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Abstract

The magnitudes and signs of twenty eight E2 and three M1 matrix elements involving 17 low
excited states in104Ru have been measured by Coulomb excitation using208Pb,136Xe and58Ni ions. The
completeness of the set of E2 matrix elements is sufficient to extract, directly from the data, the exp
values of the intrinsic-frame E2 moments that provide considerable insight into the underlying colle
The measured E2 properties strongly correlate with macroscopic quadrupole collective degrees of f
Detailed comparison of the experimental results and theoretical microscopic calculations within the
quadrupole collective Bohr Hamiltonian are presented. Very good agreement of calculations and exp
is achieved without any parameters fitted to the104Ru experimental data. Results of phenomenologicaγ -
unstable andγ -rigid models are also given.
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PACS:21.60.Ev; 23.20.Js; 23.20.Lv; 25.70.De

Keywords:NUCLEAR REACTIONS104Ru(208Pb,208Pb′), E = 954 MeV;104Ru(136Xe,136Xe′), E = 525 MeV;
104Ru(58Ni, 58Ni′), E = 165 MeV, 190 MeV; measuredEγ , Iγ , (particle)γ -coin following Coulomb excitation.
104Ru deduced levels,J , π , E2 and M1 matrix elements, quadrupole collectivity. Comparison with model
predictions.

1. Introduction

The present paper reports on the use of heavy-ion induced Coulomb excitation to me
set of twenty eight E2 and three M1 matrix elements involving the lowest-lying states in104Ru.
The goal of this work is to test the validity of collective model descriptions of the structu
104Ru and to evaluate the available collective model calculations.

An important step in the field of heavy ion induced Coulomb excitation was achieved d
the development of beams of the heaviest ions combined with position sensitive detecti
tems for the scattered projectiles and recoiling target nuclei. This makes it possible to Co
excite states up to high spin and to measure both the signs and magnitudes of the practica
plete set of E2 matrix elements for the low-lying states in a nucleus [1]. Extraction of the
matrix elements is far from trivial for heavy ion induced Coulomb excitation because the s
coupling leads to a complicated dependence of the data on the matrix elements. Sets of d
the Coulomb excitation experiments having a wide range of projectileZ values and scatterin
angles made it possible to obtain a model independent set of E2 transition matrix elemen

Heavy ion induced Coulomb excitation of104Ru nucleus was studied by Stachel et al. by us
208Pb projectiles and104Ru target [2] as well as by using inverse kinematics bombarding a208Pb
target with a104Ru beam [3]. The analysis of the data were performed using a least-squar
specially developed in GSI (see [3] for details). Here, we present results of heavy ion in
Coulomb excitation of104Ru target using58Ni, 136Xe and208Pb projectiles. Our data have be
analysed using the Rochester–Warsaw coupled-channel Coulomb excitation least-squar
code GOSIA [4]. The final results of these two independent sets of experiments are in ver
agreement. In our case, the use of three projectile species enable measurement of the
E2 matrix elements for the 2+

2 band and to identify the 0+2 band.
The set of E2 matrix elements measured in the present work is sufficiently complete to

for the low-lying states, the expectation values of the E2 moments in the intrinsic frame
deduced directly from the data. It should be noted that these model-independent intrinsic
E2 moments are directly related to the collective behaviour of the nucleus. They provide a
measure of the extent to which the properties of the low-lying states in104Ru can be correlated u
ing only quadrupole collective degrees of freedom. Application of the non-energy-weighte
rules technique [1,5,6] as a model-independent analysis of the Coulomb excitation data is
determine unambiguously the underlying collective correlations for the low-lying levels in104Ru.

The knowledge of a nearly complete set of E2 matrix elements for low-lying levels in
of a shape transitional nucleus like104Ru provides a formidable challenge to nuclear struc
theory. The data concerning104Ru obtained in GSI [2,3] have been successfully confronted
the IBM model [7–9]. However the IBM quadrupole operator is not appropriate for applyin
sum rule technique [10]. The entire data are confronted to calculations performed in the fr
a geometrical collective model. This Hamiltonian is obtained from a more general “quad
plus pairing” collective model through the Born–Oppenheimer approximation which take
account the effect of coupling with the pairing vibrations [11]. All inertial functions and
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potential were determined from a microscopic theory. Without any parameters fitted to104Ru
experimental data, we obtain good agreement between the experimental and theoretical

Exact formulae for the collective quadrupole invariants as functions of the Bohr param
β andγ , of the ellipsoidal deformation are derived in Appendix A.

2. The experimental method

All the experiments used the same selfsupporting ruthenium target 0.69 mg/cm2 thick, en-
riched to 99.3% in104Ru. The target was produced using an Ar beam to sputter enriche
powder onto an Al foil, naturally covered by a Al2O3 film. The Al2O3 crystal structure is very
similar to that of ruthenium and create a good starting point for Ru foil crystal growth.
the sputtering procedure, the Al foil was dissolved by a special solution neutral to ruth
producing a self supporting foil.

2.1. Coulomb excitation using208Pb ions

A 954 MeV 208Pb beam from the SuperHILAC at the Lawrence Berkeley Laboratory
used to Coulomb excite the104Ru target. The recoiling target nuclei were detected at208Pb
scattering angles between 160◦ < Θcm < 180◦ by a circular Si detector placed at 0◦ to the beam
direction and covered by a208Pb foil of thickness sufficient to stop the incident208Pb. The de-
excitation gamma rays were detected by three Ge detectors, at angles of 0◦, +100◦ and−100◦
to the incident beam, in coincidence with the recoiling104Ru target nuclei detected in the
detector. In addition, four 7.6 cm diameter by 7.6 cm long NaI detectors were placed a
the target to serve as a multiplicity filter to identify the gamma-ray decay scheme. The
recoil velocity, 12.5% of the velocity of light, produced large Doppler broadening of the det
gamma rays due to the finite size of the gamma-ray detectors. In the final analysis, o
Coulomb excitation yields for the Ge detector atΘ = 0◦ were used since this detector had
smallest Doppler broadening effect. Fig. 1 shows spectrum of gamma-rays being in coinc
with Ru recoils. The achieved energy resolution was 0.75% at 500 keV. Fig. 2 presents th
scheme of104Ru excited in the experiment, showing all observed transitions.

The208Pb experiment was performed using an incident energy of 4.6 MeVA which exceeds
the safe energy criterion [12] required to ensure that the interaction is purely electroma
that is, for heavy ions the distance of closest approach should exceed 1.25(A1/3

p + A
1/3
t ) + 5 fm

to ensure less than 0.1% deviation from Coulomb scattering theory. This criterion corres
to a bombarding energy of 4.1 MeVA. The higher bombarding energy was used to optimize
population of high-spin states. The experimental Coulomb excitation yields were correc
up to 10% to account for the influence of Coulomb-nuclear interference effects and the
were increased to exceed the size of the correction used. This correction was estimate
a study of this effect by Guidry et al. [13]. The assigned errors were enlarged further to
the±10 MeV uncertainty in the bombarding energy and the 3% uncertainty in the Ge de
efficiency which was measured using calibrated gamma-ray sources.

2.2. Coulomb excitations using136Xe ions

A 525 MeV 136Xe beam from the SuperHILAC at the Lawrence Berkeley Laboratory
used. Recoiling target nuclei as well as scattered136Xe ions were detected by two positio
sensitive rectangular PPAC coveringΘlab angle 17.5◦–38.5◦, and 39◦–63◦. The de-excitation
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Fig. 1. Doppler corrected gamma-ray spectrum registered in 0◦ Ge detector in coincidence with recoiled104Ru target
nuclei registered in 0◦ Si detector.

gamma rays were detected by two Ge detectors placed at angles of 127.5◦ and 152.5◦ to incident
beam, in coincidence with the recoiling Ru target nuclei and scattered Xe beam nuclei. A
event by event Doppler correction 1% gamma-ray energy resolution was achieved. In th
Coulomb excitation analysis theγ -yields were integrated over three regions of Xe scatte
anglesΘcm ∈ {54◦–90◦,102◦–116◦,116◦–130◦}.

2.3. Coulomb excitation using58Ni ions

Two separate experiments were performed. One experiment used a 165.5 MeV58Ni beam
from the Tandem Van de Graaff accelerator at the University of Rochester. Scattered58Ni ions
were detected by circular Si detectors in coincidence with de-excitation gamma rays d
by Ge gamma-ray detectors at 1.5◦ and 60◦ to the beam. The particle detectors were pla
at laboratory scattering angles of 119◦, 105◦, 76.0◦, 61.5◦, 47.5◦ as well as an annular Si d
tector covering the angular range from 163◦ to 175◦. The angles of the particle detectors we
determined with accuracy up to 0.5◦ using the measured elastic scattering data.

The second experiment employed a 190 MeV58Ni beam from the Tandem Van de Graa
accelerator at the Brookhaven National Laboratory. The scattered58Ni ions were detected b
an annular Si detector, subtending the angular range from 155◦ to 175◦, in coincidence with
de-excitation gamma rays observed by Ge detectors at 0◦ and 110◦. In contrast to the othe
58Ni experiment, this experiment used an incident energy 11 MeV above the Cline safe
criterion [12]. However, no effect due to Coulomb-nuclear interference was manifest with
experimental errors.

For the 165.5 MeV58Ni beam experiment the energy resolution of the Si detectors was
ficient to resolve the scattered58Ni and recoiling104Ru target nuclei in the forward detecto
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Fig. 2. Partial104Ru level scheme showing all levels observed in present paper. Arrow widths are proportional toγ -ray
intensities observed in208Pb experiment.

and to allow Doppler correction for different slices of energy loss in the target. The gamm
spectrum from the 190 MeV experiment is shown in Fig. 3. An energy resolution of 0.5%
500 keV was achieved.

3. Level scheme for 104Ru

The level scheme of104Ru, shown in Fig. 2, is based on prior work [3,14] and [15] wh
is confirmed by the present work. For the present208Pb beam experiment the ground band w
seen up to the 10+g level and 10+qp, the 2+2 band up to 8+2 , the 0+2 band up to 4+3 , only one 0+

level from the 0+3 band, and one additional level 2095 keV energy of spin and parity value+
4

or 4+
4 . For the136Xe beam, the ground band was excited up to 8+

g level, the 2+2 band up to 6+2
level with the 8+2 level weekly excited, and the 0+

2 band up to 4+3 level was excited. For the58Ni
beam the ground band was observed up to 8+

g level, the 2+2 band up to 6+2 level, the 0+2 band up

to 4+
3 level, and additionally the(2+

4 ,4+
4 ) level 2095 keV energy.

For the 2081 keV level spin and parity 4+
3 were assigned based on relative intensities of f

γ -transitions depopulating the level to 2+
g , 2+

2 , 3+
1 and 2+3 (see [14] and reference given therei

Large matrix elements〈43‖E2‖23〉 = 0.75(25) eb and〈23‖E2‖02〉 = 0.71(4) eb confirm the
assignment of the 4+ and 2+ levels to the 0+ band.
3 3 2
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Fig. 3. Doppler corrected gamma-ray spectrum registered in 0◦ Ge detector in coincidence with backscattered58Ni beam
nuclei.

4. Extraction of E2 matrix elements from the Coulomb excitation data

Extraction of the E2 matrix elements from heavy-ion induced Coulomb excitation d
an extremely difficult task because of the dramatic increase in the number of unknown
elements involved when many states are excited. For example, in the present case the C
excitation cross sections depend in a complicated non-linear way on the signs and magni
the 96 matrix elements coupling the 26 states included in the analysis.

In the present work, de-excitation gamma-ray transitions were observed involving 17
However, virtual excitation of other states can influence the excitation of the observed
Consequently, the present analysis assumed additional states extending the observed ba
energy (spin) of these states were assumed to be as follows: for the 2 qp band at 3.96 Me+)
and for the ground band 4.4 MeV (12+); for the 2+2 band at 1.872 and 2.9 MeV (5+), 3.13 MeV
(8+) and 4.0 MeV (10+); for the 0+2 band at 2.75 MeV (6+); for the 0+3 band at 1.75 MeV (2+).
The energies and matrix elements involving these additional states were taken to be a
extrapolation of the measured values. Note that 60 matrix elements, including those inv
the additional states assumed in the present analysis, were insensitive to the data set
were not determined. Conversely, the final results are insensitive to the properties assu
these additional states.

The semiclassical Coulomb excitation, coupled-channel, least-squares search code
[4] was developed as a practical approach for the analysis of heavy-ion Coulomb exc
experiments and this code was used for the final analysis of the present data. The 5
coupled-channel code GOSIA can make a least-squares fit up to 300 matrix elements (
E3, E4, E5, E6, M1, M2) to several thousand data from up to 50 independent Coulomb
tion experiments, as well as other lifetime, static moment, branching ratio and E2/M1 mixing
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ratio data. Pseudo-analytical approximations are used to calculate the derivatives neede
deepest-descent minimalization, resulting in several orders of magnitude increase in spe
pared to a full calculation. The code allows integration over target thickness and the finite
the detectors and includes the recoil motion transformation to second order in recoil veloc

In general, model independence of extracted matrix elements can be achieved using
random numbers as initial values for the unknown matrix elements in the least-squares se
order to eliminate bias. However, the procedure used in the present analysis was to start
lightest ion data, which involves the fewest states, and then progressively add heavier ion
each stage varying the signs and magnitudes of the matrix elements by hand in order to
results for uniqueness and to eliminate the influence of a possible bias. The many combi
of signs and magnitudes sampled suggest that the final solution is a unique one with the ex
of some sign ambiguities to be mentioned later.

The errors of the fitted matrix elements are difficult to estimate because of the domina
the cross-correlation effects for this strongly-coupled nonlinear system. Frequently used m
for error estimation are invalid for the present problem. For example the commonly used
ture matrix method is ill suited because of the limited validity of the second-order expansio
the unavoidable presence of nuisance parameters, i.e. parameters insensitive to the da
must be filtered out prior to matrix inversion to prevent an ill-defined situation. Error estim
based on the assumption that the least-square statistic should obey theχ2 distribution with a
given number of degrees of freedom cannot be defined because of the wide range of se
of the various parameters to the data. For the present analysis, worst-case errors were e
for each parameter by perturbing the matrix element for which the error was being estimat
then executing a one-step minimisation on the remaining parameters in order to determ
maximum correlation path. The probability distribution then was constructed along that 6
of the total integrated probability lie between the error limits. Note that the positive and ne
error values were calculated separately since the errors can be strongly asymmetric aro
best value.

5. Various corrections and sources of systematic errors

The angular distribution of the de-excitation gamma rays from the excited nuclei recoil
vacuum is perturbed due to the interaction of the static moments of the excited nuclea
with the highly ionized atomic configurations. This deorientation effect is taken into ac
using the two-state model of Brenn and Spehl [16] with the parameters derived from
Coulomb excitation measurements [18] on186,188,190,192Os and194Pt (for details see also [17]
It was found that a 20% change in the magnitude of this effect produced less than a 2%
in matrix elements extracted.

Virtual excitation of high-lying states can influence the excitation of low-lying states. D
polarization results from the influence on the excitation of low-lying collective states due t
tual excitation of the giant dipole resonance. Virtual excitations of the giant dipole resonan
taken into account using the concept of a polarization charge [19]. The effect is dependen
center-of-mass bombarding energy and is expected to affect mostly high-lying levels exc
the Pb experiment. Switching off the correction or doubling its strength changes the excita
the 10+g state by about 10%. This is within the experimental errors, as is true for all other e
states. M1 excitation has a negligible influence on the Coulomb excitation but features
nently in both the branching ratios and angular distributions for the gamma-ray de-exci
Thus in the present work it was possible to determine 3 M1 transition matrix elements
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reasonable errors. The influence of E4 excitation was calculated to be negligible for Co
excitation using58Ni, 136Xe and208Pb projectiles. It is of importance only when lighter ions
used. Including the known 3− state in the calculations produced a 4% decrease in the 4+

g → 2+
g

yield in the Pb experiment while all other yields were affected by less than 1%, that is, les
the statistical errors. This is in agreement with the findings of Wu [18].

Corrections due to atomic screening, vacuum polarization and relativistic effects wer
mated [18] to be negligible. The semiclassical approximation used in the analysis is estim
give the largest correction, that is,< 5% for 208Pb and< 10% for 58Ni. These sources of sys
tematic error are comparable with the corrections due to Coulomb-nuclear interference
present calculations, no correction has been made for the use of the semiclassical appro
other than the use of symmetrized orbits [19].

6. Signs of matrix elements

The relative signs of the matrix elements involved have a significant influence on Coulom
citation. This can be understood as due to interference between single-step amplitudes, in
a single matrix element, and multi-step amplitudes involving two or more matrix elements

Tables 1 and 2 present signs and magnitudes of matrix elements as deduced from the
analysis. Note that signs of 28 matrix elements have been determined. The signs of th
functions have been chosen in such a way that E2 reduced matrix elements (ME) for s

Table 1
Diagonal E2 reduced matrix elements in eb units

State Experiment (eb) Theorya

Symmetry limit models

QCBH, pairing DFγ -rigid, β0 = 0.28 W–Jγ -soft

Present GSI [3] std. dyn. γ0 = 25◦ γ0 = 30◦ β0 = 0.28 β0 = 0b

2+
g −0.71(11) −0.91(40) −0.77 −0.88 −0.80 −0.09 −0.12 −0.11

4+
g −0.79(15) −0.42(31) −1.10 −1.14 −0.63 −0.20 −0.20 −0.25

6+
g −0.70(+30

−20) −0.54(22) −1.41 −1.40 −0.68 −0.27 −0.29 −0.37

8+
g −0.6(+3

−5) −0.76(31) −1.71 −1.67 −0.76 −0.32 −0.38 −0.54

10+
g – −2.04 −2.0 −0.83 −0.38 −0.47 −0.72

2+
2 0.62(8) – 0.59 0.73 0.80 0.11 0.04 0.05

3+
1 – – 0.0 0.0 0.0 0.0 0.0 0.0

4+
2 −0.58(18) – −0.16 −0.32 −1.2 0.06 −0.07 −0.09

5+
1 – – −0.70 −0.70 −0.68 −0.10 −0.12 −0.18

6+
2 ±1.0(3) – −0.70 −0.87 −1.43 −0.02 −0.17 −0.24

8+
2 – – −1.22 −1.29 −1.14 −0.10 −0.26 −0.40

2+
3 −0.08(+11

−25) – −0.13 −0.72 – – −0.12 −0.18

4+
3 – – 0.49 0.32 – – −0.20 −0.33

6+
3 – – 0.15 −1.24 – – −0.17 −0.50

2+
4 – – – – – – −0.06 −0.08

4+
4 – – – – – – −0.07 0.10

4+
5 – – – – – – −0.10 −0.16
a The theoretical model descriptions are given in Section 9.
b Harmonic vibrator.
u
a

s

e
a
-

.
xi

v
.
p

e
tr
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Table 2
Transitional E2 reduced matrix elements
Transition Experiment Theorya

Matrix element

Matrix element Trans. prob. Symmetry limit models

present GSI [3] present QCBH, pairing DFγ -rigid, β = 0.28 W–Jγ -soft

std. dyn. γ0 = 25◦ γ0 = 30◦ β0 = 0.28 β0 = 0b

〈f ‖E2‖i〉 eb B(E2) e2b2 〈f ‖E2‖i〉 eb
2+
g → 0+

g 0.917(25) 0.910 0.168(9) 0.838 0.816 0.955 0.936 0.919 0.799

4+
g → 2+

g 1.43(4) 1.47(8) 0.226(11) 1.45 1.38 1.51 1.48 1.55 1.52

6+
g → 4+

g 2.04(8) 2.09(9) 0.320(+10
−26) 1.97 1.84 2.02 1.99 2.10 2.23

8+
g → 6+

g 2.59(+24
−9 ) 2.49(8) 0.39(+8

−3) 2.44 2.26 2.43 2.39 2.61 2.95

10+
g → 8+

g 2.7(6) 2.64(27) 0.26(10) 2.88 2.66 2.78 2.73 3.09 3.66

3+
1 → 2+

2 – −1.22(10) −1.19 −1.16 −1.52 −1.48 −1.30 −1.39

4+
2 → 2+

2 1.12(5) 0.90(11) 0.139(11) 1.02 0.92 0.90 0.96 1.26 1.34

4+
2 → 3+

1 – ±0.68(5) −0.83 −0.95 −0.97 0 −0.12 −0.16

5+
1 → 3+

1 – 1.2(4) 1.35 1.25 1.39 1.34 1.52 1.72

6+
2 → 4+

2 1.52(12) 1.62(12) 0.178(+30
−14) 1.61 1.53 1.47 1.29 1.89 2.13

8+
2 → 6+

2 2.0(4) 2.0(5) 0.23(+6
−9) 2.15 2.05 1.81 1.77 2.43 2.89

2+
3 → 0+

2 0.71(4) 0.74(5) 0.101(13) 0.75 0.77 – – 0.83 0.94

4+
3 → 2+

3 0.75(25) – 0.063(21) 0.47 0.67 – – 1.46 1.70

6+
3 → 4+

3 1.27 1.25 – – 2.02 2.45

2+
4 → 0+

3 −0.32 – – 0.85 0.97

4+
4 → 2+

4 – –

6+
4 → 4+

4 – –

2+
2 → 0+

g −0.156(2) −0.170(13) 0.0049(3) 0.022 −0.047 −0.108 0.09 0.097 0.082

2+
2 → 2+

g −0.75(4) −0.85(7) 0.113(11) −0.75 −0.52 −0.82 −1.12 −1.15 −1.13

2+
2 → 4+

g ∈ [−0.1,0.1] – 0.16 0.06 −0.25 0 0.08 0.09

3+
1 → 2+

g – 0.224(10) 0.01 −0.105 −0.17 −0.15 0.137 0.14

3+
1 → 4+

g – −0.57( ) −0.54 −0.43 −1.00 1.1 −0.82 −0.88

4+
2 → 2+

g −0.107(8) ±0.072(9) 0.0013(2) 0.08 0.055 0.28 0 0.134 0.138

4+
2 → 4+

g −0.83(5) −0.71(8) 0.0759(9) −0.73 −0.57 −0.66 0.66 −1.21 −1.28

5+
1 → 4+

g – – 0.04 −0.05 0.13 −0.18 0.18 0.21

5+
1 → 6+

g – – −0.63 −0.54 −1.11 1.17 −1.02 −1.15

6+
2 → 4+

g −0.22(+6
−12) −0.080(10) 0.09 0.07 0.16 −0.09 0.16 0.19

6+
2 → 6+

g – > −0.84 −0.75 −0.62 −0.52 0.57 −1.29 −1.45

8+
2 → 6+

g – – 0.08 0.044 −0.09 −0.08 0.19 0.25

8+
2 → 8+

g −0.78 −0.67 −0.48 0.51 −1.36 −1.61

0+
2 → 2+

g −0.266(8) −0.261(10) 0.071(4) −0.31 −0.264 – – −0.292 −0.50

0+
2 → 2+

2 0.08(3) – 0.007(+6
−4) −0.40 −0.30 – – −0.06 −0.10

2+
3 → 0+

g −0.071(10) −0.07(5) 0.0010(3) −0.041 −0.081 – – −0.036 0.008

2+
3 → 2+

g ±0.07(3) −0.11(5) 0.0011(+12
−6 ) 0.06 0.10 – – 0.04 0.06

2+
3 → 4+

g −0.37(4) −0.35(22) 0.028(6) −0.41 −0.41 – – −0.47 −0.80

2+
3 → 2+

2 ±0.22(+25
−5 ) ±0.23(23) 0.010(4) 0.35 0.32 – – 0.35 0.59

2+
3 → 4+

2 0.31(+13
−6 ) – 0.019(+25

−7 ) −0.35 −0.38 – – −0.08 −0.16

2+
3 → 4+

4 0.53(+32
−14) – 1.25 1.19 – – 0.0004 0.0004

0+
3 → 2+

g > −0.1 – < 0.017 −0.17 −0.08 – – −0.06 −0.06

0+
3 → 2+

2 – – −0.11 −0.14 – – −0.58 −0.62

0+
3 → 2+

3 – – −0.03 0.03 – – 0.03 0.07
(continued on next page)
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Table 2 (continued)
Transition Experiment Theorya

Matrix element

Matrix element Trans. prob. Symmetry limit models

present GSI [3] present QCBH, pairing DFγ -rigid, β = 0.28 W–Jγ -soft

std. dyn. γ0 = 25◦ γ0 = 30◦ β0 = 0.28 β0 = 0b

〈f ‖E2‖i〉 eb B(E2) e2b2 〈f ‖E2‖i〉 eb
2+

3 → 3+
1 0.76 0.51 – – 0.08 0.0002

2+
4 → 3+

1 0.49 – – 0.96 1.08

4+
3 → 3+

1 −1.03 −0.83 – – −0.24 −0.40

4+
4 → 3+

1 0.04 – – 1.38 1.56

2+
4 → 2+

3 0.75 – – 0.0001 −0.0002
a The theoretical model descriptions are given in Section 9.
b Harmonic vibrator.

inband transitions are positive. The same sign have been chosen for E2 matrix element fo+
2 ⇒

3+
1 transition. The sign convention for the interband ME was selected by choosing negativ

for the 2+g −0+
2 , 2+

g −0+
3 , and 2+g −2+

2 E2 matrix elements while a positive sign was selected

the 2+3 − 4+
4 E2 matrix element. The signs for the remaining ME were determined accord

this convention, relative to those fixed ones. However, the signs of diagonal ME are obse
which do not depend on convention. The present data are sensitive to the product of
elementsP4 = M(0+

g − 2+
g )M(2+

g − 2+
g )M(2+

g − 2+
2 )M(2+

2 − 0+
g ). Earlier Coulomb excitation

work [20] determined the sign ofP4 to be negative which is consistent with the present work
The signs were verified by performing minimization starting from different initial values

comparing the quality of fit. The overall influence of changing signs can be judged by totaχ2 at
the minimum and traced to individual data points. As an example:

(a) Negative sign of〈4+
2 ‖E2‖4+

2 〉 matrix element.χ2 value originated from 4+2 → 2+
2 , 4+

2 → 4+
g ,

4+
2 → 2+

g gamma yields on208Pb beam and 4+2 → 2+
g on 58Ni beam was 5.9 for negative

sign and 13.5 for positive one.
(b) Positive sign of〈2+

2 ‖E2‖2+
2 〉 matrix element.χ2 value originated from 2+2 → 0+

g and 2+2 →
2+
g gamma yields on208Pb and58Ni beams was 8 for positive sign and 129 for negative o

7. Results

The final set of matrix elements was obtained by making a least-squares fit to 213 data
ing the present Coulomb excitation yields plus the previously measured E2 moment of+

g

state, branching ratios and the E2/M1 mixing ratio. The minimum ofχ2 normalised by the num
ber of data points is equal 1.32, which is reasonable. It was possible to determine the a
values, as well as many of the signs, of E2 and M1 reduced matrix elements with su
accuracy for a meaningful comparison with theory.

The measured diagonal and off-diagonal E2 reduced matrix elements are listed in T
and 2, respectively. The reduced matrix elements〈Is‖E2‖Ir〉 are defined by Eq. (1) in the ne
section. The measured M1 reduced matrix elements are given in Table 3.

The present results are in good agreement with prior results [3]. The only notable discr
is with the B(E2;0+

2 → 2+
g ) deduced by McGowan et al. [21], which is due to the fact

the largeB(E2;0+
2 → 2+

3 ) was not included in the Coulomb excitation analysis of [21]. N
that in some cases, such as the diagonal E2 moment of the 2+

g state, the final quoted error
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Table 3
Experimental M1 reduced matrix elements inµN units

Transition Matrix element
〈f ‖M1‖i〉µN

2+
g → 3+

1 −0.054(9)

2+
g → 2+

2 < 0.02

2+
g → 2+

3 0.24(3)

4+
g → 4+

2 −0.15(3)

larger than the error on the quadrupole moment value included in the fitted data set. This
to the conservative error estimation used for the present analysis. In the experimental a
of COULEX results the data from GSI experiments ([2] and [3]) were not taken into acc
Our results for diagonal matrix elements (ME) in ground state band are in agreement to [
within one standard deviation. Using various projectiles we were able to get diagonal M
3 levels of 2+2 band as well as 2+3 state. The transitional ME are mostly the same as give
[2] and [3] within one standard deviation, few of them within two standard deviations. Ha
well established level scheme of 0+

2 band we were able to get more informations about ME
intraband as well as interband transitions for the band.

The present work has determined the large set of E2 matrix elements interconnect
lowest 17 states in104Ru. The extent of this data set is too large to discuss each matrix ele
in detail. The discussion of the overall implications of these results is given in Section 9.

8. Sum rules and experimental quadrupole invariants

Quadrupole collectivity produces strong correlations of the E2 matrix elements and the
ber of significant collective variables is much lower than the number of matrix element
Comparing list of experimental E2 matrix elements with model values exhibits neithe
uniqueness nor the sensitivity of the data to the collective model parameters. Considerabl
insight is obtained comparing the same charge deformation parameters from the data and
propriate values from the model calculations, since it shows clearly which collective param
are determined by the data and the goodness of collective model descriptions. The infor
about charge deformation parameters can be obtained using rotationaly invariant produc
quadrupole operators that relate the reduced E2 matrix elements with the quadrupole defo
parameters [1,5,6].

The reduced matrix elements,〈Is‖E2‖Ir〉, of the electric quadrupole operatorM(E2,µ) (µ =
−2, . . . ,2), which have been discussed in the previous section, are defined as follows:

〈IsMs |M(E2,µ)|IrMr 〉 = (−1)Is−Ms

(
Is 2 Ir

−Ms µ Mr

)
〈Is‖M(E2)‖Ir 〉, (1)

where the 2× 3 matrix is the Wigner 3jm symbol. To shorten the notation we used in fact in
previous section an abbreviated form of the quadrupole operator within reduced matrix ele
〈Is‖M(E2)‖Ir〉 = 〈Is‖E2‖Ir〉. The above notation will be used also in the following.

The two basic quadrupole invariant operators are formed of the quadrupole tensorM(E2) in
the following way:

[
M(E2) ×M(E2)

]
0 = 1√ Q2, (2)
5
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[[
M(E2) ×M(E2)

]
2 ×M(E2)

]
0 = −

√
2

35
Q3 cos3δ, (3)

where[· · · × · · ·]L stands for the vector coupling to angular momentumL. The coefficients in
front of Q2 andQ3 in Eqs. (2) and (3) are the corresponding products of the Wigner sym
These invariants are denoted here up to coefficients asQ2 andQ3 cos3δ, respectively in order to
have a correspondence with collective coordinates (see the next section). Since the compo
M(E2,µ) with differentµ’s commute with each other the expectation values of the E2 invar
can be related to the reduced E2 matrix elements by making intermediate state expansio
corresponding sum rules read:

〈S|[M(E2) ×M(E2)
]
0|S〉 = (−1)2S

√
2S + 1

∑
R

〈S‖E2‖R〉〈R‖E2‖S〉
{

2 2 0
S S R

}
, (4)

〈S|[[M(E2) ×M(E2)
]
2 ×M(E2)

]
0|S〉

=
√

5

2S + 1

∑
RT

〈S‖E2‖R〉〈R‖E2‖T 〉〈T ‖E2‖S〉
{

2 2 0
S S T

}{
2 2 2
T S R

}
(−1)3S+T ,

(5)

whereS denotes stateS and at the same time the spin of stateS alone;R andT denotes interme
diate states and their spins;

{
A B C
D E F

}
is a 6j symbol. Thus, having the experimental values of

reduced E2 matrix elements, the expectation values of the basic quadrupole invariants for
stateS can be extracted from the experimental data. In a similar way the expectation value
the rotationally invariant products of the E2 operator can be evaluated, determining direc
quantum distribution i.e., the centroids, dispersions, skewnesses, cross-correlation coef
etc., ofM(E2) in a given state. As an example of contribution of various matrix elemen
the value of the invariant in104Ru, in Tables 4 and 5 main contributions of the experime
sums (4) and (5) for〈2+

2 |Q2|2+
2 〉 and 〈2+

2 |Q3 cos3δ|2+
2 〉, respectively, are presented. One c

see that only four matrix elements are crucial for both invariants. The invariant〈S|Q2|S〉, which
is to be denoted in short as〈Q2〉, does not depend on sign of any matrix element, in contra
the〈Q3 cos3δ〉 invariant. The sign of〈3+

1 ‖E2‖4+
2 〉 matrix element was not experimentaly det

mined (c.f. Table 2). When the sign of〈3+
1 ‖E2‖4+

2 〉 is changed from negative to positive, then
expectation value of〈2+

2 |Q3 cos3δ|2+
2 〉 decreases from 0.34(8) e3b3 to 0.03(9) e3b3. Theoretical

calculations within the quadrupole collective Bohr Hamiltonian and the asymmetric rigid
model, discussed in Section 9 below, support the negative sign. Therefore, at the further a
the negative sign has been accepted. The similar case is for 3+

1 level. When〈3+
1 ‖E2‖4+

2 〉 is neg-
ative, then〈3+

1 |Q3 cos3δ|3+
1 〉 = 0.25(+10

−8 ) e3b3, and when positive it will drop to 0.01(4) e3b3.
Although the technique of using rotational invariants has been discussed in the contex

application to the collective model, the method is completely model independent and is a
ble to any spherical tensor operator. The invariants are extracted from the experimental
elements and thus they are equivalent to observables. They can be compared to the th
values obtained from collective model calculations. This way the usefulness of a given m
describing the nuclear collective states can be verified. The significance and usefulness
senting the experimental data in the form of model-independent invariants depend on de
which the nuclear properties are correlated by collective degrees of freedom. The recent a
in the field of Coulomb excitation make possible to determine all the E2 matrix elements re
to apply this model-independent method and thereby express a wealth of data in a form
hibits clearly the extent to which the data are correlated by collectivity. The rotational inva
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Table 4
Contribution of various matrix elements to the final result for〈2+

2 |Q2|2+
2 〉 invariant in104Ru

The component Contribution to the invariant[e2b2]
〈2+

2 ‖E2‖2+
g 〉〈2+

g ‖E2‖2+
2 〉 0.113

〈2+
2 ‖E2‖3+

1 〉〈3+
1 ‖E2‖2+

2 〉 0.298

〈2+
2 ‖E2‖4+

2 〉〈4+
2 ‖E2‖2+

2 〉 0.251

〈2+
2 ‖E2‖2+

2 〉〈2+
2 ‖E2‖2+

2 〉 0.077

Total of 4 contributions = 0.739

All contributions = 0.76(8)

Table 5
Important contribution of matrix elements to the final result for〈2+

2 |Q3 cos 3δ|2+
2 〉 invariant in104Ru

The component Contributions to the invariant[e3b3]
〈2+

2 ‖E2‖3+
1 〉〈3+

1 ‖E2‖2+
2 〉〈2+

2 ‖E2‖2+
2 〉 0.176

〈2+
2 ‖E2‖3+

1 〉〈3+
1 ‖E2‖4+

2 〉〈4+
2 ‖E2‖2+

2 〉 0.157

〈2+
2 ‖E2‖2+

2 〉〈2+
2 ‖E2‖4+

2 〉〈4+
2 ‖E2‖2+

2 〉 −0.074

〈2+
2 ‖E2‖4+

2 〉〈4+
2 ‖E2‖4+

2 〉〈4+
2 ‖E2‖2+

2 〉 0.068

Total of 4 contributions = 0.327

All contributions = 0.34(8)

provide the most insight into the underlying collective correlations at the expense of som
in precision due to incomplete summation. Parameters of models selected to have rea
values of the rotational invariants, can be fitted to the individual matrix elements, provid
more quantative comparison with the data. The rotational invariants are most valuable fo
ies of shape-transitional nuclei such as104Ru. Experimentally, the summations are insufficien
complete for non-collective nuclei and insufficiently precise for useful interpretations of str
deformed rotors.

The calculation of the rotational invariants from the measured matrix elements is straig
ward but estimation of the errors is difficult due to the strong cross-correlation in the errors
matrix elements extracted from Coulomb excitation data. In many cases functions of the
elements defining the invariants are determined by the experimental data more accurat
the matrix elements themselves, therefore it is not possible to use the quoted errors ascrib
individual matrix elements without including the cross-correlation effects. The errors ascri
the invariants were obtained directly from the Coulomb excitation data by the same pro
used for estimating the errors in the individual matrix elements.

Fig. 4 shows the centroid and dispersion of the invariantQ2 for the individual states calcu
lated by means of the sum rules from the experimental E2 matrix elements. In the calcu
particularly for 22 band, the GSI data for matrix elements coupling the 3+

1 state were used, a
being more precise than the present ones.

The dispersion ofQ2 is defined by means of〈Q4〉 value as follows:

σ
(
Q2) =

√〈
Q4

〉 − 〈
Q2

〉2
.

For illustration we shall convert the mean values ofQ2 to the root mean square values of t
shape deformation parameterβ, β0 = √〈β2〉 using formulas (A.1) and (A.2) of Appendix A.
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Fig. 4. Experimental and theoretical expectation values ofQ2 and dispersionsσ(Q2) defined in the text versus spin fo
the ground state band, 2+

2 band and 0+2 band head.

The centroids show strong correlations from state to state consistent with the band st
presented in Fig. 2. In addition, there appears to be a smooth variation in the magnitude
quadrupole collectivity with spin value in both collective bands. Thus the expectation val
〈Q2〉 for the ground band are constant up to 8+

g level on the value about 0.9 (eb)2 (β0 ≈ 0.28).

Close and still constant along the band, a value of〈Q2〉 ≈ 0.75 (eb)2 (β0 ≈ 0.26) is found for
the 2+2 band. The band head of the 0+

2 band has a still lower value of〈Q2〉 = 0.52(12) (eb)2

(β0 ≈ 0.21). For104Ru low spin levels the distribution widthσ(Q2) ≈ 0.22(6), indicating modes
dispersion ofQ2. The data are insufficient to provide reliable values forσ(Q2) for each level
separately.

In the present paper we define the quadrupole asymmetry, which is a measure of de
from the axial symmetry, in the following way:

α(cos 3δ) = 〈
Q3 cos3δ

〉/(〈
Q2〉)3/2

. (6)

Sometimesα(cos3δ) is defined with
√〈Q2〉〈Q4〉 in denominator instead of(〈Q2〉)3/2. In Ref. [1]

and other papers of our collaborations the quantityα(cos3δ) was denoted as〈cos3δ〉 although
the value of〈cos3δ〉 is not precisely the quantity at the right-hand side of Eq. (6).

In analogy toβ0, we introduce a measure of the shape deformation parameterγ in a given
state byγ0 = 1

3 arccos(α(cos 3γ )) using again the formulas (A.1) and (A.2) of Appendix A.
We define the dispersion of the quadrupole asymmetry as follows:

σ
(
α(cos3δ)

) =
√

〈Q6 cos2 3δ〉
〈Q6〉 − (

α(cos 3δ)
)2

. (7)
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Fig. 5. Experimental and theoretical values of the quadrupole asymmetry and the dispersions of quadrupole as
versus spin for the ground state band, 2+

2 band and 0+2 band head. Both quantities are defined by Eqs. (6) and (7).

The quadrupole asymmetry is also correlated from state to state in each ‘quasi’ band. Th
of α(cos3δ) is lower than 0.40 for the ground level and grows to more than 0.45 for hi
levels of the band (it corresponds toγ0 ≈ 25◦ and 23◦, respectively). The value ofα(cos3δ) for
the 2+2 band and 0+2 state is equal to about 0.5 and 0.1(3) what is equivalent toγ0 ≈ 22◦ and
30◦, respectively. For relating〈Q2〉 and〈Q3 cos3δ〉 to the corresponding quantities depend
on β andγ formulas (A.1) and (A.2) of Appendix A have been applied. Thus, the asymm
values indicate predominantly prolate triaxial shape for all bands. The information regardi
dispersion of the quadrupole asymmetry is less complete and gives only a guess that th104Ru
nuclei is soft forγ deformation.

Concluding, the experimental data are consistent with quadrupole collectivity with m
softness in magnitude ofQ. The experimental values ofσ(α(cos3δ)) are not quoted because
possible incompleteness in evaluating higher order invariants. Thus the degree of theγ -softness
can be concluded only from a model predictions.

9. Comparison with theoretical model calculations

Analysis of the present data, using rotational invariants, shows that the E2 properties o104Ru
are well correlated with macroscopic quadrupole collective degrees of freedom. The expe
tal results suggest that104Ru is triaxially deformed and modestly soft in theβ degree of freedom
In this section a comparison with various quadrupole collective models based on the gene
Bohr Hamiltonian [22,23] will be given:

HQC = Tvib(β, γ ) + Trot(β, γ,Ω) + Vdef(β, γ ), (8)
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where the dynamical variablesβ, γ andΩ are the two Bohr shape deformation parameters
the three Euler angles, respectively;Vdef is the quadrupole deformation potential,

Tvib = − h̄2

2
√
WR

{
1

β4

[
∂β

(
β4

√
R
WBγ γ ∂β

)
− ∂β

(
β3

√
R
WBβγ ∂γ

)]

+ 1

β sin 3γ

[
−∂γ

(√
R
W sin 3γBβγ ∂β

)
+ 1

β
∂γ

(√
R
W sin3γBββ

)
∂γ

]}
(9)

with W = BββBγ γ −Bβγ , R= BxByBz and

Trot = 1

8β2

∑
κ=x,y,z

I2
κ (Ω)/

(
Bκ(β, γ )sin2 γκ

)
, (10)

with γx = γ − 2π/3, γy = γ + 2π/3, γz = γ are the collective vibrational and rotational kine
energies, respectively. The differential operators inΩ , Ix , Iy , Iz are the intrinsic components
the total angular momentum. The Hamiltonian (8) is defined by the seven functions ofβ and
γ : V , the potential, andBββ , Bβγ , Bγ γ andBx , By , Bz, the vibrational and rotational inertia
functions, respectively. In order to calculate electromagnetic transitions also collective mu
operators are defined. In the collective model the E2 operator,M(E2,µ), forms a quadrupole
tensor dependent on the all colective coordinates: deformationsβ andγ , and the Euler angles
It is fully determined by its two non-vanishing intrinsic components,Q0(β, γ ) = M(E2,0) and
Q2(β, γ ) = √

2M(E2,2) being functions of the deformations only.
First, the experimental data will be compared to the calculations performed with the

Hamiltonian which is determined from a microscopic theory (QCBH) with no free par
ters [11]. Next the comparison will be made to simple phenomenological models being a s
try limits of collective Bohr Hamiltonian: the beta- and gamma-rigid Davydov–Filippov m
(D–F), and the gamma-unstable Wilets–Jean model (W–J), both with parameters fitted
experimental data.

When comparing the model results with data we are focusing on the quadrupole inv
(see [1]) that allow for a determination of nuclear intrinsic shapes in a model independen
The analysis in terms of quadrupole invariants is based on specific sum rules (see Sec
which involve summations over a large set of quadrupole matrix elements. An essent
ment of such an analysis is the fact that the components of the quadrupole-moment o
commute [10]; as is obviously the case for the microscopic quadrupole moment, whic
pends only on coordinates of particles. This feature of the quadrupole operator is pre
in the collective models used below, where the quadrupole operator depends only o
lective coordinates; and thus its components do commute. On the other hand, such
erty is absent in a truncated shell-model approach, or in an approximation thereof su
e.g., the IBM, where the components of the quadrupole-moment operator do not com
This is particularly well visible within the IBM, where a simple phenomenological app
imation of the quadrupole moment in the truncated space is postulated with parame
to data. Such an approximation usually gives a correct description of selected exper
matrix elements, see [7–9] for application to104Ru. However, when the whole set of m
trix elements is considered, as is the case for the sum-rule analysis, non-commutat
the model quadrupole moment violates the microscopic sum rules [10]. For this reaso
cannot perform such an analysis in a truncated shell model or IBM. One can say that t
son for that is the fact that within the whole set of quadrupole matrix elements there
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be some or many, for which a substantial strength is certainly located outside the tru
space.

Below we first recapitulate briefly the models used to the comparison.

9.1. Microscopic quadrupole collective Bohr Hamiltonian (QCBH)

Prediction of the thirty E2 matrix elements measured in the present experiments poses
lenge to general quadrupole collective calculations. Such a calculation has been undert
paper [11]. The starting point to this calculation is a microscopic Hamiltonian

H = HNilsson(β, γ ) + Vpairing (11)

representing the system of nucleons in a deformed triaxial Nilsson potential well inter
through the standard pairing forces. Thus,β andγ are defined here as the Bohr shape defor
tion parameters of a triaxial harmonic oscillator potential well with frequencies

ωκ(β, γ ) = ω0(β, γ )

(
1+

√
5

4π
β cosγκ

)−1

= ω0(β, γ )(1+ 4Cβ cosγκ)−1, (12)

whereC = (1/4)
√

5/4π and

ω0(β, γ ) = ◦
ω0

(
1− 12C2β2 + 16C3β3 cos3γ

)1/3
, (13)

for κ = x, y, z [25]. For years the standard approach to a microscopic determination o
collective model for the quadrupole excitations has been to assume that the only dyn
variables are the quadrupole deformationsβ andγ , and the Euler anglesΩ and then extract
ing the collective HamiltonianHQC of Eq. (8) from a microscopic HamiltonianH of Eq. (11).
In Ref. [11] the standard cranking method to evaluate the inertial functions and the macros
microscopic method to evaluate the potential has been used. Below, we refer to that me
calculation as the standard quadrupole collective Bohr Hamiltonian approach (QCBHstd). A new
approach developed in ref. [11] lies in extending the space of collective variables. In ad
to the quadrupole variables four others are introduced which are connected with the prot
neutron collective pairing vibrations and rotations (i.e., collective pair transfers), namel∆p

and∆n, the proton and neutron energy gaps, andΦp andΦn, the proton and neutron gauge a
gles, respectively. Then, a general collective “quadrupole+ pairing” Hamiltonian extracted from
microscopic HamiltonianH takes the following form:

HQPC= HQC +HPC+ TQP. (14)

The first termHQC describes the collective quadrupole vibrations and rotations and has the
of that of Eq. (8). The second term in (14) is a sum of the pairing collective Hamiltonian
protons and neutrons determined by the two vibrational functions,B∆p∆p andB∆n∆n , the two
“moments of inertia”,IΦp andIΦn , and the two pairing potentials,Vp andVn for the proton
and the neutron pairing vibrations and rotations, respectively. All these functions are dete
microscopically. The third term in (14),TQP, represents a quadrupole-pairing coupling in the
lective kinetic energy and contains another four inertial functions,Bβ∆p , Bγ∆p , Bβ∆n andBγ∆n ,
which describe a coupling of theβ- and theγ -vibrations to the proton and neutron pairing
brations, respectively, in the kinetic energy. In general, all the functions involved in Hamilt
HQPC of Eq. (14) depend onβ, γ , ∆p and∆n. The intrinsic quadrupole moments,Q0 andQ2
can be calculated from the microscopic theory in a similar way.
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The Born–Oppenheimer approximation to the HamiltonianHQPC has been used to inves
gate the quadrupole collective excitations. This means thatTQP is neglected and first the groun
state of HamiltonianHPC is found for givenβ andγ . Next, the most probable values of∆p

and∆n, which depend onβ andγ , in the ground state of the pairing vibrations are put i
the Bohr HamiltonianHQC. Finally, that Bohr Hamiltonian is diagonalized. This way the eff
of the zero-point pairing proton and neutron vibrations on the quadrupole vibrations is
into account and found to be an essential effect. We refer to the above method of inv
tion of the quadrupole excitations as the dynamical quadrupole collective Bohr Hamilt
(QCBHdyn).

The results of calculations using both of the above methods of constructing the Bohr H
tonian microscopically are given in Tables 1 and 2 and on Figs. 6–10. Neither calculation co
parameters fit to the104Ru experimental data. The agreement between the QCBHdyn calculations
and experiment is good in spite of the fact that no free parameters have been fit. The Qstd
calculations are not as successful, particularly the levels energy predictions.

9.2. The Davydov–Filippov model (D–F)

Expectation value of the invariantQ3 cos3δ indicate appreciable triaxiality of104Ru in the
ground and excited states. The simplest symmetry limit model describing triaxiality of n
is the rigid triaxial rotor model of Davydov–Filippov [24]. In this model the Hamiltonian (8
limited only to the rotational kinetic energy part,Trot (see (10)) with

Bx = By = Bz = B = const (15)

and the only dynamical variables are the Euler angles;β = β0 andγ = γ0 become fixed defor
mation parameters. Three phenomenological parametersB, β0, γ0 are adjusted to experiment
data. Instead of the parameterB, the energy of the first 2+ level, E2+ is used. In Davydov–
Filippov modelE2+ is a simple function ofB, β0 and γ0. The results of the calculation fo
E2+ = 320 keV,β0 = 0.28 andγ0 = 25◦ are shown in Figs. 6–10 and Tables 1 and 2. One
see (Fig. 6) that the spectrum calculated by the Davydov–Filippov model is much more str
than the experimental one.

9.3. The Wilets–Jean model (W–J)

The other symmetry limit of the quadrupole collective Hamiltonian (8) describing triaxi
is the Wilets–Jean model [26] ofγ -unstable deformation i.e., gamma-independent collective
tential. In the present paper, it will be used in the extended form proposed in [27]. The col
potential then reads

Vcoll(β, γ ) = V (β) = 1

2
Cβ2 + G

(
e−(

β
α
)2 − 1

)
. (16)

All inertial functions are assumed to beβ andγ independent:

Bγ γ = Bx = By = Bz = B = const, Bββ = const, Bβγ = 0. (17)

Fig. 11 shows the pattern of energy levels predicted by the model. There are two qu
numbers:λ, the seniority andnβ , the number of nodes in theβ-dependent part of the wave fun
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rule
Fig. 6. Comparison of experimental and theoretical energy levels values. Ground state band levels are marked
continous lines, 2+2 band levels are marked by thin continous lines, 0+

2 band levels are marked by thick dashed lines,+
3

band levels are marked by dotted lines.

tion. ForG � Cα2/2 the potential has its minimum atβ = β0 � 0 and the collective motion ca
be considered as rotations strongly coupled toγ -vibrations and one-dimensionalβ-vibrations
around a deformed minimum. Then, the selection rules of the allowed E2 transitions are:∆λ = 1
and∆nβ = 0,1. ForG = 0, the minimum of the potential isβ0 = 0 and we have the standa
vibrational limit of five-dimensional quadrupole vibrations around the spherical shape. The
principal quantum numberN = 2nβ +λ becomes a good quantum number and the selection
for allowed E2 transitions is∆N = 1.
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ues of
. The
Fig. 7. Intraband transition E2 matrix elements for the ground, 2+
2 and 0+2 bands.

Fig. 8. Absolute value of E2 matrix elements for transitions between 2+
2 band and ground band.

9.4. Energy levels

Detailed comparison of the experimental and theoretical spin, parity and energy val
104Ru levels is shown in Fig. 6. All of the experimental levels shown in Fig. 2 are included

comparison with the predictions of the five following models is shown:
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ical
Fig. 9. E2 matrix elements for interband transitions from 0+
2 and 0+3 bands.

Fig. 10. Comparison of the experimental and theoretical diagonal E2 matrix elements.

(1) the standard microscopic quadrupole collective Bohr Hamiltonian—QCBHstd,
(2) the microscopic quadrupole collective Bohr Hamiltonian with the effect of dynam

pairing—QCBHdyn,
(3) the rigid triaxial rotor—D–F,
(4) theγ -unstableβ-vibrator in the version of Ref. [27]—W–J,
(5) the standard quadrupole harmonic vibrator—harm. vibr.
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Fig. 11. The level schemes according to gamma-soft model [27] forβ0 = 0 (spherical nuclei) and forβ0 � 0 (γ -unstable
nuclei). In case of spherical nuclei the multiplets can be labelled by the number of phononsN = 2nβ +λ, whereas in the
case ofγ -unstable nuclei thenβ andλ quantum numbers must be given separately.

When account is taken that QCBHdyn does not use any fitted parameter, the agreement is
good. One can see (Fig. 6) that effect of the pairing dynamics is essential for reproduction
absolute experimental energy levels. It is worth noting the similarity of the energy patterns
QCBHdyn and W–J model. The energy multiplets of the W–J are well reproduced in the QCBdyn
and in the experimental data. A similar tendency can be observed in the energy level ra
the yrast band. In Table 6 the energy ratioEI = EI+/E2+ are given for the104Ru experimenta
data and for QCBH (standard and dynamic pairing), W–Jγ -soft (β0 = 0 andβ0 � 0) and D–F
γ -rigid (γ0 = 30◦ andγ0 = 0◦). The experimental data are very close to the W–Jγ -unstable
model prediction.

9.5. Electric quadrupole matrix elements

The comparison of experimental and calculated E2 matrix elements is given in Figs.
In Fig. 7 the intraband transition matrix elements are given for the ground band, 2+

2 band and
0+ band. One can see that the difference between the QCBH results with standard and d
2
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Table 6
Level energies ratioEI = EI /E2+ for the ground state band according to different models and the microscopic ca
tions

Model EI E4 E6 E8 E10

Harmonic vibrations aroundβ0 = 0 1
2I 2 3 4 5

γ -unstableβ-vibrations (W–J),β0 � 0 1
16I (I + 6) 2.5 4.5 7 10

Rigid triaxial rotor (D–F) withγ0 = 30◦ 1
12I (I + 4) 2.67 5 8 11.67

Axial rotor with γ0 = 0◦ or γ0 = 60◦ 1
6I (I + 1) 3.33 7 12 18.33

QCBHstd 2.43 4.24 6.40 8.90

QCBHdyn 2.71 5.03 7.90 11.28
104Ru experiment 2.48 4.35 6.45 9.18

pairing is very small in contrast to the case of the level energies. In Fig. 8 the interband tra
matrix elements between the 2+

2 band and ground band are shown. For the∆λ = 1 forbidden
transitions within the W–Jγ -unstable model all the experimental as well as theoretical va
are very small and differ little between the various theoretical calculations. In Fig. 9 th
interband transition matrix elements are shown forγ -transitions from bands based on the+2
and 0+3 levels. It is clear, that the results of the QCBH with both standard and dynamic p
are very similar. For the transitions 2+

3 ⇒ 4+
2 and 2+3 ⇒ 4+

4 the W–Jγ -unstable model selectio
rules (see Fig. 11) are violated in the experiment as well as in the QCBH calculations.
other transitions those selection rules are valid. In Fig. 10 the diagonal E2 matrix eleme
shown. For the ground state band their experimental absolute values are lower than ca
within the microscopic QCBH models. However, the difference between the QCBH calcul
and experiment are within three standard deviations.

9.6. Collective quadrupole invariants

Although the intrinsic quadrupole moments,Q0 andQ2, can be calculated from the micr
scopic theory within QCBH, we assume for simplicity in all used here versions of the colle
model the same collective E2 moments of an ellipsoid, charged uniformly, of deformationsβ and
γ defined in (12) and volume(4/3)πR3

0, R0 = r0A
1/3 andr0 = 1.2 fm, namely

Q0(β, γ ) = 3

4π
ZR2(β cosγ + Cβ2 cos2γ

)
, (18)

Q2(β, γ ) = 3

4π
ZR2(β sinγ − Cβ2 sin2γ

)
, (19)

whereC is defined in Eq. (12) and

R(β,γ ) = R0
(
1− 12C2β2 + 16C3β3 cos3γ

)−1/3
.

This is a good approximation for the microscopic E2 moments.
The collective quadrupole invariants can now be expressed as functions of the two

deformation parameters,Q andδ, defined by formulae:

Q0 = Qcosδ, Q2 = Qsinδ. (20)

They read:
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[
M(E2) ×M(E2)

]
0

= 1√
5

(
Q2

0 + Q2
2

) = 1√
5
Q2, (21)[[

M(E2) ×M(E2)
]
2 ×M(E2)

]
0

= −
√

2

35

(
Q3

0 − 3Q0Q
2
2

) = −
√

2

35
Q3 cos3δ, (22)[[

M(E2) ×M(E2)
]
0

[
M(E2) ×M(E2)

]
0

]
0

= 1

5

(
Q4

0 + 2Q2
0Q

2
2 + Q4

2

) = 1

5
Q4, (23)[[

M(E2) ×M(E2)
]
0

[[
M(E2) ×M(E2)

]
2 ×M(E2)

]
0

]
0

= −
√

2

175

(
Q5

0 − 2Q3
0Q

2
2 − 3Q0Q

4
2

) = −
√

2

175
Q5 cos3δ, (24)[[

M(E2) ×M(E2)
]
0

[
M(E2) ×M(E2)

]
0

[
M(E2) ×M(E2)

]
0

]
0

= 1

5
√

5

(
Q6

0 + 3Q4
0Q

2
2 + 3Q2

0Q
4
2 + Q6

2

) = 1

5
√

5
Q6, (25)[[[

M(E2) ×M(E2)
]
2 ×M(E2)

]
0

[[
M(E2) ×M(E2)

]
2 ×M(E2)

]
0

]
0

= 2

35

(
Q6

0 − 6Q4
0Q

2
2 + 9Q2

0Q
4
2

) = 2

35
Q6 cos2 3δ. (26)

The exact and approximated formulae for the collective quadrupole invariants as functionβ

andγ are given in Appendix A. The expectation values of the all above collective quadr
invariants can be calculated using the collective wave functions. This way the theoretical
tation values of the quadrupole invariants obtained from the collective model calculations
compared with the experimental expectation values obtain from the sum rules.

The upper plots of Figs. 4 and 5 show the experimental results for〈Q2〉 andα(cos 3δ) of
various states together with their experimental errors. On the same plots the theoretical v
〈Q2〉 andα(cos 3δ) for the same states are given using wave functions calculated in the
of the five microscopic and phenomenological collective quadrupole models, discussed
ously. The lower plots of Figs. 4 and 5 show the theoretical values of the dispersionsσ(Q2) and
σ(α(cos3δ)) for the same states. Unfortunately, the data available do not allow for the e
mental determination of dispersionsσ(Q2) andσ(α(cos 3δ)). Since the quadrupole operator
the geometrical model is a commutative one, its matrix elements automatically fulfill the c
tions imposed by the microscopic sum rules (see [10] for details).

10. Summary

A set of twenty eight E2 and three M1 matrix elements for104Ru have been measured fro
Coulomb excitation experiments using208Pb,136Xe and56Ni projectiles. This set includes th
magnitudes and signs of many E2 elements coupling 17 collective states, comprising fou
onal elements for the ground state band, three diagonal elements for 2+

2 state band and one fo
the 2+3 state of the 0+2 band.

Such a large set of experimental E2 matrix elements allows for projecting collective d
of freedom〈Q2〉 andα(cos3δ). The present work shows that for the two bands based on gr
and 22 states the deformation is aboutβ0 ≈ 0.28 andγ0 ≈ 25◦. The experimental E2 collectiv
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degree of freedom〈Q2〉 andα(cos 3δ) are compared with calculations in the framework of
collective quadrupole Bohr Hamiltonian. Calculations were performed with phenomenolog
fitted parameters for different symmetry limits of the Bohr Hamiltonian as well as with par
ters calculated microscopically within the quadrupole (Nilsson) plus pairing approach. R
of the microscopic collective model calculations, without any parameters fitted to the104Ru data,
show very good agreement with the experimental data.
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Appendix A. The quadrupole invariants for an uniformly charged elipsoid

From Eqs. (21) and (22) the formulae for the two basic collective quadrupole invariants

Q2 =
(

3

4π
ZR2

)2(
β2 + 2Cβ3 cos3γ + C2β4)

≈ q2
0

(
β2 + 2Cβ3 cos3γ + 17C2β4) +O

(
β5), (A.1)

Q3 cos3δ =
(

3

4π
ZR2

)3(
β3 cos3γ + 3Cβ4 + 3C2β5 cos3γ + 2C3β6 cos2 3γ − C3β6)

≈ q3
0

(
β3 cos3γ + 3Cβ4 + 27C2β5 cos3γ − 30C3β6 cos2 3γ + 71C3β6)

+O
(
β7), (A.2)

whereq0 = (3/4π)ZR2
0. Calculating the mean values of invariants inβ andγ in a given state the

mean values of the quadrupole invariants can be calculated from the above formulas. To c
also the dispersions of these invariants their higher powers as functions ofβ andγ are needed
Three of them of the order up to the sixth inQ are calculated from Eqs. (23), (24) and (26) a
read:

Q4 =
(

3

4π
ZR2

)4(
β4 + 4Cβ5 cos3γ + 2C2β6

+ 4C2β6 cos2 3γ + 4C3β7 cos3γ + C4β8)
≈ q4

0

(
β4 + 4Cβ5 cos3γ + 34C2β6 + 4C2β6 cos2 3γ

+ 1

3

(
268C3β7 cos3γ − 128C4β8 cos2 3γ + 2307C4β8)) +O

(
β9), (A.3)
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Q5 cos3δ =
(

3

4π
ZR2

)5(
β5 cos3γ + 2Cβ6 cos2 3γ + 3Cβ6

+ 10C2β7 cos3γ + 8C3β8 cos2 3γ + 2C3β8

+ 4C4β9 cos3 3γ + C4β9 cos3γ + 2C5β10cos2 3γ − C5β10)
≈ q5

0

(
β5 cos3γ + 2Cβ6 cos2 3γ + 3Cβ6

+ 50C2β7 cos3γ + 122C3β8 + 1281C4β9 cos3γ + 3199C5β10

+ 1

3

(
104C3β8 cos2 3γ − 308C4β9 cos3 3γ − 2714C5β10cos2 3γ

))
+O

(
β11), (A.4)

Q6 cos2 3δ =
(

3

4π
ZR2

)6(
β6 cos2 3γ + 6Cβ7 cos3γ + 6C2β8 cos2 3γ

+ 9C2β8 + 4C3β9 cos3 3γ + 16C3β9 cos3γ

+ 21C4β10cos2 3γ − 6C4β10 + 12C5β11cos3 3γ − 6C5β11cos3γ

+ 4C6β12cos4 3γ − 4C6β12cos2 3γ + C6β12)
≈ q6

0

(
β6 cos2 3γ + 6Cβ7 cos3γ + 54C2β8 cos2 3γ + 9C2β8

− 60C3β9 cos3 3γ + 304C3β9 cos3γ + 1365C4β10cos2 3γ + 426C4β10

− 4020C5β11cos3 3γ + 8826C5β11cos3γ + 2308C6β12cos4 3γ

+ 20140C6β12cos2 3γ + 12673C6β12) +O
(
β13). (A.5)
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