform symbol class
We will denote by S§(R™) the space of b € C°°(R") such that
|03 < Ca.

Note that S(R™) has the structure of a Frechet space with an ascending sequence of seminotma

ol = 1190l

la|<N

Clearly, our main example of SJ(R") is S,(R2?), where R?? is the phase space, however
it is convenient to be more general.
Let us describe some continuous linear operations between spaces S§(R™).

Proposition 6.11. Let R™t% = R™ @ R*. Then
f=f

R™ @{0}

is a continuous map from S§(R™T*) to SY(R™).
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Proposition 6.12. Let v be a quadratic form. Then e2PD s bounded on S§(R™) and
depends continuously on v.

Proof. It is enough to show that, there exist C' and N such that
sup [e2P"Ph(z)| < C sup 0°7b(x)]. (6.28)
[B|<N

We can diagonalize the form #:
DvD =t;D} + -+t D} — ty41D3 1 — -+ — thgmDism-

We will actually assume that the dimension is 1-it is easy to generalize the argument to any
dimension.

Now
2

eE3tD? % fz = z)dz. (6.29)

1
10 = [ sz

Changing the variables, up to a constant, we can rewrite this as
/ 59" {2 — Viy)dy. (6.30)

Define the operator

L= (1+y*)" ($iy(§! + 1) : (6.31)

Then Lets¥’ = ei%yQ, and hence, integrating by parts we obtain
[t~ Vapay = [ (226447 sl = Vipy (6.32)
N / B3V L#2f (3 — Viy)dy, (6.33)

where q
L = ($idy + 1) (14 2y%) 71 (6.34)
Y
is the transpose of £. Now
c#2(Viy)| < C) 2,
which is integrable. O

Later on we will need a more elaborate estimate. Consider space R™ @ R* with variables
x,&. We consider the space

Soo = {f € C*(R" & R¥) | |9507 f| < Cap(&)™}. (6.35)
Proposition 6.13. Let v be a quadratic form on R™ @ R¥. Then e3PvD s bounded on
(6.85) and depends continuously on v.
Proof. We need to show that, there exist C and N such that

sup [(€) e3P Ph(z,€)| < C sup  |(€)T"OLOb(x, ). (6.36)
|a|+|BI<N

This follows by similar arguments as in the proof of Proposition 6.12. O
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6.7 Semiclassical calculus

We go back to h. We will write Op;, for the quantization depending on A, that is

Op(0)(a,y) = (21) ¢ [ dpb(* 3L, p)e 7. (637
Theorem 6.14. Let a,b € S§y. Then there exist co, ..., cn € ) and h— 1 € 5§ such
that N
Opp(@)Opn(b) = Y 1/ Opy(cs) + ™ Opy(ra),
j=0
0200 0F | < Ca k-
Besides, )
co=ab, ¢ = %{a,b}.
If in addition a or b is 0 on an open set © C R? @ R?, then so are cq, ..., cp.

Proof. We Taylor expand the Moyal product:

- (%h(D;ﬂlez - DmDPz))j

axb(z,p) := Z

i
=0 J:

a(z1,p1)b(z2,p2)| . . T = 9, (6.38)

D i=Dp1 =p2.

* Dp2)a(1'1ap1)b(x27p2)

i n+1 n
+/1(17_(2,L1(l);l711)362_l)lll)liz)) (1_7—) elhq—([) D..—D
0

2 P1 2
n! Ti=21 = Ty,
P:=P1=DP2-
Then we use Proposition 6.12 to estimate the remainder. O

Theorem 6.15. Let b € 58_’0 and b(x,p) # 0, (z,p) € R*.. Then for small enough h the
operator Opy,(b) is invertible and there exist cg,ca,...,con € S and h— 1y € S such that

Opy (b))~ = > W7 0py(cy;) + K> 2Opy,(rn),
j=0

|02000Frs| < Ca k-

Besides,
co=b" L

As a corollary of the above theorem, for any neighborhood of the image of b there exists
ho such that, for || < ho, sp (Opy(b)) is contained in this neighborhood.
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Theorem 6.16. 1. Let b € S, and f be a function holomorphic on a neighborhood of
the image of b. Then for small enough h the function f is defined on sp (Oph(b)) and
there exist co,Ca,...,con €S and h— 1 € S such that

£(0pa(®) = 3" K Opy (e2y) + B2 +20p, (rn),

j=0
|02050frs| < Ca gk

Besides,
co=fob.

2. The same conclusion holds if f is smooth and b is real, and we use the functional
calculus for self-adjoint operators.

6.8 Inequalities

Lemma 6.17. (1) Letb € 53, and Op(b) = Op® *2(b™). Then b € 59, and b—bT = O(h)
in SQ

(2) Let b~ € SY, and Op®® (b~) = Op(b). Then b e S, and b= —b = O(h) in SY.

Proof. We use

bt = o500y, (6.39)
b=ei@t)p (6.40)
and the fact that )
h ,
@Dy = 1 / 400D (92 1 92)bdr

is of the order /i as a map on Sj,. O

Theorem 6.18 (Sharp Gaarding Inequality). Let b € S3, be positive. Then
Op(b) > —Ch.
Proof. Let by be the Wick symbol of Op(b), that is,
Op™ “(by) = Op(b). (6.41)
Then, by Thm 6.17 (1), we have by € S), and by — b = O(h) in SJ,. Besides,
Op(by) = Op™" (b). (6.42)

Now
Op(b) = Op(by) + Op(b — by) = Op™*" (b) + O(h). (6.43)

The first term on the right of (6.43) is positive, because it is the anti-Wick quantization of
a positive symbol. O
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Theorem 6.19 (Fefferman-Phong Inequality). Let b € S§, be positive. Then
Opy,(b) > —Ch?.

We will not give a complete proof. We will only note that the inequality follows by basic
calculus if we assume that i
2
b= Z c;
j=1

for real ¢; € S§,. We note also that the Sharp Gaarding inequality is true for matrix valued
symbols, with the same proof. This is not the case of the Fefferman-Phong Inequality.

6.9 Semiclassical asymptotics of the dynamics

Theorem 6.20 (Egorov Theorem). Let h be the sum of a polynomial of second order and
a SYy function.
(1) Let x(t),p(t) solve the Hamilton equations with the Hamiltonian h and the initial con-
ditions x(0), p(0). Then
Y (2(0), p(0)) = (z(t), p(t))
defines a symplectic (in general, nonlinear) transformation which preserves S3.
(2) Let b€ SY,. Then there exist byo; € S8y, 7 =0,1,..., such that for |t| < tg

n

et OPMOp(b)e™ #OPM — N Op(h¥b, 5;) = O(H*"+2). (6.44)
3=0
Moreover,
bio(z,p) = b(’yt_l(x,p)) (6.45)

and suppb; 2; C ysuppd, 7 =0,1,....

Proof. Let us prove (2). We make an ansatz

n

e HOPMOp (h)e~ #OP(R) — Z Op(R*by25) + 2" T20p(re 2n42.1), (6.46)
§=0
bt,()’ = b, bt72j = O, j = 1, BN N Tt,2n+2,h‘ =0. (647)
t=0 = t=0
We have
d —it it
_&hznwe - Op(h)Op(Tth_i_Qﬁ)ehop(h)
d d .o, —it it
= &Op(b) - &712 i Op(h)op(ﬁgnw,h)ehOp(h)
d n . it it
— a Z h2JeTOP(h)Op(bt’2j)eﬁOP(h)
j=0
n . —it 1 d it
= thje n Op(h)( — %[Op(h), Op(br25)] + Op(Ebt,QjDeﬁOp(h)
j=0
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The jthe term in the above sum is expanded up to the order A2"+2:

n—j

. —it . d it
h2-7eTOp(h)Op({h, biojt+ Y hFerajon + B2 dy 95000 0jn + Ebﬂj)efomw
k=1
Collecting terms of the order 7%/ we obtain equations
d .
abt"zj = {btygj, h} + ft,2j7 7=0,...,n (648)
where
ft70 = O, (649)
j—1
froj = — th,Qi,Qj—in j=1...,n, (6.50)
i=0
are given by differential operators acting on b, ..., b 2j_2. (6.48) with initial conditions
(6.47) are solved by
bio(z,p) :=b(v; ' (x,p)), (6.51)
t
bt 25 (, p) ;:/ fis25(vs Mz, p))ds. (6.52)
0
Thus
d -u it
prel OPMOD (rant2n)e OP* = Op(gianian),
where gy on425 is an explicit function of by, ...,b; 2, of order 0 in A. Integrating (6.53)

from 0 to ¢t we obtain the estimate (6.44). O

6.10 Algebra of semiclassical operators

We say that ]0,1[3 h > by € S5, is an admissible semiclassical symbol of order m if for any

n there exist by, b1, ..,b_, € S§y and i+ rp € S, is such that for any n
m
bh=Y_ hIbj+rn n
j=-n

020808 h, —n—1| < A" Ca g

Note that the sequence b, ,bym—1, ... is uniquely defined by by (does not depend on n).

Let © C RY®RY be closed. We say that by is O(h™) outside © if by, b1, -+ = 0
outside ©.
Let 385?; denote the space of admissible semiclassical symbols and \Ilgggc the set of their
0,m

semiclassical quantizations. We write Sy’ (©) for the space of symbols that vanish outside
© and \Ilgggc(@) for their quantizations.
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Note that if a,b € S, are symbols that do not depend on A, then axb depends on A and
is an admissible symbol of order 0.
Clearly,

o]
0,00 ,__ 0,m
\IJOO,SC T U \IJOO,SC

m=—0o0

is a x-algebra with gradation closed wrt taking inverses of elliptic elements and functional
calculus in the sense described in Theorem 6.16. WgyS. () are ideals in \Ilggfgc.
The ideal -
0,— 0,
Uooee = N Woa'e

m=—0o0

consists of operators of the order O(h>). Note that W, ../ \1186;20 is isomorphic to a subal-
gebra of the formal semiclassical algebra U[[R]].

6.11 Frequency set
Let h > ¢ € L2(X). Let (z9,po) € R? @ RY.

Theorem 6.21. The following conditions are equivlent:
(1) There exists x € C with x(xo) # 0 and a neighborhood W of py such that

(Fulxvn))(p) = O(R), peW.
(2) There exists b € C>°(R? & R?) such that b(zo,po) # 0 and
10p5 (0)n]| = O(A).
(3) There exists a neighborhood V of (xo,po) such that for all c € C°(U)
10ps(e)nl| = O(R>).
The set of points in R? @ R that do not satisfy the conditions of Theorem 6.21 is called
the frequency set of h +— ¢ and denoted FS(¢5).

Note that we can replace the Weyl quantization by the z,p or p,x quantization in the
definition of the frequency set.

6.12 Properties of the frequency set
Theorem 6.22. Let a € SY,. Then
FS (Opp(a)¥r) = supp(a) N FS(1r).

Theorem 6.23. Let h € S§, +Pol=? be real. Let t — ¢ be the Hamiltonian flow generated
by h. Then _
FS(e!*OPrM gy = 54 (FS(¢n)) -
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Theorem 6.24. Let .
Un(z) = a(z)en @),
Then
FS(¢r) C {z € suppa, p=VS(x)}. (6.53)

Proof. We apply the nonstationary method. Let p # 0,S(x) on the support of b €

C=(RY @ RY). Let (2rh)~%F), denote the unitary semiclassical Fourier transformation.
Then

((zwh)f%fhopg’f(b)zpﬁ) () = (2xh)"% / e FoPY(p, 2)a(z)erS@dz.  (6.54)
Let

T = (p—0,S(x)) 2(p — 9,5(z)),.

Let
T# = 0p(p— 025(x))*(p — 8.5(x))

be the transpose of T'. Clearly,

_ihTet (S —wp) _ i (S(x)—wp) (6.55)

Therefore, (6.54) equals
(—ih)™(2rh)~ % / b(p, x)a(z)T"en (5@ —wP)qy, (6.56)
= (—ih)"(2rh)" % / en S@=an)p#np(p 1Yo (x)de = O(h"2). (6.57)

Thus (6.53) holds. O

In practice, we usually have the equality in (6.53), because by the stationary phase
method we can compute its leading behavior.

7 Spectral asymptotics

7.1 Trace of functions of operators in the pseudodifferential setting

We have already seen that for smooth functions f and symbols b € S{), we have
7(Op(8)) = Op(f ob) + O(12). (7.1)
Note that this is especially easy to see for polynomials: It follows from (3.49) that
Op(b)™ = Op(b") + O(h?).

One can extend (7.1) to more general classes of symbols and unbounded operators by
using the resolvent.
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Recall that
TrOp(a) = (QWH)*d/a(x,p)dxdp.
Therefore, we can expect that under appropriate assumptions

Trf(Op(b))

Tr(op(f ob) + 0(h2))

= (27rh)7d/f(b(x,p))dxdp+O(ffdJrz). (7.2)

7.2 Weyl asymptotics from pseudodifferential calculus

For a bounded from below self-adjoint operator H set

N, (H) := #{eigenvalues of H counted with multiplicity < u} (7.3)
= Tr]l]—oo,u] (H) (7.4)

In particular, we can try to use f = j_, ) in (7.2). It is too optimistic to expect
1) o0, (OD(R)) = OP(T o0 i () + O(R?). (7.5)

After all the step function is not nice — it is not even continuous. If there is a gap in the
spectrum around u, one can try to smooth it out. Therefore, there is a hope at least for
some weaker error term instead of O(h?). If (7.5) were true, then we could expect

N, (Op(h)) = (2rh)~ / dadp + O(h~4+2), (7.6)
h(z,p)<p
Define
E, E>0 0, E>0
E = ’ ’ E _ = ’ ’ .
(E)+ {0, E<0. (E) {—E, E <0.

For instance, if V satisfies V' — u > 0 outside a compact set then
N, (WA +V(2)) ~ (2rh) ¢ / dadp + O(h~+2)
p2+V(z)<p
= (2zh)~¢ / dadp + O(h™ %)
Ip|</(V (2)—p)—
= (27h) ey /(V(m) ~Wide + O, (7.7)

where the volume of the ball of radius r in d dimensions is cqr¢.

Asymptotics of the form (7.7) are called the Weyl asymptotics. In practice the error term
O(h~%*2) is too optimistic and one gets something worse (but hopefully at least o(h~%)).
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7.3 Weyl asymptotics by the Dirichlet/Neumann bracketing
We will show that if V' is continuous potential with V' — p > 0 outside a compact set then
N (—h?A+V(z)) ~ (27rh)*dcd/ (V(x) — ,u)%dx +o(h™9). (7.8)
V(z)<p

This is an old result of Weyl.
Here are the tools that we will use:

A< B = N,(A) > N,(B),
N, (A& B) = N,(A) + N,(B).

To simplify we will assume that d = 1.
Let Ap = Ao,1),p, resp. Ay = A[g,z),n denote the Dirichlet, resp. Neumann Laplacian
on L2[0, L]. This means both Ap and Ay equal 92 on their domains:

D(Ap) = {f € L0, L] | f" € L*[0, L], £(0) = f(L) =0}, (7.9)
D(An) :={f e L*[0,L] | f" € L*[0, L], f'(0) = f'(L) = 0}. (7.10)
For a € R let [o] denote the largest integer < «,

Lemma 7.1. Ap and Ay are selfadjoint operators such that

Nu(=1Ap) = [Lrh) " (wY?),
Nu(—HAy) = [Lxh)  (wY? +6(u).

Proof. The eigenfunctions and the spectrum of Ap, resp. Ay are

. T h2m2n?

sin I Tz n=12,...;
™I h2m2n?

cos I Iz n=20,1,2,....

Thus the last eigenvalue has the number n = [L(ﬁw)_l(,u)frﬂ]. O

Lemma 7.2. Both —Ap and —Ay are positive operators. More precisely, let f € L*[0, L].
Then

e 2dz, 0)=f(L)=0,
(f1Apf) = Jo 1" ()] f(0) = f(L) 711)
o, F0)£0  or (L) £0;

L
~(f1awh) = [ I @) (712)
0
Consequently, if (f|Apf) < oo, then (f|Apf) = (f|ANnS). Hence

—Ay < -Ap. (7.13)
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Proof. We check that this is true for finite linear combinations of elements of the respective
bases. Then we use an approximation argument. O

Divide R into intervals
Lo o= [(G=1/2)m™", G+ 1/2)m ™"
Put at the borders of the intervals the Neumann/Dirichlet boundary conditions. The Neu-

mann conditions lower the expectation value and the Dirichlet conditions increase them.
Set

Vg = sup{V(z) : o € L},
Vo, = inf{V(z) : z€l,;}
We have
2
S 7h2A+V(I’) S j@EBZ(*thIm],D+VmJ>
Hence,
SN (= BN+ V)
JEZL
> N( h2A+V ) ZN (*thIm],D+VmJ>
JEZ
Therefore,
Zm (hm) ™ (Vs — )1,/2-1-20(#—1%]-)
JEZ JEZ
> NH(—hQA—i—V ) Zm ()~ mj—,u)l/z.
JEL

Using the fact that (V' — u)_ has a compact support, we can estimate

Z@(,u — Km,j) < mC.

JEZ

By properties of Riemann sums we can find m, such that for m > m,
S Wy = (V@) - a] < e (7.14)

S (Vs — )2 —/(V(@ L (7.15)
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Therefore,

1 2¢ Cm
) L . 1/2 e €
‘N#( H2A + V(x)) - /(V(x) R (7.16)
Hence the right hand side of (7.16) is o(h~!). This proves (7.8)
If we assume that V is differentiable, then m. can be assumed to be Cpe~'. Then we

can optimize and set ¢ = v/h. This allows us to replace o(h~') by O(h~'/2).

7.4 Energy of many fermion systems

Consider fermions with the 1-particle space H is spanned by an orthonormal basis ®1, @, .. ..
The n-particle fermionic space A™H is spanned by Slater determinants
1 . .
Wiriiin = —=Pi, A AP, i < <l

ln m 11

Suppose that we have noninteracting fermions with the 1-particle Hamiltonian H. Then
the Hamiltonian on the N-particle space is

an(H)=H®]1-~-®]1+-~-—|—]1®---®]1®H

ArH
Suppose that F; < Ey < ... are the eigenvalues of H in the ascending order and
®q, Py, ... are the corresponding normalized eigenvectors. This means that the full Hamil-

tonian dI'"(H) acts on Slater determinants as

drn(H)\Ilh = (Eh +- Eil)\I}ﬁ

For simplicity we assume that eigenvalues are nondegenerate. Then the ground state of
the system is the Slater determinant

\Ill,...,n = cI)1 /\"'/\(I)n~ (717)

The ground state energy is Fy + --- + F,,.
If B is a 1-particle observable, then on the n-particle space it is given by

dr"(B)=B@ 1@+ +l2--@leB| .

Let ¥ € A™H. The expectation value of dI'"(B) in the n-fermionic state ¥ is given by
(¥|dr™(B)¥) = TrByw

where 7y is the so-called reduced I-particle demsity matriz. Note that 0 < ¢ < 1 and
Tryg = n. The reduced 1-particle density matrix of the Slater determinant (7.17) ¥y ,, is
the projection onto the space spanned by ®4,...,®,. Hence, the reduced 1-particle density
matrix of the ground state is v = 1j_o ) (H).
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In practice it is often more convenient as the basic parameter to use the chemical potential
1 instead of the number of particles n. Then we can expect that the 1-particle density matrix

of the ground state is given by Ij_ ,j(H), where we find x from the relation
TI']l],oo_’#] (H) =n.

Suppose that the 1-particle space is L?(R?). Then the 1-particle reduced density matrix
can be represented by its kernel vy (z,y). Explicitly,

yo(z,y) = /dx2~-~/dxn\11(:t,:r2,-~- ) U (Y, Tay -, X)) (7.18)

We are particularly interested in expectation values of the position. For position inde-
pendent observables we do not need to know the full reduced density matrix, but only the
density:

Tryg f(2) = / pu () (),

where
pw(z) =y (z, ).
Note that
/pq,(x)dx =n. (7.19)
If v = Op(g), then
Ty0/(2) = (20 [ [ g(o.p)f(a)docp
Hence

py(z) = (27h)~“g(z, p)dp.

Suppose now that the 1-particle Hamiltonian is H = Op(h). Remember that then the
symbol of Tj_., ,(H) is approximately given by

0o, (R, p)).

The corresponding density is

p(z) = (27rh)*d/]l]_oo,u} (h(:c,p))dp = (27rh)*d dp.

h(z,p)<p
Let cgr? be the volume of the ball of radius r. If h(z,p) = p? + v(x), then

p(z) ~ (2rh)~" dp = (2rh)~eq(v(z) — p)?.

p2+o(z)<p
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Let us compute the kinetic energy

Tep’ Yooy (H) ~ (27R)” / / p?dadp
p2tu(z)<p

= et [ar [ dedpl

Ipl < (v(e) ) E
B dc
(2nt) [ do 2 o(a) )

d —2/d dt2
~ (2rh)~¢ PR /p T (z)dx.

Thus if we know that p is the density of a ground state of a Schrédinger Hamiltonian, then
we expect that the kinetic energy is given by the functional

d — d+2
Exin(p) := (2mh) ¢ F) d2/d/p%(33)dx. (7.20)

Consider quantum fermions in an external potential V' and interacting addition with the
potential W. That is, we consider the Hamiltonian

zn:(pf—&-V( + > Wz — ) (7.21)

i=1 1<i<j<n

on the n-particle antisymmetric space A" L?(R?) (we drop the hats).
Let U € A"L2(R?). Clearly, the potential energy of a state with density p in the potential
V' is given by
(\IJ| 3 V(asi)\I/) - / V(2)py(2)dz =: Bpor(py). (7.22)
1<i<n

We can expect by classical arguments that for a state ¥
Z W(x; — xj)\Il) ~ //W(as —y)pw(x)pw(y)dady =: Fn(pw). (7.23)
1<i<j<n

The Thomas-Fermi functional is given by the sum of (7.20), (7.22) and ((7.23) applied
to an arbitrary positive p satisfying [ p(z)dz = n:

Err(p) == Exin(p) + Epot (p) + Eint(p) (7.24)
— (2eh) e / PP (2)da
/ der//W z —y)p(z)p(y)dzdy. (7.25)

We expect that
inf {ETF(p) | p=0, /p(:ﬂ)dx = n} (7.26)

approximates the ground state energy of (7.21).
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8 Standard pseudodifferential calculus on R¢

8.1 Comparison of algebras introduced so far

So far we introduced three kinds of “pseudodifferential algebras”.

1. The algebra ¥Q,. It consists of operators on L?(R%) with symbols in SJ,(R? @ R?),
that is, satisfying
00056 < Capy . B

2. The algebra \Ilgbfc. It consists of h-dependent families of elements of ¥Q,, asymptotic
to power series in h with coefficients in ¥),.

3. The algebra W°[[A]], that is formal power series in /& with coefficients in C>°(R¢ @ R?).

The algebra U9, consists of true operators on L?(R9). It is closed not only wrt the
multiplication (as any algebra), but it is closed wrt several other operations. It is closed
wrt various functional calculi, it is invariant wrt the symplectic group, and also wrt the
dynamics generated by elements of this algebra. It has one drawback: it has no “small
Planck constant”. Therefore its utility is limited—the point of quantization is to use classical
arguments for quantum operators, but this can be done only if the Planck constant is small.

The algebra ‘Pgbﬁc consists of true operators that depend on a Planck constant. It is
closed wrt the multiplication, is closed wrt to taking various functions and wrt a dynamics
of the form described in Egorov Theorem 6.20. Using this algebra we can make various
interesting statements about true operators of the sort: “there exists iy > 0 such that for
0 < h < hg something happens”. For instance: if the principal symbol is invertible, then for
small & the operator is invertible. On the other hand, the definition of this algebra is quite
ugly: we have the “remainder term” which has to be taken into account, even though it is
“semiclassically small”.

The algebra ¥°°[[R]] is much “cleaner” than \Ilgbfc, at least from the purely algebraic
point of view. You do not have an ugly remainder, you do not worry about estimates. How-
ever, it does not consist of true operators, only of “caricatures of operators”. Nevertheless,
it retains the essential structure of \Ilggfzc. Besides, it is probably useful as a pedagogical
object.

There are some mathematicians who care only about formal algebras—for them algebras
of the form U*°[[A]] are OK. We prefer to think about true operators and use various algebras
as tools.

The disadvantage of algebras 2. and 3. is that the Planck constant is external. In
what follows we will describe algebras that possess a “natural effective Planck constant”.
These algebras come from the theory of partial differential operators. They are appropriate
extentions of the algebra of differential operators with smooth coefficients.

8.2 Classes of symbols

In this section as a rule we will set i = 1. The variable conjugate to x will be generically
denoted ¢£. We will not put hats on classical variabes to denote operators—thus = will denote
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both classical variable and the corresponding multiplication operator. The quantization of
& will be denoted D = —i0,.
Let m € N. We define S;’Z)I(T#Rd) to be the set of functions of the form

0,(.23,5): Z aﬂ(l‘)fﬁ’ (81)

|BI<m

where for any «, 3
|8§‘a5| S Caﬁ. (82)

The subscript pol stands for polynomial.
Let m € R. We define S™(T#R?) to be the set of functions a € C*°(T#R?) such that
for any «, g

10507 al(w, €)| < ca,p(€)™ 7. (8.3)

We say that a function a(z,£) is homogeneous in £ of degree m if a(x, A{) = Aa(x, &)
for any A > 0. Note that there are many such functions smooth outside of £ = 0, for instance
|€|™, however they are rarely smooth at £ = 0.

We set S;’;I(T#Rd) to be the set of functions a € S™(T#R?) such that for any n there
exist functions a,,_, £k = 0,...,n, homogeneous in £ of degree m — k such that

020 am—k(2,6)] < caple™ P g > 1,

agaf (a(x,ﬁ) — Zamk(m,f))' < Capal]™TTL € > 1
k=0

We then write a ~ 21;“;0 Gm—k, Where a,,_ are uniquely determined. The subscript ph
stands for polyhomogeneous.
We introduce also
ST =nNS"=NSH,
m m
S*=uU8", SO = %ngl, Spol i= 7LleSm

m pol-

Sggl(T#Rd) is called the space of symbols polynomial in &.
ngl(T #R%) is called the space of step 1 polyhomogeneous symbols. Some mathematicians
call them classical symbols, which has nothing to do with classical mechanics, and is related
to the fact that this symbol class was used in “classic papers” from the 60’s or 70’s.
Elements of S™(T#R?) are often just called symbols of order m, since this class is often
regarded as the “most natural”.

Clearly, for m € N, St C S In fact, if a(x,&) is of the form (8.1), then

a<xa§) = Z am—n(-r7§)7 (84)
n=0
ar(,€) =Y aa(@)E". (8.5)

|a|=k
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For any m € R, ST}, € S™.

Clearly, S, SO} and Spo1 are commutative algebras with gradation.

a€ S™iff a<f> € S™tF. Likewise, a € S iff a(&)F € Sm+k.

The algebra S5} appears naturally if we want to compute (1+&2)~
we cannot do it 1n51de Spol,
it further in the subsection about ellipticity.

8.3 Classes of pseudodifferential operators

We introduce the following classes of operators from S(R?) to S’(R9):

¥ = {Op(a) | a € S™},
oh = 1{0p(a) | a € Sj} 1,
Wie = {Op(a) | a € S’gf)l}.
Lemma 8.1. e3P+P¢ js bounded on S™.

Proof. Recall that in (6.35) we defined

Sty = {f € C(R" @ R¥) | 920 f| < Ca,5(6)"}.

By Proposition 6.13 e2P+P¢ is bounded on S§,. In particular,
Let a € S™. Then 3“8ﬂa € sm-I8l ¢ S -l . Now

900ferP=Peq = 03 P=Peg29la € Spo 1.
Hence ,
07 0¢e2P=Peal < Co (€)™
O

Proposition 8.2.
U™ = {Op™(a) | a € S™},
Ui o= {0p™%(a) | a € S},
pol = {0p™%(a) | a € Spiy ).

pol

however we can do it in the larger algebra

, Oor \/ 1+ £2. Clearly,

. We will discuss

(8.10)

(8.11)

(8.12)
(8.13)
(8.14)

Proof. Recall the transformation from the Weyl symbol to the Kohn-Nirenberg symbol:

e%DﬁDma(:p &) = Z %a(w,&)

(8.15)



We need to show that e2P+P¢ is bounded on 5™, Sph and S7E . In the case of polynomial

symbols the statement is obvious. For S™ it is proven in Lemma 8.1. For ST} we can use
the expansion (8.15). We note that the jth term of this expansion belongs to SJ\~ 7 and the
remainder using Lemma 8.1 can be proven to belong to S™~"~1. O

8.4 Multiplication of pseudodifferential operators

The following lemma is proven in a similar way as the lemma 8.1:
Lemma 8.3. ez (P& Daz =Dy Dey) s bounded on the space

{ce C®®YM) | 100102102202 < C(&)™ 1Pl(gg)h— 1711, (8.16)
Theorem 8.4. W, WX and V%, are algebras with gradation.

Proof. Let us prove that U™ . W% C Utk Let ¢ € S™ and b € S*.

a * b(l‘ p) = %(D§1D:E27Dz1D62)CL(Z’1,gl)b(xQ,gg) T =1 = To,
§:=& =&
By Lemma 8.3,
|a;:x118?11632285226%(D51sz_DmlD€2)a($1761) ($27€2)| < C<€1> ~ Il <€2>k_‘52‘~ (817)
Restricting to Jé 5 232’ yields the estimate
1020 axb(x,p)| < C)m 181, (8.18)

Thus a b € S™HF.
Ifae Sp} and b € S’;h, we use the expansion

~ l D lD 2 D 1D 2)
a*b(l’ p Z 2 3 x ]' x [3 ) (xlvgl)b(x2’§2) T =T = To,

= §i=b =&
l D ~D. D ))”‘f‘l(l _ 7_)n
/ dr 2 51 T2 1 52

(8.19)

e%T(Dng”_D“D@)a(xl,fl)b(ﬂ?m&) €=, = 24
= - )

§ =& =&

The jth term of this expansion is in S$+k_j and the remainder by Lemma 8.3 is in
Sm+k7n71’ 0
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In the usual semiclassical quantization of a function a(z, p) we insert the Planck constant
in the second variable, that is after quantization we use the function a(x, i£). Thus it satisfies
the estimates

020 a| < Caphl”. (8.20)

If we compare (8.20) with (8.3), that is
0207 a(, €)] < capt6)™ 7, (8:21)

we see that in the class S™ the function (¢)~! plays the role of the Planck constant.
Let a € S™ and b € S¥. We then have Clearly, the jth term in the above sum belongs
to S™*Tk=3_ Thus we have an analog of the semiclassical expansion of the star product.

8.5 Sobolev spaces
For k € R, the kth Sobolev space is defined as

LPHRY) = {f € §'(RY | (14 €)M f e 12(R)).
We equip L?*(R?) with the scalar product
(Flo)e = (f1(1 +€°)*9).
Clearly, L%*(R9) is a family of Hilbert spaces such that
L**(RY) ¢ L** (RY), k> K.
The following operator is unitary:
(D) = (1= A2 LPFRT) — L2 (RY).

We also write
L2,oo .— QL2’k(Rd), L2,7oo — %Lz’k(Rd).

Clearly, S° C S3,. Therefore, by the Calderon-Vaillancourt Theorem all elements of ¥° are
bounded on L?(R?). The following proposition generalizes this to other Sobolev spaces and
to U™ for all m.

Proposition 8.5. For any k,m € R, A € U™ extends to a bounded operator
A LPRRY) — L2F=m(RY),

and also to a continuous operator on L*> and L?>~°.

Proof. It is enough to show that if A = Op(a) with a € S™, then

(1—A) 5341 - A)"3 (8.22)

k m
2

is bounded on L2(R?). But (1 —A)"% € U=* (1 - A)"%+5 ¢ U™+ Hence (8.22)

belongs to ¥°, so it is bounded. O



Corollary 8.6. A € U= maps L>~°(RY) to L% (R?).

Note that L?>°(R?) ¢ C>(R9). Therefore, elements of ¥~ are called smoothing oper-
ators.

Proposition 8.7. The following statements are equivalent:
1. Aeym,
2. ad?ad%(A)(Dme“' is bounded for any «, B.

Proof. (1)=(2) Let A= O0p™*(a). Fix a, . We have

0,0 ((0200a) ()~ +171) (8.23)
= Y Caa(@o7 a)gg ). (8.24)
81+02=4

This is clearly bounded. Hence by the x, £ version of the Calderon-Vaillancourt Theorem

Op™((9502a) (€)™ +1#1) = Op® (95.0Fa) (D) ~+17

= il*l=1Plad% ad? (A) (D)~ Al (8.25)
is bounded.
(1)<(2) Fix a, 8 again. We have
ad})adg((ad%adﬁA)wrm*'ﬁl) (8.26)
= Y Cs s (ad)7adl " A)adl? (D)~ (8.27)

d1+02=0

Using ad? (D)F = (fi)|°“8?(D>k, it is easy to see that (8.57) is bounded. By the z, £ version
of the Beals criterion
(adpad A)(D) =" = Op™* (ba, ),

where b, 3 is bounded. But

bop = rlaHIBIa?a?a(Qferlﬁl.

8.6 Principal and extended principal symbols

Recall that if A = Op(a), then a is called the symbol (or the full symbol) of A and sometimes
is denoted s(A).
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Suppose first that a = > ag(z)&? € Shey and A = Op(a). Then
[B|<m

spr(A) == Y ag(a)e’,
|Bl=m

sip(A) = Y as(@)”

|8l=m—1

are called resp. the principal symbol and the subprincipal symbol of A. It is natural to
combine them into the extended principal symbol of A

Sep(A) :=spr(A) + 550, (A).

ep
The above definition has a natural extension to step 1 polyhomogeneos operators. If

o0
a~ > am_ € S;’fl, as a decomposition of the symbol into homogeneous terms, then
k=0

Sg;(A) = am(l.ag)a
squb(A) = am—1(2, ).

Note that if A = Opm’g(b) and b~ 377 by, then the principal symbol is b, and the
subprincipal symbol is by, 1 + 50, 0¢by,.

If A= Op(a) € U™, then we do not have such a clean definition of the principal and
subprincipal symbol. The principal and extended symbol are then defined as elements of
st (A) € §™ /S resp. ST (A) € S™/S™2 by

pr

st (A) :=s(4) (mod ™71, (8.28)
Sep(A) :=s(A4) (mod Sm=2), (8.29)

Let A € U™ and B € U*, Then

AB € UtF  and

S (AB) = sp(A)sp(B),
5 (514, 811) ST (A)sb,(B)  (mod S™E2);
[A, B] € TRkl and
sL(AB]) = {sp(A), sk (B)Y,
Sg)+k—1 ([A, B]) = {SZ}L) (A)’ SSP(B)} (mOd Sm+k—3).

8.7 Cotangent bundle

In this subsection X is a manifold. In our subsequent applications we will usually assume
that X = R?, however the material of this subsection is more general.
The cotangent bundle of X will be denoted by T#X'.
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Let FF: X > a2 — & € X be a diffeomorphism. We can define its prolongation to the
cotangent bundle T#X. If we choose coordinates on X, then the prolongation of F' and its
inverse are given by

zt s 7 (x) s 2(T)

oz’ ~ 0Fd

& §(@,6) = 5 ()& & &(#,6) = 52 (D)g;-

Note that T#X is a symplectic manifold with the symplectic form dz? A d¢; and the pro-
longation of F' preserves this symplectic form:

g OF (OGO
di' N déi = 5 da ( ordat + 5kdgk) (8.30)
ozt . O™ 92z™ Bmk
— J
579" M (G gmgmrénde” + 5 d6) (8:31)
= da? A dg;. (8.32)

8.8 Diffeomorphism invariance

The action of a diffeomorphism F' on functions on X will be denoted Fl:

FLf(&) := f(2(2)).

Proposition 8.8. Suppose that A is an operator with the integral kernel A(x1,x2). Then
the integral kernel of F;'AF, is A(Z(x1),Z(22)) %(xg)‘.

Proof. We have

AF, f(& / A1, o) f(2(i2))dis (8.33)
~ [A@ s 2)‘%(302)‘(1%2 (8:34)
FIYAF, f(3 /A ), & xz))f(xg)‘%(xg)‘dxg. (8.35)

We will use the same notation F), for the action of the prolongation of F on C*°(T*X)
given by

.z 0%, _ ~
Fa(@,§) = a((@), 5= (#)€).

Theorem 8.9. Let I : R? — R? be a diffeomorphism that moves only a bounded part of

R?. Then the following holds.

(1) The spaces SI’;’CL)I(T#Rd) S&(T#Rd), S™(T#RY) are invariant wrt F,,.

(2) The operators F, are bounded invertible on spaces L*™.
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3) The algebras V., RY), U, (RY) and ¥(R?) are invariant wrt E,.
P P

Proof. (1) The invariance of Sp; and Spy is obvious. In fact, functions on T #R? homoge-
neous in £ of any degree are 1nvar1ant wrt difeeomorphisms.
To check the invariance of S™ we note that

7 = (G 02 ek + e (30
oo a3
Now
agaga(x,g) = > ey 627 P0N0%a(x,€). (8.38)
f<y<a+p,
0 < a;
Now the term on the right can be estimated by
C|£|\5\f\ﬁ\<£>mf\5\ <0 <§>mf\ﬂl.
(2) Let us first compute F,;*AF,. We have
AF, f(z) = 6% aii aaﬁ (z(2))
k
=59 G i 3 <)
FIAR () = ?)Zf aik 2; a1/ @)
Assume first that m is a positive integer.
(1= F;'AF)™1=A)™ = > c5(2)0ps -+ 0o (1= A)™™, (8.39)

[Bl<m

where cg(z) are bounded. 0,6, - -9, (1 — A)~™ is also bounded for |3] < m on L?(R?) by
the Fourier transformation. Hence (8.39) is bounded.

By interpolation one obtains the boundedness of (8.39) for any positive m.

Exchanging the role of A and F;'AF, we obtain the result also for negative m.

(3) We use the Beals criterion. Set

i:=F, xF, (8.40)
ox

H.— p-ipp - 2% 8.41
D:=F;'DF = 52D (8.41)

Here, 7 is the multiplication operator by the variable Z(x), and clearly by assumption
i —x € CX. Similarly, D — D = (1 — 22)D, where (1 — %) € C.
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Let A € U™. To check the Beals criterion for F#AF;1 it is enough to prove the
boundedness of

Fy'adgad),(FuAF, ) (D)~ 1PlFy,
=adjad? (4)(D)~m Al (8.42)
Now (D)™~ 18l{ D)="+IAl is bounded by (2) and
adgad? (A)(D) 17!

is bounded by Lemma 8.10 below. This proves the boundedness of (8.42). O

Lemma 8.10. Let A € ™. Let f{,...,f, € C®. Then

[fi(@), ... [fal2), A]--- (D)~ F" (8.43)
s bounded.
Proof. Let us write

fila) = (2m) / fi©)esae,.

Then (8.43) can be rewritten as

(27r)*d”/d§1 /01d71-~-/d§n/01d7n

xel(I=m)&t+(=r)en)z (e (€ 2 A] - (D)~ Hnel(TéitFmin)e 8.44)
Xf1(§1) T fn(fn)@ + 71+ &) TH(D) T (8.45)
Now (8.44) is bounded because A € U™. Besides, the whole integral is bounded because

(D + 7181 + -+ + 7)™ HD) T < by A )T (8.46)
1 fi(&)  Enful(&a)| < en(€)N - onev (&) (8.47)

8.9 Ellipticity
Proposition 8.11. 1. Ifa € S}, and |a(z,£)| > (€)™, ¢ > 0, then a(x,£)™" belongs to

m

Son- More generally, for any p € C, a(z, )P belongs to S;hRe(p)
2. The same is true if we replace Spn with S.

Proof. Let a € SJ}. Let an(z,€) be its principal symbol Set

T(l‘,f) = a(x,f) - am(maf)'
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Then |am, (z,§)] > c|€]™, ¢ > 0, and for large || we have a convergent power series expansion

a(z, &)L = ! VG 8.48
( 75) am(x,€)<1+ aifa(:f’g)) nz:‘;( ) am(x7£)n+1' ( . )

Now the nth term on the right of (8.48) belongs to 5., ". Hence the whole sum belongs
to S;hm.

The proof for the pth power is similar, except that we use the Taylor expansion of
a(@, )P = am (2, )P (1 + 25557,

Next, assume that a € S™. The Faa di Bruno formula implies

090 aP = > Con ooy, @000 -+ 0579 a. (8.49)
o+ oy =
Bit-+ B =P

The term in the above sum can be estimated by
ClgprmmrmgmTint(gmhel = oggrm Il (8.50)

Hence a? € S™P. O

We say that b € S™(RY) is elliptic if for some r, ¢y > 0

|b(z,&)| > col&|™, |&] >

Proposition 8.12. Let m > 0. Let b € S™(R?) be elliptic and z — b(x, &) invertible. Then
there exists ¢ > 0 such that
2 = b(z, )| = (€)™, (8.51)

so that the statements of Proposition 8.11 are true.

Proof. We have

|2 = bz, )| = col]™ —[2,  [€] >,
|z — b(z,&)| > cr, |&| <R, (by compactness).
This clearly implies (8.51). O

Quantizations of elliptic symbols of a positive degree are unbounded. Therefore, their
theory involves various technicalities that we would like to avoid and we will develop it only
under restrictive assumptions.

Theorem 8.13. 1. Let m > 0. Let b € S™ be positive and elliptic, that is, for some r,
co >0
b(@, &) = col€™, €] >

Then Op(b) with domain L*™ is self-adjoint and if z & sp (Op(b), then

(z—Op)tew ™, (8.52)

74



2. If in addition b € S}, then

ph’
(z—Op(b) ' e W ™. (8.53)
Proof. We know that Op(b) is well defined as an operator L™ — L2, We will show that

for z with |arg(z)| > € > 0 and |z| big enough the operator z — Op(b) is invertible.
Suppose that z — b(z, £) is invertible. Then

(z=b)x(z=b) =1+, (8.54)

where 7 € S72. We check that the seminorms of r as an element of S, go to zero for
|arg(z)| > € > 0 and |z| large enough. Hence ||Op(r)|| — 0. We rewrite (8.54) as

(== Op(b))Op((z —b)~") = 1+ Op(r). (8.55)

Then we can write for ||Op(r)|| < 1

(2= 0p(5))Op((= =)~ (1+0p(r) " = 1. (8.56)

Thus z — Op(b) is right invertible. An analogous reasoning shows that it is left invertible.
Hence it is invertible and

1

-1 _ —
(z—Op(b))  =O0p((z—1b) 1) (1+Op(r)) (8.57)
belongs to ¥~™. In particular, the range of (8.57) is contained in L*™.

Let z & spOp(b). Let z; satisfies |arg(z1)] > € > 0 and |z;1| big enough, so that the
above construction applies.

(2= Op(b)) ™" = (21 = Op(b)) ™" + (2 — 2z1)(21 — Op(b)) "' (2 — Op(b)) ",
hence the range of (2 — Op(b)) " is L2™ as well. We will show that for any &
(2= Op(b)) " : LF — L2+, (8.58)
We have

[D, (= = 0p(1)) '] = (= Op(v)) "'[D, Op(b)] (= — Op(b))~
= (== Op(b)) '[P, Op(B)](D) ™ (D)™ (= — Op(b)) .

1

(8.59)
Thus (8.59) is bounded. We can iterate (8.59) obtaining the boundedness of
—1

adf) (z - Op(b))

This easily implies (8.58).
Now (z — Op(b))71 € U~ follows by the Beals criterion.
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(8.57) does not tell us much about the resolvent of Op(b). One can try to improve it as
follows. Let z € C, not necessarily in sp Op(b). Modifying b for ¢ in a bounded set, so that
|z —bg| > ¢(&) and b — by € S™°°, we can rewrite (8.54) as

(z=b)x(z—by) "t =141, (8.60)
where ro € S~2. Multiplying this by 1 —rg + - -+ + (—7¢)*", we obtain
(=) % (2 —bo) P x (1 —rg+ -+ (—rg)™) = 1 — (=)D,

Hence if we set
C2n(2) = (Z — b)_l * (1 —rg+ -+ (_TO)*n),

then co, € S™™ and
(z — Op(b))Op(can(2)) — 1€ T—m=2n=2, (8.61)

Thus if z — Op(b) is invertible, then
Op(can(2)) — (2 — Op(b)) ' € w272,
This can be used to prove that if b is polyhomogeneous, then so is (z — Op(b))~!. O

Let us state a corollary of the above constructions, which goes under the name of elliptic
regularity.

Corollary 8.14. Assume the hypotheses of Theorem 8.13. Let
Op(b)f =y, (8.62)
where g € L*>> and f € L*~>°. Then f € L?>>.

Proof. We can assume that f € L?* for some k. Let ¢z, € S™™ and 9,42 € S~2"~2 such
that
Op(c2,,)Op(b) — 1 = Op(r) € T2, (8.63)

see the proof above. We multiply (8.62) by Op(cz, ), obtaining
f=0p(c2n)g — Op(ran+2) f. (8.64)

Now Op(can)g € L%, Op(ronie)f € L>F+27+2. Since n was arbitrary, f € L2>. O

Remark 8.15. Using the Beals criterion, under the assumptions of Theorem 8.183, we can
show that Op(b)P € U™P at least for p € 7, presumably also for p € C.

Remark 8.16. An easy argument involving the so-called Borel summation allows us to
construct coo(z) € S™ such that

(z = Op(b))Op(coo(2)) — M € W™, (8.65)

Such an operator is called a parametrix of z — Op(b).
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8.10 Asymptotics of the dynamics

The following version of the Egorov Theorem is to a large extent analogous to its semiclassical
version, that is Theorem 6.20. Compare the Hamiltonian in Theorem 6.20, which was
+0p(h), and the Hamiltonian in the following theorem:

Theorem 8.17 (Egorov Theorem). Let h € S;h be real and elliptic. Let hy be its principal
symbol.

(1) Let z(t),&(t) solve the Hamilton equations with the Hamiltonian hy and the initial
conditions x(0),£(0). Then

7(2(0),€(0)) = (x(t), (1))
defines a symplectic transformation homogeneous in &.

(2) Let b € Spi be homogeneous in § of degree m. Then there exist by ~ 3 bym € ST}
n=0

such that ) )
eltOP(M) O (h)e~itOP(M) — Op(b). (8.66)

Moreover,
and suppby m—n C Ye(suppb), n=0,1,....

We skip the proof of the above theorem, because it is very similar to the proof of Theorem
6.20.

8.11 Singular support
Proposition 8.18. Let f be a distribution of compact support. Then

~

felCr < [l <el§)™, nel (8.68)

Proof. «. We can differentiate
o= (2m) [ fieag (8.69)

any number of times.
= We integrate by parts:

(i6)° f(¢) = (2m)~° / (0%~ 7€) f(z)dz = (2m) (1) / 0 fa)dr.  (8.70)

For f € D'(R?), we say that is smooth near o € R? if if there exists a neighborhood U
of z¢ such that f is C* on U. We say that xg beongs to the singular support of f, denoted
Sing(f), if f is not smooth near x¢. The singular support is a closed subset of R®.

In the following proposition we give three equivalent characterizations of the complement
of the singular support.
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Proposition 8.19. Let f be a distribution on R and xo € R, The following are equiva-
lent:

(1) f is smooth near .
(2) There exists xo € C°(R?), xo(zo) # 0, such that

XoF(O)] < (€)™, neN. (8.71)
(3) There exists a neighborhood U of xo such that for any x € C(U),
XF©) < enf€)™, neN. (8.72)

Proof. (1)=-(3) follows by Proposition 8.18 =. (3)=-(2) is obvious.

Let us prove (2)=(1). xof is smooth by Proposition 8.18 <. Let U := {x | |xo(z)| >
31x0(z0)[}. Then U is an open neighborhood of zy on which Xo ! is smooth. Hence f =
Xo ' (x0f) is also smooth on U. O

We say that b € S™ is elliptic near xg iff there exist ¢ > 0, r and a neighborhood U of

o such that
b(z, )| = cl|™, zel, [¢[>r (8.73)

Theorem 8.20. Let f € L>~> and a € S®. Then
(1) If a € S™°°, then

Sing(Op(a)f) = 0. (8.74)
(2) Let Q be a closed subset of R%. If suppa C T#S, then
Sing(Op(a)f) C Sing(f) N Q. (8.75)
(3) Let Qq be a closed subset of RY. If a is elliptic near Qq, then
Sing(Op(a) f) D Sing(f) N Q. (8.76)

Proof. (1) is obvious. Let us prove (2).
Let f € L% and a € S™. Let 2o ¢ Sing(f). Let x, x1,€ C°, xoXx1 = Xo, Xo(2o) # 0
and suppxi N Sing(f) = 0. We will write xo, x1 for xo(), x1(z).

x00p(a)f = xox10p(a)f = xolx1, Op(a)] + xoOp(a)x1 f
=3 (Z) xoady, (Op(a))x} " f. (8.77)
k=0

But adfa(A) € Uk and \77Ff € L*°°. Thus all terms in (8.77) with k& < n belong to
L%, The term xoady, (Op(a))f € LF=™*"._ Since n was arbitrary, (8.77)€ L?>. This
proves
Sing(Op(a)f) C Sing(f). (8.78)
Now let zg & 2. We can find x € C2° such that x(x¢) # 0 and xa = 0. Then xxa € S~°.
Hence xOp(a)f € L?°°. Therefore,
Sing(Op(a)f) C Q. (8.79)
This proves (2). O
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8.12 Wave front

Let
TR := {(z,€) € T#R? | & # 0}

denote the cotangent bundle of R? with the zero section removed. We equip TiORd with an
action of Ry as follows:

(2,6) > (2,£6), teR, (8.80)
We say that a subset of TﬁORd is conical iff it is invariant with respect to this action. Conical
subsets can be identified with TﬁoRd /R,

Proposition 8.21. Let f € D/'(R™) and (x9,&)) € TiORd, The following are equivalent:
(1) There exists x € C(X) with x(x0) # 0 and a conical neighborhood W of & such that

XFE)| < enl)™, €W, neN. (8.81)

(2) There exists a neighborhood U of xo and a conical neighborhood W of &y such that if
X € C°(U), then
IXFE) < cen(§)™", €W, neN. (8.82)

We say that f is smooth in a conical neighborhood of (zg, &) iff the equivalent conditions
of Proposition 8.21 hold. Clearly, f is smooth in a neighborhood of x iff it is smooth in a
conical neighborhood of (zo, &) for all nonzero & € T# R®.

The complement in TﬁoRd of points where f is smooth is called the wave front set of

f and denoted WF(f). The wave front set is a closed conical subset of TﬁoRd. Clearly,
Sing(f) is the projection of WF(f) onto the first variable.

We say that b € S™ is elliptic in a conical neighborhood of (xg, &) iff there exist ¢ > 0,
r, a neighborhood U of g and a conical neighborhood W of &y such that

b(x, )| = cl¢]™, (z,§) eU xW, [¢] > (8.83)

The following theorem gives two possible alternative definitions of microlocal smoothness.

Theorem 8.22. Let f € L*>~°° and (x¢,&) € TiORd. The following conditions are
equivalent:

(1) f is smooth in a conical neighborhood of (x,&o).

(2) There exists m and b € Sph elliptic in a conical neighborhood of (z0,&0) such that
Op(b)u € L**>.

(3) There exists a neighborhood U of xg and a conical neighborhood W of &y such that for
all b € S supported in U x W we have

Op(b)u € L**>.
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Proof. (1)=(3). Let U, W be as in Prop. 8.21 (2). Let Uy be a neighborhood of zy whose
closure is contained in Y. Likewise, let W, be a conical neighborhood of &, whose closure is
contained in W. We will show that (3) is satisfied for Uy, Wp.

Let x € C(U) such that x = 1 on Uy. Let K € C*°(WV) be homogeneous of degeree 0
for |¢| > 1 such that x = 1 on W) for |¢| > 2. Then x(z),x(£) € SY, and

b=bxr(§)*xx(x)+r, reS .
Hence
Op(b)f = Op(b)s(D)x(x)f + Op(r)f.

Now r(D)x(z)f € L** by the condition (8.82) and Op(r)f € L% because Op(r) € U=,
Hence Op(b)f € ¥—°°.

(3)=(2) is obvious.

(2)=(1). We can assume that & and W are open such that |b(x,&)| > [£|™ on U x W
for [£] > 1. Let by € S™™ such that by = b~ there. Set by := bgxb. Then by = 1+ S~
inside U x W.

Let x € C°(U). Let k € C* be homogeneous of degree 0 for || > 2 and supported in
W. Then

R(&) % x(2) x by = k(&) x x(x) + 7, TS

Therefore,
k(D)x(z) = k(D)x()Op(bo)Op(b) + Op(r1), 71 € 5™

We apply this to f. Using Op(b)f € L?> we see that
K(D)x(x)f € L**,

which means that (1) holds. O

8.13 Properties of the wave front set

Example 8.23. Let ) be a k-dimensional submanifold of R? with a k-form 3. Then the
distribution

(Flu) = [ o5
y
has the wave front set in the conormal bundle to Y:
WFE(F) CcN*Y:={(z,&) : z€), (£v)=0, veTY}
Example 8.24. For X =R,
WF((w+i0)7") = {(0,€) : €>0}.

Example 8.25. Let H be a homogeneous function of degree 1 smooth away from the origin
and v € C*,

192v(€)] < ca(e)™ V!
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Then
[ n(€)ae = (o)

satisfies
WEF(u) ={(VeH(£),§) : & € suppv}.

Theorem 8.26. Let u € L>>® and a € S.
(1) Ifa € S™°°, then
WF(Op(a)u) = 0. (8.84)

(2) Let T be a conical subset of T#R. If suppa C I, then

WF(Op(a)u) C WF(u)NT.

(3) Let Ty be a conical subset of T#*R®. If a € S™ is elliptic on Ty, then

WF(Op(a)u) D WF(u) N Ty.

Theorem 8.27 (Theorem about propagation of singularities). Let h € S;h be real and
elliptic. Let ¢ be the Hamiltonian flow generated by hi, the principal symbol of h. Then

WF(e®OPMy) = ~, (WF(u)).

9 Operators on manifolds

9.1 Invariant measure

Let M be a (pseudo-)Riemannian manifold with coordinates [z?] and a metric tensor [¢g*/].
The coordinates for every point p determine the basis dz*, ¢ = 1,...,d, of TfM and O,
i=1,...,d, of T,M. We have

Gij = (04i]041), g = (da’|da?),

where [¢%/] is the inverse of [g;;]. When we change the coordinates x — #, then

o _ 028 Da)
Inm = o7 8‘%"7‘9”.
Therefore,
- ox\?2
det g = (det %) det g.
Hence
[ f@ldetgl @)e = [ @) detglt ). (9.1)
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Thus if we set |g| := det g, then |g|2 (z)dz is an invariant measure on M. It defines a natural
Hilbert space with the scalar product

(ulw) i= [ W@(a)lgl (@) (9.2)

Here u, w are scalar functions on M, that is their values do not depend on the coordinates.
Instead of scalars one can use half densities, that is functions on M that depend on

coordinates: if we change the coordinate from x to & it transforms as u — |4/ %m.

Every scalar function can be half-densitized. More precisely, the following map associates
to a scalar function u a half-density:

U U = lgl3u.

The scalar product between two half-densities is
(u|lw) = /u% (z)wy (z)dw. (9.3)

9.2 Geodesics

Let M be a Riemannian manifold and pg,p; € M, then a geodesics joining pg and p; is a
map [0,1] 3 t % x(t) € M such that z(0) = py and (1) = p;, which is a stationary point
of the length

1
/0 9 (@O (0 (Dt (9.4)

The Euler-Lagrange equations yield

0= (Ea.k ) k)./g--ysga‘ S (Qgtk:'ti + grjadl it 4 giggdtit — g--k:'c"s'cj)
dt T T J 2\/W s ’ J»
- d 1

d - 9.5
I G T (9:5)

Introducing the Christoffel symbol

k= 59 (mk,t + Gmik = Grtm) (9-6)
we rewrite this as ) ) .
i 4 Thakat = f()i, (9.7)

where f(t) is arbtrary.
There exists another variational principle for geodesics based on the functional

/O g1 (@(r) () (7)dr. (9.8)
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Here the Euler-Lagrange equations yield simply
d Qg L ki
0 = (Eai,k — axk)gijl‘ ) =gt + Ijata.

We obtain a unique canonical parametrization by the so-called affine parameter. Note that
(9.8) can be used also in the pseudo-Riemannian case.
Using the Lagrangian
L(z,%) = gij(z)3" 3’

we introduce the momentum oc

&= PRl 9ij 7
and after the Legendre transformation we obtain the Hamiltonian
H=i'¢ — L=g"(x)&¢&;. (9.9)

Note that the same trajectories as for (13.5) one obtains with the Hamiltonian
VH = /g ()& (9.10)

In fact, the Hamilton equations for (9.10) are

Besides /g% (x)§;&; is preserved along the trajectories. The advantage of the Hamilton
equations for (9.10) is that they preserve conical sets—they are invariant wrt the scaling in

13
9.3 2nd order operators

Suppose that we have an operator on C°° (M), which in coordinates has the form
L := g (2)0;0; + b'(2)0; + c(z). (9.11)

We will assume that ¢/ is real and nondegenerate. When we change the coordinates, the
principal symbol ¢¥/¢%¢7 does not change. Therefore, it can be interpreted as the metric
tensor, so that M becomes a pseudo-Riemannian manifold.

Clearly, b; and ¢ depend on the choice of coordinates. To interpret (9.11) geometrically,
choose a 1-form A;dz’ and a 0-form V. Let u,w be (scalar) functions on M. The following
expression does not depend on the coordinates:

[ 191 (o Al 10,00+ Ayw) + Viw) . (9.12)
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After integrating by parts, (9.12) becomes

Ja(lsl 4 -0+ anlgltg(=i0; + 4,) + V)ulgl . (9.13)

Therefore, the geometric form of (9.11) on scalars, resp. on half-densities are
= |91 7% (—10; + A))lg|? g7 (—i0; + A;) + V, (9.14)
Ly = |g| % (—i0; + Ai)|g|> 9" (—i0; + Aj)lg| =% + V- (9.15)

9.4 Equations second order in time

Consider the equation
r(t) = (97 + L)f(2), (9.16)

where L is positive. Given f(0), f/(0) it can be solved as follows:

(1) = zf (VRO = i70) =3 [ )
;t/f (ff( ) +1f(0) +i/0t ei“ﬁr(u)du). (9.17)

9.5 Wave equation—static case

Assume that g;; is positive definite metric tensor on a manifold 3. Consider the static wave
(or Klein-Gordon) equation on R x X:

(07 + 19174 (—i05 + An)lglb ¥ (<10 + Aplgl™F + Y) f = (9.18)

It is of the form (9.16) with L given by (9.15). If L is positive, then we can apply (9.17)
directly. If not, we can split it as

L=ILo+Y,
where
= [gI 7% (~i0: + Ay)lg|* " (10 + A;)lg| ™ (9.19)
is positive. Then we can rewrite (9.17) as
lt\/LT) t
f@) (\/ of(0 i/ e Vo (p(u) — Y)f(u)du)
0
—mvﬁf t
(\/ of(0) +if'(0 / &V (1 (u) — Y f(u))du). (9.20)
0

Theorem 9.1. Suppose that f,r € L>~°°. Suppose that g, A,Y are smooth, [g%7] is positive.
Let ¢ be the geodesic flow, that is, the flow on T#R® given by the Hamiltonian /g (x)&&;.
Then

WE(£(1)) = %(WF(£(0)) U | 70 WF(r(s)). (9.21)

0<s<t
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Proof. If L is positive, we can use directly Theorem 8.27. If not, we can use (9.20). We
note that \/%Y € U1, Therefore, the statement follows by iterating (9.20). O

9.6 Wave equation—generic case

Suppose that M is a Lorentzian manifold. Consider the Klein-Gordon equation on M:
(l917H (=10 + A g1t g (=i, + A)lg ™ + V) f =1 (9.22)

We say that a hypersurface S is Cauchy if it is spatial and every geodesics intersects S
exactly once. We say that M is globally hyperbolic if it possesses a Cauchy surface.
For a geodesic v given by R 3 t — z#(t), we define its lift to TfOM by

5 1= {(@" (), A" (g (a(8) | £ R, A0},
Introduce the characteristic set of the equation (9.22)
Char := {(x,€) € TI,M | £.£,9(x) = 0}.
Note that Char is a closed conical set. It is a disjoint union of lifts of null geodesics.

Theorem 9.2. We assume that M is globally hyperbolic. Suppose that f,r € L*»~> satisfy
(9.22). Then
WE(f) € Char UWF(r).

Besides, if 7 is a null geodesic lifted to the cotangent bundle TfOM, then WE(f) N4 is a
union of intervals whose ends are contained in WF(r) or are infinite.

In order to analyse (9.22) it is useful to identify (at least locally) M with R x 3, such that
the metric g = [g,.] restricted to 3, denoted gsx;, was spatial. Equivalently, dt is timelike.
Thus M is foliated by Cauchy surfaces. (It is a nontrivial fact that you can do it on a
globally hyperbolic manifold).

10 Path integrals

In this section ~ = 1 and we do not put hats on p and x. We will be not very precise
concerning the limits — often lim may mean the strong limit.

10.1 Evolution

Suppose that we have a family of operators ¢ — B(t) depending on a real variable. Typically,
we will assume that B(t) are generators of l-parameter groups (eg. i times a self-adjoint
operator). Under certain conditions on the continuity that we will not discuss there exists
a unique operator function that in appropriate sense satisfies

d
T Ultto) = B)U4,t-),
+

U(t,t) 1
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It also satisfies

S Ut t) = Ul 1B,
Ulta, t)U(t1,t0) = Ulta,to).
If B(t) are bounded then
Ulty,t-)=> / B(ty) - - B(t1)dt, - - - dt;.

=04, i > Sty >t

Texp (/t+ B(t)dt) — Ut ).

In particular, if B(t) = B does not depend on time, then U(ty,t_) = e(t+=t-)5,
In what follows we will restrict ourselves to the case t_ = 0 and ¢ty = t and we will
consider

We will write

U(t) := Texp (/Ot B(s)ds) . (10.1)
Note that the whole evolution can be retrieved from (10.1) by

Ulty,t)=U(t)U(t-)" .
We have

U(t) = lim [JerZC). (10.2)
n—oo
=1

(In multiple products we will assume that the factors are ordered from the right to the left).
Now suppose that F(s,u) is an operator function such that uniformly in s

"B _ P(s,u) = o(u),
[F(s,u)l < C.
Then
i (TR
U(t) = nlinéojl_[lF<n’ n) (10.3)
Indeed,

Jj=1 j=1
n n k-1

© ST ) (st (D)) T
Py e R s )5

_ ~1

= no(n™") T 0
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Example 10.1. (1) F(s,u) = 1+ uB(s). Thus
- t /gt
U = JL“;E (“ nB(n)>~

Strictly speaking, this works only if B(t) is uniformly bounded.

In particular,
t n
et = lim (]1+ 7B> .
n

n—roo

(2) F(s,u)=(1— uB(s))_l. Then

U(t) = lim ﬁ (11 - ;B(JD) _1.

This should work also if B(t) is unbounded.

In particular,
t —-n
e” = lim (1--B) .
n

n—o0

(3) Suppose that B(t) = A(t)+C(t), where both A(t) and C(t) are generators of semigroups.
Set F(s,u) = e"A1euC1)  Thys

= i FAME) exCE)
U(t) nhﬁ\rr;o 1_[1 e e . (10.4)
s

In particular, we obtain the Lie-Trotter formula

. t4 o\
et(AtC) — lim (enAe"C) .

n—oo

10.2 Scattering operator

We will usually assume that the dynamics is generated by iH (t) where H(t) is a self-adjoint

operator. Often,
H(t) = Ho + V(1),

where Hj is a fixed self-adjoint operator. The evolution in the interaction picture is
. t+ .
S(ty,t—) = elt+H”TeXp( —1i H(t)dt) e it-Ho,
t_
The scattering operator is defined as

S = lim S(t+,t,).

ty,—t_—o0
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Introduce the Hamiltonian in the interaction picture

Hip(t) = eltHoV (t)e~tHo,

Note that
O, S(tyit-) = —iHmg(t4)S(t4,1-),
O S(t4,t-) = iS(t4,t-)Hme(t4),
Sthe) = 1.
Therefore,
ty
S(ty,t) = Texp(—i Hlnt(t)dt),
t_
s = Texp(—i Hlnt(t)dt)

10.3 Bound state energy

Suppose that ®g and Ey, resp. ® and E are eigenvectors and eigenvalues of Hy, resp H, so
that
Hy®y = Eg®y, HP = FED.

We assume that ®, F are small perturbations of ®g, Fy when the coupling constant A is
small enough.
The following heuristic formulas can be sometimes rigorously proven:

d . . )
_ — 3 N\ —1 —itHyg ,i2tH —itHy
E - E, tl}gloo(Ql) g log(®ole e e D). (10.5)

To see why we can expect (10.5) to be true, we write
((I)O|efitngi2tHefitHo(I)o) _ |((I)O‘(I))|2ei2t(E7E0) + C(t)

Then, if we can argue that for large ¢ the term C(t) does not play a role, we obtain (10.5).

10.4 Path integrals for Schrodinger operators

We consider

h(t,z,p) := %p2 +V(t,x),
H(t) = Op(h(t) = —5A+V(t2),
U(t) = Texp (—i/0 H(s)ds) . (10.6)

We have _ _ )
e 3 (z,y) = (2mit) " 2ez (@)

88



From

n
T —E V(L 2)igh A
U(t) ”L%jlllle e
we obtain
n . d . 2
2mit\ —9 inlej_1-ei)% L4t
= 1 . (7) — g V(L)
U(tvxay) nl—>ngo dxn 1 /dxl 1_[1 n € ¢ Y = Zo,
j:

T = Iy,

|
i»—a
g5
/N
Do
JE
~
3
|
o
I\J\
Q.
8
S
|
—
\
o,
8
—

where

is the Lagrangian and

D,y(z()) = lim (@)_

n

dan
2

d%@) --.dz(f) (10.7)

n

is some kind of a limit of the Lebesgue measure on paths [0,t] 3 s — x(s) such that z(0) =y
and end up at z(t) = x.

10.5 Example-the harmonic oscillator

Let

1 1
H=_p*>+ —2°
oP" T 57

It is well-known that for ¢ €]0, 7|,

—itH(

(10.8)

—(22 + y?) cost + ny)
e .

) = (2risint)~ 3 exp (
= (2wisin X
Y= Aems P Disint
(10.8) is called the Mehler formula.

We will derive (10.8) from the path integral formalism. We will use the explicit formula

for the free dynamics with Hy = %pQ:
—(z —y)?

e o (g y) = (27Tit)_% exp ( o

). (10.9)
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For t €]0, 7, there exists a unique trajectory for H starting from y and ending at . Similarly
(with no restriction on time) there exists a unique trajectory for Hy:

ra(s) = SO D oy IO D (1010)
2 2
z0,01(8) = x% + y(t ; S). (10.11)
Now we set z(s) = za(s) + z(s) and obtain
t i = tl i2(s) — 2%(s))ds
| 1 i) = [ 50 - ) (10.12)
_ / L(za(s), da(s))ds +/ L(=(s), 2(s))ds (10.13)
0 0
2?2 + y?) cost — 2z t
_ +y2)sintt 22y +/0 %(22(5) — 22(s))ds. (10.14)
Similarly, setting x(s) = xo,a(s) + z(s) we obtain
/t Lo(z(s),#(s))ds = /t 19;«2(5)d3 (10.15)
0 0 2
(10.16)
x—y)? k
_ ! zty) +/0 %?@)ds. (10.17)
Therefore,
e it (1,y) _ [ exp (i fOtL(x(s),;ic(s))ds>Dw,y (z(+)) 10.18)
e~ itHo(z,y) [ exp (i fot Lo (x(s),x(s))ds) Dy y (x())
S (g2 4 ) 4 (22(5) — #2(5))ds ) Do (=) (10.19)

fexp (i(w;ty)l’ + ifot %22(8)(15)1)0’0 (z())
L(=A) %exp (1(w2+y22)s+stt72my)
- i(iA -1) (z—y)? (10.20)
2 exp (IT)

Here —A denotes the minus Laplacian with the Dirichlet boundary conditions on the interval
[0,¢]. Its spectrum is {”2]“2 |k=1,2,... } Therefore, at least formally,

L(-A) 1
det [ 2 - 10.21
t(é(—A—1)> det (11+A*1) (1021
-TI (1 - #) = ﬁ (10.22)
k=1



Now (10.9) implies (10.8).
10.6 Path integrals for Schrodinger operators with the imaginary
time
Let us repeat the same computation for the evolution generated by
—H(t)=—-(-A+V(ta)).

We add the superscript E for “Euclidean”:

t n _
E = —_ = 1 _%V(%’x) %A
U=(t) : Texp( /0 H(s)ds) nlgr;ojl;[le en”.
Using
e%m(m,y) = (27rt)_d/ge_%(“'_y)2.
we obtain

. oty — %
UB(t,z,y) = nl;rrgo (—) /dxn_1~~~/dx1

Heuristically, this is written as

U = [ (= [ 1E(a(6)06)d) D5, (510),

/

where 1
LE(s,2,2) := iiz +V (s, z)

is the “Euclidean Lagrangian” and

DE (2()) == lim (@)‘%dz(m - Ut) da(2)

n—00 n

is similar to (10.7).

10.7 Wiener measure
aw, (z()) = exp ( —/O S47(9)) AP, () (1)

can be interpreted as a measure on paths, functions [0,¢] 3 s — z(s) such that 2(0) = y—the
Wiener measure.
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Let us fix ¢, > --- > t; > 0, and F' is a function on the space of paths depending only
on x(tp),...,x(t1) (such a function is called a cylinder function). Thus

F(z()) =F, (x(tn), . ,x(tl)).

Then we set

/ AW, (2()) F (()) (10.23)

_(1”717“1)2 _(zp—=1)? _(m1—y)?
e 20n—tn_1) e 2(t2—t1) e 2t
:/Ftn _____ 1 (@, 31) dz, - - 7dzo dz;.
(27 (tn — tn—1))? (2m(ta — t1)) (27ty)®

We easily check the correctness of the definition on all cylinder functions. Then we extend
the measure to a larger space of paths—there are various possibilities.

We can use the Wiener measure to (rigorously) express the integral kernel of U¥(t). Let
®, ¥ € L?(RY). Then the so-called Feynman-Katz formula says

(®|UE ()W) (10.24)

:/dx(O)/dWx(O)(x(-))@(x(t))\ll(x(O))exp(—/Ot V(s,x(s))ds).

Theorem 10.2. Let t,ty,to > 0. Then
/:c(t)dWo (z(-)) =0, (10.25)
/{Ei(tg)l'j(tl)dWO (LL'()) = (Sij min(tg,h), (1026)

[ attz) = (6w (o) = itz — 1l (10.27)

Proof. Let us prove (10.26). Let ¢t > ¢1. Then

o—x z2

e ;(tz tll)) e 2t11
/ (t2)e (1) AW, (x / / S dpdas (10.28)

27T tgftl))f (27Tt1)
/ 2 € 4 ¢ (10.29)

= [2{——dry = . .
1(277151)5 ' '
O
Recall the formula (?7)

200 (0) = (detQm/)*%/\If(z)e*%x'”’lfdx, (10.30)

which says that for Gaussian measures you can “integrate by differentiating”. The Wiener
measure is Gaussian, and in this case (10.30) has the form

/dWo (z(-))F(x()) = exp (%aw(sz) min(so, sl)aw(sl))F(a:(-)). (10.31)
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Indeed, the operator whose quadratic form appears in the Wiener measure is the Laplacian
n [0,¢], which is Dirichlet at 0 and Neumann at ¢t. Now the operator with the integral

kernel min(¢s,¢1) is the inverse of this Laplacian.

10.8 General Hamiltonians — Weyl quantization

Let [0,t] > s — h(s,z,p) € R be a time dependent classical Hamiltonian. Set
H(s) := Op(h(s))
and U(t) as in (10.6).

Lemma 10.3.
o—10p (h(s)) _ Op(e ™)) = O(u?). (10.32)

Proof. Let us drop the reference to s in h(s). We have

aeinp(h)Op(e—iuh) _ ieinp(h) (Op(h)op(e—iuh) _ Op(he_iuh)). (1033)

Now .
Op(h)Op(e™™") = Op(he ™") + %Op({h,e_i“h}) + O(u?). (10.34)

The second term on the right of (10.34) is zero. Therefore, (10.33) is O(u?). Clearly,
eOP(M Op (e~ivh) ‘u:O = 1. Integrating O(u?) from 0 we obtain O(u?). O

Thus we can use F'(s,u) := Op(e~"(*)) in (10.3), so that
_ : & —ith(L
Uity = lim Hlop(e (+))
s
Thus

U(taxvy) = lim / /HeXp Jnfxl +I7 1,pg)+i(xj—xj71)]9j)

n—0o0

_ "y,
% H dr; | (%)d‘ y = o, (1035)
7j=1 J=1
T =Ty
‘7:0 n
n—1 n dp
) j
< [Tas 1 (%)d‘ )= o, (10.36)
J=1 =1 rT=x



Heuristically, this is written as follows:

Utir.) = [Day GOID GO e (i / (()pls) — A(s, 2(), () ds) 7

where [0,¢] 5 s — (z(s),p(s)) is an arbitrary phase space trajectory with z(0) =y, z(t) =«
and the “measure on the phase space paths” is

n—1 . n dp( (5 l)i
. t 2/n
pestetn = i {12, 000 [T 4 G )

j=1 j=1
10.9 Hamiltonians quadratic in momenta I
Assume in addition that

h(t,2,p) = 5(p — Alt, ) + V(1,2) (10.37)
Then
1
Introduce
v=p—A(t, x).

The Lagrangian for (10.37) is
1
L(t,z,v) = 502 +vA(t,x) — V(t,x).

Consider the phase space path integral (10.36). The exponent depends quadratically on
p. Therefore, we can integrate it out, obtaining a configuration space path integral. More
precisely, first we make the change of variables

vj =pj — A(ﬂfr%)’

and then we do the integration wrt v:

Uitr) = Jim [ - /p( i(“ B (o + A(,25)

1 n—1
—5ur = V() )) Hd H

T =z,
: Jt Tj+ 2z (xj—xjfl)
- L
Jim [ fexp Z (n 5 :
lt 7l2
x(2mit) dej‘ )= 0. (10.38)

T =T,
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Heuristically, this is written as

U(t,z,y) /Dzy exp( /Ot L(s,m(s),dc(s))ds) ,

where [0,t] 5 s — x(s) is a configuration space trajectory with 2(0) =y, z(¢t) = = and the
formal “measure on the configuration space paths” is the same as in (10.7)

10.10 Hamiltonians quadratic in momenta II

Suppose, more generally, that

h(t,2,p) = 5 (i — Ault,2))g™ (0,2) (g — Ay(t,2) + V(1,2 (10.39)
Then
Op(h(1) = 5o~ Ailt,2))g(t,2)(p; — Ayt ) + V(1)

1 ..
1 Z 0,0, g" (t, ).

j

(For brevity, [¢*/] will be denoted g~* and [g;;] is denoted g)
Introduce
v = gil(ta I) (p - A(tv 17))
The Lagrangian for (10.39) is

=v'g;; (t, x)v! + 07 At x) — V(t, ).

L(t,xz,v) = 5

Consider the phase space path integral (10.36). The exponent depends quadratically on

p. Therefore, we can integrate it out, obtaining a configuration space path integral. More
precisely, first we do the integration wrt p(-):

Uttey) = [ Day(a()D(() exp (i [ Gt

—l(p(s) A(s, w(s))g_l(s,x(s)) (p(s) - A(S,x(s)) — V(s,x(s)))ds)

/Dm y(z(+)) exp ( /Ot (%x(s)g(sw(s))x(s) + @(s)A(s, z(s)) — V(s,x(s)))ds

%/ Trg(s, (s ))ds)

/Dw ) exp (/Ot (iL(s. 2(s), () + 2’Hg(s 2(s )))ds> . (10.40)
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10.11 Semiclassical path integration

Let us repeat the most important formulas in the presence of a Planck constant #.

U(t) = Texp (fli /Ot H(s)ds> . (10.41)

Ut = [ Day @)D (90 exp (£ [ 61p05) — b a(s) o) s ).
We assume in addition that the Hamiltonian has the form (10.39), and we set
2(s) = zals) + Vha(s),
where z is the classical solution such that z(0) = y and zq(t) = .
Ut,z,y) = h% /DI y W T (- )) exp (711 /Ot L(s,x(s),a’c(s))ds)
= htexp <il‘z /OtL(S,$c1($)7icl(5))d5>
/Do 0 (2(-)) exp (2 /Ot (8§(S)L(3,xd(s),md(s))z(s)z(s)
+20,(5)0i(5) L (5, ma1(5), a1 (5)) 2(5) 2(5)

—1—85(3)14(57 za(s), xCl(s)) Z(s)i(s) + O(\/ﬁ))ds>

—h% det ( l Jo 2o Ls,zals),zals))  fy 3x<s)5fc<s>L(8»ch1(s),ffcl(s))] ) )
2m fot 0, S)GI(S)L(S,xcl(s)wcl(s)) fg 8§(S)L(s, T (s), mcl(s))

X exp (711 /Ot L(s,xcl(S),fbcl(S))ds) (1+0(Vh)).

=

10.12 General Hamiltonians — Wick quantization

Let [0,t] © s — h(s,a*,a) € R be a time dependent classical Hamiltonian expressed in terms
of the complex coordinates. Set

H(t) := Op® *(h(t))
and U(t) as in (10.41). (We drop the tilde from % and 4, as compared with the notation of

(4.15).)
Following Lemma 10.3 we prove that

e—inp“*’a(h(s)) _ Opa*,a(efiuh(s)) — O(’U,2) (1042)
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Thus we can use F(s,u) := Op® (e7™h(*)) in (10.3), so that

Op"(ult) = V) = Jim TLop (e (5),

Thus, by (?7),

u(t,a*;a) = nan;oexp(Zﬁak(?QZf)HeXp —ith n, J,a]))‘

k>j a=0p="-=0ai.

Heuristically, this can be rewritten as

t t
u(t,a*,a) = exp (/ ds+/ ds_0(sy — s_)aa*(s+)3a(s)>
0 0

t
X exp (—i/ h(s,a*(s),a(s)) ds) . (10.43)
0 a=a(s),t>s>0
Alternatively, we can use the integral formula (??), and rewrite (10.43) as
n—1
bjt1 —bj)b%  bip1(b5, — b
u(t,a*,a)/‘-~/exp(z:<(JH2 J)jJr ]H(j'; J))
xHeX (—ith (i,a* + b3, a+b;) 1:[ bi+1d05 (10.44)
P e (2mi)4  lbx=0,b,=0" ’
Heuristically, it can be rewritten as
u(t,a*,a) (10.45)

S (),b0)) exp ( fi (2G4 4 LD iy (s, 0% + b7 (5), 0 + b(s)) ) ds)

wawa»waﬁcﬂ*%Wuﬁ”@@mﬁ

Here, D(b*(+),b(-)) is a “measure” on the complex trajectories satisfying b*(t) = 0, b(0) =
Let us describe another derivation of (10.45), which starts from (10.43). Consider the
operator G on L?([0,t]) with the integral kernel G(si,s_) := (sy — s_) Note that

0s . 0(s4 —5_) =0d(s4 —s_).

Besides, 0f(0) = 0. Therefore, 9;G = 1. Thus G is the inverse (“Green’s operator”) of the
operator d; with the boundary condition f(0) = 0. It is an unbounded operator with empty
resolvent. It is not antiselfadjoint — its adjoint is 9, with the boundary condition f(¢) = 0.
The corresponding sesquilinear form can be written as

/Ot a*(s)0sa(s)ds.

Using (?7), (10.43) can be rewritten formally as (10.45).
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10.13 Vacuum expectation value

In particular, we have the following expression for the vacuum expectation value:
(QU®)9)
t . . "
fD(a(')) exp (fo (a*(s)0sa(s) —ih (s,a*(s),a(s))) ds)

= . 10.46
[ D(a(-)) exp (fot a*(s)0sa(s)ds) ( )

For f,g € C? we will write
a*(f) =aifi, alg) = a;g;

One often tries to express everything in terms of vacuum expectation values. To this end

introduce functions
0,t] 3 s+ F(s),G(s) € C%,

and a (typically, nonphysical) Hamiltonian
H(s) +a*(F(s)) +a(G(s)).

The vacuum expectation value for this Hamiltonian is called the generating function:

Z(F,G) = <Q|Texp< - 1/0 (H(s) +a*(F(s)) + a(G(s)))ds> Q)

Note that we can retrieve full information about U(t) from Z(F,G) by differentiation.
Indeed let
Fi(s) = fid(s —1), Gi(s) = gid(s), fi.gi € CL.
Then

- FGh--Crdpog Z(FG)|

= (@ ()@ ()T (1) - a* (9)2)
To see this, assume for simplicity that
Fi(s) == Fu(s) = fo(s =), Gi(s) =+ = Gm(s) = gd(s),

and approximate the delta function:

1 0<s<e 0 0<s<t—eg
5(s) ~ 4 /€ NG St~ N .
0 e<s<t /e t—e<s<t

Using these approximations, we can write
Z(sF.uG) = lim (Q|e*isfa(f)U(t)e*iuia*(g)g>
€E—

= (O @e e 0a).
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Now

Fi---FG - .@ﬁ}}@%z(ﬂ é)’F*O G=0

anom (eis"*(f)mU(t)e’i““*(Q)Q)

= (@ () U B (9)"9).

=0, u=0

10.14 Scattering operator for Wick quantized Hamiltonians

Assume now that the Hamiltonian is defined for all times and is split into a time-independent
quadratic part and a perturbation:

h(t,a*,a) = a*ea + Aq(t,a”, a).
Set
Hy = Op“*’“(a*ea =a%eqa = Za €i0;

*

Q(t) = Op* “*(qt)),
so that H(t) = Ho + MQ(t). The scattering operator is
S = Texp( —i / Hlnt(t)dt),

where the interaction Hamiltonian is

HInt (t) — )\eitHo Q(t)e—itHo
_ )\Opa*,u (q(t eltea* e 1tsa)).

Setting S = Op® %(s), we can write

S(a,*’ a) = exp </ dt+/ dtfe(t+ - t)aa(t+)aa*(t_)>

X exp <_i)\ /_ZOO q (t e“la* (1), e_iata(t)) dt) ‘ a* = a* (1),

a=ua(t), teR
= exp </ dt+/ dt_eis(t+7t7)0(t+ — t—)aa(t+)aa*(t)>
X exp (i)\/ q(t,a*(t),a(t ))dt) ’ et q* = a*(t), (10.47)

el*a =a(t), t € R
JDOC) exp (75 ((07(1) = =4a) (90 + i) (b(1) — e~<ta) — iAq (1,17 (1), b(1))) dt)
fD(b()) exp ffooo ((b* (t) — eiEta*)(ﬁt +ie) (b(t) _ efista) ‘
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In the firtst step we made the substitution
a(t) = e Pa(t), a*(t) = e afy (1),

subsequently dropping the subscript Int. Then the differential operator was represented
as a convolution involving Green’s function of the operator J; + ie that has the kernel
ettt —t_).

11 Diagrammatics

11.1 Friedrichs diagrams
11.1.1 Wick monomials

Monomials in commuting/anticommuting variables a*(¢), a(£) parametrized by, say, £ € R9,
are expressions of the form

r(a* (11.1)
/ /dfl- AEE A derr(Er, L EE e )
xa*(€5,) a0t (€ )aler) - al ), (11.2)

The complex-valued function r, called the coefficient function is separately symmetric/antisymmetric
in the first m* and the last m™ arguments. We call (m™, m™) the degree of (11.2). A poly-
nomial is a sum of monomials.

Consider creation/annihilation operators parametrized by ¢ € R%:

a(€),a" ()l = 6(¢§-¢), (11.3)
“(©),a" €)= 0. (11.4)

Q>

Q> —

(@(€), a(¢))5 = |
By a Wick monomial we mean an operator on T’y ,(L2(R?)) given formally by
(11.5)
/ /dsl e dgh gy G e e e )
)t €ale) e ). (11.6)

A Wick polynomial is a sum of Wick monomials.

Thus to each polynomial g(a*, a) we associate an operator g(a*,a). q(a*,a) is called the
Wick quantization of g(a*,a). q(a*,a) is called the Wick symbol of q(a*,a).

m-particle vectors have the form

(11.7)
:/"'/q(fh...,fm)a*(fm)-~-a*<sl>ﬂd&n-~-d&, (11.8)
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where ¢ is a symmetric/antisymmetric function. Clearly,

llg(a*)Q? = m!/\q(gl,...,gm)|2dgm-..dgl. (11.9)
Note that if & were a discrete variable, then (11.9) would not true in the case of coinciding
£.
It is convenient to introduce the shorthand

|€ms - &1) 1= @™ (§m) -~ @ (€1)S (11.10)

Clearly, (11.10) is not an element of the Fock space, but for many purposes it can be treated
as one. It becomes an element of the Fock space after smearing with a L? test function, as
in (11.8).

If g(a*, a) is a Wick polynomial, it is convenient to decompose it in a sum of monomials
as follows:

A% A Q7r+, *(d*7&)
g(a*,a) = Z # (11.11)

mt,m

We have then
Gt (G &5 6m e €T (11.12)
=(&h - & @, a)lg, .. 8). (11.13)

Anticipating the applications to compute the scattering operator, the variables on the
right &, ,...,& will be sometimes called the incoming particles, and the variables on the
left &5 ... ,{f the outgoing particles.

myo
11.1.2 Products of Wick monomials
Suppose that g, (a*, a),..., ¢1(a*, @) are Wick polynomials. The Wick symbol of their product
q(a*,;a) = qu(a*,a)---q1(a*,a) (11.14)

can be computed from the formula
q(a”, a) (11.15)
= exp (D 00,003 )an(alan) -~ qrlatan)| o _ o

k>j *

(11.16)

(11.16) leads naturally to a diagrammatic method of computing products of Wick polyomials.
To describe this method assume that r; are monomials of the degree (ml,m;), j =

3
1,...,n. We would like to compute

ra(@*,a)  ri(a%,a)

q(@*,a) == . (11.17)

milmy ! mf!mf!

We will describe a diagramatic method for computing ¢(a*,a), the Wick symbol of
(11.17).
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(1) Rules about drawing diagrams.

(i) Suppose that the monomial 7;(a*, a) has the degree (mj', m; ). We associate to it

a vertex with m; annihilation legs on the right and m;' creation legs on the left.
(ii) We align the vertices in the ascending order from the right to the left.

(iii) On the right we mark m~ incoming particles. Each corresponds to one of the
variables &, ,...,& and has a single creating legs. On the left m™* outgoing
particles. Each corresponds to on of the variables fj{u, ..., &6 and has a single
annihilation leg.

(iv) We connect pairs of legs with lines. All legs have to be connected. A line always
goes from a creation vertex on the right to an annihilation vertex on the left.

(2) The product
BU= [Tkt [T# ] %! (11.18)
§>i j i
will be called the symmetry factor of the diagram. Here
(i) kj; is the number of lines connecting j and ¢,
(i) k; :==m; —>_; kj; is the number of lines connecting ¢ and incoming particles,
(iii) k:;r = mj — >, kji is the number of lines connecting j and outgoing particles.
We also have

(iv) m™ =5 ; k5, the number of incoming particles, denoted sometimes my,

(v) mt =3 ; kj, the number of outgoing particles, denoted sometimes mj.

(3) Rules about evaluating diagrams.
(i) We put the function r;(...,...) for the jthe vertex. Each leg corresponds to an

argument of r;.

(ii) We put [ [6(&4 —&-)d€,dé for each line, where &4 is the variable of its creation
leg and &_ the variable of its annihilation leg.

(iii) For the incoming particle {; we put a({; ) and for the outgoing particle ﬁ;r we
put a*(¢;).

(iv) In the fermionic case we multiply by (—1)? where ¢ is the number of crossings of
lines.

(v) We multiply all the terms, evaluate the integral, obtaining a polynomial of degree
(m}, mp) denoted gp(a*,a)

(4) We sum the values of diagrams divided by their symmetry factors:

* gs(a”,a
gla*,a) = Y %'). (11.19)
all diag ’
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In particular,

dm+,m— (a*a a) o qB (CL*, CL)
T ntmel 2 T (11.20)
B : (m*,m*):(mg,mg)
A% A 4B
(Qlg(a*,a)Q) = go0 = > B (11.21)

B has no external lines

Note that B! equals the order of the group of the symmetry of the diagram. More
precisely, it is the number of permutations of legs of each vertex which do not change the
diagram.

The above method is one of versions of Wick’s Theorem. It is proven by moving all
annihilation operators to the right and moving all creation operators to the left, until they kill
the vacuum. When we commute/anticommute a term with contracted indices is produced,
which gives rise to a line.

More elegantly, we can use the formula (11.16). In fact, each diagram B is defined by a
collection of integers {k;;, j > i}, and we can write

1 ki
exp (Zaakaa;) = > T1 7 (0a0)™ (11.22)
J>i B j>i IV
This differential operator acts on the function

raag.a)  ri(af.an)

miyimy ! miimy!

(11.23)

The effect of the component of the differential operator (11.22) corresponding to B is the
appropriate contraction of the numerator and the change of the combinatorial factor in the
denominator. After identifying all a} and a; with a*, a, we obtain

qp(a*,a)
—. (11.24)
Hj>i kji! Hj k;_! Hi ki !
11.1.3 Friedrichs (Wick) diagrams
Consider a Hamiltonian
H = Hy+ W(t), (11.25)
where
H = [e@a©aeue, (11.26)
W+ m— <t7 d*7 CAL)

m+t,m-
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Thus the free Hamiltonian is a particle number preserving quadratic Hamiltonian and the
perturbation is a Wick polymial. We set as usual

Hine(t) = oW (t)e 1Mo, (11.28)

S = Texp( - i/OO Hlnt(t)dt>. (11.29)

Using
eitHoa*(f)e_itHo — eitw(ﬁ)a*(g), (11.30)
eitHoa(é-)e—itHo — e—itw(g)a(é')’ (1131)
we can write
Wyt - (L, €1 0%, 071 q)
Hi(t) = Z e . (11.32)

We assume that w,,+ ,,- (t) decays sufficiently fast as [t — oo. We will describe rules
for computing the Wick symbol of the scattering operator

S = s(a*,a) (11.33)
Sm+,m- (d*v d)
=2 i (11.34)
mt,m—

1) Rules about drawing diagrams.
g diag
(i) To every monomial w,,+ ,,-(t,a*,a) in the interaction we associate a verter with
m~ annihilation legs on the right and m™ creation legs on the left.

(ii) Choose a sequence of vertices (m.;",m;,),...,(m{,m]), and a sequence of corre-
sponding times ¢, > --- > t;. Align them in the ascending order from the right
to the left.

The remaining rules about drawing the diagrams are the same as in Subsubsect.
11.1.2.

(2) The symmetry factor B!, the number of incoming/outgoing particles my and m‘E’; are
defined as in Susbsect. 11.1.2.

(3) Rules about evaluating diagrams
(i) We put —iw,,+ .- (tj,...,...) for the vertex corresponding to t;. Each argument
is associated with a leg.
(ii) We put [ [e (e =256, — ¢ )de,dé_ for each line, where £_ is the vari-
able associated with its creation leg in the vertex at ¢;_ and £, is the variable
associated with its annihilation leg in the vertex at t;, .

(iii) For an incoming particle §; conected to time ¢; we put eit"w(g)a(ff). To the

(et
outgoing particle E;T connected to time t; we put e (& >a*(§;r).
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(iv) In the fermionic case we multiply by (—1)? where ¢ is the number of crossings of
lines.

(v) We multiply all terms and evaluate the integral over all £, obtaining a polynomial
B(tn,...,t1,a", a).

(4) We integrate the diagrams over ¢, > --- > t; divided by their symmetry factors:

> B(t,,...,t1;a",
=Y 3 [ [t
n=0all diag. b >t .

In particular,

Sm+,m— (a*a a)
Tt (11.36)

:i S / /B o tl’“ D ap . aty (11.37)

n=0p: (m+m-)= (mEmp) tn>->t
(Q|S9Q) = s0,0 (11.38)
> B(tn,...,t1)
:Z Z /"'/Tdtn“'dtl«
n=0 B has no external lines b >t

The above method apparently was first described by Friedrichs and the corresponding
diagrams are sometimes called Friedrichs diagrams. Another natural name, used in lecture
notes of Coleman, is Wick diagrams, since it is a graphical expression of Wick’s Theorem.

11.1.4 Friedrichs diagrams from path integrals

An elegant even if partly heuristic derivation of Friedrichs diagrams uses path integrals. Let
us introduce the relevant formalism.

Let [0,¢] © s — h(s,a*,a) € R be a time dependent classical Hamiltonian expressed in
terms of the complex coordinates. Set

H{(t) == 0p “(h(t)) (11.39)

U(t) —Texp<—1/ H(s ) (11.40)

Now

U(t) —nli}n;OHe_lth(n’“ "1)
j=1

.7

= lim He i (4) a*,a).
n—oo
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Figure 1: Various Friedrichs vertices
If we set u(t,a*,a) := U(t), then

n
u(t,a*,a) = lim exp (Za‘lka‘l;) Hexp (—%h (-ﬁll,a;,aj)) ‘ a=a, = =a,
j=1 _ _

n—o0
k>j
Heuristically, this can be rewritten as

*

u(t,a*,a) = exp // dsyds_ 04+ (s, )0a(s_)

t>s4>5->0

X exp (—i/oth(s,a*(s),a(s))ds> [ . (11.41)

a=ua(s), t>s>0

Assume now that the Hamiltonian is defined for all times and has the form (11.27).
Define the scattering operator S and its Wick symbol s as in (11.29) and (11.33). Using the
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time

Figure 2: A disconnected Friedrichs diagram
version of (11.41) with ]0, ¢[ replaced by | — oo, 00|, we obtain

s(a*,a) = exp /dt+/dt—8a(t+)aa*(t,)

o>ty >t >—o00

X exp (—i/\/ w (t,e'a* (t),e_ista(t)) dt) ‘

exp /dt+/dt‘eis(trt_)aa(u)aa*(tf)

o>t >t >—00

X exp (—i)\ /OO w(t,a*(t),a(t))dt) ‘ dtegr gy, - (1142)

— 00

In the firtst step we made the substitution
a(t) = e Fam(t), a’(t) = e"afy, (1),

subsequently dropping the subscript Int. Then the differential operator was represented
as a convolution involving Green’s function of the operator 0; + ie that has the kernel
elete—t)g(t, —t_).
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To derive the method of Friedrichs diagrams we can now proceed as in Subsubsect.
11.1.2.

11.1.5 Operator interpretation of Friedrichs diagrams

Denote for shortness the 1-particle space by V. (We usually assume here that V = L2(R?),
but this is not relevant here).

We can interpret B(ty,...,t1;a*, a) as a product of operators. For each line we introduce
the Hilbert space isomorphic to V. We have n + 1 time intervals

t>tn,...,tj+1 >t>tj,...,t1 > t.
For each of these intervals we have a collection of lines that are “open” in this interval. (This
should be obvious from the diagram). Within each of these intervals we consider the tensor
product of the spaces corresponding to the lines that are open in this interval.

The coefficient function w,,+ ,,,- (t) of the Wick monomial w,,+ ,,,- (t,a*,a) can be inter-
preted as the integral kernel of an operator from ®™ V to ™" V. (We could also interpret
it as an operator from ®§};V to ®;’}ZV7 but in this subsubsection we prefer the former in-
terpretation). If it is on the jth place in the diagram, this operator will be denoted Wg(tj).

1’ will denote the identity on the tensor product of spaces corresponding to the lines that
pass the jth vertex. At the left/right end we put symmetrizators corresponding to external
outgoing/incoming lines, denoted ©5/ ©5. Between each two consecutive vertices j + 1 and
J we put the free dynamics for time ¢;; —t;, which, by the abuse of notation, will be denoted
e~ (tir1=t)Ho and where Hy is the sum of ¢ for each line. For the final/initial interval we
put eltnflo [ e=ttillo Thys the evaluation of B is the integral kernel of the operator

Blty,....t1) = (=1)"0fe o (Wp(t,) @ 1) e (tn—tn-n)Ho. .
xe 2=t Ho (WL (4)) @ 1) e 1 Hog .

11.1.6 Linked Cluster Theorem

The Linked Cluster Theorem says that instead of the formula (11.35) there is a simpler way
of computing the scattering operator, where we need only connected diagrams:

s(a*, a)

_exp<z 5 /m/B(tm..éfl;a*,a)dtn',_dh)’ (11.43)

n=0con. diag.?,>>t;

(Q|SQ) = 50,0

_ = B(tn,...,t1)
= exp (Z:O > /--~/B!1dtn---dt1>. (11.44)

con. diag. tn>->t
no ext. lines
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In (11.43) we sum over all connected diagrams. In (11.44) we sum over all connected
diagrams without external lines. Clearly, (11.44) follows from (11.43).
We define the linked scattering operator as

Shin 11.45
= (11.49
If Siink = Slink(d*, &), then
. v _ sla",a)
Shnk(a va) (Q|SQ)
I ) R e 110

n=0 linked diag. t,>--->t;

> B(t,,...,t1;a%,a
exp(X:O > // ( B!l )dtn---dt1>. (11.47)

=Y con. linked tn>-->t1
diag.

In (11.46) we sum over all linked diagrams, that is, diagrams whose each connected
component has at least one external line. In (11.47) we sum over all connected diagrams
with at least one external line. Clearly, (11.46) and (11.47) follow from (11.43).

11.1.7 Scattering operator for time-independent perturbations

Let us now assume that the monomials w,,+ ,,~ (t) = Wy, + ,,,- do not depend on time.

If the perturbation is time independent, then S often does not exist. In particular, the
diagrams with no external legs are either 0 or divergent. If B is a linked diagram, then one
can expect that the corresponding contribution

Bltn,... t1)dt, - dt; (11.48)
tn>-->t1

is finite. Therefore, we define the linked scattering operator as the operator
Slink = S1ink(a", @) (11.49)

with sjnk(a*, a) given by (11.46) or (11.47).

Clearly, Sink cannot be defined by the right hand side of (11.45), which does not make
sense in the time-independent case.

We can evaluate Sy, further. For E € R we will use the operators

§(E — Hy), (E—Hy+i0)™ " (11.50)
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They are not bounded operators in the usual sense, however one can often make sense
of them as bounded operators on appropriate weighted spaces. We have partly heuristic
identities

+oo
/ u(Ho—E) g, — —i(E — Hy +iO)_1, (11.51)
0
0o ~1
/ elu(Ho—E)du _ I(E _ HO _ 10) , (1152)
—o00
/eit<HrE>dt — 276(E — Hy). (11.53)

If B is a linked diagram, we introduce its evaluation for the scattering amplitude at
energy E using the operator interpretation of the diagram B:

By(E) := — 2miOL8(E — Ho)Wh @ IH(E — Hy —i0) - - (11.54)
x (E — Hy —10)"'W} @ 158(E — Hy)O5p. (11.55)
(11.55) is an operator from ®S/avmé to ®S/avmé. Its integral kernel can be used as the

coefficient function of a monomial, denoted Bg.(E, a*, a).

Theorem 11.1. For every linked diagram B

Bl(tn, ... t1)dt, ---dt; = /BSC(E)dE. (11.56)
tn >0 >t
Proof. We compute the integrand using the operator interpretation of B(t,,...,t1):
Blty oo tr) = ()"0 (Wp o ) ettt

xe 2=t o (Wh @ 1) e oo
= ()" / §(Hy — E)AEO} (Wp @ 1) e tun(Fo=F) ..
Xefiuz(HO*E) (Wé ® ]113) efitl(HofE')eg7

where we substituted
Up = tn 7tn_1, ceey Ug = tQ 7t1.

and used

11— / 5(Hy — B)dE.
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Now

/-~/B(tn,...,t1)dtn~-~dt1

tn > >t

- /dE/ duy, - - /dul/ At 6(Hy — E)OL (W, @ 1) e~ iun(Ho=E) .

—iug (Ho—FE) (W ® ]11) —ity (Ho— @_

- —27ri/dE6(E — Ho)0} (W, © 13) (E — Hy —i0)) " ---

x (E — Ho —10)) " (W1 @ 1%) 6(E — Ho)O3p,

By Thm 11.56, (11.47) can be rewritten as

By (E,a",
Stink (@™, a) = Z 7( a a)dE.
linked diag.

Note that, at least diagramwise

o—itHo oi2tH o —it Ho

(Q|e 1tH0612tHe 1tHOQ)

Shnk = hm (1157)

We can make (11.57) more general, and possibly somewhat more satisfactory as follows.
We introduce a temporal switching function R 3 ¢ — x(¢) that decays fast ¢ — +oo and
x(0) = 1. We then replace the time independent perturbation W by W,(t) := x(t/e)W. Let
us denote the corresponding scattering operator by Sc. Then the linked scattering operator
formally is

S
Slin 11.58
ok = lim o (11.58)
One often makes the choice
x(t/e) = e It/e (11.59)

which goes back to Gell-Mann—Low.
Note that Spinkx commutes with Hy. More precisely, each diagram commutes with Hy.
If Hy > 0, then we expect Synpk to be unitary. Indeed, S¢ is a unitary operator. Therefore,
by (11.58), we expect that Sjnk is prportional to a unitary operator. Sjnk(2 is a linear
combination of diagrams with no incoming external lines. Their evaluation is zero because
of the conservation of the energy, except for the trivial diagram corresponding to the identity.
Therefore, Sjinkf2 = Q. Hence Sy, is unitary.
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11.1.8 Energy shift

We still consider a time independent perturbation. We assume that Hy > 0. Let E denote
the ground state energy of H, that is E := infsp H. E can be called the energy shift, since
the ground state energy of Hy is 0. We assume that we can use the heuristic formula for the
energy shift

4 S
E = lm %a1og(Q|e1tH0e*‘2tHe”HOQ), (11.60)

To see why we can expect (11.60) to be true, we note that Hy2 = 0 and assume that ® is
the ground state of H. Hence

(Q|eitHoefiQtHeitHOQ) _ |(Q|(})‘267i2“? + C(t)

If we can argue that for large ¢ the term C(t) does not play a role, we obtain (11.60).
It is convenient to rewrite (11.60) as

. d itHo —itH
E = tlggolalog(me e 0). (11.61)

Let B be a connected diagram with no external lines. Its evaluation is invariant wrt
translations in time:
B(tn,...,tl) = B(tn +S7...,t1 +8)

/---/B(tn,...,tl)dtn-~-dt1

tn>-->t1

= /dt1 // B(tn, ..., u2,0)duy, - - - dus.

Up > >uz>0

Therefore,

This is infinite if nonzero. However, if we do not integrate wrt ¢1, we typically obtain a finite
expression, which can be used to compute the energy shift.

Theorem 11.2 (Goldstone theorem). We have

By, ..., u2,0
E— 3 // %dunu-duz. (11.62)

con. diag. un>->uz>0
no ext. lines

The terms in (11.62) can be evaluated using the operator interpretation of B:

// B(un, - .-y uz,0)duy, - - - dus (11.63)

Up, >+ >u2>0

=(-)"""WEH (Wit ). (WE e 13)Hy ' Wi (11.64)
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Figure 3: Goldstone diagram

Proof. Applying (11.44), we get

log(Q|eitH0 e_itHQ)

o0

S > (—ix)" // wcﬁnmdtl.

n=0"" con. diag. >t > St >0
no ext. lines

So
ig log(Q|eitH°efitHQ)
dt

= . B(tvtnfla"'7t27tl)
= Z Z i // Bl dtp_1---dity.

n=0

con. diag. t>tn_1>>11>0
no ext. lines

Now introduce

Ug 1= tg—tl,...,un_l = tn—l —tn_g, Up, I:t—tn_l.
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Then uo,...,up >0,t>us+ -+ u, and

B(t,tn—1,... ta,t1) = (=) "Wpe (=t Ho (=l g qp-1) ...
x (Wi @ 13) e (2=t HopyL
_ (—i)nte_m”HU (ngl ® ]1%71) .
x (W3 @ 13) e ufoyyL,

Then we replace ¢ by —oo and evaluate the integral using the heuristic relation

e ody = —. 11.65
/ - (11.65)

11.1.9 Example: van Hove Hamiltonian

Consider a time-dependent Van Hove Hamiltonian H(t) := Hy + V() with

V(t) = / o(t, )a* (€)d + / o6, E)a(€)de.

Clearly, the van Hove Hamiltonian in the interaction picture equals

Hiae(1) = / SOy (1, €)a* (€)de + / O (T, E)a(€)de.

Theorem 11.3. The corresponding scattering operator is then given by

S = Texp (—i/HInt(t)dt>
= exp (—i/d{/dteit“’(g)v(t,f)a*(f)> exp (—i/df/dte_it“’(é)v(t,E)a(f))
X exp (—;/dg/dtl/dth—iW<5>tl—f2v(tl,g)v(tg,g))

— exp (i / v(w<f>,5>a*<s)ds) exp (i / v(w(&)@a(&)d&)

i [ u(r, §w(E)
X exp (27r/ O =12 =10 def) ;

where v(,€) = [v(t,&)e'dt.

Proof. Let us derive this using Friedrichs diagrams. We have two kinds of vertices: cre-
ation vertex —iv(t, &) and annihilation vertex —iv(t,€). For internal lines we put 6(to —
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t1)e w@E=t)  For incoming lines we put e () and for outgoing lines we put e* ().
There is a single connected diagram without external lines with value

/dtg/dtl (—1)20(t, E)v(ty, £)e WO 2=t q¢ (11.66)
to > t1
= ‘%/ dg / d“/ dtoe O =00t Eo(ts, €) (11.67)
i [u(n Qo Hw(E)
= %) e drde. (11.68)
Therefore,
(Q/S9) = exp (27? / £(5§2_(;§)f§§)d7dg>. (11.69)

Next we consider the contributions from the external lines

(Emsr o & 1S1Em o0 &7) (11.70)

= (QSQ) ﬁ( oty & )& >dt)

1213‘

N
Il
_

11.2 Feynman diagrams
11.2.1 Wick powers of the free field

We will use now notation parallel to the notation for a relativistic QFT in 1+ 3 dimensions.
(Sometimes we replace 3 by d). We restrict ourselves to a bosonic theory.

We will parametrize the creation/annihilation operators by “4-momenta” k € RT3
where the energy kU is given by a real function R3 3 k— e(k ) We would like to put

(k) = \/ k2 + m2, (11.71)

but this can be problematic, and therefore we will keep € an arbitrary function, demanding
only . .
e(—k) =e(k) (11.72)
We use the notation k = (e(k), k) € R™3, saying that k is “on shell”. We consider
R3 > k+— a*(k), a(k) satisfying the commutation relations

[a(k),a* (k)] = o6(k—Fk), (11.73)
[a(k),a(k)] = [a*(k),a*(K")] = 0. (11.74)

The free Hamiltonian is
Hy = / e(k)a* (k)a(k)dF. (11.75)



We will use operators in the free Heisenberg picture (the interaction picture), There
exists a distinguished observable, called a field

d(z) = "0, )ef’tHO (11.76)

= / Ak ——— q (% a(k) + e " a* (k) . (11.77)
(2m)32¢( k)

We sometimes also use the conjugate field
~ o 3 — dk V lkrA o —ikzax
#(x) = ¢(x) = e " a*(k)) . (11.78)
i\/(2n) \f

Note that qg and 7 satisfy the usual equal time commutation relations, independently of
the relation (11.71):

[b(t, &), 6(t,§)] = [7(t,2), (L, 7)] = 0,
[o(t, Z),7(t, )] = 16(Z—7). (11.79)
For any x € R'*3, we introduce the Wick powers of fields
C ()" (11.80)
. . n—j
—1 fL‘ * k l A’L‘A
( ) /dk ( 1 /dk = . (11.81)
(2m 325(k) (2m)32¢( k)
Note that, if
1 -
/ ——dk < oo, (11.82)
e(k)
then ¢(z) is a well defined (unbounded) operator on the Fock space and
R [m/2]
: p(z)™ n 4 Z crp(z)™ 2k, (11.83)
Unfortunately, if (11.71) is satisfied, the constants ¢j are divergent, in all dimensions d =
1,2,.... The free Hamiltonian can be rewritten as
Hy = /df/dg:é(o,f)gz@(o,gj):g(ff 7) + /df:fr(o,f)?;, (11.84)
where
g(z) = / e (k)2dk. (11.85)
We also introduce the Feynman propagator
D — y) = i(QAT(3(2)d(1))2) (11.86)
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We will also use the Feynman propagator in the energy-momentum representation
D¢(k) = /Dc(a?)e_imdx. (11.87)

The Feynman propagator turns out to be one of the inverses of (k)2 — (k°)2:

Theorem 11.4. 1
Dé(k) = — . (11.88)
e(k)? — (k9)2 —i0

Proof. First we compute in the space-time representation:

@) = i [ (O g ey E
’ (2m)32e(k)

_ i/(e—ie(E)te(t)_’_eie(l}‘)te(_t))eiEfL_”

(2)32¢ (k)

where we used the parity of € (11.72). Next we go to the energy-momentum representation:
i / / DE(t, 7)e R - kE g

_ / (e—ia@)te(t)+ei8<’5>te(—t))eik°td—ﬂ

De(K° k)

2e(k)
_ i/oo (e—is(E)t+ik°t 4 omie(By—ik dtﬁ
0 2e(k)
_ 1 N 1
2¢(F)(e(k) — k0 —i0)  2e(k)(e(k) + k° — i0)

1
e(k)? — (k9)2 —i0

11.2.2 Feynman diagrams for vacuum expectation value of scattering operator
One can argue that a typical quantum field theory should be formally given by a Hamiltonian
H=Hy+W(t), (11.89)

where the perturbation (in the Schrédinger picture) is
W) = Z/dffj (t, @) : $(0,2) : . (11.90)
J
The Hamiltonian in the interaction picture is therefore

Hin(t) = Z/dffj (6,2) : (L, 7Y - (11.91)
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Let S denote the scattering operator for (11.89). We would like to compute
(QSQ). (11.92)

(1) Rules about drawing diagrams.

(i) To the term in the interaction of order j we associate a vertex with p legs.
(ii) We choose a sequence of vertices py,...,p1 and put them without any order.
(iii) We connect pairs of legs with lines. There are no self-lines.

(2) Consider the group of symmetries of a diagram, where we allow to permute the vertices.
We will denote by [D]! the order of this group.

(3) Rule about evaluating diagrams (the space-time approach).

(i) The jth vertex has its variable x;. We put —if, (x;) for the jth vertex.
(ii) We put —iD°(z; — x;) for each line connecting jth and ith vertex.

(iii) We multiply contributions from all lines, obtaining a number that we denote
D(zy,...,z1).

(4) We sum up all diagrams divided by symmetry factors and integrate :

(Q]59) = Z /dxnn-/dxlw. (11.93)
all diag. )

n vertices
no ext. lines

Instead of (3) we can use
(3)” Rules about evaluating diagrams in the energy-momentum approach

(i) For the jth vertex with we put

J

—ifp, (kg + o+ ;) = —i / dpe i krttho)e g (4, (11.94)

(ii) We put —ifDC(k)% for each internal line.

(iii) We evaluate the integral over k corresponding to all lines obtaining
Jdxy- - [dz1D(zy, ..., z1).

By the Linked Cluster Theorem (11.93) can be rewritten as

log (Q]5Q) = > /dxnm/dxlw,

all con. diag
n vertices
no ext. lines
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11.2.3 Feynman diagrams for the energy shift

Assume now that f(¢,%) = f(Z) do not depend on time and Hy > 0. We would like to
compute the energy shift (or, what is the same, the ground state energy of H).

The rules for drawing Feynman diagrams and symmetry factors are the same as in
Subsect. 11.2.2. We use the space-time rules for the evaluation of a diagram D, where we
make one change: We do not integrate over one time, for instance over t;. We obtain

E= Z Z /dxn /d$2/d$1 xn,.. Occl)

n=0all con. diag.
n vertices
no ext. lines

11.2.4 Green’s functions

Recall that the N-point Green’s function is defined for zy, ...,z as follows:
<¢E($N) : "¢3(331)>
:: (m‘T(q;(xN) ...... (g)(xl))g—) , (11.95)
where
O A
ot = hm Texp (—i/ H(s)ds> Q
t—too t
= Texp <—1 f{hlt(s)ds> Q.
+oo

and the fields (;Ab(x) are in the Heisenberg picture:

o(t, &) = Texp( - i/to f[(s)ds)q@(o, i:')Texp( - i/ot f[(s)ds) (11.96)

One can organize Green’s functions in terms of the generating function:

Z/ /N, d(xn) - b)) f(n) - fz1)day - - - day

(Q""Texp (—i / / 1, dx)dt) )
(Q‘Texp <_1 /_ (e / f(x)éfr(@dx) Q) .

Thus Z(f) is the vacuum expectation value of a scattering operator, where the usual in-
teraction Hamiltonian Hiy(¢) has been replaced by Hin(t) + [ f(t, #) g (t, £)dZ. One can
retrieve Green’s functions from the generating function:

aN

7 5 T = lN :
(p(xn) - P(z1)) 3f($N)...af(x1)Z(f)‘f:0

Z(f)

(11.97)
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The Fourier transform of Green’s function will be denoted as usual by the change of the
variables:

k1))
_ / dz, - / dzye ke =ik (G0 0y ().

We introduce also amputated Green’s functions:

= (kp +m?) - (k] +m®)((kn) - -~ S(k1))- (11.98)

Amputated Green’s functions can be used to compute scattering amplitudes:
(k;+,...,kf|5‘|k;l_,...,k1_) (11.99)
(G(kT) - Sk )Pk ) -+ S(—k ))amp
VERPFETERT foe(k) -\ f2e(k )y 26 (o) oy 20 (k)

where all k5 are on shell, that is k& = (S(Ef), El:t)

11.2.5 Feynman diagrams for the scattering operator

We would like to compute the scattering operator, representing it as Wick’s polynomial:
S =s(a*,a). (11.100)

The Feynman rules for scattering operator follow from (11.99) and the rules for the vacuum
expectation value of the scattering amplitude, if we add additional insertion vertices—one-
legged vertices corresponding to the term [ da f(z)pe(z).

(1) Rules about drawing diagrams.

(i) To the term in the interaction of order p we associate a vertexr with p legs.
(ii) We choose a sequence of vertices py,...,p1 and put them without any order.
(iii) On the right we put the incoming particles, on the left the outgoing particles, each
having a single leg.
(iv) To the incoming particles we associate the variables k., ..., k; . To the outgoing
particles we associate the variables k" EE ,kf'.
(v) We connect pairs of legs with lines. There are no self-lines.

(2) Consider the group of symmetries of a diagram, where we allow to permute the vertices,
but not the particles. We will denote by [D]! the order of this group.

(3) Rule about evaluating diagrams (the space-time approach).

(i) The jth vertex has its variable z;. We put —if, (x;) for the jth vertex.
(ii) We put —iD°(z; — x;) for each line connecting jth and ith vertex.
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&' Ry a(k;)

ili) For the incoming particle £; connected to the vertex at x; we put ——2L=.
(iii) gp j jwep (2m)32e(k)

ot
—ix k)
e iz j a*(kj»)

iv) For the outgoing particle kT connected to the vertex at z; we put ————22.
(iv) going p j iwep (2m)32e (k)

(v) We multiply contributions from all lines, obtaining a polynomial that we denote
D(zy,...,z1;0", a).

(4) We sum up all diagrams divided by symmetry factors:

N > D(xy,...,x1;0"%, a)
s(a*,a) :nz:% 3 /dm".../dajl o . (11.101)

all diag.
n vertices

Instead of (3) we can use

(3)” Rules about evaluating diagrams in the energy-momentum approach

1) For a vertex with legs k1,...,k, we put
(i) F ith legs k k,
—if(ky + -+ k) = —i/dxe_i(k1+"'+kp)xf(x). (11.102)
(ii) We put —ifDC(k)% for each internal line.
(iii) For an incoming line with variable k;” we put %
(2m)32¢(K; )
a*(k})

(iv) For an outgoing line with variable kj' we put W

(v) We evaluate the integral over k; corresponding to all lines obtaining
Jdxy, - [dziD(xn,. .., z1;a%, a).

Recall that in (11.45) we defined the linked scattering operator. It can be computed
using Feynman diagrams:

Stink(a®, a) (11.103)
=2 b /"'/D(x""'{'D’]fl;a*’a)dxn---dx1 (11.104)

7=0"Jinked diag.
n vertices

zexp<z > /.../D(x”"'['D’]fl;a*’a)dxn-~-dx1>. (11.105)

"=0" con. linked diag.
n vertices

121



11.2.6 Feynman diagrams for scattering amplitudes for time-independent per-
turbations

Assume now that f(¢t,Z) = f(Z) do not depend on time. Then the rules for computing the
scattering operator slightly change. Let us introduce

Dy.(E) (11.106)
=27 / dz, - - / dzo / d#10(E — Ho)D(xp, ..., x2,0,71)5(FE — Hyp), (11.107)
where we use the operator interpretation of D. Then

Stink(a”, a) (11.108)

Dyo(E; a*
= ¥ dEW (11.109)
linked diag. '

=exp ( > /dEDSC([%ﬁ*’a)) (11.110)

con. linked diag.

11.2.7 Quadratic interactions

Suppose that (in the Schrodinger picture)
N - 1 ~
A(t) = /&*(kz)d(kz)dk + [ ol 7:8(0,3))ax (11.111)
There is only one vertex, with the function (in momentum representation) —ix(kq + ko).

Connected diagrams with no external lines are loops with n vertices n =2,3,.... (n=11s
excluded, because there are no self-lines). The value of the nth vertex is

/dxn /dxm Tn)D — Tp_1) - k(x1)D (21 — p) (11.112)

:(_1)"/ (QW) -~-/((217I:;4m(k1 ko) DS (Ky) - - - (ko — k1) DC (k1) (11.113)
=(=1)"Tr(kD)". (11.114)

The group of symmetries of the loop with n vertices is the dihedral group D,,, which has 2n
elements. Therefore,

. . (=1)"
£ :=ilog(QSQ) =1 ( 2n) Tr(kD)"
n=2

:%Tr< log(1 + £D°) JrIiDC) i (11.115)

n=2
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12 Method of characteristics

12.1 Manifolds

Let X be a manifold and z € X. T, X, resp. T#Z X will denote the tangent, resp. cotangent
space at x. TX, resp. T#X will denote the tangent, resp. cotangent bundle over X.

Suppose that x = (%) are coordinates on X'. Then we have a natural basis in TX denoted
0,: and a natural basis in T#X, denoted da’. Thus every vector field can be written as v =
v(x)0, = v'(2)0,: and every differential 1-form can be written as a = a(z)dz = a;(z)dz’.

We will use the following notation: 37« is the operator 0, that acts on everything on the
right. d, acts only on the function immediately to the right. Thus the Leibniz rule can be
written as

0 f()g(x) = 0. f(2)g(x) + f(2)Drg(x). (12.1)

There are situations when we could use both kinds of notation: éz and 0,, as in the last
term of (12.1). In such a case we make a choice based on esthetic reasons.

12.2 1st order differential equations

Let v(t,2)0, be a vector field and f(¢,z) a function, both time-dependent. Consider the
equation

(O +v(t,2)0, + f(t,2))¥(t,x) = 0,
U(0,z) = P(x). (12.2)
To solve it one finds first the solution of

dx(t,y) = vt z(t,y))
{x(()’y) o (12.3)

Let x — y(t,z) be the inverse function.
Proposition 12.1. Set
t
F(t,y) r=/ f(s,2(s.y))ds.
0

Then
U(t,z) = e_F(t’y(t’w)) \Il(y(t, x))
is the solution of (12.2).

Proof. Set
D(t,y) := \Il(t,x(t,y)). (12.4)
We have

6t(b(tvy) = (at + atx(tay)aw)\y(tax(t’y))
(O +v(t,z(t,y)0,) V(¢ z(t,y)).
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Hence (12.2) can be rewritten as
(O + f(t,z(t,y))@(ty) = 0,
2(0,y) = Y(y). (12.5)

(12.5) is solved by
(ty) = TEVW(y).

O

Consider now a vector field v(z)0, and a function f(x), both time-independent. Consider
the equation

(v(2)0y + f(2))¥(x) = 0. (12.6)
Again, first one finds solutions of
() = v(z(t)). (12.7)

Then we try to find a manifold Z in X of codimension 1 that crosses each curve given by
a solution of (12.6) exactly once. If the field is everywhere nonzero, this should be possible
at least locally. Then we can define a family of solutions of (12.6) denoted z(t,z), z € Z,
satisfying the boundary conditions

2(0,2) =2, z€ Z. (12.8)

This gives a local parametrization R x Z 3 (¢,2) — z(t,2) € X.
Let  — (t(z), 2(z)) be the inverse function.

Proposition 12.2. Set
¢
F(t,z) = ,2))ds.
(2):= [ F(als.))as
Then
U(t,z) = efF(t(‘”)’Z(I))\Il(z(x))
is the solution of (12.2).
Proof. Set ®(t,z) := V(x(t,2)). Then
O0(t,z) = 0u(t,2)0, ¥ (x(t, 2))
= v(z(t,2))0, ¥ (2(t, 2)).

Hence we can rewrite (12.6) together with the boundary conditions as

(O + f(z(t,2)))@(t,2) = 0,
®(0,2) = Y(z). (12.9)

(12.9) is solved by

O
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12.3 1st order differential equations with a divergence term

Fort a vector field v(z)d, we define
dive(z) = 0,0 (z).

Note that divu(z) depends on the coordinates.
Consider a time dependent vector field v(¢, x)d, and the equation

(0 +v(t, )0, + adivu(t,z)) ¥(t,z) = 0,
U(0,z) = Y(x), (12.10)

Proposition 12.3. (12.10) is solved by
U(t,z) := (det &Cy(t,x))a\ll(y(t,x)). (12.11)
Proof. We introduce ®(¢,y) as in (12.4) and rewrite (12.10) as

(at—l—adivv(t,x(t,y)))(l)(t,y) = 0,
20,y) = Y(y) (12.12)

We have the following identity for the determinant of a matrix valued function ¢ — A(%):
Opdet A(t) = Tr (0, A(t)A(t) ™) det A(t). (12.13)
Therefore,
D,(det 9,2 (t,y)) ™" = —adivdy(t,y)(det dya(t,y) "
= —adivo(t,2(t,y)) (det dyz(t,y)) .

Therefore, (12.12) is solved by

®(t,y) == (det dyx(t,y)) “U(y).

Consider again a time independent vector field v(x)d, and the equation
(v(2)0; + adivo(z)) ¥(z) = 0. (12.14)
We introduce the a hypersurface Z and solutions z(¢, z), as described before Prop. 12.2.

Proposition 12.4. Set
w(z) = d,x(t(z), 2(x)).
Then the solution of (12.14) which on Z equals ¥(2) is
U(z) := (detfo(z), w(x)]) “¥(z(z)). (12.15)
Note that if X is one-dimensional, so that we can locally identify it with R and v is a

number, (12.15) becomes ¥(z) = C'(v(z)) "
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12.4 o-densities on a vector space

Let a > 0. We say that f: (R%)? — R is an a-density, if
(flavy,. .., avg) = |deta|“(f|v1,...,v4), (12.16)

for any linear transformation a on R% and vy, ...,v4 € R%.

If X is a manifold, then by an a-density we understand a function on X > z — ¥(x)
where U(z) is an a-density on T,X.

Clearly, given coordinates x = (z¢) on X, using the basis d,, in TX, we can identify an
a-density ¥ with the function

T = <\I/|az1,...,6md>($)7 (12.17)

which, by abuse of notation will be also denoted ¥(x). If we use some other coordinates
x’ = ', then we obtain another function 2’ — ¥’(z"). We have the transformation property

U(x) = |02’ |" V' (2"). (12.18)

A good mnemotechnic way to denote an a-density is to write ¥(x)|dz|* Note that 0-
densities are usual functions, 1-densities, or simply densities are measures. %—densities raised
to the pth power give a density, and so one can invariantly define their LP-norm:

/‘q/(xndxﬁ

Proposition 12.5. If v(x)0, is a vector field, the operator

"= [1v@rras = ol (12.19)

v(x)0,; + adive(x) (12.20)
18 invariantly defined on «a-densities.

Proof. In fact, suppose we consider some other coordinates x’. In the new coordinates
the vector field v(z)d, becomes v'(z')0, = (0,2')v(x(x"))0,. We will denote div'v’ the
divergence in the new coordinates. We need to show that if

O = |det 0,2'[*®', ¥ = |detd,x’|*V,
then
(v(z)0, + adive(z))® = ¥
is equivalent to
(v'(2")0p + adiv'e’(2')) @' = V.
We have

o b oat,
92" Oad Ok -

ovi Ozl 9%
9zi | 9z’ 02102k "

dive’ =
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p 0%t Oxd

av W@'det@mﬂ?/‘aﬁ-‘det@wx/|avam

00, | det B,z |¢ =
Therefore,
(v(x)éT + adivo(z))|det 9,2/ |*®’
= |detd,2'|*(v'(z") 0y + adiv'v/ (') .

Note that (12.11) can be written as an a-density:
U(t,z)|dx|” := | det Opy (¢, z)|* ¥ (y(t, z))|dx|* (12.21)

Also (12.15) is naturally an a-density.

13 Hamiltonian mechanics

13.1 Symplectic manifolds

Let Y be a manifold equipped with a 2-form w € A2T#). We say that it is a symplectic
manifold iff w is nondegenerate at every point and dw = 0.

Let (V1,w1), (V2,w2) be symplectic manifolds. A diffeomorphism p : Yy — )s is called a
symplectic transformation if p*ws = w.

In what follows (),w) is a symplectic manifold. We will often treat w as a linear map
from TY to T#). Therefore, the action of w on vector fields u, w will be written in at least
two ways

(wlu, w) = (ujww) = w;ju'w?.

The inverse of w as a map TY — T#)Y will be denoted w™!. It can be treated as a

section of A2TX. The action of w™! on 1-forms 7, & can be written in at least two ways

(W™ n, &) = (nlw™'€) = wnig;.

If H is a function on ), then we define its Hamiltonian field w™'dH. We will often
consider a time dependent Hamiltonian H(t,y) and the corresponding dynamic defined by

the Hamilton equations
Oy(t) = w™ldy H (t,y(t)). (13.1)

Proposition 13.1. Flows generated by Hamilton equations are symplectic

If F,G are functions on ), then we define their Poisson bracket
{F,G} := (w!|dF,dG).
Proposition 13.2. {-,-} is a bilinear antisymmetric operation satisfying the Jacobi identity
{F,{G,H}} +{H,{F,G}} +{G,{H,F}} =0 (13.2)

and the Leibnitz identity
{F,GH} ={F,G}H + G{F,H}. (13.3)
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Proposition 13.3. Let t — y(t) be a trajectory of a Hamiltonian H(t,y). Let F(t,y) be an
observable. Then

%F(t,y(t)) =0, F(t,y(t)) + {H, F}(t,y(t)).

In particular,

% H(t.y(t)) = 0.H (8, y(1)).

13.2 Symplectic vector space

The most obvious example of a symplectic manifold is a symplectic vector space. As we dis-
cussed before, it has the form R ®R? with variables (z,p) = ((z7), (p;)) and the symplectic
form

w = dp; Adz’. (13.4)
The Hamilton equations read
atx = apH(tvxap)a
The Poisson bracket is
{F,G} =0, F9,,G — 0,,F0,:G. (13.6)

Note that Prop 13.1 and 13.2 are easy in a symplectic vector space. To show that w is
invariant under the Hamiltonian flow we compute

Co = Lap(t) Ada(t)
= —d0,H (x(t), p(t)) A da(t) + dp(t) A dd,H (x(t), p(t))

= —0,0.H (z(t),p(t))dp(t) A dz(t) + dp(t) A 8,0, H (x(t),p(t))dz(t) = 0

Proposition 13.4. The dimension of a symplectic manifold is always even. For any sym-
plectic manifold Y of dimension 2d locally there exists a symplectomorphism onto an open
subset of RY @ RY.

Now (13.4) implies Prop. 13.1. Similarly, to see Prop. 13.2 we first check the Jacobi and
Leibniz identity for (13.6).

13.3 The cotangent bundle

Let X be a manifold. We consider the cotangent bundle T#X. It is equipped with the
canonical projection 7 : T#*X — X.

We can always cover X with open sets equipped with charts. A chart on U C X allows
us to identify ¢ with an open subset of R? through coordinates x = (z°) € R%. T#U{ can be
identified with ¢/ x R?, where we use the coordinates (z,p) = ((z?), (p;)).

T#X is equipped with the tautological 1-form

6= Zpl-dmi, (13.7)
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(also called Liouwville or Poincaré 1-form), which does not depend on the choice of coordi-
nates. The corresponding symplectic form, called the canonical symplectic form is

w=df =) dp; Ada'. (13.8)

Thus locally we can apply the formalism of symplectic vector spaces. In particular, the
Hamilton equations have the form (13.5) and the Poisson bracket (13.6).
13.4 Lagrangian manifolds

Let Y be a symplectic manifold. Let £ be a submanifold of )V and iy : £L — ) be its
embedding in Y. Then we say that £ is isotropic iff ifw = 0. We say that it is Lagrangian
if it is isotropic and of dimension d (which is the maximal possible dimesion for an isotropic
manifold). We say that £ is coisotropic if the dimension of the null space of i%w is maximal
possible, that is, 2d — dim L.

Theorem 13.5. Let E € R. Let L be a Lagrangian manifold contained in the level set
HY(E):={yeY : H(y) = E}.
Then w='dH is tangent to L.
Proof. Let y € Y and v € T, L. Then since L is contained in a level set of H, we have
0= (dH|v) = —(w 'dH|wv). (13.9)

By maximality of T, £ as an isotropic subspace of T,), we obtain that w='dH € T,£. O

Clearly, symplectic transformations map Lagrangian manifolds onto Lagrangian mani-
folds.
13.5 Lagrangian manifolds in a cotangent bundle

Proposition 13.6. Let U be an open subset of X and consider a function U 3 x — S(x) €
R. Then
{(z,dS(z)) : zeU} (13.10)

1s a Lagrangian submanifold of T# X .
Proof. Tangent space of (13.10) at the point (z*,9,;S(z)dz?) is spanned by
V; = (01, 0i00s S(2)0),)

Now

(w]vi, vk) Zayays Za £ 0y S (x
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U > S(x) is called a generating function of the Lagrangian manifold (13.10). If U is
connected, it is uniquely defined up to an additive constant.

Suppose that £ is a connected and simply connected Lagrangian submanifold. Fix
(w0,po) € L. For any (z,p) € L, let v, ) be a path contained in £ joining (zo,po) with

(z,p).

T(z,p) ::L 0.

(z,p)

Using that di%0 = i%df = i}w = 0 and the Stokes Theorem we see that the integral does
not depend on the path. We have
dT = i%0. (13.11)

If 7T’ is injective we will say that L is projectable on the base. Then we can use U := 7(L)

to parametrize L:
Usax— (x,p(x)) eL.

We then define
S(z) :=T(z,p(z)).
We have 4 .
0yiS(z)da’ = dS(z) = dT (z, p(z)) = pida’.

Hence @ +— S(z) is the unique generating functon of £ satisfying S(x(z0)) = 0.

Both z + S(z) and £ > (z,p) — T(z,p) will be called generating functions of the
Lagrangian manifold £. To distinguish between them we may add that the former is viewed
as a function on the base and the latter is viewed as a function on L.

We can generalize the construction of 7" to more general Lagrangian manifolds. We
consider the universal covering £V — £ with the base point at (a:o, po). Recall that £V
is defined as the set of homotopy classes of curves from (zo, po) to (:U, p) € L contained in
L. On L we define the real function

£ 5 [y] = T([)) ::/9. (13.12)

gl
Exactly as above we see that (13.12) does not depend on the choice of v and that (13.11) is
true.
13.6 Generating function of a symplectic transformations

Let ();,w;) be symplectic manifolds. We can than consider the symplectic manifold Vs x )y
with the symplectic form w; — wy. Let R be the graph of a diffeomorphism p, that is

R = (p(y),y) € V2 x D1 (13.13)

Clearly, p is symplectic iff R is a Lagrangian manifold.
Assume that V; = T#X;. We can identify Vo x Vi with T#(Xs x A7).
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Let T#X) 2 (x1,&1) — (22,&2) € T# X, be a symplectic transformation. A function
Xo X Xy 3 (x2,21) — S(x2,21). (13.14)
is called a generating function of the transformation p if it satisfies
o ==V, S(xa,21), & =V, S(x9,21). (13.15)
Note that if assume that the graph of p is projectable onto X5 x &7, then we can find a

generating function.

13.7 The Legendre transformation

Let X = R? be a vector space. Consider the symplectic vector space X @ X# = R¢ @ R?
with the generic variables (v, p). It can be viewed as a cotangent bundle in two ways — we
can treat either X or X# as the base. Correspondingly, to describe any Lagrangian manifold
Lin X & X* we can try to use a generating function on X or on X#. To pass from one
description to the other one uses the Legendre transformation, which is described in this
subsection.

Let U be a convex set of X. Let

Usv— S)eR (13.16)

be a strictly convex C?-function. By strict convexity we mean that for distinct vy, vy € U,
'U17£’UQ,O<T<].,

TS(v1) + (1 = 7)S(vg) > S(rv1 + (1 — T)vg).

Then
Udvep):=0,5w) € X# (13.17)

is an injective function. Let U be the image of (13.17). It is a convex set, because it is the
image of a convex set by a convex function. One can define the function

Usp—up) el

inverse to (13.17). The Legendre transform of S is defined as

Theorem 13.7. (1) 9,5(p) = v(p).

(2) 925(p) = Bpv(p) = (925(v(p))) ™. Hence S is conver.
(3) S(v) = 8(v).

Proof. (1)

9pS(p) = v(p) + pdyv(p) — 8,5 (v(p)) Ipv(p) = v(p).
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925(p) = ,0(p) = (Bup(v(p))) ™" = (825 (v(p))) "

S() = vp(v) = p)(p(v)) + S (v(p()) ) = S(p).

Thus the same Lagrangian manifold has two descriptions:

{(v,dS(v)) : veU} = {(dg(p),p) :pEZ;{}.

Examples.
(1) U =R%, S(v) = Lvmo,

U=R7 S(p) = ipm~p,
(2 U={veR? : |v| <1}, S(v) = —mV1 -2

U=R* S(p)=+/p? +m?2,
(3) U=R, S(v) =e",

U =10,00[, S(p) = plogp — p.

Note that we sometimes apply the Legendre transformation to non-convex functions. For

instance, in the first example m can be any nondegenerate matrix.

Proposition 13.8. Suppose that S depends on an additional parameter . Then we have
the identity 5
&,S(a,v(a,p)) = —0.5(a, p). (13.18)

Proof. Indeed,
aag(avp) = aa(pv(a,p) - S(Oé,U(Oé,p))

pé‘av(a,p) - 8a5(a, 'U(avp)) - avs(av v(a,p))aav(a,p)
005 (a, v(a, p)).

13.8 The extended symplectic manifold

Let Y be a symplectic manifold. We introduce the extended symplectic manifold as
T*RxY=RxRx Y,

where its coordinates have generic names (¢, 7,y). Here ¢ has the meaning of time, 7 of the
energy. For the symplectic form we choose

o:=—dr Adt +w.
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Let R x Y > (t,y) — H(t,y) be a time dependent function on Y. Let p; be the flow

generated by the Hamiltonian H (¢), that is

Pt (y(0)) = y(t),

where y(t) solves
Oy(t) = w_ldyH(t, y(t))

Set,
G(t,7,y) = H(t,y) — .

It will be convenient to introduce the projection
T*R x Y 3 (t,7,9) = k(t,7,y) == (t,y) E R x D,
that involves forgetting the variable 7. Note that k restricted to

GH0) == {(t,,y) : G(t,7,y) =0}

is a bijection onto R x Y. Its inverse will be denoted by ™!, so that

& ty) = (8 H(ty),y)-
Proposition 13.9. Let £ be a Lagrangian manifold in Y. The set
M ={(t,1,y) : y€p(L), T=H(ty), t €R}
satisfies the following properties:
(1) M is a Lagrangian manifold in T#*R x Y;
(2) M is contained in G~1(0)

(3) we have
EM)N{0}xY = {0} x L;

(4) every point in k(M) is connected to (13.23) by a curve contained in k(M).

Besides, conditions (1)-(4) determine M uniquely.

Proof. Let (to,70,y0) € M. Let v be tangent to p, (L) at yo. Then

(dy H (to, yo)|v)07 + v

(13.19)

(13.20)

(13.21)

(13.22)

(13.23)

(13.24)

is tangent to M. Vectors of the form (13.24) are symplectically orthogonal to one another,

because py, (L) is Lagrangian.

The curve t — (¢, H(t,y(t)),y(t)) is contained in M. Hence the following vector is

tangent to M:
815 + 3tH(t07 y0>a‘r + wildyH(tO, yO)

The symplectic form applied to (13.24) and (13.25) is

—(dyH (to,yo)|v) + (w|v,w™ " dyH(to,y0)) = 0.
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(13.24) and (13.25) span the tangent space of M. Hence (1) is true (M is Lagrangian).
(2), (3) and (4) are obvious.

Let us show the uniqueness of M satisfying (1), (2), (3) and (4). Let M be a Lagrangian
submanifold contained in G=1(0) and (¢, 70, %0) € M. By Thm 13.5, the vector

0-_1dG(t077—0ay0)
= o ' (3:H (to,yo)dt + dy H (to, yo) — d7) (13.27)

is tangent to M. But (13.27) coincides with (13.25). Hence
O + wtdy, H (to, o). (13.28)

is tangent to £(M). This means that x(M) is invariant for the Hamiltonian flow generated
by H(t,y). Consequently,

k(M) D [ J{t} x pe(L). (13.29)

teR

k(M) cannot be larger than the rhs of (13.29), because then condition (4) would be violated.
O

13.9 Time-dependent Hamilton-Jacobi equations

Let R x T*X > (¢,z,p) — H(t,z,p) be a time-dependent Hamilonian on T#X. Let X D
U >z — S(z) be a given function. The time-dependent Hamilton-Jacobi equation equipped
with initial conditions reads

O S(t, z) — H(t,m,@wS(t,m)) = 0,
S(0,z) = S(z). (13.30)

(13.30) can be reinterpreted in more geometric terms as follows: Set
G(t,7,z,p) =7 — H(t,z,p).
Consider a Lagrangian manifold £ in ). We want to find a Lagrangian manifold M in
GYH0) .= {(t,7,z,p) € T*R x T*X : 7 — H(t,z,p) = 0} (13.31)

such that
k(M) N {0}xT#Xx = {0} x L.

Here, as in the previous subsection,
k(t, T, 2,p) == (t,2,Dp).
We will also use its inverse

/i_l(t, x,p) = (t, H(t,z,p), x,p).
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The relationship between the two formulations is as follows. Assume that £ is a gen-
erating function of £. Then the function (t,2) — S(¢,z) that appears in (13.30) is the
generating function of M, which for ¢ = 0 coincides with x +— S(z).

Note that the geometic formulation is superior to the traditional one, because it does
not have a problem with caustics.

The Hamilton-Jacobi equations can be solved as follows. Let R 3 ¢ — (z(t,y), p(t,y)) €
T#X be the solution of the Hamilton equation with the initial conditions on the Lagrangian
manifold L:

(#(0,),p(0,y)) = (y,9,5(y))-
Then
M= {m_l(t,x(t,y),p(t,y)) : (ty) e R x L{}.

Let us find the generating function of M. We will use s as an alternate name for the time
variable. The tautological 1-form of T#R x T#X is

—7ds + pdzx.

Fix a point yg € U. Then the generating function of M satisfying

T(Hfl(oaymp(o’yo))) = S(yo)
is given by

7 (7 (1ot ),0(69) ) = SCa0) + [ (e = ),

.
where 7y is a curve in M joining

&0, 50, (0, 90)) (13.32)
with 7' (¢, 2(t, ), p(t, ). (13.33)

We can take « as the union of two disjoint segments: v = v U~a. 71 is a curve in (13.31)
with the time variable equal to zero ending at

£71(0,y,p(0,9)). (13.34)

Clearly, since ds = 0 along ;, we have
S(yo) +/7 (pdz — 7ds) = S(yo) +/7 pdx = S(y). (13.35)
1
Y2 §tarts at (13.34), ends at (13.33), and is given by the Hamiltonian flow. More precisely,
b [0,t] 2 s+ /i_l(s,x(&y),p(s,y)).
We have

[y (pdz — 7ds) = /Ot (p(s,y)@sx(&y) - H(s,x(s,y),p(s, y)))ds (13.36)
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Putting together (13.35) and (13.36) we obtain the formula for the generating function of
M viewed as a function on M:

T(t,y) = S) (13.37)

+/Ot (p(s,y)asm(s,y) - H(S,l‘(s,y%p(&y)))ds'

If we can invert y — x(t,y) and obtain the function z — y(t, z), then we have a generating
of M viewed as a function on the base:

S(t,z) = T(t,y(t,z)). (13.38)

13.10 The Lagrangian formalism

Given a time-dependent Hamiltonian H (¢, z, p) set
vi=0,H(t,x,p).
Suppose that we can express p in terms of ¢, z,v. We define then the Lagrangian
L(t,x,v) :=p(t,z,v)v — H(t, x, p(t, x, v))
naturally defined on TX. Thus we perform the Legendre transformation wrt p, keeping ¢, x

as parameters. Note that p = 0,L(t,z,v) and 0, H (t,z,p) = —0,L(t,z,v). The Hamilton
equations are equivalent to the Euler-Lagrange equations:

d
&x(t) = o(t), (13.39)

davL(t,z(t),v(t)) = 0,L(z(t),v(t)). (13.40)

dt
Using the Lagrangian, the generating function (13.37) can be rewritten as
t
T(ty) = S+ [ Ls.os.).i(s.)ds.
0
Lagrangians often have quadratic dependence on velocities:
1
L(z,v) = ivg_l(x)v +vA(z) — V(). (13.41)
The momentum and the velocity are related as
p=g z)v+ Alx), v=g) (p — A(x)) (13.42)

The corresponding Hamiltonian depends quadratically on the momenta:

H(z,p) = 5 (p — A(2))g(2) (p — Alz)) + V(). (13.43)

1
2
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13.11 Action integral

In this subsection, which is independent of Subsect. 13.9, we will rederive the formula for the
generating function of the Hamiltonian flow constructed (13.37). Unlike in Subsect. 13.9,

we will use the Lagrangian formalism.
Let [0,t] > s — z(s,a),v(s,a) € TX be a family of trajectories, parametrized by an
auxiliary variable a. We define the action along these trajectories

I(t, @) ::/0 L(z(s,a),v(s,a))ds. (13.44)

Theorem 13.10.
Ol (t, ) = p(a(t, @), v(t, )0z (t, @) — p(x(0, ), v(0, ))0qx(0, ). (13.45)

Proof.
O I(t,a) = /0axL(x(s,a),i:(s,a))@ax(s,a)ds
+/0 0 L(x(s, @), (s, )0k (s, a)ds

- /Ot (axL(x(s,a),Jb(s,oz)) - %@L(x(s, @), (s, a))) Baz(s, a)ds

s=t

+p(x(s, ), v(s,a))0qx(s, @)

s=0

O

Theorem 13.11. Let U be an open subset in X. For y € U define a family of trajectories
x(t,y),p(t,y) solving the Hamilton equation and satisfying the intial conditions

z(0,y) =y, p(0,y) =09,S(y). (13.46)

Let I(t,y) be the action along these trajectories defied as in (18.44). We suppose that we
can invert the y — xz(t,y) obtaining the function x — y(t,x). Then

S(t,x) = I(t,y(t,z)) + S(y(t, z)) (13.47)
is the solution of (13.30), and
0:5(t, ) = p(t,y(t,x)). (13.48)
Proof. We have

Oy (I(t,y)+Sw) = pt,y)dyz(t,y) —p(0,y)0,x(0,y) + 8,5(y)
= p(t,y)0yz(t,y). (13.49)
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Hence,

8,8(t,x) = 8, (I(t,y(t, ) + S(y(t, x))) (13.50)
= p(t,y)0yz(t, y)0:y(t, ) = p(t,y). (13.51)
Now
L(.’l?(t,y),j}(t,y)) = 8tI(t’y) = 0 (I(t’y) + S(:U)) (13'52)
= 0,S(t,z(t,y)) + 0.5(t,x(t, y))&(t,y). (13.53)
Therefore,
3S(t,x(t,y) = L(z(t,y),2(ty) —plt,y)a(t,y) (13.54)
O

13.12 Completely integrable systems

Let Y be a symplectic manifold of dimension 2d. We say that functions F; and F; on ) are
in involution if {Fy, Fo} = 0.
Let Fi,..., F,, be functions on ) and ¢y, ..., ¢, € R. Define

L:=Fe)N--NE (em). (13.56)
We assume that
dFy A AdF, #£0 (13.57)

on L. Then £ is a manifold of dimension 2d — m.

Proposition 13.12. Suppose that F, ..., F,, are in involution and satisfy (13.57). Then
m < d and L is coisotropic. If m = d, then L is Lagrangian.

Proof. We have
(dFi\w_ldFj> = {Fqu} =0.

Hence w™'dF} is tangent to L.

(Wlw™rdF;, W dF;) = (w dF;|dF)) = —{F;, F;} = 0.
Hence the tangent space of £ contains an m-dimensional subspace on which w is zero. In

the case of a 2d — m dimensional manifold this means that £ is coisotropic. O

If H is a single function on ), we say that it is completely integrable if we can find a
family of functions in involution Fi,..., Fy satisfying (13.57) on Y such that H = F.

Note that for completely integrable H it is easy to find Lagrangian manifolds contained
in level sets of H — one just takes the sets of the form (13.56).
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14 Quantizing symplectic transformations

14.1 Linear symplectic transformations

Let p € L(R? @ RY). Write p as a 2x2 matrix and introduce a symplectic form:

a b 0 —1
p—[cd}, w.—{]l O}' (14.1)
p € Sp(R? @ RY) iff
pFwp=w,
which means
a*d—c*b=1, c*a=a%c, d?b=10"d. (14.2)
If
&= al@ +bVp;,
Bo= eyt +dp;, (14.3)

then 2/, ' satisfy the same commutation relations as #, p. We define Mp°(R? @ R?) to be
the set of U € U(L?(R?)) such that there exists a matrix p such that

UQA?LU* — Li'/i7

UpU* = pj.
We will say that U implements p. Obviously, p has to be symplectic, Mp¢(R? @ R?) is a
group and the map U — p is a homomorphism.

14.2 Metaplectic group

If y is a quadratic polynomial on R? @ R?, then clearly ¢*OP(X) ¢ Mp*(R? @ RY) and
implements the symplectic flow given by the Hamiltonian y. We will denote the group
generated by such maps by Mp(R? @ R?). Every symplectic transformation is implemented
by exactly two elements of Mp.

14.3 Generating function of a symplectic transformation

Let p be as above with b invertible. We then have the factorization

S F R [ S

e=db~! = b4,

where

f=b"ta=a*b*"1.
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are symmetric. Define

1 1
X x X3 (x1,22) = S(x1,m2) = §$1'f$1 — b oy + 5.772'61‘2.
Then )
a T T2
= 14.5
e ]-lE] 149
iff

les(m17:’v2) = _617 VIZS(LL'DCCQ) = £2~ (146)

The function S(x1,z2) is called a generating function of the symplectic transformation p.
It is easy to check that the operators £U, € Mp(X* & X) implementing p have the
integral kernel equal to

+U,(x1,22) = i(Qﬂih)_%\/—det Vi, Vi, S e~ wS(@)

14.4 Harmonic oscillator

As an example, we cosider the 1-dimensional harmonic oscillator with # = 1. Let x(z,£) :=
1¢2 + 122 Then Op(x) = £ D? + 22, The Weyl-Wigner symbol of e *OP(X) equals

w(t, z,&) = (ch%)’1 exp(—(2? + EQ)th%). (14.7)

Its integral kernel is given by

— (2% + y?)cht + 2
W(t,x,y)zﬁ—é(sht)—;exp( (z +y28)hct + xy>

e 1OP(X) has the Weyl-Wigner symbol

w(it,z, &) = (cos L) "Lexp (—i (2% + £2)tgl) (14.8)

and the integral kernel

2 2
im imt - t 2
W(it,x,y):w—%\sinﬂ_%e_re_?[%] exp( (27 +y7) cost + my) .

2isint

Above, [c] denotes the integral part of c.
We have W (it + 2im, z,y) = —W (it, z,y). Note the special cases

W(0,z,y) = dz—y),
W(%’,x,y) = (2%)_%6_%e_“y,
W(im z,y) = e 26(z+y),
W(i%ﬂx,y) = (2m) 2e 1 &Y



Corollary 14.1. (1) The operator with kernel i(?ﬂi)_%e_iwy belongs to the metaplectic

1 0
(2) The operator with kernel +id(x + y) belongs to the metaplectic group and implements

A

14.5 The stationary phase method

group and implements [ 0 -l }

For a quadratic form B, inert B will denote the inertia of B, that is ny —n_, where ny is
the number of positive/negative terms of B in the diagonal form.

Theorem 14.2. Let a be smooth function on X and S a function on suppa. Let xo be a
critical point of S, that is it satisfies

8305(:60) =0.

(For simplicity we assume that it is the only one on suppa). Then for small h,

/ enS@)g(z)da ~ (2mh) " Tl Fnert 2S(@0) 05 S(0) g () + O(h™2 1Y), (14.9)

Proof. The left hand side of (14.2) is approximated by
/e%s(zo)Jrﬁ(I*Io)iﬁS(Io)(rfxo)a(xo)dxv (14.10)

which equals the right hand side of (14.2). O

14.6 Semiclassical FIO’s

Suppose that Xp x X} 3 (22, x1) — a(xa, 1), is a function called an amplitude. Let suppa >
(x2,21) — S(z2,21) be another function, which we calle a phase. We define the Fourier
integral operator with amplitude a and phase S to be the operator from CZ°(X;) to C*°(Xs)
with the integral kernel

d
2

FIO(a, S) (22, 21) = (27h) % (Va4 Va, S(wa, 21))2 e S@2a1) (14.11)

We treat FIO(a, S) as a quantization of the symplectic transformation with the generating
function S. Suppose that we can solve

V.S(Z,x)=p (14.12)
obtaining (z,p) — &(z,p). Then

FIOx(as, S)*FIOp(ay1, S) = Opj (b) + O(h), (14.13)
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where
b(x,p) = a2(Z(z,p), x)a1 (Z(z,p), x). (14.14)

In particular, Fourier integral operators with amplitude 1 are asymptotically unitary.
Indeed

FIOE(GQ, S)*FIOh(al, S)(JZQ, .231)
/dx\/ax(?mS(x, xz)\/BmBIIS(x, z1) a(zq,x)ar (z, xl)e_%s(z’“)"’iﬁs(w’“)

/ d(Eb(.’L’Q, x, {El)eiﬁp(w?vwvwl)(wg—xl)

/dpapl‘(I‘Q’p,$1)b($27$(1)2,p7$1),.Z‘l)e%p(x2_xl),

where

b(zg,,21) = /030,82, 20)\/0:0,,5(x, 1) alxe, x)ar(z, 1),

1
p(x2,w,21) = /8x5(7x2+(1—7)x1)d7'.
0

14.7 Composition of FIO’s
Suppose that
X x X3 (x,x1) = S1(z,x1), Xo XX D (x2,2) > Sa(xe,x) (14.15)
are two functions. Given xs,x1, we look for z(xe, z1) satisfying
Vi Sa(z2, x(x2, 1)) + Vi Si(x(z2, 21),21) = 0. (14.16)
Suppose such z(x3,x1) exists and is unique. Then we define
S(xg, 1) := So(xe, x(x2,21)) + S1(x(22,21),21) (14.17)

Suppose S; is a generating function of a symplectic map p; : T#X; — T#X and S; is a
generating function of a symplectic map p : T#X — T#AX5. Then S is a generating function
of paopy.

Proposition 14.3.
VzZVmS(zg,xl) = 7vr2v152(l’27x(1}2,$1)) (1418)
-1
X (V;?)Sz(mg, x(xo, 1)) + V;Q)Sl(x(arg, x1), x1)>
vavzlsl(l’(l'g,l'l), Zl).
Proof. Differentiating (14.16) we obtain
(Vi) (T1,72) (V;Q)Sg(x%x(xg, x1)) + Véz)Sl(x(xg,xl)wl))
+V3;vx252($2,l‘($2, Il)) = 0. (1419)

142



Differentiating (14.17) we obtain

Ve S(z1,22) = Vg, Si(x(z1,22), 21),
ViV, S(x1,22) = (Vo) (21, 22)Ve Ve, S1(x(2r, 22), 21).

Then we use (14.19) and (14.20). O

In addition to two phases Sy, Ss, let
Xo X X 3 (29,2) = az(xz2,2), X x X3 (z,21)— ar(x,27)
be two amplitudes. Then we define the composite amplitude as
a(xa, 1) := ag(xe, x(x2, 1)) a1 (x(x2, 1), x1).
Theorem 14.4.

FIOs(az, S2)FIOx(ay, S1) = FIOn(a, S) + O(h).

15 WKB method

15.1 Lagrangian distributions

Consider a quadratic form

and a function on R?

Clearly, we have the identity
(b — Siil)e2m ™ =0, i=1,...,d.

One can say that the phase space support of (15.2) is concentrated on
{(z,p) : pi—Siyz? =0, i=1,...,d},

which is a Lagrangian subspace of R? @ R?.

(14.20)

(14.21)

(14.22)

(14.23)

(15.1)

(15.2)

(15.3)

Let us generalize (15.2). Let £ be an arbitrary Lagrangian subspace of R?@R?. Let £"

be the set of linear functionals on R% @ R? such that

L= N Kerg.
¢6£an ¢

Every functional in £2" has the form

P(&,m) = &' +1'p;.
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The corresponding operator on L?(R?) will be decorated by a hat:
$(&,m) = &iyd? + ;.

We say that f € S'(R?) is a Lagrangian distribution associated with the subspace L iff

o(&n)f =0, ¢(&mn)eL™

In the generic case, the intersection of £ and 0 @ R? is (0,0). We then say that the
Lagrangian subspace is projectable onto the configuration space. Then one can find a gener-
ating function of the distribution £ of the form (15.1). Lagrangian distributions associated
with £ are then multiples of (15.2).

The opposite case is £ = 0 ® R?. £ is then spanned by z?, i = 1,...,d. The corre-
sponding Lagrangian distributions are multiples of §(x)

15.2 Semiclassical Fourier transform of Lagrangian distributions

Consider now the semiclassical Fourier transformation, which is an operator Fp, on L?(R%)
given by the kernel A
Fnlp, x) := e #7P, (15.4)

Note that for all h, (27h)~%2F}, is unitary — it will be called the unitary semiclassical
Fourier transformation. Multiplied by +i? it is an element of the metaplectic group.
Consider the Lagrangian distribution

o7 TST (15.5)
with an invertible S. Then its is easy to see that the image of (15.5) under (27h)~%2Fy is
12 (det 5_1)1/26_2%'1)57110.

More generally, we can check that the semiclassical Fourier transformation in all or only a
part of the variables preserves the set of Lagrangian distributions.

15.3 The time dependent WKB approximation for Hamiltonians

In this subsection we describe the WKB approximation for the time-dependent Schrédinger
equation and Hamiltonians quadratic in the momenta. For simplicity we will restrict our-
selves to stationary Hamiltonians — one could generalize this subsection to time-dependent
Hamiltonians.

Consider the classical Hamiltonian

1
H(z,p) = 5(p — Al2))g(2)(p — A(2)) + V(2) (15.6)
with the corresponding Lagrangian

L(z,v) = %vg_l(x)v +vA(x) — V(). (15.7)
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We quantize the Hamiltonian in the naive way:

1

Hy = 5(—1}1@ — A(z))g(z)(=ihd — A(x)) + V(z). (15.8)
We look for solutions of
ihoyUp(t,z) = Hp¥i(t,x). (15.9)
We make an ansatz
Unt,z) = enSEoq, (¢ ), (15.10)
Un(0,2) = erS@a(z). (15.11)

where a(x), S(z) are given functions. We multiply the Schrodinger equation by e~ wS(to)

obtaining
(ihét —9,5(t, x)) an(t, z) (15.12)
= (G + 0,8 (00) = Aglo) D, +0,8(0:0) = A(w) +V(2) ) ).
To make the zeroth order in /i part of (15.12) vanish we demand that
_8,S(t,x) = %(azsa, 2) — A(2))g(2)(0:5(t, 2) — A(@)) + V(z).  (15.13)

This is the Hamilton-Jacobi equation for the Hamiltonian H. Together with the initial
conditions (15.13) can be rewritten as

-0,5(t,x) = H(z,0,5()), (15.14)
S(va) = S(I)7

Recall that (15.14) is solved as follows. First we need to solve the equations of motion:

i(ty) = OpH(z(t,y),p(t,y)),
plty) = —0.H(x(t,y),p(t,y)),
z(0,y) = v,

p(0,y) 9yS(y).

We can do it in the Lagrangian formalism. We replace the variable p by v:

v(t,z) = OpH (z,0,5(t,2)).

Then
it,y) = v(ty),
i}(tvy> = BmL(x(t,y),U(t,y)),
x(O,y) = Y
v(0,y) = H(y,9,S(y)).
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Then
S(t,x(t,y)) = S(y) + /O L((s,9), v(s,9))ds

defines the solution of (15.14) with the initial condition (15.11), provided that we can invert

y = z(t,y).
We have also the equation for the amplitude:

(@ + %(’U(t,.’lﬁ)éw + @v(t, x))) ap(t,x) = % A$g(x)éxah(t,x). (15.15)

Note that for any function b

SIS

A 1

(@ + 5(1}(7,‘,96)635 + Ozv(t, x))) (det D,y (t, )2 b(y(t,x)) =0 (15.16)

Thus setting

1 i
Wa(t,z) == (det uy(t, x)) % aly(t,x))en ), (15.17)
We solve the Schrodinger equation modulo O(R), taking into account the initial condition:
hoa(t,z) = HpPalt,z)+ O(R?),
Ua(0,2) = enS@q(x)

We can improve on ¥ by setting

Up(t, z) == (det Oy (¢, x) Zhn (t,y(t,z))e %S(t“), (15.18)
where
bo(y) = aly),
Orbpsr (ty(t, ) = ih(det Dpy(t, )~ % ug(x)dy (det Dpy(t, )% by (¢, y(t, 7).

(The Oth order yields ¥i(¢,z)). If caustics develop after some time we can use the prescrip-
tion of Subsection 15.11 to pass them.

15.4 Stationary WKB metod

The WKB method can be used to compute eigenfunctions of Hamiltonians. Let H and Hp,
be as in (15.6) and (15.8). We would like to solve

Hy¥p, = EVy,.

We make the ansatz
Up(x) := ehs(“’)ah(x).

146



We multiply the Schrédinger equation by e #5@)

Eap(x) (15.19)
- <;(ilh<§x + 0,8(x) — A(z))g(x) (i~ hdy + 0,S(x) — A(z)) + V(x)) an(x).

obtaining

To make the zeroth order in & part of (15.19) vanish we demand that
1
E = 5(0:5(z) - A2))g(2)(0:5(z) — A(z)) + V(2),

which is the stationary version of the Hamilton-Jacobi equation, called sometimes the eikonal
equation. Set v(z) = 0,H (x,0,5(x)). We have the equation for the amplitude

2 (0@ + 0,0(0) )an(a) = 2 d,g(w)dan(). (15.20)
We set
an(@) =3 Wy (). (15.21)
Now (15.20) can be rewritten as -
%(v(x)éw +0,0(@))aor) = 0, (15.22)
%(v(x)éx £ 0,0(@) )ani(e) = ihrg(a)san ()

In dimension 1 we can solve (15.22) obtaining

Wn(z) = [v(@)] 7> Y A"y (x)er )
n=0
We obtain the chain of equations
bo(z) = 1,
Oibnyr (z) = ihlv(@)|20p9(x)d,|0(x)|" 20, (2).
Thus the leading approximation is
Uo(z) = |v(z)| " 2enSE), (15.23)

In the case of quadratic Hamiltonians we can solve for v(z) and S(z):

v(z) = glz)™'/2(E - V(2)),
9:5(z) = g(x) " /2(E -V (2)) + A).
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15.5 Three-variable symbols

Sometimes the following technical result is useful:

Theorem 15.1. Let
\35353;4 <Caprys @B,

Then the operator B with the kernel
B(:Z?7 y) = (27Th)7d / C(:L‘,p7 y)e%(x*y)pdp

belongs to W, and equals Op(b), where

%Dp(*DIJFDy)C(

b(x,p) =e Iapay)

Consequently,

+ O(h?). (15.24)

=y

ih
b(x7p) = C(£177p, LL') + g(amc(xapa y) - Byc(x,p, y))

Proof. We compute:
= —d 3 2(w—p) z Z
ba.p) = 2a) 0 [ Dol 2 w.o - 2)dsdo,

then we apply (?7). O

15.6 Conjugating quantization with a WKB phase
Lemma 15.2. The operator By with the kernel

(2rh) =% / b(z, y)pexp (%(x - y)p) dp (15.25)

equals

B

5 ((‘iob(x,x) n b(x,x)éw) + ik (05b(x, y) — Oyb(z, y)) ‘ . (15.26)

y=z

Proof. We apply Theorem 15.1. O

Theorem 15.3. Let S,h be smooth functions. Then
e_%s(“)Oph(G)e%S(w) = G(x,0.5(x)) (15.27)
+% (éﬁapa(x,aﬁsm)) + 6pG(x,8$S(x))3w) +O(R?).
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Proof. The integral kernel of the left-hand side equals

We have

)t [ (T2 p) exp (5~ S)+ S) + (@~ v)p) )dp

ol

(2mh)~ /G(M,p) exp%(x—y)(—/0188(7x+(l—T)y)d7'+p>dp

2
fe(=*

(27rh)*% /G(m '; y,/ol OS(tz+ (1 - T)y)dT) exp (}%(z - y)p)dp (15.28)

(SEY

(2mh)™

,p+ /01 85(735 +(1- T)y)dT) exp (%(m — y)p)dp

iR

(2wh)™ /papG (3324_y, /01 OS(re+ (1 — T)y)dT) exp (%(m - y)p)dp (15.29)

(Qwh)_g//olda(l—a)pp

1 .
% 8,0,G (“””"2”’ op + / aS(rz + (1 — T)y)dT> exp (%(w - y)p) dp.  (15.30)
0

(15.28) = G(wx,0.5(x)),
(15.20) = %(émapG(xﬁmS(x))+6pG(x,8mS(x))(§x),
(15.28) = O(h?),

where we used Lemma 15.2 to compute the second term. O

15.7

WKB approximation for general Hamiltonians

The WKB approximation is not restricted to quadratic Hamiltonians. Using Theorem 15.3
we easily see that the WKB method works for general Hamiltonians.

One can actually unify the time-dependent and stationary WKB method into one setup.
Consider a function H on R? @ R? having the interpretation of the Hamiltonian. We are
interested in the two basic equations of quantum mechanics:

(1) The time-dependent Schrodinger equation:

(ihd, — Opy,(H)) Pp(t, z) = 0. (15.31)

(2) The stationary Schrodinger equation:

(Opp(H) — E) ®r(z) =0 (15.32)
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They can be written as
Op;(G)Pr(z) =0, (15.33)
where

(1) for (15.31), instead of the variable = actually we have t,z € R x R?, instead of p we
have 7,p € R x R? and
G(‘T7t7p7 T) =T~ H(I,p)

(2) for (15.31),
G(z,p) = H(z,p) — E.

In order to solve (15.33) modulo O(k) we make an ansatz
Oy(x) = e%s(m)ah(z).
We insert @ into (15.33), we multiply by e 79 we set
v(@) = 8,Glw,p),
and by (15.27) we obtain
e—%s(m)Oph(G)(I)h = G(z,0,5())an(z)
—i—% (@v(a:) + v(x)@}) ap(x)
+0(h?).
Thus we obtain the Hamilton-Jacobi equation
G(z,0,5(x)) =0

and the transport equation

If we choose any solution of

(@w(m) + v(m)@) ap=0

N |

and set _
Do (z) = en @ qq(x)

then we obtain an approximate solution:

Op;(G)Pu(z) = O(h).
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15.8 WKB functions. The naive approach

Distributions associated with a Lagrangian subspaces have a natural generalization to La-
grangian manifolds in a cotangent bundle.

Let X be a manifold and £ a Lagrangian manifold in T#X. First assume that £ is
projectable onto Y C X and U > = — S(x) is a generating function of £. Then

Uz a(z)erS® (15.34)

is a function that semiclassically is concentrated in L.

Suppose now that L is not necessarily projectable. Then we can consider its covering
LV parametrized by z — (2(z),p(z)) € L. Let T be a generating function of £ viewed
as a function on £°°V. We would like to think of (15.34) as derived from a half-density on
the Lagrangian manifold

2+ b(z(2),p(2)) |dz\1/26%T($(Z)’p(z)). (15.35)

where b is a nice function on £V.
If a piece of L is projectable over U C X, then we can express (15.35) in terms of x:

Uz b(z,p(z(x)))| det 6932(30)‘1/2@3%71(:”’1’(2(3’))) |daz|/2. (15.36)

(15.36) is actually not quite correct — there is a problem along the caustics, which should
be corrected by the so-called Maslov index.

15.9 Semiclassical Fourier transform of WKB functions
Let us apply (27h)~%2F}, to a function given by the WKB ansatz:
Up(z) == a(x)erS@). (15.37)
Thus we consider
(2mh)~/? /a(x)e%(s(z)fmp) dz.

We apply the stationary phase method. Given p we define z(p) by

92(S(x(p)) — z(p)p) = 0xS(x(p)) —p = 0.
We assume that we can invert this function obtaining p — x(p). Note that

1

0y (p) = (925 (z(p)))
so locally it is possible if 925 is invertible. Let p S(p) denote the Legendre transform of

x +— S(z), that is
S(p) = px(p) — S(z(p))-
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Then by the stationary phase method

iwinert 6325 S(xz(p))

(27h)~ P FpWn(p) = e 1 025 ((p)) |~/ 2e= #5 W a(a(p)) + O(h)
iminert agé(p) 9 1/2 i 5
= ¢ 1 |28 Pa(z(p)) + O(h).
One can make this formula more symmetric by replacing ¥ with

®p(x) = |025(x)| 4 a(x)er 5@ (15.38)

Then

iminert 82 S(p)

@rh) "2 Fn(p) = e T |925(p)|[V e # Pa(z(p)) + O(h).

15.10 WKB functions in a neighborhood of a fold

Let us consider R x R and the Lagrangian manifold given by & = —p?. Note that it is
not projectable in the x coordinates. It is however projectable in the p coordinates. Its

generating function in the p coordinates is p — %.
We consider a function given in the p variables by the WKB ansatz

(2h) "2 FpUs(p) = e 5 b(p). (15.39)

Then s
Uy(z) = (27h) "2 / en U5 2P p(p)dp. (15.40)

The stationary phase method gives for « < 0, p(x) = ++/—x. Thus, for x < 0,
Up(z) ~ ed w02 (p)~ip(—y/=2) (15.41)
Thus we see that the phase jumps by es.

For x > 0 the non-stationary method gives ¥y(z) ~ O(h>). If b is analytic, we can
apply the steepest descent method to obtain

[N

27 ib(iv7) (15.42)

Note that the stationary phase and steepest descent method are poor in a close vicinity
of the fold — they give a singular behavior, even though in reality the function is continuous.
It can be approximated by replacing b(p) with b(0) in terms of the Airy function

Up(z) =~ e "

1 [ 42,
Ai(z) = %/ e§p2+1pzdp.

In fact,

Up(z) ~ b0)(2m) 2h YoM 3e).
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15.11 Caustics and the Maslov correction

Let us go back to the construction described in Subsection 15.8. Recall that we had problems
with the WKB approximation near a point where the Lagrangian manifold is not projectable.
There can be various behaviors of £ near such point, but it is enough to assume that we have
a simple fold. We can then represent locally the manifold as X = R x X} with coordinates
(21,2, ). The corresponding coordinates on the cotangent bundle T#X = R x R x T#X
are (£1,P1,%1,D1)-

Suppose that we have a Lagrangian manifold that locally can be parametrized by (p1,z )
with a generating function (p1, 2, ) — T'(p1, 2,1 ), but is not projectable on X'. More precisely,
we assume that it projects to the left of 1 = 0, where it has a fold. Thus it has two sheets
given by

{=(x1,21) : x1 <0} 32— p(z).

By applying the Legendre transformation in x; we obtain two generating functions
{(z1,21) = 21 <0} > 2 SE(2).
Suppose that we start from a function given by
Pn(pr,ws) = e PTGy o),

where « is a certain phase. If we apply the unitary semiclassical Fourier transformation wrt
the variable p; we obtain

1
2

Up(z) = e Erm) iy 0 (a) o) )| det 0y, py (2)]

+e%S+(x1,mi)+ia+i%b(p-li-(x)’ IL) | det azlp-li-(x)|

(15.43)
+O(h).  (15.44)

Nl

Thus the naive ansatz is corrected by the factor of e'%.
In the case of a general Lagrangian manifold, we can slightly deform it so that we can
reach each point by passing caustics only through simple folds.

15.12 Global problems of the WKB method

Let us return to the setup of Subsection 15.7. Note that the WKB method gives only a
local solution. To find a global solution we need to look for a Lagrangian manifold £ in
G~1(0). Suppose we found such a manifold. We divide it into projectable patches £; such
that w(L;) = U;. For each of these patches on U; we can write the WKB ansatz

eiﬁs(’g)a(m).

Then we try to sew them together using the Maslov conditon.

This might work in the time dependent case. In fact, we can choose a WKB ansatz
corresponding to a projectable Lagrangian manifold at time ¢ = 0, with a well defined
generating function. For small times typically the evolved Lagrangian manifold will stay
projectable and the WKB method will work well. Then caustics may form — we can then
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consider the generating function viewed as a (univalued) function on the Lagrangian manifold
and use the Maslov prescription.

When we apply the WKB method in more than 1 dimension for the stationary Schrodinger
equation, problems are more serious. First, it is not obvious that we will find a Lagrangian
manifold. Even if we find it, it is typically not simply connected. In principle we should use
its universal covering. Thus above a single z we can have contributions from various sheets
of £V — typically, infinitely many of them. They may cause “destructive interference”.

15.13 Bohr—Sommerfeld conditions

The stationary WKB method works well in the special case of X = R. Typically, a
Lagrangian manifold coincides in this case with a connected component of the level set
{(z,p) e RxR : H(xz,p) = E}. The transport equation has a univalued solution. £ is
topologically a circle, and it is the boundary of a region D, which is topologically a disc.
(This equips £ with an orientation). The function T after going around L increases by
/, 0= fD w. Suppose that £ crosses caustics only at simple folds, n4 of them in the “pos-
itive” direction and n_ in the “negative” direction. Clearly, n, —n_ = 2. (In fact, in a
typical case, such as that of a circle, we have n, = 2, n_ = 0). Then when we come back
to the initial point the WKB solution changes by

e% fD wfiﬂ—. (1545)

If (15.45) is different from 1, then going around we obtain contributions to WKB that intefere
destructively. Thus (15.45) has to be 1. This leads to the condition

1
7/ w—m=21n, nEZ, (15.46)
hJp
or . .
— =h = 15.47
2 Dw (n—l— 2) 7 ( )

which is the famous Bohr-Sommerfeld condition.
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