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Abstract

The magnitudes and signs of twenty eight E2 and three M1 matrix elements involving 17 low-lying
excited states if%“Ru have been measured by Coulomb excitation u§#igb,136Xe and®8Ni ions. The
completeness of the set of E2 matrix elements is sufficient to extract, directly from the data, the expectation
values of the intrinsic-frame E2 moments that provide considerable insight into the underlying collectivity.
The measured E2 properties strongly correlate with macroscopic quadrupole collective degrees of freedom.
Detailed comparison of the experimental results and theoretical microscopic calculations within the general
quadrupole collective Bohr Hamiltonian are presented. Very good agreement of calculations and experiment
is achieved without any parameters fitted to ##Ru experimental data. Results of phenomenologjical
unstable ang-rigid models are also given.
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PACS:21.60.Ev; 23.20.Js; 23.20.Lv; 25.70.De

Keywords:NUCLEAR REACTIONS104Ru@98pb,208pY), E = 954 MeV; 104Ru@36xe,136X¢'), E =525 MeV;
104Ru8Ni, 58Ni’), E = 165 MeV, 190 MeV; measureH,, I, (particle)y-coin following Coulomb excitation.
104Ry deduced levels], 7, E2 and M1 matrix elements, quadrupole collectivity. Comparison with model
predictions.

1. Introduction

The present paper reports on the use of heavy-ion induced Coulomb excitation to measure a
set of twenty eight E2 and three M1 matrix elements involving the lowest-lying stat@4Ro.

The goal of this work is to test the validity of collective model descriptions of the structure of
104Ru and to evaluate the available collective model calculations.

An important step in the field of heavy ion induced Coulomb excitation was achieved due to
the development of beams of the heaviest ions combined with position sensitive detection sys-
tems for the scattered projectiles and recoiling target nuclei. This makes it possible to Coulomb
excite states up to high spin and to measure both the signs and magnitudes of the practically com-
plete set of E2 matrix elements for the low-lying states in a nucleus [1]. Extraction of these E2
matrix elements is far from trivial for heavy ion induced Coulomb excitation because the strong
coupling leads to a complicated dependence of the data on the matrix elements. Sets of data from
the Coulomb excitation experiments having a wide range of projeZtialues and scattering
angles made it possible to obtain a model independent set of E2 transition matrix elements.

Heavy ion induced Coulomb excitation ¥¥Ru nucleus was studied by Stachel et al. by using
208pp projectiles and®Ru target [2] as well as by using inverse kinematics bombardf3§Rrb
target with al%Ru beam [3]. The analysis of the data were performed using a least-square code
specially developed in GSI (see [3] for details). Here, we present results of heavy ion induced
Coulomb excitation ot%Ru target using®Ni, 136Xe and2%8pb projectiles. Our data have been
analysed using the Rochester—Warsaw coupled-channel Coulomb excitation least-square search
code GOSIA [4]. The final results of these two independent sets of experiments are in very good
agreement. In our case, the use of three projectile species enable measurement of the diagonal
E2 matrix elements for thef2band and to identify the0band.

The set of E2 matrix elements measured in the present work is sufficiently complete to allow,
for the low-lying states, the expectation values of the E2 moments in the intrinsic frame to be
deduced directly from the data. It should be noted that these model-independent intrinsic-frame
E2 moments are directly related to the collective behaviour of the nucleus. They provide a direct
measure of the extent to which the properties of the low-lying staf®éfu can be correlated us-
ing only quadrupole collective degrees of freedom. Application of the non-energy-weighted sum
rules technique [1,5,6] as a model-independent analysis of the Coulomb excitation data is used to
determine unambiguously the underlying collective correlations for the low-lying levEléRu.

The knowledge of a nearly complete set of E2 matrix elements for low-lying levels in case
of a shape transitional nucleus lik&*Ru provides a formidable challenge to nuclear structure
theory. The data concernif§’Ru obtained in GSI [2,3] have been successfully confronted with
the IBM model [7-9]. However the IBM quadrupole operator is not appropriate for applying the
sum rule technique [10]. The entire data are confronted to calculations performed in the frame of
a geometrical collective model. This Hamiltonian is obtained from a more general “quadrupole
plus pairing” collective model through the Born—Oppenheimer approximation which takes into
account the effect of coupling with the pairing vibrations [11]. All inertial functions and the
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potential were determined from a microscopic theory. Without any parameters fitt€¢Rio
experimental data, we obtain good agreement between the experimental and theoretical results.

Exact formulae for the collective quadrupole invariants as functions of the Bohr parameters,
B andy, of the ellipsoidal deformation are derived in Appendix A.

2. The experimental method

All the experiments used the same selfsupporting ruthenium target 0.68nmghick, en-
riched to 99.3% in'%“Ru. The target was produced using an Ar beam to sputter enriched Ru
powder onto an Al foil, naturally covered by a3 film. The Al,Os crystal structure is very
similar to that of ruthenium and create a good starting point for Ru foil crystal growth. After
the sputtering procedure, the Al foil was dissolved by a special solution neutral to ruthenium
producing a self supporting foil.

2.1. Coulomb excitation usiriy®Pb ions

A 954 MeV 208ph beam from the SuperHILAC at the Lawrence Berkeley Laboratory was
used to Coulomb excite th¥Ru target. The recoiling target nuclei were detected8®b
scattering angles between 260 ©¢y, < 1807 by a circular Si detector placed &t t the beam
direction and covered by #8pb foil of thickness sufficient to stop the incideél8Pb. The de-
excitation gamma rays were detected by three Ge detectors, at angkestdf0@® and —100°
to the incident beam, in coincidence with the recoilf¥§Ru target nuclei detected in the Si
detector. In addition, four 7.6 cm diameter by 7.6 cm long Nal detectors were placed around
the target to serve as a multiplicity filter to identify the gamma-ray decay scheme. The large
recoil velocity, 12.5% of the velocity of light, produced large Doppler broadening of the detected
gamma rays due to the finite size of the gamma-ray detectors. In the final analysis, only the
Coulomb excitation yields for the Ge detector@t= 0° were used since this detector had the
smallest Doppler broadening effect. Fig. 1 shows spectrum of gamma-rays being in coincidence
with Ru recoils. The achieved energy resolution was 0.75% at 500 keV. Fig. 2 presents the level
scheme of%Ru excited in the experiment, showing all observed transitions.

The298ph experiment was performed using an incident energy of 4.6 MeNiich exceeds
the safe energy criterion [12] required to ensure that the interaction is purely electromagnetic,
that is, for heavy ions the distance of closest approach should exc&dﬁ/g + Atl/‘o’) +5fm
to ensure less than 0.1% deviation from Coulomb scattering theory. This criterion corresponds
to a bombarding energy of 4.1 MeXd. The higher bombarding energy was used to optimize the
population of high-spin states. The experimental Coulomb excitation yields were corrected by
up to 10% to account for the influence of Coulomb-nuclear interference effects and the errors
were increased to exceed the size of the correction used. This correction was estimated using
a study of this effect by Guidry et al. [13]. The assigned errors were enlarged further to reflect
the +10 MeV uncertainty in the bombarding energy and the 3% uncertainty in the Ge detector
efficiency which was measured using calibrated gamma-ray sources.

2.2. Coulomb excitations usifg®Xe ions
A 525 MeV 136Xe beam from the SuperHILAC at the Lawrence Berkeley Laboratory was

used. Recoiling target nuclei as well as scattel&Xe ions were detected by two position
sensitive rectangular PPAC coverigy angle 175°—-385°, and 39-63. The de-excitation
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Fig. 1. Doppler corrected gamma-ray spectrum registered i@@® detector in coincidence with recoilé®’Ru target
nuclei registered in 0Si detector.

gamma rays were detected by two Ge detectors placed at angles&f 42@ 1525° to incident

beam, in coincidence with the recoiling Ru target nuclei and scattered Xe beam nuclei. After an
event by event Doppler correction 1% gamma-ray energy resolution was achieved. In the final
Coulomb excitation analysis the-yields were integrated over three regions of Xe scattering
angles®¢ny, € {54°-90, 102-116, 116-130}.

2.3. Coulomb excitation usim§Ni ions

Two separate experiments were performed. One experiment used a 165.5%Niebeam
from the Tandem Van de Graaff accelerator at the University of Rochester. Sc&fiiédns
were detected by circular Si detectors in coincidence with de-excitation gamma rays detected
by Ge gamma-ray detectors ab1 and 60 to the beam. The particle detectors were placed
at laboratory scattering angles of 21905, 76.0°, 615°, 47.5° as well as an annular Si de-
tector covering the angular range from 188 175. The angles of the particle detectors were
determined with accuracy up to3 using the measured elastic scattering data.

The second experiment employed a 190 M®Xi beam from the Tandem Van de Graaff
accelerator at the Brookhaven National Laboratory. The scatféMidons were detected by
an annular Si detector, subtending the angular range frorf tth%75, in coincidence with
de-excitation gamma rays observed by Ge detectors @n@ 110. In contrast to the other
58Ni experiment, this experiment used an incident energy 11 MeV above the Cline safe energy
criterion [12]. However, no effect due to Coulomb-nuclear interference was manifest within the
experimental errors.

For the 165.5 Me\P8Ni beam experiment the energy resolution of the Si detectors was suf-
ficient to resolve the scatter@8Ni and recoiling'®“Ru target nuclei in the forward detectors
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Fig. 2. Partial'%4Ru level scheme showing all levels observed in present paper. Arrow widths are proportipraayto
intensities observed if’8Pb experiment.

and to allow Doppler correction for different slices of energy loss in the target. The gamma-ray
spectrum from the 190 MeV experiment is shown in Fig. 3. An energy resolution of 0.5% for
500 keV was achieved.

3. Level schemefor 1%Ru

The level scheme of®“Ru, shown in Fig. 2, is based on prior work [3,14] and [15] which
is confirmed by the present work. For the pres@fPb beam experiment the ground band was
seen up to the J0level and 1}, the 2 band up to §, the G band up to 4, only one O
level from the q band, and one additional level 2095 keV energy of spin and parity valjped 2
or 4;. For the'**Xe beam, the ground band was excited up fol@el, the 2 band up to §
level with the § level weekly excited, and thejOband up to 4 level was excited. For the¥Ni
beam the ground band was observed up/tde8el, the 2 band up to § level, the § band up
to 43 level, and additionally thé€2,, 41) level 2095 keV energy.

For the 2081 keV level spin and parithvere assigned based on relative intensities of four
y-transitions depopulating the level tg 225’, 31“ and % (see [14] and reference given therein).
Large matrix element$4s||E2||23) = 0.75(25) eb and(23]|[E2||02) = 0.71(4) eb confirm the
assignment of theand 2 levels to the § band.
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Fig. 3. Doppler corrected gamma-ray spectrum registerefi @eddetector in coincidence with backscattetéi beam
nuclei.

4. Extraction of E2 matrix elements from the Coulomb excitation data

Extraction of the E2 matrix elements from heavy-ion induced Coulomb excitation data is
an extremely difficult task because of the dramatic increase in the number of unknown matrix
elements involved when many states are excited. For example, in the present case the Coulomb
excitation cross sections depend in a complicated non-linear way on the signs and magnitudes of
the 96 matrix elements coupling the 26 states included in the analysis.

In the present work, de-excitation gamma-ray transitions were observed involving 17 states.
However, virtual excitation of other states can influence the excitation of the observed states.
Consequently, the present analysis assumed additional states extending the observed bands. The
energy (spin) of these states were assumed to be as follows: for the 2 qp band at 3.96 MeV (12
and for the ground band 4.4 MeV (1P, for the 2 band at 1.872 and 2.9 MeV {3, 3.13 MeV
(8*) and 4.0 MeV (10); for the G band at 2.75 MeV (6); for the G} band at 1.75 MeV (2).

The energies and matrix elements involving these additional states were taken to be a smooth
extrapolation of the measured values. Note that 60 matrix elements, including those involving
the additional states assumed in the present analysis, were insensitive to the data set and thus
were not determined. Conversely, the final results are insensitive to the properties assumed for
these additional states.

The semiclassical Coulomb excitation, coupled-channel, least-squares search code GOSIA
[4] was developed as a practical approach for the analysis of heavy-ion Coulomb excitation
experiments and this code was used for the final analysis of the present data. The 50-level
coupled-channel code GOSIA can make a least-squares fit up to 300 matrix elements (E1, E2,
E3, E4, E5, E6, M1, M2) to several thousand data from up to 50 independent Coulomb excita-
tion experiments, as well as other lifetime, static moment, branching ratio afdE&ixing
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ratio data. Pseudo-analytical approximations are used to calculate the derivatives needed for the
deepest-descent minimalization, resulting in several orders of magnitude increase in speed com-
pared to a full calculation. The code allows integration over target thickness and the finite size of
the detectors and includes the recoil motion transformation to second order in recoil velocity.

In general, model independence of extracted matrix elements can be achieved using sets of
random numbers as initial values for the unknown matrix elements in the least-squares search in
order to eliminate bias. However, the procedure used in the present analysis was to start with the
lightest ion data, which involves the fewest states, and then progressively add heavier ion data, at
each stage varying the signs and magnitudes of the matrix elements by hand in order to test the
results for uniqueness and to eliminate the influence of a possible bias. The many combinations
of sighs and magnitudes sampled suggest that the final solution is a unique one with the exception
of some sigh ambiguities to be mentioned later.

The errors of the fitted matrix elements are difficult to estimate because of the dominance of
the cross-correlation effects for this strongly-coupled nonlinear system. Frequently used methods
for error estimation are invalid for the present problem. For example the commonly used curva-
ture matrix method is ill suited because of the limited validity of the second-order expansion and
the unavoidable presence of nuisance parameters, i.e. parameters insensitive to the data, whicl
must be filtered out prior to matrix inversion to prevent an ill-defined situation. Error estimation
based on the assumption that the least-square statistic should obg¥ tfistribution with a
given number of degrees of freedom cannot be defined because of the wide range of sensitivity
of the various parameters to the data. For the present analysis, worst-case errors were estimate
for each parameter by perturbing the matrix element for which the error was being estimated and
then executing a one-step minimisation on the remaining parameters in order to determine the
maximum correlation path. The probability distribution then was constructed along that 68.3%
of the total integrated probability lie between the error limits. Note that the positive and negative
error values were calculated separately since the errors can be strongly asymmetric around the
best value.

5. Various corrections and sources of systematic errors

The angular distribution of the de-excitation gamma rays from the excited nuclei recoiling in
vacuum is perturbed due to the interaction of the static moments of the excited nuclear states
with the highly ionized atomic configurations. This deorientation effect is taken into account
using the two-state model of Brenn and Spehl [16] with the parameters derived from earlier
Coulomb excitation measurements [18]1§:188:190.198%s and194pt (for details see also [17]).

It was found that a 20% change in the magnitude of this effect produced less than a 2% change
in matrix elements extracted.

Virtual excitation of high-lying states can influence the excitation of low-lying states. Dipole
polarization results from the influence on the excitation of low-lying collective states due to vir-
tual excitation of the giant dipole resonance. Virtual excitations of the giant dipole resonance was
taken into account using the concept of a polarization charge [19]. The effect is dependent on the
center-of-mass bombarding energy and is expected to affect mostly high-lying levels excited in
the Pb experiment. Switching off the correction or doubling its strength changes the excitation of
the 1(}L state by about 10%. This is within the experimental errors, as is true for all other excited
states. M1 excitation has a negligible influence on the Coulomb excitation but features promi-
nently in both the branching ratios and angular distributions for the gamma-ray de-excitation.
Thus in the present work it was possible to determine 3 M1 transition matrix elements with
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reasonable errors. The influence of E4 excitation was calculated to be negligible for Coulomb
excitation using®Ni, 136xe and?°®Pb projectiles. It is of importance only when lighter ions are
used. Including the known-3state in the calculations produced a 4% decrease in*thezﬂg

yield in the Pb experiment while all other yields were affected by less than 1%, that is, less than
the statistical errors. This is in agreement with the findings of Wu [18].

Corrections due to atomic screening, vacuum polarization and relativistic effects were esti-
mated [18] to be negligible. The semiclassical approximation used in the analysis is estimated to
give the largest correction, that i, 5% for 2°Pb and< 10% for ®8Ni. These sources of sys-
tematic error are comparable with the corrections due to Coulomb-nuclear interference. In the
present calculations, no correction has been made for the use of the semiclassical approximation
other than the use of symmetrized orbits [19].

6. Signsof matrix elements

The relative signs of the matrix elements involved have a significant influence on Coulomb ex-
citation. This can be understood as due to interference between single-step amplitudes, involving
a single matrix element, and multi-step amplitudes involving two or more matrix elements.

Tables 1 and 2 present signhs and magnitudes of matrix elements as deduced from the present
analysis. Note that signs of 28 matrix elements have been determined. The signs of the wave
functions have been chosen in such a way that E2 reduced matrix elements (ME) for streched

Table 1
Diagonal E2 reduced matrix elements in eb units
State Experiment (eb) Theory?
Symmetry limit models
QCBH, pairing DFy-rigid, o = 0.28 W-Jy-soft
Present GSI[3] std. dyn. y=25° =30 Bp=028 pg=0P
2;,“ —-0.71(11) —0.91(40 -077 -0.88 -0.80 —-0.09 —-0.12 —-0.11
4;' —0.79(15) —0.42(31) -110 -114 -0.63 —0.20 —0.20 —-0.25
64 —0.70(+3%) —0.54(22) -141 -140 -0.68 —0.27 —0.29 -0.37
8¢ -0.6(*3) —0.76(31) -171 -167 -0.76 -0.32 -0.38 —0.54
10; - —-2.04 -20 —0.83 —0.38 -0.47 -0.72
2; 0.62(8) - 0.59 073 080 011 004 005
3‘1" - - 0.0 0.0 0.0 0.0 0.0 0.0
43' —0.58(18) - -016 -032 -12 0.06 -0.07 —0.09
51L - - -0.70 -070 -0.68 —0.10 -0.12 -0.18
6; +1.0(3) - -070 -0.87 —-143 —-0.02 -0.17 —-0.24
83' - - -122 -129 -114 -0.10 —-0.26 —0.40
2y -oo0s*lh - -013 -072 - - ~0.12 -0.18
4;“ - - 0.49 032 - - —0.20 —0.33
6’3" - - 015 -124 - - -0.17 —0.50
2 - - - - - - -0.06 -0.08
4 - - - - - - -0.07 010
4 - - - - - - -0.10 -0.16

@ The theoretical model descriptions are given in Section 9.
b Harmonic vibrator.
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Table 2
Transitional E2 reduced matrix elements
Transition ~ Experiment Theory®
Matrix element
Matrix element Trans. prob. Symmetry limit models
present GSI[3] present QCBH, pairing DFy-rigid, 8 =0.28 W-Jy-soft
std. dyn. =25 y9=30° pp=028 Byp=0P
(fIIE2|i) eb B(E2) &b? (fIIE2|i) eb
25 >0f 091725 0.910 0168(9) 0.838 0816 Q955 0936 0919 Q799
47 -2 143 1.47(8) 0.226(11) 1.45 138 151 148 155 152
65 —4f 2040 2.099) 032029 197 184 202 199 210 223
8f —6f 259134 2.498) 0399 244 226 243 239 261 295
10 — 85  2.7(6) 2.64(27) 0.26(10) 2.88 266 278 273 309 366
3F—>2f - —1.22(10) -119 -116 -152 —1.48 —1.30 —1.39
44525 1125 0.90(11) 0.139(11) 1.02 092 090 096 126 134
4 -3 - +0.68(5) -0.83 —095 —097 0 -0.12 -0.16
s5F-3f - 1.2(4) 1.35 125 139 134 152 172
65 »4f 15212 1.62(12) 0.178+39) 1.61 153 147 129 189 213
85 —65 204 2.0(5) 0.23@8) 2.15 205 181 177 243 289
2 >0 0714 0.74(5) 0.101(13) 0.75 77 - - 0.83 094
4t —>28 07525 - 0.06321) 0.47 067 - - 1.46 170
65 —4f 127 125 - - 2.02 245
2 —of -032 - - 0.85 097
4:{ —2f - -
BI —4f —_ _
2 —0f  -01562) ~0.170(13) 0.00493) 0.022 -0.047 —0.108 Q09 0097 Q082
g —2f  -0754) —0.85(7) 0.113(11) -0.75 -052 —0.82 —112 115 -1.13
2F>4f  er-0101 - 0.16 006 —0.25 0 Qo8 009
sF-2f - 0.224(10) 001 -0105 —0.17 —0.15 0137 Q14
3F—4f - —0.57() —054 —043 -1.00 11 —0.82 —0.88
4f —>2f  -01078) +0.072(9) 0.00132) 0.08 0055 028 0 Q134 Q138
43 >4 -08305) —0.71(8) 0.07599) -0.73 -057 —0.66 066 -1.21 —~1.28
5/ —af - - 004 -005 013  -018 018 021
5F>6f - - -063 -—054 —111 117 —1.02 —1.15
6 45 -022*%,) 008010 009 007 Q16  —0.09 016 019
65 —6f - >-084 075 —062 —052 057  —1.29 —1.45
8l >6f - - 0.08 0044 —0.09 —0.08 019 025
85 —8f -078 —067 -048 051  -136 -161
0f »2f 02668 —0.261(10) 0.071(4) -031 -0264 - - —0292  -050
0y -2 0083 - 0.0079) 040 -030 - - -0.06 -0.10
2§ —»0f  —0.07110) —0.07(5) 0.00103) —0.041 -0081 - - —0.036 Q008
2 —2f 20073 ~0.11(5) 0001112 006 010 - - 0.04 006
2 —>4f -0379) —0.35(22) 0.028(6) -041 -041 - - —0.47 —0.80
225 £022(' 02323 0.010(4) 035 032 - - 0.35 059
2 -4 031t - 0019725 035 -038 — - —0.08 -0.16
2 —4f o053t - 125 119 - - 00004 00004
0of—>2f >-01 - <0.017 -017 -008 - - —0.06 —0.06
of -2 - - -011 -014 - - -058 -062
of 28 - - -0.03 003 - - 0.03 007

(continued on next page
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Table 2 €ontinued
Transition  Experiment Theonf
Matrix element
Matrix element Trans. prob. Symmetry limit models
present  GSI[3] present QCBH, pairing DFy-rigid, 8 =0.28 W-Jy-soft
std. dyn.  yp=25° 1p=30° fp=028 py=0P
(fIE2]li) eb B(E2) %b? (fIE2]li) eb
2f —3f 076 051 - - 0.08 00002
25 —3f 049 - - 0.96 108
4t 3t -103 -083 - - -0.24 -0.40
4F -3t 004 - - 1.38 156
22 075 - - 00001  —0.0002

2 The theoretical model descriptions are given in Section 9.
b Harmonic vibrator.

inband transitions are positive. The same sign have been chosen for E2 matrix elemgnssfor 2
3/ transition. The sign convention for the interband ME was selected by choosing negative signs
forthe 27 — 07, 2f — 03, and 2 — 27 E2 matrix elements while a positive sign was selected for
the 23* — 4;{ E2 matrix element. The signs for the remaining ME were determined according to
this convention, relative to those fixed ones. However, the signs of diagonal ME are observables
which do not depend on convention. The present data are sensitive to the product of matrix
elementsPy = M(0f — 25)M (2§ —2)M(2F — 2HM2) — 07 ). Earlier Coulomb excitation
work [20] determined the sign d#4 to be negative which is consistent with the present work.

The signs were verified by performing minimization starting from different initial values and
comparing the quality of fit. The overall influence of changing signs can be judged by foaal
the minimum and traced to individual data points. As an example:

(a) Negative sign of4; |[E2|43) matrix elementy 2 value originated from# — 27, 47 — 47,
43 — 2 gamma yields of%Pb beam andA— 2 on *®Ni beam was B for negative
sign and 13 for positive one.

(b) Positive sign o(2§r||E2||2§r> matrix elementy 2 value originated from; — 0; and 22F —
2} gamma yields 0R%Pb ancP®Ni beams was 8 for positive sign and 129 for negative one.

7. Results

The final set of matrix elements was obtained by making a least-squares fit to 213 data includ-
ing the present Coulomb excitation yields plus the previously measured E2 moment gf the 2

state, branching ratios and the,/B21 mixing ratio. The minimum of2 normalised by the num-

ber of data points is equal 1.32, which is reasonable. It was possible to determine the absolute
values, as well as many of the signs, of E2 and M1 reduced matrix elements with sufficient
accuracy for a meaningful comparison with theory.

The measured diagonal and off-diagonal E2 reduced matrix elements are listed in Tables 1
and 2, respectively. The reduced matrix elementE2||I.) are defined by Eqg. (1) in the next
section. The measured M1 reduced matrix elements are given in Table 3.

The present results are in good agreement with prior results [3]. The only notable discrepancy
is with the B(E2 0; — 2;) deduced by McGowan et al. [21], which is due to the fact that

the largeB(E2 02“ — 2§r) was not included in the Coulomb excitation analysis of [21]. Note
that in some cases, such as the diagonal E2 moment of;,*tmaaze, the final quoted error is
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Table 3

Experimental M1 reduced matrix elementgip units

Transition Matrix element
(FIMLNli) v

25 —3f —0.0549)

28 —>2f <0.02

28 > 2t 0.24(3)

4F —af -0.15(3)

larger than the error on the quadrupole moment value included in the fitted data set. This is due
to the conservative error estimation used for the present analysis. In the experimental analysis
of COULEX results the data from GSI experiments ([2] and [3]) were not taken into account.
Our results for diagonal matrix elements (ME) in ground state band are in agreement to [3] data
within one standard deviation. Using various projectiles we were able to get diagonal ME for
3 levels of 2 band as well as state. The transitional ME are mostly the same as given in
[2] and [3] within one standard deviation, few of them within two standard deviations. Having
well established level scheme oj(band we were able to get more informations about ME for
intraband as well as interband transitions for the band.

The present work has determined the large set of E2 matrix elements interconnecting the
lowest 17 states it®Ru. The extent of this data set is too large to discuss each matrix element
in detail. The discussion of the overall implications of these results is given in Section 9.

8. Sum rulesand experimental quadrupoleinvariants

Quadrupole collectivity produces strong correlations of the E2 matrix elements and the num-
ber of significant collective variables is much lower than the number of matrix elements [1].
Comparing list of experimental E2 matrix elements with model values exhibits neither the
uniqueness nor the sensitivity of the data to the collective model parameters. Considerably better
insight is obtained comparing the same charge deformation parameters from the data and with ap-
propriate values from the model calculations, since it shows clearly which collective parameters
are determined by the data and the goodness of collective model descriptions. The information
about charge deformation parameters can be obtained using rotationaly invariant products of the
guadrupole operators that relate the reduced E2 matrix elements with the quadrupole deformation
parameters [1,5,6].

The reduced matrix elementd; |E2|| I,.), of the electric quadrupole operatdt (E2, ) (u =
—2,...,2), which have been discussed in the previous section, are defined as follows:

Iy, 2 I

j— — Isfo
(Is M| M(E2 |- M,) = (=1) (—Ms w My

) (I IM(ED)| L), 1)
where the 2« 3 matrix is the Wigner gm symbol. To shorten the notation we used in fact in the
previous section an abbreviated form of the quadrupole operator within reduced matrix elements:
(| MED| ) = (I4||E2||I). The above notation will be used also in the following.

The two basic quadrupole invariant operators are formed of the quadrupole fef(&® in
the following way:

1
[M(ED x M(E2)],= 7 02, )
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[[M(E2) x M(E2)], x M(ED], \/7 03cos 3, ©)

where[--- x ---]p stands for the vector coupling to angular momentunThe coefficients in

front of 02 and 03 in Egs. (2) and (3) are the corresponding products of the Wigner symbols.
These invariants are denoted here up to coefficient?and 02 cos 3, respectively in order to

have a correspondence with collective coordinates (see the next section). Since the components of
M(E2, u) with differentu’s commute with each other the expectation values of the E2 invariants
can be related to the reduced E2 matrix elements by making intermediate state expansions. The
corresponding sum rules read:

( )25
V28 +

(SI[ M(EZ)XM(EZ)] x M(E2)], |S)

2 0|2 2 2 34T
=5 25+ 1 Z SIE2|R)(RIE2IT)(TE2]S) { S 7 } { s R } (=¥,

5)
whereS denotes stat§ and at the same time the spin of st&telone;R andT denotes interme-
diate states and their spirfs;) £ ¢} is a 6/ symbol. Thus, having the experimental values of the
reduced E2 matrix elements, the expectation values of the basic quadrupole invariants for a given
stateS can be extracted from the experimental data. In a similar way the expectation values of all
the rotationally invariant products of the E2 operator can be evaluated, determining directly the
guantum distribution i.e., the centroids, dispersions, skewnesses, cross-correlation coefficients,
etc., of M(E2) in a given state. As an example of contribution of various matrix elements to
the value of the invariant if%“Ru, in Tables 4 and 5 main contributions of the experimental
sums (4) and (5) for2}10?|2%) and (2103 cos 3|2 ), respectively, are presented. One can
see that only four matrix elements are crucial for both invariants. The invat§a0€|S), which
is to be denoted in short 4§2), does not depend on sign of any matrix element, in contrast to
the (03 cos 3) invariant. The sign 0131r ||E2||4;) matrix element was not experimentaly deter-
mined (c.f. Table 2). When the sign (8] |[E2|4] ) is changed from negative to positive, then the
expectation value of2] | 0% cos 3|25 ) decreases from 0.34(8§ to 0.03(9) €b°. Theoretical
calculations within the quadrupole collective Bohr Hamiltonian and the asymmetric rigid rotor
model, discussed in Section 9 below, support the negative sign. Therefore, at the further analysis,
the negative sign has been accepted. The similar case i§ fleval. When(31r||E2||4{) is neg-
ative, then(37| 0% cos 3|3]) = 0.25("3%) b, and when positive it will drop to 0.01(4Fk°.

Although the technique of using rotational invariants has been discussed in the context of its
application to the collective model, the method is completely model independent and is applica-
ble to any spherical tensor operator. The invariants are extracted from the experimental matrix
elements and thus they are equivalent to observables. They can be compared to the theoretical
values obtained from collective model calculations. This way the usefulness of a given model to
describing the nuclear collective states can be verified. The significance and usefulness of pre-
senting the experimental data in the form of model-independent invariants depend on degree to
which the nuclear properties are correlated by collective degrees of freedom. The recent advances
in the field of Coulomb excitation make possible to determine all the E2 matrix elements required
to apply this model-independent method and thereby express a wealth of data in a form that ex-
hibits clearly the extent to which the data are correlated by collectivity. The rotational invariants

(SI[M(ED x M(ED],S) = S||E2||R><R||E2||S>{2 2 0}, @)

R
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-CI-Z?)tr':tel’iﬁution of various matrix elements to the final result @} | 02(2] ) invariant in194Ru
The component Contribution to the invarigetb?]
(25 IE2)125) (24 IE2128) 0.113
(23 1IE2131) (37 1E2125) 0.298
(25 IIE2]45)(45 | E212;) 0.251
(25 IE2)125) (2] IIE2)128) 0.077
Total of 4 contributions =0.739
All contributions =0.76(8)
Table 5
Important contribution of matrix elements to the final result{@§ | 03 cos 3|23 ) invariant in104Ru
The component Contributions to the invarigetb3]
(25 1IE2)13] )(3] IE212] ) (2] IE2)123) 0.176
(2312137 )(3] IE2)143 ) (44 I E2)125) 0.157
(25 |E2121)(25 IE2|47 ) (45 |E2|2]) —0.074
(25 IIE21145 ) (45 IE2145 ) (4] IIE2)123) 0.068
Total of 4 contributions =0.327
All contributions =0.34(8)

provide the most insight into the underlying collective correlations at the expense of some loss
in precision due to incomplete summation. Parameters of models selected to have reasonable
values of the rotational invariants, can be fitted to the individual matrix elements, providing a
more quantative comparison with the data. The rotational invariants are most valuable for stud-
ies of shape-transitional nuclei such'8&Ru. Experimentally, the summations are insufficiently
complete for non-collective nuclei and insufficiently precise for useful interpretations of strongly
deformed rotors.

The calculation of the rotational invariants from the measured matrix elements is straightfor-
ward but estimation of the errors is difficult due to the strong cross-correlation in the errors of the
matrix elements extracted from Coulomb excitation data. In many cases functions of the matrix
elements defining the invariants are determined by the experimental data more accurately than
the matrix elements themselves, therefore it is not possible to use the quoted errors ascribed to the
individual matrix elements without including the cross-correlation effects. The errors ascribed to
the invariants were obtained directly from the Coulomb excitation data by the same procedure
used for estimating the errors in the individual matrix elements.

Fig. 4 shows the centroid and dispersion of the invari@Atfor the individual states calcu-
lated by means of the sum rules from the experimental E2 matrix elements. In the calculation,
particularly for 2 band, the GSI data for matrix elements coupling thiesBate were used, as
being more precise than the present ones.

The dispersion oD? is defined by means @0*) value as follows:

o(0%) = /(0% - (02’

For illustration we shall convert the mean valuegsfto the root mean square values of the
shape deformation paramefgrfo = +/(82) using formulas (A.1) and (A.2) of Appendix A.
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Fig. 4. Experimental and theoretical expectation vaIueQ%hnd dispersions(QZ) defined in the text versus spin for
the ground state band, 2band and § band head.

The centroids show strong correlations from state to state consistent with the band structure
presented in Fig. 2. In addition, there appears to be a smooth variation in the magnitude of the
guadrupole collectivity with spin value in both collective bands. Thus the expectation values of
(Q?) for the ground band are constant up Eb lgdvel on the value about® (eb)? (So ~ 0.28).

Close and still constant along the band, a valu¢@f) ~ 0.75 (eb)? (8o ~ 0.26) is found for
the 2 band. The band head of thg ®and has a still lower value qi0?) = 0.52(12) (eb?
(Bo ~ 0.21). For1®Ru low spin levels the distribution width(Q?) ~ 0.22(6), indicating modest
dispersion ofQ?. The data are insufficient to provide reliable valuesd@¢Q?) for each level
separately.

In the present paper we define the quadrupole asymmetry, which is a measure of deviation
from the axial symmetry, in the following way:

a(cosB) =(03cos 3)/((0?)*. (6)

Sometimes(cos 3) is defined with,/(0?2) (0% in denominator instead ¢f02))%2. In Ref. [1]
and other papers of our collaborations the quantifyos 3) was denoted agos F) although
the value of(cos 3) is not precisely the quantity at the right-hand side of Eq. (6).
In analogy tofBp, we introduce a measure of the shape deformation parametern given
state byyp = % arccosa (cos 3/)) using again the formulas (A.1) and (A.2) of Appendix A.
We define the dispersion of the quadrupole asymmetry as follows:

6
o(a(cosP)) = \/% — (a(cos 3))2. )
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Fig. 5. Experimental and theoretical values of the quadrupole asymmetry and the dispersions of quadrupole asymmetry
versus spin for the ground state bangl, [2and and g band head. Both quantities are defined by Egs. (6) and (7).

The quadrupole asymmetry is also correlated from state to state in each ‘quasi’ band. The value
of a(cos3P) is lower than 0.40 for the ground level and grows to more than 0.45 for higher
levels of the band (it correspondsjtg~ 25° and 23, respectively). The value ef(cos ¥) for

the 2; band and 9 state is equal to about®and 01(3) what is equivalent tgg ~ 22° and

30°, respectively. For relatingQ?) and (Q3cos3) to the corresponding quantities dependent

on B andy formulas (A.1) and (A.2) of Appendix A have been applied. Thus, the asymmetry
values indicate predominantly prolate triaxial shape for all bands. The information regarding the
dispersion of the quadrupole asymmetry is less complete and gives only a guess i&Rthe
nuclei is soft fory deformation.

Concluding, the experimental data are consistent with quadrupole collectivity with modest
softness in magnitude a@?. The experimental values ef(a(cos ¥)) are not quoted because of
possible incompleteness in evaluating higher order invariants. Thus the degree eddftaess
can be concluded only from a model predictions.

9. Comparison with theoretical model calculations

Analysis of the present data, using rotational invariants, shows that the E2 propetfiéRuof
are well correlated with macroscopic quadrupole collective degrees of freedom. The experimen-
tal results suggest th&*Ru is triaxially deformed and modestly soft in thalegree of freedom.
In this section a comparison with various quadrupole collective models based on the generalized
Bohr Hamiltonian [22,23] will be given:

HQC = Z/ib(ﬂ’ V) + ﬂot(ﬁv Vs Q) + Vdéf(ﬁv J/), (8)
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where the dynamical variablgl y and$2 are the two Bohr shape deformation parameters and
the three Euler angles, respectivel}zt is the quadrupole deformation potential,

21 R R
o= s (P ) = ()
1 R . 1 R .
+ Fsind [—ay (, / ik 3yBﬁyaﬂ> + an (,/ w S 3y8ﬁ5>8y] } 9)

with W = BﬁﬁByy — Bﬂy, R = BxByBZ and

1 .
Tot= g5 D 1A2)/(Be(B, y)Sit y), (10)

K=X,y,2

with y, =y —27/3,y, =y + 2n/3, y, = y are the collective vibrational and rotational kinetic
energies, respectively. The differential operator2ini,, I,, I, are the intrinsic components of

the total angular momentum. The Hamiltonian (8) is defined by the seven functighsiod

y: V, the potential, andgg, Bg,, B), and By, By, B, the vibrational and rotational inertial
functions, respectively. In order to calculate electromagnetic transitions also collective multipole
operators are defined. In the collective model the E2 operMt(E2, ), forms a quadrupole
tensor dependent on the all colective coordinates: deformafiarsdy, and the Euler angles.

It is fully determined by its two non-vanishing intrinsic componems(3, y) = M(E2, 0) and

02(B8, v) = V2M(E2, 2) being functions of the deformations only.

First, the experimental data will be compared to the calculations performed with the Bohr
Hamiltonian which is determined from a microscopic theory (QCBH) with no free parame-
ters [11]. Next the comparison will be made to simple phenomenological models being a symme-
try limits of collective Bohr Hamiltonian: the beta- and gamma-rigid Davydov—Filippov model
(D-F), and the gamma-unstable Wilets—Jean model (W-J), both with parameters fitted to the
experimental data.

When comparing the model results with data we are focusing on the quadrupole invariants
(see [1]) that allow for a determination of nuclear intrinsic shapes in a model independent way.
The analysis in terms of quadrupole invariants is based on specific sum rules (see Section 8),
which involve summations over a large set of quadrupole matrix elements. An essential ele-
ment of such an analysis is the fact that the components of the quadrupole-moment operator
commute [10]; as is obviously the case for the microscopic quadrupole moment, which de-
pends only on coordinates of particles. This feature of the quadrupole operator is preserved
in the collective models used below, where the quadrupole operator depends only on col-
lective coordinates; and thus its components do commute. On the other hand, such a prop-
erty is absent in a truncated shell-model approach, or in an approximation thereof such as,
e.g., the IBM, where the components of the quadrupole-moment operator do not commute.
This is particularly well visible within the IBM, where a simple phenomenological approx-
imation of the quadrupole moment in the truncated space is postulated with parameters fit
to data. Such an approximation usually gives a correct description of selected experimental
matrix elements, see [7-9] for application ¥*Ru. However, when the whole set of ma-
trix elements is considered, as is the case for the sum-rule analysis, non-commutativity of
the model quadrupole moment violates the microscopic sum rules [10]. For this reason, one
cannot perform such an analysis in a truncated shell model or IBM. One can say that the rea-
son for that is the fact that within the whole set of quadrupole matrix elements there must
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be some or many, for which a substantial strength is certainly located outside the truncated
space.
Below we first recapitulate briefly the models used to the comparison.

9.1. Microscopic quadrupole collective Bohr Hamiltonian (QCBH)

Prediction of the thirty E2 matrix elements measured in the present experiments poses a chal-
lenge to general quadrupole collective calculations. Such a calculation has been undertaken in
paper [11]. The starting point to this calculation is a microscopic Hamiltonian

H = Hilsson(B, ¥) + Vpairing (11)

representing the system of nucleons in a deformed triaxial Nilsson potential well interacting
through the standard pairing forces. Thdsandy are defined here as the Bohr shape deforma-
tion parameters of a triaxial harmonic oscillator potential well with frequencies

5 -1
we(B,y) =wo(B, y) (1 +4/ Eﬂ COSn) = wo(B, y)(1+4CP cosy) L, (12)

whereC = (1/4)/5/4r and
wo(B, v) = wo(1— 12C?8% +16C383cos 3)°, (13)

for k = x, y,z [25]. For years the standard approach to a microscopic determination of the
collective model for the quadrupole excitations has been to assume that the only dynamical
variables are the quadrupole deformatighandy, and the Euler angle® and then extract-

ing the collective Hamiltoniaft{gc of Eq. (8) from a microscopic HamiltoniaH of Eq. (11).

In Ref. [11] the standard cranking method to evaluate the inertial functions and the macroscopic-
microscopic method to evaluate the potential has been used. Below, we refer to that method of
calculation as the standard quadrupole collective Bohr Hamiltonian approach (SQEBHew
approach developed in ref. [11] lies in extending the space of collective variables. In addition
to the quadrupole variables four others are introduced which are connected with the proton and
neutron collective pairing vibrations and rotations (i.e., collective pair transfers), namgly,

and A,, the proton and neutron energy gaps, @ndand®,, the proton and neutron gauge an-
gles, respectively. Then, a general collective “quadrupopairing” Hamiltonian extracted from
microscopic HamiltoniarH takes the following form:

Hopc= Hagc + Hpc+ Top. (14)

The first termfHoc describes the collective quadrupole vibrations and rotations and has the form
of that of Eq. (8). The second term in (14) is a sum of the pairing collective Hamiltonians for
protons and neutrons determined by the two vibrational functiBngs, and B4, 4,, the two
“moments of inertia” Zy, andZy,, and the two pairing potential3}, andV, for the proton

and the neutron pairing vibrations and rotations, respectively. All these functions are determined
microscopically. The third term in (14Yop, represents a quadrupole-pairing coupling in the col-
lective kinetic energy and contains another four inertial functiﬁpg,p, B],Ap, Bga, andB, ,,

which describe a coupling of the- and they -vibrations to the proton and neutron pairing vi-
brations, respectively, in the kinetic energy. In general, all the functions involved in Hamiltonian
Hagpc of Eqg. (14) depend o, ¥, A, andA,. The intrinsic quadrupole moment9y and Q>

can be calculated from the microscopic theory in a similar way.
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The Born—-Oppenheimer approximation to the Hamiltorftégec has been used to investi-
gate the quadrupole collective excitations. This meansZhais neglected and first the ground
state of Hamiltoniar#{pc is found for giveng andy. Next, the most probable values 4f,
and A,,, which depend org andy, in the ground state of the pairing vibrations are put into
the Bohr Hamiltoniart{qc. Finally, that Bohr Hamiltonian is diagonalized. This way the effect
of the zero-point pairing proton and neutron vibrations on the quadrupole vibrations is taken
into account and found to be an essential effect. We refer to the above method of investiga-
tion of the quadrupole excitations as the dynamical quadrupole collective Bohr Hamiltonian
(QCBHyyn).

The results of calculations using both of the above methods of constructing the Bohr Hamil-
tonian microscopically are given in Tables 1 and 2 and on Figs. 6—10. Neither calculation contains
parameters fit to tht?*Ru experimental data. The agreement between the QBalculations
and experiment is good in spite of the fact that no free parameters have been fit. TheyQQCBH
calculations are not as successful, particularly the levels energy predictions.

9.2. The Davydov—Filippov model (D—F)

Expectation value of the invarian®3 cos 3 indicate appreciable triaxiality d*Ru in the
ground and excited states. The simplest symmetry limit model describing triaxiality of nuclei
is the rigid triaxial rotor model of Davydov—Filippov [24]. In this model the Hamiltonian (8) is
limited only to the rotational kinetic energy paff.: (see (10)) with

B, =B, =B; =B =const (15)

and the only dynamical variables are the Euler angles; 8o andy = yp become fixed defor-
mation parameters. Three phenomenological paramstess, yo are adjusted to experimental
data. Instead of the parametBr the energy of the first®2 level, E,+ is used. In Davydov—
Filippov model E,+ is a simple function ofB, Sp and yp. The results of the calculation for

E»+ =320 keV, 8o = 0.28 andyp = 25° are shown in Figs. 6—10 and Tables 1 and 2. One can
see (Fig. 6) that the spectrum calculated by the Davydov—Filippov model is much more stretched
than the experimental one.

9.3. The Wilets—Jean model (W-J)

The other symmetry limit of the quadrupole collective Hamiltonian (8) describing triaxiality
is the Wilets—Jean model [26] ¢f-unstable deformation i.e., gamma-independent collective po-
tential. In the present paper, it will be used in the extended form proposed in [27]. The collective
potential then reads

1 (&
Veall(B.v) = V(B) = 5CB% + G(e™(@" - 1). (16)
All inertial functions are assumed to [seandy independent:
By, =By =By, =B, = B =const Bgp = const Bg, =0. a7

Fig. 11 shows the pattern of energy levels predicted by the model. There are two quantum
numbers2, the seniority and g, the number of nodes in th&=dependent part of the wave func-
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Fig. 6. Comparison of experimental and theoretical energy levels values. Ground state band levels are marked by thick
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tion. ForG > Ca?/2 the potential has its minimum At= Bo > 0 and the collective motion can

be considered as rotations strongly coupled teibrations and one-dimensionglvibrations
around a deformed minimum. Then, the selection rules of the allowed E2 transitions\arel
andAng =0, 1. ForG = 0, the minimum of the potential i8o = 0 and we have the standard
vibrational limit of five-dimensional quadrupole vibrations around the spherical shape. Then, the
principal quantum numbeY = 2ng + A becomes a good quantum number and the selection rule
for allowed E2 transitions igAN = 1.
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9.4. Energy levels
Detailed comparison of the experimental and theoretical spin, parity and energy values of

104Ru levels is shown in Fig. 6. All of the experimental levels shown in Fig. 2 are included. The
comparison with the predictions of the five following models is shown:
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Fig. 10. Comparison of the experimental and theoretical diagonal E2 matrix elements.

(1) the standard microscopic quadrupole collective Bohr Hamiltonian—QgBH

(2) the microscopic quadrupole collective Bohr Hamiltonian with the effect of dynamical
pairing—QCBHjyp,

(3) the rigid triaxial rotor—D—F,

(4) they-unstableg-vibrator in the version of Ref. [27]—W-J,

(5) the standard quadrupole harmonic vibrator—harm. vibr.
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Fig. 11. The level schemes according to gamma-soft model [2Bfer O (spherical nuclei) and fg8g >> 0 (y-unstable
nuclei). In case of spherical nuclei the multiplets can be labelled by the number of phnei2a g + 1, whereas in the
case ofy-unstable nuclei theg andi quantum numbers must be given separately.

When account is taken that QCRBJd does not use any fitted parameter, the agreement is very
good. One can see (Fig. 6) that effect of the pairing dynamics is essential for reproduction of the
absolute experimental energy levels. It is worth noting the similarity of the energy patterns of the
QCBHyyn and W-J model. The energy multiplets of the W-J are well reproduced in the @BH
and in the experimental data. A similar tendency can be observed in the energy level ratios of
the yrast band. In Table 6 the energy raffio= E,+ /E,+ are given for thé%*Ru experimental
data and for QCBH (standard and dynamic pairing), \W-sbft (8o = 0 andBp > 0) and D—-F
y-rigid (yp = 30° and yp = 0°). The experimental data are very close to the W-nstable
model prediction.

9.5. Electric quadrupole matrix elements
The comparison of experimental and calculated E2 matrix elements is given in Figs. 7-10.

In Fig. 7 the intraband transition matrix elements are given for the ground bénkiar?ol and
0 band. One can see that the difference between the QCBH results with standard and dynamic
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Table 6
Level energies rati€; = E;/E,+ for the ground state band according to different models and the microscopic calcula-
tions

Model Er Ea &6 &g &10
Harmonic vibrations arounflg =0 %I 2 3 4 5
y-unstableg-vibrations (W-J)8p > 0 11 +6) 25 45 7 10
Rigid triaxial rotor (D—F) withyg = 30° I +4 2.67 5 8 1167
Axial rotor with yg = 0° or yp = 60° %I(I +1) 3.33 7 12 1833
QCBHsyq 243 424 640 890
QCBHgyn 271 503 7.90 1128
104Ry experiment 28 435 645 918

pairing is very small in contrast to the case of the level energies. In Fig. 8 the interband transition
matrix elements between thgL dand and ground band are shown. For thie£ 1 forbidden
transitions within the W—3 -unstable model all the experimental as well as theoretical values
are very small and differ little between the various theoretical calculations. In Fig. 9 the E2
interband transition matrix elements are shown jfetransitions from bands based on th}é 0

and q levels. It is clear, that the results of the QCBH with both standard and dynamic pairing
are very similar. For the transitiong 2= 4] and 2 => 41 the W-Jy-unstable model selection

rules (see Fig. 11) are violated in the experiment as well as in the QCBH calculations. For all
other transitions those selection rules are valid. In Fig. 10 the diagonal E2 matrix elements are
shown. For the ground state band their experimental absolute values are lower than calculated
within the microscopic QCBH models. However, the difference between the QCBH calculations
and experiment are within three standard deviations.

9.6. Collective quadrupole invariants

Although the intrinsic quadrupole momeni3g and Q», can be calculated from the micro-
scopic theory within QCBH, we assume for simplicity in all used here versions of the collective
model the same collective E2 moments of an ellipsoid, charged uniformly, of deformgatams
y defined in (12) and volumel/3)x RS, Ro = roAY andro = 1.2 fm, namely

0B, y) = %ZRZ(,B cosy + Cp%cos ), (18)

3 . .
Q2(B,v) = 1~ ZR*(Bsiny — Cp?sin2y), (19)

whereC is defined in Eq. (12) and

R(B.y) = Ro(1— 120242 + 16C%p%cos ) /°.

This is a good approximation for the microscopic E2 moments.
The collective quadrupole invariants can now be expressed as functions of the two charge
deformation parameterg) ands, defined by formulae:

Qo= Qcoss, 0> = Qsiné. (20)
They read:
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[M(E2 x M(E2)],

R PPN PV
_ﬁ(QO+Q2)_£Q’ (21)

[[M(E2 x M(E2)], x M(E2)],

2 2
= —\/%(Qg—3QOQ§) = —\/%Q%osiﬁ, (22)

[[M(E2) x M(E2)],[M(E2) x M(E],],

1 1
= £(Q5+20505 + 07) =z 0%, (23)
[[M(E2 x M(E2)],[[M(E2) x M(ED], x M(E2)]],
2 2
S /1—75(Q8—2Q8Q%—3Q0Q3) =— 1—75Q5cos$, (24)
[[M(E2) x M(E2)],[M(E2) x M(EQ)],[M(E2) x M(ED]],
1 1
= %(QS +30303 +30303+ 0%) = Ve °, (25)

[[M(E2) x M(E2)], x MED],[[M(E2) x MED], x M(E],],
2 2
= 3—5(Q8—6QSQ§+9QSQ‘2‘) = 3_5Q6c05235. (26)

The exact and approximated formulae for the collective quadrupole invariants as functfpns of
andy are given in Appendix A. The expectation values of the all above collective quadrupole
invariants can be calculated using the collective wave functions. This way the theoretical expec-
tation values of the quadrupole invariants obtained from the collective model calculations can be
compared with the experimental expectation values obtain from the sum rules.

The upper plots of Figs. 4 and 5 show the experimental result$@dy and«(cos3) of
various states together with their experimental errors. On the same plots the theoretical values of
(0?) anda(cosP) for the same states are given using wave functions calculated in the frame
of the five microscopic and phenomenological collective quadrupole models, discussed previ-
ously. The lower plots of Figs. 4 and 5 show the theoretical values of the dispessiois and
o (x(cos 3P)) for the same states. Unfortunately, the data available do not allow for the experi-
mental determination of dispersioas0?) ando («(cos 3)). Since the quadrupole operator of
the geometrical model is a commutative one, its matrix elements automatically fulfill the condi-
tions imposed by the microscopic sum rules (see [10] for details).

10. Summary

A set of twenty eight E2 and three M1 matrix elements¥Ru have been measured from
Coulomb excitation experiments usiRtfPb, 136Xe and®®Ni projectiles. This set includes the
magnitudes and signs of many E2 elements coupling 17 collective states, comprising four diag-
onal elements for the ground state band, three diagonal elemem§ &ia@ band and one for
the 2 state of the § band.

Such a large set of experimental E2 matrix elements allows for projecting collective degree
of freedom(Q?) and«(cos 3). The present work shows that for the two bands based on ground
and 2 states the deformation is abggg ~ 0.28 andyg ~ 25°. The experimental E2 collective
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degree of freedoniQ?) anda(cos 3) are compared with calculations in the framework of the
collective quadrupole Bohr Hamiltonian. Calculations were performed with phenomenologically
fitted parameters for different symmetry limits of the Bohr Hamiltonian as well as with parame-
ters calculated microscopically within the quadrupole (Nilsson) plus pairing approach. Results
of the microscopic collective model calculations, without any parameters fitted 18'Re data,

show very good agreement with the experimental data.
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Appendix A. The quadrupoleinvariantsfor an uniformly charged eipsoid

From Egs. (21) and (22) the formulae for the two basic collective quadrupole invariants are:

2
0% = <% ZR2> (B?+2CB3cosY + C?p%)

~ q3(B? +2Cp3cos I + 17C%6%) + O (%), (A1)
3
03cosP = <%ZR2) (B3cos3 +3Cp* +3C2B°cos Y + 2C3p% cos 3y — C3p°)
~ q3(B3cos Y + 3Cp* + 27C?g°cos Y — 30C3B° cos By + 71C3B°%)
+0(B"), (A.2)

wherego = (3/471)ZR(2). Calculating the mean values of invariantgiandy in a given state the

mean values of the quadrupole invariants can be calculated from the above formulas. To calculate
also the dispersions of these invariants their higher powers as functigharady are needed.

Three of them of the order up to the sixthdhare calculated from Egs. (23), (24) and (26) and
read:

4
0% = (43 ZR2> (B*+4CB°cos Y +2C2p°
T
+4C?88cos 3y +4C38" cos Y + C*B8)

A qé(ﬂ“ +4CB°cos Y + 34C?B8 + 4C?p8cod 3y

+ %(268C3ﬁ70053/ —128c*B8cos 3y + 2307c4/38)) +0(p9), (A.3)
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3 5
0°cosP = (4—ZR2> (B°cos 3 +2C° cod 3y +3Cp°
T

+10C?B" cos 3 +8C3p8 cod 3y + 2¢3p°8
+4c*B9cos’3y + C*p%cos Y + 2¢°p%cos 3y — 419

~qd (,350053/ +2CB8cog 3y + 3CB°
+50C2B7 cos 3 + 122c388 + 1281C* 8% cos 3 + 319810
1
+ 5(104C3ﬂ800§ 3y —308C*%cos’ 3y — 271405 cod 3)/))

+0(pM), (A.4)

3 6
0%cod3s5 = (4—ZR2) (B®cog3y +6CB" cosY +6C%p8cod 3y
JT

+9C?B8 + 4c3B%cos 3y +16C3p%cos F
+21C*B1%¢c0 3y — 6C*B10 + 12¢%8 1 cos 3y — 6C5B i cos Y
+4C58%%cod 3y — 4c8p 2cod 3y + 0412

~ q8(8%cod 3y +6CB" cosY + 54C?p8 cos 3y +9C?p8
—60C38%cos’ 3y +304c38° cos 3 + 13654810 cos 3y + 4264810
— 402058 cos’ 3y + 8826C°B cos 3 + 230aC8 2 cod 3y
+2014@°82cod 3y + 12673°°612) + O(B3). (A.5)
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