Model błony neuronowej

1 Modelowanie pewnych aspektów czynności mózgu

- Neuron McCullocha i Pits'a. Pierwsze próby matematycznego opisu czynności neuronów i próby zrozumienia w oparciu o te modele czynności układów neuronalnych miały miejsce we wczesnych latach 40-tych kiedy to McCulloch i Pits opublikowali pierwszy uproszczony model neuronu znany obecnie pod nazwą perceptron. Perceptron posiada pewną ilość wejść, które mnożone są przez wagi i sumowane. W ten sposób obliczane jest pobudzenie neuronu. Jeśli pobudzenie to przekracza wartość progową to neuron generuje niezerowe wyjście, w przeciwnym wypadku na wyjściu neuronu jest zero. Sieci budowane z tego typu jednostek (na ogół z ciągłą i różniczkowalną funkcją odpowiedzi) są w stanie dokonywać w zasadzie dowolnych przekształceń danych wejściowych.
- Powstanie "Computational Neuroscience". Dalsze prace nad sieciami neuronowymi doprowadziły do powstania dwóch dziedzin nauki: sieci neuronowe (neuropodobne) – głównie z zastosowaniami inżynierskimi; oraz "computational neuroscience". Ta ostania cechuje się realizmem biologicznym. Jako realizm biologiczny rozumiem tu taką konstrukcję modelu, że wszystkie jego elementy, a także wejście i wyjście ma konkretną interpretację w anatomii i fizjologii. Potrzeba konstruowania takich modeli bierze się z przekonania, że nawet bardzo szczegółowa znajomość anatomii i fizjologii nie da nam pełnego zrozumienia działania układu nerwowego.

1.1 Sprzężenie pomiędzy modelowaniem a eksperymentem

- interpretacja i konsolidacja danych doświadczalnych
- intuicja co do zmiany zachowania układu przy zmianie parametrów

• bezpośrednie uwidocznienie efektów założeń poczynionych przy konstrukcji modelu

1.2 Złożoność mózgu

Oto kilka charakterystycznych liczb:

- Ludzki mózg składa się z około 10^{10} neuronów, każdy z nich wytwarza około 10^4 synaptycznych kontaktów z innymi neuronami.
- Gęstość połączeń jest niezwykle duża dowolny neuron korowy znajduje się nie dalej niż dwa lub trzy połączenia synaptyczne od dowolnego innego neuronu korowego.
- Co więcej przetwarzanie informacji w mózgu zachodzi w kilku skalach przestrzennych.

1.2.1 Przestrzenne skale organizacji mózgu

Struktura	Średnica	Ilość Neu-	Opis
	(mm)	ronów	
Fragment	10^{-3}		
błony			
neuronu			
Neuron	$3 * 10^{-3}$		
Obwód	10^{-2}	$2 - 10^2$	i.e. Pętle sprzężeń zwrotnych
$Minikolumna3 * 10^{-2}$		10^{2}	Przestrzenny zasięg połączeń hamujących
Kolumna korowa	$3 * 10^{-1}$	$10^{3} - 10^{4}$	skala wejścia dla długozasięgowych połączeń specyficznych
Makrokolum	ma 5 – 3.0	$10^5 - 10^6$	Zasięg rozgałęzień aksonu pojedynczej ko- mórki piramidalnej — skala przestrzenna dla wyjść pobudzających
Skala regionalna	50	10 ⁸	Średnia długość włókien korowo-korowych; skala długozasięgowych połączeń pobudza- jących; typowa skala dla pól Broadmana; Czynność elektryczna musi być skorelowana na obszarze co najmniej tej wielkości aby da- wać mierzalny wkład do czynności EEG re- jestrowanej na czaszce bez uśredniania.
Skala pła- tów	170	10^{9}	mamy dziesięć płatów zdefiniowanych przez największe bruzdy. Skala typowa dla stan- dardowych pomiarów EEG
Półkule	400	10^{10}	Najdłuższe włókna korowo-korowe

2 Typy modeli używanych w neuronauce

- modele kompartmentowe
- modele punktowe
- modele populacyjne
- $\bullet\,$ modele globalne

3 Pobudliwa błona komórkowa

Biofizyczne modele czynności elektrycznej neuronów opisują głównie własności elektryczne błony neuronów. Neuron otoczony jest cieniutką błoną (500 – 700 nm) – dwuwarstwą lipidową oddzielającą wnętrze od zewnętrza. Pozwala ona na utrzymywanie różnicy stężeń różnych jonów i różnicy potencjału elektrycznego. Różnice stężeń jonów są dodatkowo utrzymywane przez aktywne procesy metaboliczne takie jak pompa sodowo-potasowa. Aktywne własności błony neuronowej są zdeterminowane przez zestaw kanałów jonowych w które dana błona jest wyposażona.

4 Aktywne kanały jonowe

Makroskopowe przewodnictwo błony jest efektem przepływu jonów przez mikroskopijne kanały jonowe przenikające przez błonę. Każdy kanał składa się z kilku prostszych podjednostek — *bramek* które regulują przepływ jonów przez kanał. Każda z bramek może być w jednym z dwóch stanów *sprzyjającym* albo *niesprzyjającym*. Kiedy wszystkie bramki są w stanie sprzyjającym kanał jest otwarty i jony mogą przez niego przepływać. Jeżeli choć jedna bramka jest w stanie niesprzyjającym kanał jest zamknięty, przepływ jonów przez niego jest niemożliwy.

5 Teoria Hodgkina-Huxleya

• Bramki podlegają pierwszorzędowej kinetyce:

$$niesprzyjajcy \stackrel{\alpha(V)}{\rightleftharpoons} sprzyjajcy \\ \beta(V)$$

gdzie $\alpha(V)$ i $\beta(V)$ są prędkościami reakcji zależnymi od napięcia.

• Prawdopodobieństwo, że bramka jest w stanie sprzyjającym jest zatem:

$$\dot{p} = \alpha(V)(1-p) - \beta(V)p$$

Równanie to można zapisać w innej formie uwidaczniającej proces dochodzenia do wartości asymptotycznych:

$$\dot{p} = \frac{p_{\infty}(V) - p}{\tau(V)}$$

gdzie

$$p_{\infty}(V) = \frac{\alpha(V)}{\alpha(V) + \beta(V)} \tag{1}$$

$$\tau(V) = \frac{1}{\alpha(V) + \beta(V)}$$
(2)

• Zakładamy, że bramki są niezależne. Względne stężenie kanałów otwartych jest zatem (jeśli mamy M bramek typu m i H bramek typu h) :

$$o_k = m^M h^H$$

• Prądy jonowe podlegają prawu Ohma, przy czym przewodnictwo jest proporcjonalne do względnego stężenia kanałów otwartych:

$$I_k = \bar{g}_k m^M h^H (V - E_k)$$

 g_k jest maksymalnym przewodnictwem, kiedy wszystkie kanały są otwarte; E_k jest potencjałem równowagowym (tzn że nawet jeśli kanał jest otwarty to i tak prąd przez niego nie płynie) dla danego typu jonów.

6 Model jednego kompartmentu

Teoria Hodgkina-Huxleya może być bezpośrednio zastosowana do zamodelowania pojedynczego izopotencjalnego i jednorodnego fragmentu neuronu. Fragment jest reprezentowany przez obwód elektryczny:

Prawo zachowania ładunku w tym obwodzie daje nam:

$$C_m \dot{V} = -\sum_k \bar{g}_k m_k^{M_k} h_k (V - E_k) \tag{3}$$

gdzie C_m — pojemność elektryczna błony.

7 Generacja potencjału czynnościowego

- W stanie spoczynkowym bramki aktywujące $Na^+ (m)$ są w stanie niesprzyjającym zaś bramki inaktywujące h są w stanie sprzyjającym, Kanały K^+ mają tylko bramki aktywujące (n) i są one w stanie niesprzyjającym.
- Kiedy potencjał przekracza wartość progową bramki m zmieniają konformację na sprzyjającą; kanał Na^+ otwiera się, jony Na^+ napływają do wnętrza komórki i depolaryzują ją jeszcze bardziej.
- Przy zwiększonej depolaryzacji otwierają się kanały K+. Jony K^+ wypływają z komórki i potencjał jej obniża się. Jednocześnie bramki inaktywujące Na^+ przechodzą w stan niesprzyjający i zamykają kanał Na^+ .
- Dalszy wypływ jonów K^+ powoduje hiperpolaryzację komórki
- W stanie hiperpolaryzacji bramki aktywujące Na^+ przechodzą w stan
 niesprzyjający oraz zamyka się kanał K^+ .

8 Kompartmentowe modele neuronów

Izopotencjalny kompartmnet jest punktem wyjścia dla bardziej realistycznych modeli neuronów uwzgledniających ich skomplikowana geometrię i niejednorodność własności błony w różnych miejscach neuronu. Model komórki Purkinje'go opracowany przez De Schutter'a and Bower'a.

9 Łączenie neuronów w sieci

Aby zbudować sieć musimy połączyć neurony przy pomocy synaps. Jak już wspominaliśmy typowy neuron w korze ssaków ma $\sim 10^4$ synaps.

Procesy zachodzące w synapsie:

- przybycie potencjału czynnościowego do kolbki synaptycznej
- uwolnienie neurotransmitera
- bezpośrednie lub pośrednie otwarcie chemicznie bramkowanych kanałów w błonie postsynaptycznej
- zmiana przewodnictwa błony postsynaptycznej

Dla wielu typów synaps udaje się na szczęście opisać ten skomplikowany proces jako zmianę przewodnictwa błony postsynaptycznej zależną jedynie od czasu.

zgodnie z prawem Ohma prąd synaptyczny dany jest równaniem:

$$I_{syn} = g_{syn}(t) \left(V_m - E_{syn} \right)$$

Całkiem niezłe przybliżenie zmian przewodnictwa błony postsynaptycznej daje tzw. *funkcja alfa* :

$$g_{syn}(t) = g_{max} \frac{t}{t_p} e^{(t-t_p)}$$

gdzie t_p jest czasem, po którym funkcja osiąga maksimum g_{max} lub bardziej ogólna funkcja dwueksponencjalna:

$$g_{syn}(t) = \frac{g_{max}}{\tau_1 - \tau_2} \left(e^{-\frac{t}{\tau_1}} - e^{-\frac{t}{\tau_2}} \right), \quad \text{for} \quad \tau_1 > \tau_2$$

10 Model Hodgkina-Huxleya nerwu kałamarnicy

Równania Hodgkina-Huxleya dla nerwu kałamarnicy:

$$\frac{dV}{dt} = \left[I_{inj} - \bar{g}_{Na} m^3 h (V - V_{Na}) - \bar{g}_K n^4 (V - V_K) - g_L (V - V_L) \right] / C(4)$$

$$\frac{dn}{dt} = \alpha_n(V)(1-n) - \beta_n(V)n \tag{5}$$

$$\frac{dm}{dt} = \alpha_m(V)(1-m) - \beta_m(V)m \tag{6}$$

$$\frac{dh}{dt} = \alpha_h(V)(1-h) - \beta_h(V)h \tag{7}$$

gdzie:

$$\alpha_n(V) = \frac{0.01(V+55)}{1-exp[-(V+55)/10]}$$
(8)

$$\beta_n(V) = 0.125 exp[-(V+65)/80] \tag{9}$$

$$\alpha_m(V) = \frac{0.1(V+40)}{1-exp[-(V+40)/10]}$$
(10)

$$\beta_m(V) = 4exp[-(V+65)/18]$$
(11)

$$\alpha_h(V) = 0.07 exp[-(V+65)/20]$$
(12)

$$\beta_n(V) = \frac{1}{1 + exp[-(V+35)/10]}$$
(13)

Stałe w tym modelu to:

 $C = 1; g_{Na} = 120; V_{Na} = 50;$ $g_K = 36; V_K = -77;$ $g_L = 0.3; V_L = -54;$

W powyższych równaniach napięcia dane są w mV,gęstości prądów w $\mu A/cm^2,$ pojemność elektryczna w $\mu F/cm^2$ zaś czas w ms.

10.1 Zadania

Korzystając z kodów symulacji zamieszczonych na stronie wykładowej proszę:

- 1. Zbadać występowanie potencjałów czynnościowych dla I = 0 i I = 10.
- 2. Poszukać wartości prądu, dla której występuje pojedynczy potencjał. Czy można wywołać pojedynczy potencjał o "połowkowej wysokości"?

Na ile ostra jest granica prądu wstrzykniętego wywołującego potencjał czynnościowy?

- 3. Czy jest graniczna wartość prądu powodująca wywołanie ciągu potencjałów?
- 4. Co dzieje się z potencjałami wraz ze wzrostem *I*? Czy dla dowolnie dużych prądów można obserwować oscylacje?
- 5. Co się stanie jeśli neuron gwałtownie wyjdzie ze stanu hiperpolaryzacji?

11 Model FitzHugh-Nagumo

Skala czasowa dla zmiennejmw tym modelu jest dużo krótsza niż pozostałe stałe czasowe. Proszę się o tym przekonać wykreślając ich przebiegi czasowe.

Pierwsze przybliżenie polega więc na tym aby przyjąć, że

$$\frac{dm}{dt} = 0$$

czyli:

$$m(V) = m_{\infty}(V) = \frac{\alpha_m(V)}{\alpha_m(V) + \beta_m(V)}$$

Następnie przyjmujemy, że n + h = 0.8. To nam daje:

W fizjologicznym zakresie parametrów można przybliżyć te równania tak po przejściu do jednostek bezwymiarowych można otrzymać układ opisywany przez dwie zmienne:

$$\frac{dv}{dt} = f(v) - w + I \tag{16}$$

$$\frac{dw}{dt} = bv - \gamma w \tag{17}$$

$$f(v) = v(a-v)(v-1)$$
 (18)

gdzie $0 < a < 1 \ b, \gamma > 0$

vnadal odpowiada napięciu zaśwzmiennymm,n,h.

Zadanie: Narysować portret fazowy w zależności od parametrów a, b, γ .

Zadanie: Numerycznie zbadać model

$$\frac{dv}{dt} = v - \frac{1}{3}v^3 - w + I$$
(19)

$$\frac{dw}{dt} = 0.08(v + 0.7 - 0.8w) \tag{20}$$

i pokazać, że ma on jakościowe zachowania analogiczne jak model HH. Na podstawie analizy obrazu fazowego wyjaśnić mechanizmy:

- występowania progu na generowanie potencjałów
- występowania ciągów potencjałów czynnościowych
- \bullet wygaszenia potencjałów dla dużej wartości I
- występowania odbicia po hiperpolaryzacji