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Abstract

Geometric tools describing the structure of a null-like surface S (wave front)
are constructed. They are applied to analysis of interaction between a light-like
matter shell and the surrounding gravitational field. It is proved that the Einstein
tensor Ga

b describing such a situation may be written in terms of external curvature
of S. Conservation laws (Bianchi identities) for G are proved. Also geometry of
non-expanding horizons (surfaces surrounding black holes) is analyzed in terms of
the constructed tools. Possibility of application of these results to the problem of
motion of isolated objects in General Relativity is discussed.
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1 Introduction

Professor Roman S. Ingarden always taught us how to adapt modern differential
geometry to specific needs of theoretical physics. In the present paper we show to
what extend the notion of an extrinsic curvature may be generalized to the case of a
null-like hypersurface. Such surfaces arise in two important physical situations: 1)
they correspond to world-sheets of radiation-like matter-shells and 2) they describe
isolated event-horizons in the theory of black holes.
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Geometry of a hypersurface S ⊂ M in a Riemannian manifold (M, g) may be
described by two objects: the restriction gab of the metric tensor to S (called its “first
fundamental form”) and the external curvature (called its “second fundamental
form”). For many purposes it is useful to represent the latter by the so called
Arnowitt-Deser-Misner momentum-density Pa

b (for purposes which will become
clear in the sequel we use the mixed contravariant-covariant representation). In a
pseudo-Riemannian (Lorentzian) manifold M , the analogous quantity may be easily
defined for any submanifold S whose first fundamental form is non-degenerate – see
[1] and [2]. This is not true if S is a wave front manifold. In this case the induced
metric is degenerate, and the standard construction of external curvature does not
make any sense because the inverse metric gab used in the construction does not
exist.

The object Pa
b plays an important role in the theory of a self-gravitating matter-

shell – see [4], [5], [6]. Space-time M describing the shell is a union of two pieces
stitched along S in such a way that the metric gµν is continuous and the connection
coefficients Γλ

µν admit step discontinuities on S. Einstein tensor of such a space-
time contains derivatives of these discontinuities and, therefore, may be defined
only in the sense of distribution as Ga

b = Ga
bδS , where δS is the Dirac’s delta

distribution concentrated on S and Ga
b is a three-dimensional tensor-density living

on S. Actually the following may be proved (see [7], [8] and [9]):

Ga
b := [Pa

b] , (1.1)

where the bracket denotes the jump of the value of the A. D. M. momentum be-
tween the two sides of S. The above singular Einstein tensor must be matched
by the singular (living on S) energy-momentum tensor of the matter shell. Due to
Gauss-Codazzi constraint, these objects must be conserved and the conservation law
∇aGa

b = 0 may be written in terms of the three-dimensional covariant derivative
∇ on S.

In the present paper we show that the above construction may be generalized
to the case of a null-like world-surface S (a world-sheet of a light-like matter shell
– e. g. a short flash of radiation). Singular Einstein tensor is constructed and its
divergence with respect to the degenerate metric of S is uniquely defined. The
divergence is shown to vanish as a consequence of Gauss-Codazzi equations. “Hy-
drodynamics” of radiation-like matter, providing energy-momentum tensors whose
divergence vanish automatically, will be analyzed in the next paper.

Unlike in the case of a massive matter shell, the lower index of Ga
b cannot

be raised because of the degeneracy of the metric tensor gab and, consequently,
the corresponding covariant tensor density Gab cannot be uniquely defined. This
corresponds to the fact that the “symmetric energy-momentum tensor” Tab of the
radiation-like matter, defined as a derivative of the matter Lagrangian with respect
to the metric, is not given uniquely, because the latter is subject to a constraint:
det gab = 0. Hence, the derivative is defined only up to an additive term: derivative
of the constraint multiplied by an arbitrary Lagrange multiplier (in Section 5 we
analyze this non-uniqueness in detail). Nevertheless, as will be shown in the next
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paper, the canonical energy-momentum tensor Ta
b of such a matter is well defined

and remains conserved as a consequence of Noether identities. Dynamics of the
shell is implied by the singular part of Einstein equations on S: Ga

b = 8πTa
b.

In the last Section we apply our construction to the theory of non-expanding
horizons. Geometry of a horizon is described by two, mutually conjugate objects: a
divergence-free vector-density Λa (“first fundamental object”) and a gauge potential
wa (“second fundamental object”) which is subject to the gradient gauge transfor-
mations. Application of these objects to the dynamics of black holes is shortly
discussed.

2 Intrinsic geometry of a null hypersurface

A null hypersurface in a Lorentzian space-time M is a three-dimensional subman-
ifold S ⊂ M such that the restriction gab of the space-time metrics gµν to S is
degenerate.

We use here adapted coordinates: Cauchy surfaces Vt corresponding to constant
value of the “time-like” coordinate x0 = t are space-like and the x3 coordinate is
constant on S. Space coordinates will be labelled by k, l = 1, 2, 3; coordinates on S
will be labelled by a, b = 0, 1, 2; finally, coordinates on St := Vt∩S will be labelled by
A,B = 1, 2. Space-time coordinates will be labelled by Greek characters α, β, µ, ν.

The non-degeneracy of the space-time metric implies that the metric gab on S
has signature (0,+,+). This means that there is a non-vanishing null-like vector
field Xa on S, such that its four-dimensional embedding Xµ to M is orthogonal to
S. Consider integral curves of Xa. We are going to prove that these curves, after a
suitable reparameterization, are geodesic curves of the space-time metric gµν . For
this purpose consider any smooth function ϕ with non-vanishing gradient, which is
constant on S and take any null-like vector field Xµ in a neighbourhood of S, which
coincides with Xa on S. Because Xµ is orthogonal to S, we conclude that Xµ is
proportional to the gradient of ϕ:

Xµ = fϕ,µ, (2.1)

where f does not vanish on S. Using the symmetry of the second covariant deriva-
tives: ∇λ∇µϕ = ∇µ∇λϕ, we obtain on S the following identity:

Xλ∇λXµ = ϕ,µ(Xλ∂λf) + fXλ∇λ∇µϕ = ϕ,µ(Xλ∂λf) + fXλ∇µ∇λϕ

= (Xλ∂λf)ϕ,µ + fXλ∇µ(
1
f
Xλ) = (Xλ∂λf)ϕ,µ +Xλ∇µXλ

= (Xλ∂λf)ϕ,µ +
1
2
∇µ(XλXλ) = (Xλ∂λ log f)Xµ . (2.2)

This implies that the field X̃µ := 1
fX

µ is geodesic:

X̃λ∇λX̃
µ = 0 . (2.3)

We conclude that the null hypersurface is always a collection of null-like geodesics.

3



On the other hand, the hypersurface S may be constructed if we only know initial
values for these geodesics: a space-like two-surface St and a null-like vector field
Xµ(x) defined for x ∈ St. More precisely: there are exactly two null hypersurfaces
containing given St. Indeed, chose any space-like Cauchy surface Vt containing St

and a three-coordinate system (xk) on it such that the coordinate x3 is constant
on St. At each point x ∈ Vt there are exactly two null-like directions orthogonal to
the two-surface {x3 = const}. Choose a non-vanishing vector Xµ(x) in one of these
directions and suppose that the dependence on x is smooth. There is a unique four-
coordinate system (xµ) in a neighbourhood of Vt satisfying the following conditions:

• coordinates xk, k = 1, 2, 3 are constant along geodesic lines starting from every
point x ∈ Vt in the direction Xµ(x),

• x0 is a geodesic parameter along these lines and equals t on Vt.

In this coordinate system we have:

X =
∂

∂x0
. (2.4)

Because it is null-like, we have: 0 = g(X,X) = g00. Moreover, the geodesic condition
(2.3) reads:

0 = ∇0
∂

∂x0
= Γµ

00 =
1
2
gµν(2gν0,0 − g00,ν) = 0 . (2.5)

These identities imply that
d

dx0
gν0 = 0 (2.6)

along each geodesics. But we had initially:

ga0(x0 = t) = g

(
X(x),

∂

∂xa

)
= 0 ,

because X was orthogonal to surfaces {x3 = const} (a = 1, 2) and to itself (a = 0).
We conclude that ga0 ≡ 0. Hence {x3 = const} are null hypersurfaces.

Our construction shows that any null hypersurface S may always be embedded in
a 1-parameter congruence of null hypersurfaces {x3 = const}. Moreover, coordinates
(xa) have been constructed in such a way, that the field (2.4) is a null geodesic field
in a neighbourhood of S.

For our purposes we will relax the latter condition and use an arbitrary coordi-
nate system, such that coordinate x3 is constant along null hypersurfaces belonging
to the congruence. A general four-metric tensor fulfilling this requirement takes the
following form:

gµν =



nAnA nA sM +mAnA

nA gAB mA

sM +mAnA mA

(
M
N

)2
+mAmA


, (2.7)
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and

gµν =



−
(

1
N

)2
nA

N2 − smA

M
s
M

nA

N2 − smA

M
˜̃g

AB − nAnB

N2 + snAmB+mAnB

M −snA

M

s
M −snA

M 0


, (2.8)

where M > 0, s = ±1, gAB is the induced two-metric on surfaces {x0 = const, x3 =
const} and ˜̃g

AB
is its inverse (contravariant) metric. Both ˜̃g

AB
and gAB are used to

rise and lower indices A,B = 1, 2 of the two-vectors nA and mA. Denoting

λ :=
√

det gAB , (2.9)

we have that
√
|det gµν | = λM .

In this coordinate system the null direction on S may be spanned by the following
vector field X:

X = ∂0 − nA∂A , (2.10)

or

Xµ =
g3µ

g30
= Msg3µ . (2.11)

We have:
g(X,X) = g(X, ∂A) = 0 . (2.12)

The triad (X, ∂A) on S will be used in the sequel for various geometric construc-
tions. It depends upon a particular (2 + 1)-decomposition of S, given by the choice
of the time coordinate x0 on S. As we shall see, several objects constructed by
means of the triad will not depend upon this choice and will describe the geometry
of S. To prove this independence, observe that we have the following transformation
law:

X̃ = cX , (2.13)
∂̃B̃ = C A

B̃
∂A + fB̃X , (2.14)

where (X̃, ∂̃B̃) is the new triad, corresponding to the new coordinate system (x̃ã)
on S. The coefficient c may be obtained from the following equation:

1 = 〈dx̃0, X̃〉 = 〈 ∂x̃
0

∂xA
dxA +

∂x̃0

∂x0
dx0, cX〉

= c

(
− ∂x̃0

∂xA
nA +

∂x̃0

∂x0

)
, (2.15)
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hence,

c =

(
∂x̃0

∂x0
− ∂x̃0

∂xA
nA

)−1

. (2.16)

On the other hand, equation (2.10) implies:

∂B̃ =
∂xA

∂x̃B̃
∂A +

∂x0

∂x̃B̃

(
X + nA∂A

)
=

(
∂xA

∂x̃B̃
+
∂x0

∂x̃B̃
nA

)
∂A +

∂x0

∂x̃B̃
X , (2.17)

hence,

C A
B̃

=
∂xA

∂x̃B̃
+
∂x0

∂x̃B̃
nA , (2.18)

fB̃ =
∂x0

∂x̃B̃
. (2.19)

Now, we are ready to prove that the following quantity:

Λa := λXa . (2.20)

is an invariant vector density on S, given uniquely by the structure of S and in-
dependent upon any choice of coordinates, even if the vector field X itself is not.
Indeed, the transformation law for gAB:

gÃB̃ = C A
Ã
C B

B̃
g (∂A + fAX, ∂B + fBX) = C A

Ã
C B

B̃
gAB , (2.21)

implies:
λ̃ = λ detC B

Ã
. (2.22)

Hence, the transformation law for Λ reads:

Λã = λ̃X̃ ã =
(
detC B

Ã

)
λcX ã

= det
(
∂xc

∂x̃d̃

)
λXa∂x̃

ã

∂xa
= det

(
∂xc

∂x̃d̃

)
Λa∂x̃

ã

∂xa
,

which is precisely the transformation law for vector densities. In the above formula
we have used the following algebraic identity, which we prove in the Appendix:

cdetC A
B̃

=

(
∂x̃0

∂x0
− nA ∂x̃

0

∂xA

)−1

det

(
∂xA

∂x̃B̃
+
∂x0

∂x̃B̃
nA

)
≡ det

(
∂xa

∂x̃b̃

)
. (2.23)

In order to complete the triad (X, ∂A) on S to a tetrad in M it is useful to choose
a transverse field Y fulfilling the following “normalization conditions”:

g(Y,X) = 1 , (2.24)
g(Y, ∂A) = 0 . (2.25)
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These equations do not determine Y uniquely, but modulo an additive term propor-
tional to X: a “gauge transformation”

Y → Y + hX , (2.26)

with an arbitrary scalar field h is always possible. Extending coordinate x0 from S
to a neighbourhood of S, we may choose the following, transverse field:

Y =
s

M

(
∂3 −mA∂A

)
. (2.27)

We stress, however, that this particular choice of Y , which we shall always use in
the sequel, depends not only upon a (2 + 1)-decomposition of S, but also on a
(3 + 1)-decomposition of M in a neighbourhood of S. Because of (2.12) and (2.25),
the vectors X and Y span the bundle of vectors normal to S.

The reader may easily check that the transformation law for Y , when passing
from one to another (2 + 1)-decomposition of S, reads:

Ỹ = c−1
(
Y − kA∂A

)
+ hX , (2.28)

where the scalar field h is arbitrary (it is determined by the extension of the (2+1)-
decomposition of S to a (3 + 1)-decomposition of M), and the coefficients kA are
uniquely determined by equation

fB̃ = C A
B̃
gACk

C , (2.29)

with fB̃ given by (2.19). Despite of the freedom in choice of Y , some geometric
objects constructed with help of the tetrad (X, ∂A, Y ) do not depend upon this
choice and characterize only the geometry of S ⊂M .

3 Extrinsic geometry of a null hypersurface

The covariant derivative of the field X along vectors tangent to S is orthogonal to
X and, therefore, tangent to S. Indeed, we have:

g(X,∇aX) =
1
2
∂ag(X,X) ≡ 0 ,

and, consequently:

∇aX =: −tba
∂

∂xb
. (3.1)

Equation (2.2) implies that the field Xa is an eigenvector of tba. The corresponding
eigenvalue vanishes if and only if X is geodesic.

A (2+1)-decomposition of S allows us to split tba into two parts:

lab := tcagcb = −g(∂b,∇aX) = g(∇a∂b, X) = XµΓµ
ab , (3.2)
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and
wa := t0a = −g(Y,∇aX) = −XµΓ0

µa . (3.3)

We note that both lab and wa are invariant with respect to any transformation
(2.26) because of the following formula:

g(Y + hX,∇aX) = g(Y,∇aX) .

Hence, they depend only upon a (2+1)-decomposition of S.
The matrix lab is symmetric, because of (3.2). It satisfies three identities

0 = labX
b = la0 − nBlaB ,

implied by (2.2). Hence, we have: l0A = lABn
B and, consequently, l00 = lABn

AnB.
The whole matrix tba may be fully reconstructed from the three components of lAB

and three of wa. Namely, we have: t00 = w0, t0A = wA. Moreover,

tA0 =
(
l0B − t00g0B

)
˜̃g

BA
=
(
nC lCB − w0nB

)
˜̃g

BA
,

tCA =
(
lAB − t0Ag0B

)
˜̃g

BC
= (lAB − wAnB) ˜̃g

BC
.

The matrix lab may be expressed in terms of the Lie derivative along X of the
metric tensor gab on S. Because such a three-dimensional Lie derivative is equal to
the restriction of the four-dimensional Lie derivative of gµν to S, we have:

LX(gab) = (LXg)ab = gac∇bX
c + gcb∇aX

c = 2gc(a∇b)X
c = 2g(∂a,∇bX) ,

or
lab = −1

2
LXgab . (3.4)

This implies the following transformation law for the object lab:

l̃ãb̃ = −1
2
LX̃gãb̃ = −1

2
c (LXg)ãb̃

= clãb̃ = clab
∂xa

∂x̃ã

∂xb

∂x̃b̃
.

It is not a tensorial transformation law, but combining it with the transformation
law for λ and using identity (2.23) we obtain the following transformation law for
the object Qab := λlab:

Qãb̃ = λ̃l̃ãb̃ = detC B
Ã
λclab

∂xa

∂x̃ã

∂xb

∂x̃b̃

= det
(
∂xc

∂x̃d̃

)
Qab

∂xa

∂x̃ã

∂xb

∂x̃b̃
.

We conclude that Qab is an intrinsic three-dimensional tensor density on S, in-
dependent upon a particular (2 + 1)-decomposition used. Because of (2.2), it is
“orthogonal” to X:

QabX
b = 0 .
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Let us denote by “||” a two-dimensional covariant derivative on each surface
{x0 = const}, calculated with respect to the Levi-Civita connection of gAB. Formula
(3.4) implies:

QAB = −1
2
λ
(
gAB,0 − nCgAB,C − nC

,AgCB − nC
,BgAC

)
=

1
2
λ
(
nA‖B + nB‖A − ġAB

)
, (3.5)

and, consequently,

QAB
˜̃g

AB
= λlAB

˜̃g
AB

= λl = −∂aΛa = −λ̇+ ∂A(λnA) , (3.6)

where l := lAB
˜̃g

AB
.

Unfortunately, transformation laws for the object wa, implied by (2.13) and
(2.14) are not of tensorial character:

w̃a = g

(
1
c

(
Y − kA∂A

)
+ hX,∇a(cX)

)
= g

(
1
c
Y, c∇aX

)
+ g

(
1
c
Y,X

)
∇ac+ g (hX, c∇aX) + g (hX,X)∇ac

−g
(
kA∂A, X

) 1
c
∇ac− g

(
kA∂A,∇aX

)
= wa + ∂aϕ − kBlaB, (3.7)

where ϕ = log c and kA are given by (2.29). Although this is not a tensorial
transformation law, we shall be able to use this object in a construction of further
tensorial objects on S.

4 Gauss-Codazzi Constraints

Similarly as for non-degenerate (e. g. space-like) hypersurfaces S, Einstein equations
imply constraints which must be fulfilled by the extrinsic curvature objects. In case
of a non-degenerate hypersurface there are four such constraints, corresponding to
components G3

a = g3νGνa and G33 = g3µg3νGµν of Einstein equations. In the light-
like case there are only three independent constraints. Indeed, due to (2.11), the first
quantity is proportional to XbGba, whereas the latter is proportional to XaXbGab

and, therefore, equal to linear combination of the first one. This corresponds to
the fact, that the vector orthogonal to S coincides with one of the tangent vectors.
We conclude that Gauss-Codazzi constraints are equivalent to the following three
equations:

GabX
aXb = 8πTabX

aXb, (4.1)
GaBX

a = 8πTaBX
a. (4.2)
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As gabX
a = 0, the above contractions with the Einstein tensor reduce to ones with

the Ricci tensor

gκλRκaλbX
a = RabX

a = GabX
a = 8πTabX

a .

We prove in the Appendix that equation (4.1) may be rewritten in terms of the
quantities lab and wa in the following way:

l̇ − nA∂Al + (waX
a) l − 1

2
l2 − l̄AB l̄AB = 8πTabX

aXb , (4.3)

where we have decomposed lAB into its trace l and its traceless part:

l̄AB := lAB − 1
2
gABl. (4.4)

Moreover, we prove in the Appendix the following form of the second (“vector”)
constraint (4.2):

ẇB − wB‖An
A − wAn

A
‖B − (waX

a)‖B − wBl + l̄AB‖A − 1
2
l‖B = −8πTaBX

a. (4.5)

In case of vacuum space-times the right-hand sides of both (4.3) and (4.5) vanish.

5 Energy-momentum tensor carried by a con-

nection discontinuity and Bianchi identities

Consider a space-time which is composed of two pieces stitched together along a
hypersurface S in such a way that the metric is continuous. We admit, however,
step discontinuities of its first derivatives across S.

Consequently, the Riemann tensor contains terms proportional to the Dirac dis-
tribution δ(x3), where (as usual) we denote by x3 any coordinate which is constant
on S. According to Einstein equations, we interpret these singular terms as the sin-
gular energy-momentum tensor carried by a matter which lives on S = {x3 = const}.
We assume that the topology of S is equal to that of a world tube S2 × R1. The
world tube of this “radiation-like” matter shell is a null hypersurface.

Theory of a self-gravitating matter shell was considered by many authors (see
e.g. [4] – [7]), but mainly in the context of a massive matter. For a light-like matter
(e.g. a short but strong flash of radiation) there are specific problems which we
want to discuss here.

The matter shell splits space-time into two parts: the interior and the exterior
of the tube S. Both parts fulfill separately vacuum Einstein equations in their
interiors. Hence, Einstein tensor vanishes outside of S. There remains, however, its
singular part, concentrated on S. It may be calculated from the Ricci tensor:

Rµν = ∂λΓλ
µν − ∂(µΓλ

ν)λ + Γλ
σλΓσ

µν − Γλ
µσΓσ

νλ . (5.1)
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An important simplification is obtained, when we rewrite it in terms of the following
combinations of the Christoffel symbols (see [3]):

Aλ
µν := Γλ

µν − δλ
(µΓκ

ν)κ . (5.2)

We have:
Rµν = ∂λA

λ
µν −Aλ

µσA
σ
νλ +

1
3
Aλ

µλA
σ
νσ. (5.3)

Terms quadratic in A’s may have only step-like discontinuities. The derivatives
along S are thus bounded and belong to the regular part of the Ricci tensor, which
vanishes on both sides of S. The singular part of the Ricci tensor is obtained from
the transversal derivative (λ = 3) only:

sing(Rµν) = ∂3A
3
µν = δ(x3)[A3

µν ] , (5.4)

where by δ we denote the Dirac delta-distribution and by square brackets we denote
the jump of the value of the corresponding expression between the two sides of S.

Hence, Einstein tensor density reads:

Gµ
ν :=

√
|g| sing

(
Rµ

ν −
1
2
R

)
= δ(x3)Gµ

ν , (5.5)

where
Gµ

ν := λM

(
δβ
ν g

µα − 1
2
δµ
ν g

αβ
)

[A3
αβ ] (5.6)

is the three-dimensional quantity living on S, whose geometric character will be
discussed later. Now, we are going to prove the following identity:

G3
ν ≡ 0 . (5.7)

For this purpose, on both sides of S ⊂ M we consider the following combination
of the connection coefficients taken in any coordinate system, such that S = {x3 =
const}:

Pµ
ν :=

√
|g|
(
gµαA3

αν −
1
2
δµ

νg
αβA3

αβ

)
= πµαA3

αν −
1
2
δµ

νπ
αβA3

αβ , (5.8)

where we have defined the tensor density:

πµν :=
√
|g| gµν , (5.9)

and A’s are given by (5.2). We have:

Gµ
ν := [Pµ

ν ] . (5.10)

Due to metricity of the connection, the following identities are satisfied on both
sides of S:

0 ≡ ∇aπ
33 = ∂aπ

33 + 2π3µΓ3
µa − π33Γµ

aµ = ∂aπ
33 + 2π3µA3

µa , (5.11)

0 ≡ ∇aπ
3a = ∂aπ

3a + πµaΓ3
µa + π3µΓa

µa − π3aΓµ
aµ

= ∂aπ
3a + πabA3

ab − π33A3
33 , (5.12)
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where a, b = 0, 1, 2 are coordinates on S. Because πµν are continuous across S, the
jump of these expressions between the two sides of S must vanish:

G3
a = π3µ[A3

µa] = −1
2
[∂aπ

33] = 0 , (5.13)

G3
3 = −1

2

(
πab[A3

ab]− π33[A3
33]
)

=
1
2
[∂aπ

3a] = 0 , (5.14)

which proves (5.7).
To encode the information contained in Gµ

ν , we could also use the symmetric
object Gµλ = Gµ

νg
νλ. Due to (5.7), the entire information about Gµ

ν is carried by
the three-dimensional, symmetric object Gab.

Unfortunately, this is not a tensor density, as will be seen in the sequel. Con-
sequently, also Gµ

ν is not. It depends upon the choice of coordinates used in the
calculations. Nevertheless, the information contained in G may be nicely divided
into an invariant, coordinate-independent part and the “gauge-dependent” part.
The first one is carried by the three-dimensional contravariant-covariant version of
G:

Ga
b := Gaµgµb = Gacgcb . (5.15)

It will be shown in the sequel that this is a genuine three-dimensional tensor density
on S. Due to identity Xagab = 0, it is orthogonal to X and symmetric after further
lowering of indices:

Ga
bX

b = 0 , (5.16)
Gab = Gba . (5.17)

It is easy to check that Ga
b contains 5 independent entries. Actually, it may be

uniquely reconstructed from G0
A (2 independent components) and the symmetric

two-dimensional matrix GAB (3 independent components):

GA
B = ˜̃g

AC
GCB − nAG0

B , (5.18)
G0

0 = G0
An

A , (5.19)

GB
0 =

(
˜̃g

BC
GCA − nBG0

A

)
nA . (5.20)

The correspondence between Ga
b and (G0

A,GAB) is one-to-one.
Reconstruction of Gab from Ga

b is impossible, or possible modulo an arbitrary
additive term fXaXb. Actually, let us assign to Ga

b the following, symmetric
quantity:

FAB := ˜̃g
AC

GCD
˜̃g

DB − nAG0
C
˜̃g

CB − nBG0
C
˜̃g

CA
, (5.21)

F0A := G0
C
˜̃g

CA
, (5.22)

F00 := 0 . (5.23)

One may easily check the following formula:

Gab = Fab + G00XaXb . (5.24)
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The missing (i. e. not contained in Ga
b) information about Gab is, therefore,

encoded in G00. Unlike Ga
b, it is not invariant and depends upon the choice of

coordinates.
We are going to prove in the Appendix that Gauss-Codazzi constraints obtained

in the previous section imply that the “covariant divergence” of Ga
b with respect

to the degenerate metric gab:

0 = ∂aGa
b −

1
2
Gacgac,b , (5.25)

must vanish. The formula above mimics the standard formula for the covariant
derivative ∇ of a symmetric tensor density, taken with respect to the Levi-Civita
connection of a non-degenerate metric: ∇aGa

b = ∂aGa
b − Ga

cΓ
c
ab = ∂aGa

b −
1
2G

acgac,b. For our degenerate metric there is no Levi-Civita connection Γ and
the rising of indices of G makes no sense. Nevertheless, the final formula is well
defined because the right-hand side of (5.25) does not depend upon any specific
reconstruction of Gac from Ga

b. Indeed, adding the term fXaXc to Gac does not
change anything, because of the following identity:

0 ≡ (XaXcgac),µ = XaXcgac,µ + 2XagacX
c
,µ = XaXcgac,µ . (5.26)

The operator on the right-hand side of (5.25) may thus be called the (three-dimen-
sional) covariant derivative of Ga

b on S with respect to its degenerate metric gab:

0 = ∇aGa
b := ∂aGa

b −
1
2
Gacgac,b = ∂aGa

b −
1
2
Facgac,b (5.27)

= ∂aGa
b −

1
2

(
2G0

A nA
,b −GAC

˜̃g
AC

,b

)
. (5.28)

Actually, we have proved that the above operation is well defined for tensor densities
Ga

b on S fulfilling conditions (5.16) and (5.17).
The (2+1)-decomposition of (5.25) into the time and the space component gives

us its equivalent version:

0 = ∇aGa
B = ∂0G0

B −
(
nAG0

B

)
||A

+
(
˜̃g

AC
GCB

)
||A

−G0
An

A
||B , (5.29)

and
0 = ∇aGa

0 = ˜̃g
AC

GCB
˜̃g

BD
lAD + nB∇aGa

B , (5.30)

which, if (5.29) is fulfilled, reduces to a purely algebraic equation:

0 = ˜̃g
AC

GCB
˜̃g

BD
lAD . (5.31)

The tensorial character of Ga
b will be obvious if we calculate it in terms of

the jump of the “transverse curvature” wa. Due to formula (3.7), the object [wa]
transforms like an intrinsic three-dimensional covector living on the surface S: the
“gauge-like” terms in the transformation law are equal on both sides of S and,
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therefore, cancel when we calculate the jump [wa]. We are going to prove the
following formula for G:

Ga
b = sΛa[wb] . (5.32)

For this purpose we first observe that the only non-vanishing discontinuities of A3
µν

are A3
33, A

3
30 and A3

3A. Indeed, using g33 = 0 we may prove that [A3
ab] ≡ 0 because

we have: A3
ab = Γ3

ab = g3µΓµab = g3cΓcab. The latter object contains only the metric
components on S together with their derivatives along S, i. e. is equal on both sides
of S.

Hence, using (2.11) and (2.20), we have:

Ga
b = λMgaβ [A3

bβ ] = λMga3[A3
b3] = sΛa[A3

b3] . (5.33)

But

[A3
b3] =

1
2
[Γ3

3b − Γa
ba] =

1
2
g3a[Γa3b]−

1
2
gaµ[Γµba] . (5.34)

Because derivatives of g along S are continuous across S, we have [gµν,a] = 0, and
the above expression reduces to

[A3
b3] =

1
2
g3a ([Γa3b]− [Γ3ba]) =

1
2
g3a[gab,3] =

1
2
g03Xa [gab,3] (5.35)

= −Xag03 [Γ3ab] = −Xa
[
Γ0

ab

]
= −Xµ

[
Γ0

µb

]
= [wb] , (5.36)

which ends the proof of (5.32) because of (3.3).
The trace of G vanishes because of the following identity:

Xa[wa] = 0 , (5.37)

which is an easy consequence of (5.35):

Xa[wa] =
1
2
g03XaXb [gab,3] ≡ 0 , (5.38)

the last equation implied by (5.26), which is fulfilled on both sides of S.
Similar calculations lead to the following result:

G00 = − 1
M

[λ,3] , (5.39)

which proves that the object Gab given by (5.24) does not transform like a tensor
density on S. In other words, definition of Gab is non-unique and depends upon
an arrangement of coordinates. When considering the complete theory of light-like
matter interacting with gravity, the above fact matches the non-uniqueness of the
definition of the symmetric energy-momentum tensor of the matter:

Tab :=
∂L
∂gab

, (5.40)
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where by L we denote matter Lagrangian-density. Indeed, a light-like matter im-
poses the constraint det gab = 0 on the geometry of its world surface. Consequently,
the derivative on the right-hand side of (5.40) is non-uniquely defined. Actually, we
may always add derivative of the constraint, multiplied by an arbitrary Lagrange
multiplier. This is precisely the term fXaXb, where X is a null vector of gab. On
the other hand, the canonical energy momentum tensor Ga

b is uniquely defined and
Einstein equations may be consistently written as Ga

b = 8πTa
b. These issues will

be discussed in the next paper.
We stress that identities (5.25) are more fundamental than vacuum Einstein

equations used in our paper to prove them. Actually, they follow from the singular
version of the Bianchi identities, fulfilled for any space-time with continuous metric
and a step discontinuity of the connection. Written for the mixed (contravariant-
covariant) Einstein tensor-density, Bianchi identities read:

0 = ∇µGµ
c = ∂µGµ

c − Gµ
αΓα

µc = ∂µGµ
c −

1
2
Gµλgµλ,c

= ∂aGa
c −

1
2
Gabgab,c . (5.41)

The regular part of this expression vanishes on both sides of S, as implied by
standard Bianchi identities. Let us calculate its singular part, proportional to δS .
First, we observe that applying the operator on the right-hand side of (5.41) to
the singular (5.5) part of the Einstein tensor, the Dirac delta is not differentiated,
because G3

c = 0. This way we obtain the right-hand side of (5.25) multiplied by
δS . Another δ-like term is obtained from ∂µGµ

c, when applied to the jump of the
regular part reg(G) of G. This way we obtain the term [reg(G)3c]δS . Finally, the
total singular part of the Bianchi identities reads:

[reg(G)3c] + ∂aGa
c −

1
2
Gabgab,c ≡ 0 . (5.42)

We are going to prove in the next paper that this is, indeed, a universal identity,
fulfilled for any space-time with continuous metric and a step discontinuity of the
connection across a hypersurface S. It is interesting that the proof is universal and
does not depend upon a specific (degenerate or non-degenerate) character of the
induced metric on S. The identity reduces to (5.25) for Einstein space-times, for
which the regular part of the Einstein tensor vanishes on both sides of S.

6 Non-expanding horizons

By an non-expanding horizon in a vacuum Einstein space-time M we mean a null
hypersurface S for which the density Λ is divergence-free:

∂aΛa ≡ 0 . (6.1)

Due to (3.6), this is equivalent to l ≡ 0 (cf. [10]). Vacuum Einstein equations (4.3)
imply, that also l̄AB must vanish. We have, therefore, lab ≡ 0 or, consequently,

LXgab ≡ 0 . (6.2)
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This means that the geometry of S is “static”. More precisely, S is an affine line
bundle π : S → B over a base manifold B. Usually, it is assumed that B is
topologically isomorphic to a sphere S2. Fibers of S are integral lines of X and
their affine structure is implied by the fact that they are null-geodesic lines in M .
The base manifold B is equipped with a Riemannian two-metric tensor γAB, and
the degenerate metric gab on the fiber manifold is simply the pull back of γAB from
B to S:

g = π∗γ .

The external curvature object wa also acquires a nice interpretation, because
transformation law (3.7) reduces to a pure “gauge transformation”:

w̃a = wa + ∂aϕ . (6.3)

The divergence-free vector density Λ and the gauge field w are mutually conjugate
objects, describing boundary data for the gravitational field on S. Both carry two
degrees of freedom. These are degrees of freedom of a black hole (or a “white hole”
– depending upon a sign of s), interacting with an external gravitational field. In
our opinion, analysis of the mixed “boundary value + initial value” problem for the
field outside of S might give a deep insight into the problem of motion in General
Relativity, where the elementary objects (“particles”) are black holes. They play
the same role as point particles in electrodynamics, and may be used to model the
behaviour of heavy objects (like stars or galaxies) in situations, where the internal
structure of the object seems to be irrelevant and only “external properties” (e.g. the
total mass, the total angular momentum or the total electric charge of a particle
in electrodynamics) are taken into account. In fact, information contained in the
boundary data Λ and w on S plays role of these “external properties” of a black
hole. Consequently, its equations of motion should be obtained by solving the
Cauchy problem for the gravitational field. In particular, static situations of that
type describe what is usually called “thermodynamics of black holes”. These issues
will be discussed in the next paper.

Let us notice, that the field wa is also “purely static” (of course, only modulo
gauge transformations (6.3)). Indeed, in a coordinate system compatible with the
bundle structure of π : S → B, (i. e. such that nA = 0) equation (4.5) reduces to:

ẇB = ∂B(waX
a) ,

which is a pure gauge term. Using affine coordinates in each fiber, the term waX
a

is gauged out and we obtain w0 = 0, together with ẇB = 0.
Since the conformal structure contained in gAB is always isomorphic to that of

S2, we may further “standardize” the information about geometry of the horizon S,
choosing such coordinates for which gAB = fhAB (by hAB we denote the standard
metric tensor on a unit sphere). There remains a three-parameter family of con-
formal transformation of the unit sphere (boost transformations of the black hole),
preserving the above gauge condition. This freedom may be used to further spec-
ification of the gauge condition: vanishing of the dipole moment of f . Moreover,
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using a two-dimensional (time independent) gauge ϕ = ϕ(xA) in (6.3) (i. e. changing
the affine scale in each fiber over B independently), we may kill the longitudinal
degree of freedom in wA. This means that the condition ∂A(

√
deth hABwB) = 0

or, equivalently,
wA = εAB hBC∂Cψ , (6.4)

may always be imposed. Subtracting an irrelevant constant from ψ, we may anni-
hilate its monopole moment. Hence, the entire information about the pair (Λa, wa)
(i. e. about “external” properties of the hole) is carried by two functions defined
on the unit sphere S2: the dipole-free functionf and the monopole-free function ψ,
where Λ0 = f

√
deth, ΛA = 0, w0 = 0 and wA is given by (6.4). The monopole part

of f corresponds to the total mass of the hole and the dipole part of ψ describes its
total angular momentum.

In dynamical situations, it is often necessary to relax the above gauge conditions
and to allow Λa and wa to be time-dependent, to contain non-vanishing longitudinal
part etc. But the gauge-invariant information about the black hole may always be
retrieved from two functions: det gAB and εAB∂AwB.

Appendix

Proof of identity (2.23)

To prove identity (2.23) consider matrix Aa
b̃ := ∂xa

∂x̃b̃
and its inverse B b̃

c := ∂x̃b̃

∂xa . Put
N0 = 0 and NA = nA. Define the following matrices:

Ca
b̃ := Aa

b̃ +NaA0
b̃ ,

and
Db̃

c := B b̃
c −B b̃

aN
aδ0c .

It is easy to check that C and D are mutually inverse. On the other hand, deter-
minants of A and C are equal. Hence:

detA = detC = det(CA
B̃)(D0̃

0)−1 ,

which ends the proof.

Proof of Gauss-Codazzi constraint

For any tensorial expression Aµν , formulae (2.7) and (2.8) imply the following de-
composition:

gµνAµν = ˜̃g
AB
AAB +XcA 0

c +XcA0
c +

1
N2

XcXdAcd . (6.1)

Hence,

gκλRκaλb = ˜̃g
AB
RAaBb +XcR0

acb +XcRca
0
b +

1
N2

XcXdRcadb , (6.2)
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and due to symmetries of the Riemann tensor:

RabX
a = ˜̃g

AB
RAaBbX

a +XcR0
acbX

a . (6.3)

Scalar constraint (4.1) is obtained by further contraction of (6.3) with X:

RabX
aXb = ˜̃g

AB
RAaBbX

aXb . (6.4)

Riemann tensor may be written in the following way:

RAaBb =
1
2

(gbA,aB + gaB,bA − gAB,ab − gab,AB)

+gµν
(
Γµ

aBΓν
Ab − Γµ

abΓ
ν
AB

)
. (6.5)

Using identity (6.1) we obtain:

gµνΓ
µ
aBΓν

AbX
aXb = ˜̃g

ED
ΓEAbX

bΓDBaX
a , (6.6)

and, consequently:

gµν
(
Γµ

aBΓν
Ab − Γµ

abΓ
ν
AB

)
XaXb

= ˜̃g
ED

(ΓEAbΓDBa − ΓDABΓEab)XaXb + waX
alAB . (6.7)

Moreover, one can check the following “internal” identity on S:

˜̃g
AB
[
1
2

(gbA,aB + gaB,bA − gAB,ab − gab,AB) + ˜̃g
ED

(ΓEAbΓDBa − ΓDABΓEab)
]
XaXb

= Xal,a − ˜̃g
ED

lEAlDB
˜̃g

AB
. (6.8)

Consequently, expression (6.4) reads:

˜̃g
AB
RAaBdX

aXd = waX
a · l +Xal,a − ˜̃g

ED˜̃g
AB
lEAlDB . (6.9)

Substituting the above into (4.1), we obtain (4.3).
To prove formula (4.2), we use again (6.3) in the following configuration:

Rλ
aλBX

a = ˜̃g
AC
RCaABX

a +R0
acBX

cXa , (6.10)

and use expansion (6.5). This gives us:

RAaBDX
a =

1
2

(gAD,Ba − gAB,Da + gaB,DA − gaD,AB)Xa

+˜̃g
EF

(ΓFBaΓEAD − ΓFDaΓEAB)Xa + wDlAB − wBlAD . (6.11)

Similarly as in (6.8), we obtain

1
2

(gAD,Ba − gAB,Da + gaB,DA − gaD,AB)Xa

+˜̃g
EF
Xa (ΓFBaΓEAD − ΓFDaΓEAB) = lAB‖D − lAD‖B , (6.12)
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which implies:

RAaBDX
a = lAB‖D − lAD‖B + wDlAB − wBlAD . (6.13)

Similarly, the second term in expression (6.10) may be rewritten as:

R0
abDX

aXb =
(
Γ0

aD,b − Γ0
ab,D + Γ0

µbΓ
µ
aD − Γ0

µDΓµ
ab

)
XaXb

= (wa,D − wD,a)Xa + wA
˜̃g

AB
lBD . (6.14)

Substituting this expression into (4.2), we obtain (4.5).

Proof of identity (5.28)

To prove (5.28) or, equivalently, (5.29) and (5.30), observe that for Ga
b = sλXa[wb]

we have:
GAB = 0 G0

B = sλ[wB] .

This implies that (5.31) is automatically fulfilled. To prove (5.29), we observe that:

0 = s∇aGa
B = ∂0 (λ[wB])−

(
λnA[wB]

)
||A

− λ[wA]nA
||B

= λ
{
−l[wB] + ∂0[wB]− nA[wB]||A − [wA]nA

||B
}

(6.15)

is equivalent to the jump of (4.5) between the two sides of S. On the other hand,
the jump of (4.3) vanishes identically, which ends the proof.
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