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Abstract

We present some basic elements of the theory of generalised Brégman relative entropies over non-
reflexive Banach spaces. Using nonlinear embeddings of Banach spaces together with the Euler—
Legendre functions, this approach unifies two former approaches to Brégman relative entropy:
one based on reflexive Banach spaces, another based on differential geometry. This construction
allows to extend Brégman relative entropies, and related geometric and operator structures, to
arbitrary-dimensional state spaces of probability, quantum, and postquantum theory. We give
several examples, not considered previously in the literature.

1 Introduction

For any set Z, D : Z x Z — [0,00] will be called an information on Z (and —D will be called
a relative entropy on Z)b iff (cf. [8, p. 1019] [17, p. 794] [14, p. 161]) D(z,y) = 0 <=
r=yVe,yeZ o # KCZ reZ and arginf ¢ {D(y,r)} (resp., arginf, o {D(z,y)}) is a
singleton set, then we will denote the element of this set by %Q(w) (resp., PL(z)), while the map
x %Q(m) [51, p. 32] [33, Ch. 3.2| (resp., x — gg(x) [13, Eqn. (16)]) will be called a left (resp.,
right) D-projection of x onto K.

Let M be a C3-manifold with a tangent bundle TM, a C? riemannian metric tensor g on TM,
and a pair (V,V) of C? affine connections on TM (with an arbitrary torsion). Let tY¥ denote a
V-parallel transport in TM along a curve ¢ in M. Then the Norden—Sen geometry is defined as
a quadruple (M, g, V, 6) satisfying any of the equivalent conditions [42, pp. 205-206, §2, §4] [52, p.
46):2

gt ().t () = g, M
g(Vuv, w) + g(v, Vow) = u(g(v, w)) Yu, v,w € TM. (2)

If Z is a finite dimensional C3-manifold and D € C3(Z x Z; RT) has a positive definite hessian matrix,
then a third order Taylor expansion of D on Z induces [17, pp. 795-796] [18, p. 357| a riemannian
metric g” on TZ and a pair (V? ,61) ) of torsion-free affine connections on TZ, satisfying the
characteristic property (2) of the Norden—Sen geometry. This way the global geometric properties
of D can be analysed in local terms of its torsion-free Norden-Sen differential geometry.?

LCf. «information is the negative of the quantity (...) defined as entropy» [58, p. 76].

2In comparison, given (M,g), the Levi-Civita affine connection V& is characterised among all torsion-free affine
connections on TM by g(tY*(-),tY*(-)) = g. Each torsion-free Norden-Sen geometry determines V& by V& =
L(V + V) [42, p. 211].

3Following [34, §4], the torsion-free Norden-Sen geometries are sometimes called “statistical manifolds”. Apart
from not crediting the original authors, this terminology is misleading, since these geometries are independent of any
notion of statistics.
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2 Dy: Brégman vs Brunk—-Ewing—Utz

Given a strictly convex, differentiable function ¥ : R" — R (or ¥ : M — R with convex M C R"),
there are two approaches to construction of a functional encoding the first order Taylor expansion
of ¥ (together with its further use in optimisation problems): one going back to Brégman’s [8, p.
1021]

Dy(z,y) = V(x) — ¥(y) — Zi:1(xi —y;)(grad ¥(y;)) Yo,y € R" (3)
(or Vx,y € M), another going back to the Brunk-Ewing-Utz |10, Eqn. (4.4)]
Dy (2,y) = [ycpm 1(x)Du(z(x),y(x)), (4)

for z,y : X - R, n =1, and a measure p on the Borel subsets of R™.

The former approach has been generalised and widely developed for R™ replaced by a reflexive
Banach space (X, |-|y) (see Section 3). On the other hand, the latter approach was generalised
and further developed for (X, 1) given by any countably finite nonzero measure space (see [15] and
references therein).

The passage from probabilistic to quantum theoretic setting corresponds to replacing (L1 (X, p), |-[;)
by the Banach predual N, of a W*-algebra A (all of these spaces are nonreflexive). The noncom-
mutative analogue Dflf“ of DY, was introduced in [56, §2.2| for finite dimensional real Hilbert spaces,
and in [43, pp. 127-129]* for type I W*-algebras (see also [23, §V] for type I, JBW-algebras). How-
ever, due to nonreflexivity of N,, this definition is incapable of utilising the vast body of reflexive
Banach space theoretic results obtained for Dy, and it is also unclear how to extend the definition
of DfIf“ to arbitrary W*-algebras.

For a convex closed C' C M C R", Dy given by (3) exhibits [8, Lemm. 1],

Dy(w, T2 () + Da (B2 (1), 9) > Dala,y) ¥(x,y) € C x M (5)

(and analogously for 33‘1’ [37, Prop. 4.11]; cf. also [13, Thm. 1]), with > replaced by = for affine
closed C. This property is a nonlinear generalisation of a pythagorean theorem, and is interpreted
as an additive decomposition of an (information about) “data” into “signal” and “noise”. It is a

fundamental feature of Dy, characterising %g“’ [6, Cor. 3.35| and i?g\" [37, Prop. 4.11].

3 Dy: reflexive Banach space setting

(X, |l x) will denote a Banach space over R. A Banach space (X*, || y+), consisting of elements
given by continuous linear maps X — R, with a norm

19l x- = sup{ly(z)[ | € B(X,[-|x) = {z € X [|z]x <1}} vy € X7, (6)
is called a Banach dual of (X, |-|y), with respect to a bilinear duality
[z, Y] x o x+ = y(x) e RV(z,y) € X x X*. (7)

If there exists (Y, |-]y) with (Y™, [-]y+) = (X, || x), then Y =: X, is called a predual of X. Symbol
int(W) (resp., cl(W)) will denote an interior (resp., closure) of W C X with respect to a topology

of [-] -
Given a Banach space (X, |-|y), ¥ : X —] — 00, 00] is called: proper iff

efd(¥) :={x € X | ¥(z) # o0} # &; (8)

*More precisely, Dy ™ (z,y) := try(Dw(z,y)) for a convex and Gateaux differentiable ¥ : W — 9B(H), where W
is a convex subset of a Banach space, e.g. W = (B(H))]. The evaluation of D™ (x,y) is thus defined by spectral
calculus applied to W.



convex (resp., strictly convex) iff Vr,y € efd(¥) YA €]0, 1]
x#£y = YAz + (1= Ny) < (resp., <) AV(z)+ (1 —N)P¥(y). 9)

Let T(X, || ) (resp., T(X, || x)) be the set of all proper, convex, lower semicontinuous functions
U : X —] — o0,00] (resp., that are also Gateaux differentiable on int(efd(¥)) # @, with DEW
denoting a Gateaux derivative of U).

For ¥ € TY9(X, || y) the Brégman function reads [1, Equ. (1)] Vo € X

Dy(z,y) = ¥(z) — U(y) — [z — 4, 9T ()] ., x. V¥ € int(efd(T)), (10)

and Dy (z,y) := oo Yy € X \ int(efd(¥)). Dy is an information on X iff ¥ is strictly convex on
int(efd(W¥)) [12, Prop. 1.1.9].
For a proper ¥ : X — | — 00, 00|, a Fenchel dual map |21, p. 75] [39, p. §]

X~ Syt \I]F(y) = Sug{[[xay]]XxX* B \I](:C)} 6] - OO’OO]’ (11)
Te
satisfies UF € T(X*, || y») [9, Thm. 3.6]. If (X, || ) is reflexive and ¥ € T'“(X, || ), then ¥ will
be called Euler—Legendre? iff 5, Def. 5.2.(iii), Thm. 5.4, Thm. 5.6] [47, §2.1] U¥ € TG (X™*, || x+)
and

efd(DCV) 1= {2 € efd(¥) | IDEW(2)} = int(efd(V)), 19
{ ofd(DETF) = int(cfd(F)). (12)

For X = R", the definition of Euler—Legendre functions goes back to Rockafellar, who showed
[49, Thm. C-K] [50, Thm. 1] that if @ # U C R" is open and convex, while ¥ : U — ] — 00, o0] is
strictly convex, differentiable on U, and

lim & (tz+ (1 —t)y) = —oo Y(z,y) € U x (cl(U) \ U), (13)

t—>+0

then grad ¥ is a bijection on U, grad(¥¥) = (grad ¥)~! on (grad ¥)(U), and ¥¥ on (grad ¥)(U)
satisfies the same conditions as ¥ on U.

4 Dy: dually flat setting

The dually flat (a.k.a. hessian) geometry [53, Prop. (p. 213)] is characterised among all torsion-
free Norden-Sen geometries by the flatness of V and V. This is equivalent with existence of two
coordinate systems, {6; | i € {1,...,n}} : M — R™ and {n; | i € {1,...,n}} : M — R", such that,
Vp e M,

m(o) = % i) = 2] (1
UF(y) = = sup {ny } vz € R", (15)
and, for Dy y(p, o) := Dy (0(p),0(c)) with Dy defined by (3),
M5 (0(0) =0, TS (n(p)) = 0 (16)
gl (0(0) = 00) 7

®These functions are usually called “Legendre” (for X = R™ they were introduced namelessly in [49, Thm. C-K]).

Yet, the transformation d(z(z,y) — pr — qy) = —xdp — ydq, with p = az(fc ) az(f]y) was introduced first by
Euler [19, Part I, Probl. 11], and only 17 years later by Legendre [35, p. 347].

and ¢ =



where Fv(u,v,w) = g(Vyv,w) Yu,v,w € TM, while the subscript ; denotes evaluation at the

i-th component of a basis in TM given by coordinate system differentials (i.e., setting u = %,
F
etc., in (16)). (Also, gg.”"[’(n(p)) = W.) When reconsidered in this setting, the left (resp.,

right) generalised pythagorean theorem is equivalent with: a projection of y € M onto C along
VDPnv_(resp., VPo.w-)geodesics is gP?-¥-orthogonal (— gPn¥-orthogonal) to C' [3, Thm. 3.4].

Equation (15) is a special case of (11). Furthermore, (14) require only C!-differentiability. The
approach presented in Section 5 is rooted in an observation that the correct generalisation of (14)
requires two components: Euler-Legendre ¥ on a reflexive Banach space (X, |-|y), and nonlinear
embeddings into (X, [-|y) and (X*, || x+), replacing, respectively, 6 and 7.

5 Dyy

In [31, §3| we introduced a generalisation, Dy y, of a family of Brégman informations Dy on reflexive
Banach spaces (X, |-|y), applicable to a wide range of nonreflexive Banach spaces (Y, |-|y). (E.g.,
to postquantum state spaces, given by bases Z C V™ of positive cones V' of radially compact
base normed spaces in spectral duality, (V,|-|,/) = (Y,]]y)-) The main idea is to pull back the
properties exhibited by Dy with Euler-Legendre ¥ acting on (X, |-| x) into the properties exhibited
by Dyw(-,-) == Dy (¢(-),£(-)), where ¢ : Z — X and Z C Y.

Definition 5.1. [31, Def. 3.1] Let (Y,|-|y) be a Banach space, let (X, |-|y) be a reflexive Banach
space, let U € TS(X,|-|y) be strictly convex on int(efd(V)) and Euler-Legendre, let @ # Z C Y,
and let 0 : Z — U(Z) C X be a bijection such that £(Z) Nint(efd(¥)) # @. Then:

(i) if @ #C CY, and £(C) is convex (resp., closed; affine), then C will be called ¢-convex (resp.,
(-closed; (-affine);

(i1) a triple (Z,0,V) will be called a generalised pythagorean geometry;

(iii) an (£, ¥)-information (a generalised Brégman information) on 7 is
Dew(9,9) = Dy (€(9). (1)) ¥(,) € Z x £7H(U(Z) N int(efd(V))). (18)

Proposition 5.2. [31, Prop. 3.2| Under assumptions of Definition 5.1, let & # C C Z be {-convex
and {-closed, and let ¢ € (71(0(Z) N int(efd(V¥))). Then:

(i) Dy is an information on Z;
(ii) arginf,co {Dew(9,9)} is a singleton set, denoted {%é’”(w},

(iii) w € C is the unique solution of Dy g (¢, w)+ Dy w(w,v) < Dew(¢,v) Vo € Ciff w = %gaxp (@)
(in ‘then’ case, if C' is L-affine, then = replaces <);

. . . Do - .
(v) if £ is norm-to-norm continuous and %K‘I’ is norm-to-norm continuous for any convez closed

@ # K CUZ)Nint(efd(V)), then %g“’ is norm-to-norm continuous for any (-convex and
closed @ # C C71(0(Z) Nint(efd(V))).

An analogous result for i@w also holds [32, Part I] (cf. also [13, Thm. 1]).

For X = R", Dy recovers the setting of Brégman information Dp ¢ on an n-dimensional Cl-
manifold (hence, in particular, C*°-manifold) M, with the map ¢ : M — R™ (resp., %W ol : M —
R™) given by the coordinate system {6;} (resp., {n;}). More specifically, a domain M of a dually
flat geometry is assumed to be a (suitably differentiable) manifold, covered by two global maps {6;}
and {n; }, without assuming M C R™, cf. [3, 54|. This is not addressed by (3), and is addressed (up
to a weaker assumption on the order of differentiability) by (18).



This way the framework of generalised Brégman information D, g unifies reflexive Banach space
theoretic and finite dimensional smooth information geometric approaches to Brégman information.
If 7 is a norm-to-norm continuous homeomorphism, then the f-closed sets in Z are closed in terms
of topology of |-|y-. This fragment of a theory provides a fusion of nonlinear convex analysis with
nonlinear homeomorphic theory of Banach spaces. In particular, if £ is Holder continuous, then it

allows to pull back the conditions on Holder continuity of 2‘1’ and ﬁﬁw into results on Holder

continuity of %g“’ and 32“’. Generalised pythagorean geometry (Z, ¢, V) is a more general object
than Dy g, and allows to suitably generalise also the affine connections (16) [32, Part IV].

In this context, our approach arises partially from an observation that the £, (resp., /) embed-
dings, cf. Example 6.1.(a) (resp., 6.1.(c)) below, used in [40, Eqn. (2.7)] (resp., |22, §7.2]), are finite
dimensional Mazur (resp., Kaczmarz) maps [38, p. 83| (resp., |28, p.148]) on (L (X, u))". Drawing
from an important example in [27, §6-§8] (equal to Example 6.1.(a) with a = (1 — ) and g =),
an abstract framework aiming at this unification was proposed in [30, Eqns. (24), (31)], while its
implementation, based on the use of Euler-Legendre ¥, was given in [31, §3-84|. The resulting
theory is developed in details in [32].

6 Examples of (¢,V) with Z C V* (for Proposition 5.2)

If (Y,|-]y) is partially ordered by >, then Y* := {z € Y | > 0}. All examples below feature
(Y, ||y ) given by some kind of a radially compact base normed space (V,|-|,). Such spaces provide
the setting for the (linear) convex operational generalisation of quantum theory (a.k.a. “generalised
probability theory” or “postquantum theory”), with state space given by V;" := {¢ € V' | |z|,, = 1}.

Example 6.1.

(a). (=[31, Prop. 4.2].) If Nis a W*-algebra, a €]0,00[, 8,7 €]0,1[, (X, [-|x) = (L1/5(N), []1/,),
then the Mazur map
(=0y:Z=N}3¢— ¢ €(Ly,,N))" (19)

is Holder continuous [48, Thm. (p. 37)]. If ¥ = ¥, g := g””%ﬁ, then

De,w, ,(6,0) = o (B1617% + (1= B)|lY? = I}~ f(gret—)) (20)

Vo,¢ € N, where [ is understood as in [20, Eqn. (3.12")]; if N' = B(H) := {bounded
operators on a Hilbert space H}, then Ny = &1(H) = {trace class operators on H}, Ly, (N) =:
&1y (H), and [+ = try() = | [,

(b). (=31, Prop. 4.7].) Let A be a semifinite JBW-algebra with a Jordan product e, a faithful
normal semifinite trace 7, o €]0,00[, 8,7 €]0,1[, (X, [ x) = (L1/7(4,7), [-l1/5), ¥ = Yo
Then £ = £, : A 5 ¢ — ¢ € (Ly/,(A,7))" is Hélder continuous [31, Prop. 4.6], and
Vw, ¢ € Z = A} Dy, w, ;(w,0) =

o Br@)P + (1= B) () = ()P 7w 0 9! 77)). (21)

(c). (=]31, Cor. 4.12].) If (X,u) is a nonatomic measure space, u(X) < oo, T : R — RT
is even, strictly convex, continuously differentiable, with Y(1) = 1, T(u) = 0 iff u = 0,

limsup,, % < 00, liminf, s % > 2, lim,,_,+q ¥ =0, limy 00 TSL) =00, t,s € R,
t<s,urr w is nondecreasing, and u — % is nonincreasing, then the Kaczmarz map
U=ty Z=(Li(X, )] 3¢ T7H¢) € (Lr(X, )] (22)



is Holder continuous for the Morse Transue-Nakano-Luxemburg norm |-|y on Orlicz space
Ly (X, p) [16, Cor. 2.5]. For ¥ = Wg 3, B €]0, 1], this gives

Dh‘,‘l’gﬂ (wa QS) = 571(1 - T(Wa ¢)/T(¢, gb))’ (23)
where Y(w,®) := [ Y1 (w)Y'(Y71(¢)), and (-)’ denotes a derivative.

All these cases have norm-to-norm continuous %g”’. In [32] we prove this also for ag“', and
establish conditions for Holder continuity of % “% and %DZ v

Example 6.2.

(= [31, Prop. 4.14] for ¢(t) = e s(t) = étl/ﬁ_l, le. U =W,z5="V,, ,;[32, Part I] for ¥ = W,).
Let (V,|:]}/) be a generalised spin factor |7, Def. 4], ie. V =R ® X, where (X, |-|y) is a reflexive
Banach space, and

>0 : >
Vo =(\z)eV {”—0 — Az lelx (24)
lvlly := max{[Al, || x }.
Let ¥(z) = f l2lx dt ¢(t), where ¢ : RT — R™T is positive, strictly increasing, continuous,
©(0) =0, and hmtHOO o(t) = 00.5 Then VU, (and, in particular, ¥, 5) is Euler-Legendre iff (V,|-|;,)
satisfies spectral duality condition [2, Def. (p. 55)]. This gives a family Dy, v, on Z = {w € VT
|wly = 1}, where (=1lx:Z3v=(1,z) =~z € B(X,||y) (25)

Example 6.3.

Let H be a Hilbert space over C with n := (dim ) € N (hence, &, 5(H) = & ,,(H) Vv,7 €]0,1]).
Let ()% := self-adjoint part of (-). Let A(x), with

K := (82(H))** = {hermitean n X n matrices} 3 z — A(z) € R", (26)

be a vector of eigenvalues of x ordered nonincreasingly. For ® : R" — | — 00, 00, let ®(s(x)) = ®(x)
V permutation matrices s : R” — R". Then W = ® o A is Euler-Legendre iff ¢ is Euler-Legendre
[36, Cor. 3.2, Cor. 3.3]. E.g., if: &(z) =

(a). |4, Ex. 6.5, Cor. 5.13] 37" | (x;log(z;) — ;) if > 0, and oo otherwise;
(b). [11] [4, Ex. 6.7, Cor. 5.13] — >, log(w;) on ]0,00[", and oo otherwise;’

(c). 29, Equ. (60)] [4, Ex. 6.6, Cor. 5.13] " | (z;log(z;) + (1 — ;) log(1 — z;)) on [0, 1]™, and oo
otherwise;

(d). [4, Ex. 6.1, Cor. 5.13] Z?Zlﬂxﬂl/'y on R"™ with v €10, 1];

(e). [46, Eqn. (37)] [46, §7.2] ®q(z) := L5 >0 | (2¢ — 1) for (z, ) € [0,00["x]0,1[, —Pq(x) for
(z,a) €]0,00["x ] — 00,0[, and oo otherwise;®
and Kf = (89(H)){ = {strictly positive definite n x n matrices}, then: Dgox(€,() =

(a). 57, Def.1] try(¢(log € —log¢) — € = ¢) V(€,¢) € £F x Ky

5Cf. [31, Rem. 4.15]. In [32] we also extend Example 6.1 to ¥ = U,,.
"De(z,y) =31 (- log 7t+ £ —1) V(z,y) € (R™)d x (R™)¢, corresponding to ® in (b), was introduced by Pinsker
in [44, Eqn. (4)] [45, Eqn. (10 5. 4)] The result by Itakura—Saito [25, Eqn (7)], usually cited as a reference for this

Ds, has appeared 8 years later, and contains only a formula 2log(2) + 5= [™_dt(log(y(t)) + %)

8Cf.: f&a—_ll(q)a + 2=1) Vo > 0 in [24, Thm. 1]; =@ — 2= Va € R in [55, Eqn. (1)]; a detailed analysis

2a—1_1

when 1 (—®, — —-) is Euler-Legendre in [59, Thm. 5].




(b). [26, §5] (&,¢71), —logdet(§¢™1) — n = h(¢TY26C7Y2) — n V(E,C) € K§ x K, for h(§) :=
tric(§) — log det(§);

(¢). [41, p. 376] try(£(log € —log ¢) + (I— &) (log(I— &) —log(I—¢))) V(£,¢) € BT x int(B*), where
Bt =Kt 0 B(K,|],);

(d). [31, Cor. 4.18.(ii)] try (v[€]Y7 + (1 = 7)CY/ 7 = €CH 771 V(€,¢) € K x K¢ (under restriction of
a domain of ¢ to Kg);

(e). [31, Cor. 4.18.(iii)] Du(&,¢) = trp(¢¥ — 726 + 1271 V(€. ¢ a) € KT x K x]0,1],
_Da(§7 C) V(S,C,Oé) € ICBL X ,C(J)rx] - 0070[7

with “Dgox(, () := oo otherwise” in all cases, and (€, (), := tr(g,(p))==(§C). All cases (a)—(e) of
Dgoy are also the special cases of D&f”, with a range of good optimisation theoretic properties
implied by the fact that ® o A is Euler-Legendre. ¢ can be set to be any automorphism of (Go(H))%*

preserving int(efd(® o X)), e.g. a restriction of £;/, to a subset of (&1(H))*, corresponding to
int(efd(® o X)).
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