Ryszard Kostecki

Badanie własności układu RLC

Warszawa, 11 marca 2001

Streszczenie

Celem tej pracy jest zbadanie własności układu oscylującego RLC dla dwóch różnych wartości rezystancji R.

Podstawy teoretyczne

Rozważmy obwód elektryczny, którego schemat znajduje się na rysunku 1. Oznaczmy przez:

- Uc (t) wartość napięcia na kondensatorze
- $Uc_0 = Uc (t=0)$
- L, ΔL odpowiednio: wartość indukcyjności cewki i błąd tej wartości
- C, Δ C odpowiednio: wartość pojemności kondensatora i błąd tej wartości
- R, ΔR odpowiednio: wartość oporu badanego opornika i błąd tej wartości
- Rg wartość rezystancji wyjściowej generatora
- Ro wartość rezystancji wejściowej oscyloskopu
- i natężenie prądu

Rysunek 1

Jeśli założymy, że Ro >> Rg i Ro >> R, oraz zaniedbamy pasożytnicze wielkości charakteryzujące elementy obwodu, to prawdziwym z dość dobrym przybliżeniem stanie się wzór (1). Dla warunku określonego wzorem (2) rozwiązanie tego równania różniczkowego ma charakter oscylacyjny i wyraża się wzorem (3). Po przekształceniu tego wzoru otrzymujemy wzór (5) opisujący zmiany napięcia na kondensatorze w funkcji czasu i charakterystyki układu.

(1)
$$(R+Rg)i + L\frac{di}{dt} + \frac{\int idt}{C} = 0$$

$$(2) \qquad (R+Rg)^2 < \frac{4L}{C}$$

(3)
$$i(t) = \frac{Uc_0}{L\omega} \exp(-\frac{R+Rg}{2L}t)\sin(\omega * t)$$
 gdzie :

(5)
$$Uc(t) = Uc_0 \exp(-\frac{R+Rg}{2L}t)\cos(\omega * t)$$

$$\omega = \sqrt{\frac{1}{LC} - \frac{(R+Rg)^2}{4L^2}}$$

(4)

Realizacja techniczna

Do przeprowadzenia doświadczenia użyłem dwóch oporników, jednego o rezystancji $R = (51\pm 1) \Omega$, drugiego o rezystancji R = (506 \pm 1) Ω (wartości te zmierzyłem multimetrem cyfrowym). Ponadto użyłem też kondensatora i cewki, płytki montażowej, kilku przewodów, oraz generatora generującego sygnał prostokątny i oscyloskopu.

Doświadczenie rozpocząłem od pomiaru R obydwu oporników za pomocą multimetru cyfrowego, po czym zlutowałem obwód, zgodnie ze schematem zamieszczonym na rysunku 2. Następnie podałem z generatora na wejście obwodu sygnał prostokatny o amplitudzie 1 kHz. Po ustaleniu odpowiedniej skali na oscyloskopie dokonałem pomiaru kształtu pojedynczego ciągu oscylacji ze szczególnym uwzględnieniem punktów charakterystycznych krzywej. Po zakończeniu pomiarów wymieniłem opornik R = $(51\pm1) \Omega$ na R = $(506\pm1) \Omega$ i powtórzyłem doświadczenie.

Rysunek 2

Wyniki pomiarów

Poniżej znajdują się wyniki pomiarów zmierzonych wartości t, U, gdzie t było wyznaczone przez poziomą oś na ekranie oscylatora, a U przez oś pionową (przy czym w obydwu przypadkach oś U była ustawiona tak, aby w nieskończoności wykres napięcia na kondensatorze zbiegał do zera).

<u>dla R = (51±1) Ω</u>					<u>dla R = (506±1) Ω</u>			
t [4µs]	∆t [4µs]	U [2/5V]	ΔU [2/5V]	t [2µs]	∆t [2µs]	U [2/5V]	ΔU [2/5V]	
0	0.2	-10	0.2	0	0.2	-10	0.2	
1	0.2	0	0.2	2	0.2	0	0.2	
3	0.2	18	0.2	5.5	0.2	9.5	0.2	
5	0.2	0	0.2	10.5	0.2	0	0.2	
7	0.2	-13.5	0.2	13.5	0.2	-3	0.2	
9.5	0.2	0	0.2	18	0.2	0	0.2	
12	0.2	12	0.2	22	0.2	2	0.2	
14	0.2	0	0.2	28	0.2	0	0.2	
16.5	0.2	-9	0.2					
18.5	0.2	0	0.2					
21	0.2	8	0.2					
23.5	0.2	0	0.2					
26	0.2	-6	0.2					
28	0.2	0	0.2					
30.5	0.2	5	0.2					
33	0.2	0	0.2					
35	0.2	-4	0.2					
37.5	0.2	0	0.2					
39.5	0.2	3.5	0.2					
42	0.2	0	0.2					
44.5	0.2	-2.5	0.2					

Dane te po naniesieniu na wykresprezentują się następująco:

Wykres 1

Aby

dopasować do danych pomiarowych funkcję określoną wzorem (5) dokonałem następujących obliczeń:

 ω wyliczyłem wyliczając najpierw średni okres na podstawie ze średniej arytmetycznej podwojonych odległości czasowych pomiędzy punktami o U = 0 (czyli miejscami zerowymi), po czym skorzystałem z poniższych wzorów:

$$T = \frac{\sum_{i=1}^{N} T_i}{N}, \qquad \Delta T = \sqrt{\frac{\sum_{i=1}^{N} (T - T_i)^2}{N - 1}}, \qquad \omega = \frac{2\pi}{T}, \qquad \Delta \omega = \left|\frac{\partial \omega \Delta \omega}{\partial T}\right| = 2\pi \frac{\Delta T}{T^2}$$

Aby znaleźć Uc₀, oraz L przekształciłem wartości zarejestrowanych minimów i maksimów przekształceniem U(t)→log(|U(t)|) Do otrzymanego w ten sposób zbioru punktów [t,log(|U(t)|)] dopasowałem prostą najmniejszych kwadratów o wzorze y = a*x + b, gdziy = log(|U(t)|), x = t, a = -(R+Rg)/2L, b = log(Uc₀). W tym celu skorzystałem z własnoręcznie napisanego programu analizy danych Panda¹ (dostępnego w internecie pod adresem http://tempac.okwf.fuw.edu.pl/~rpkost). Otrzymane w ten sposób wyniki przekształciłem zgodnie z położonymi na następnej stronie wzorami.

¹ z programu tego pochodzą również wszystkie wykresy zamieszczone w tej pracy

(6)
$$L = -\frac{R + Rg}{2a}$$

(7)
$$\Delta L = \sqrt{\left(\frac{\partial L}{\partial a}\Delta a\right)^2 + \left(\frac{\partial L}{\partial (R+Rg)}\Delta (R+Rg)\right)^2} = \frac{1}{2a}\sqrt{\left(\Delta (R+Rg)\right)^2 + \left(\frac{(R+Rg)\Delta a}{a}\right)^2}$$

$$(8) \qquad Uc_0 = \exp(b)$$

(9)
$$\Delta Uc_0 = \left| \frac{\partial Uc_0}{\partial b} \Delta b \right| = \left| \exp(b) \Delta b \right| = \left| Uc_0 \Delta b \right|$$

W wyniku wyżej opisanego postępowania otrzymałem następujące wyniki:

$R = (51\pm 1) Ω$

R = (506±1) Ω

T = $(2.2(7) \pm 0.15023130314) \,\mu s$ $\omega = (2.75846926676 \pm 0.18193540947) \,MHz$

przybliżenie zależnością liniową

Par pomiarów - 10

a = -0,011388275 [1/µs] Δa = 0,000281955 [1/µs]

b = 2.99162 Δb = 0.030445

czyli:

 $Uc_0 = 7.9671692 V$ $\Delta Uc_0 = 0.24256046629 V$

L = 0.00443438536565 Ω*s ΔL = 0.000118241531807 Ω*s

po zaokrągleniu:

 $Uc_0 = 7.97 V$ $\Delta Uc_0 = 0.24 V$

 $L = \ 0.00433 \ \Omega^* s = 4.43 \ mH \\ \Delta L = 0.00012 \ \Omega^* s = 0.12 \ mH$

 ω = (2.76 ± 0.18) MHz

Tak natomiast wyglądają wykresy dopasowania prostej najmniejszych $\begin{array}{l} \mathsf{T} = (8.(6) \pm 1.39443337755) \ \mu \mathsf{s} \\ \omega = (7.24982305275 \pm 0.11664686856) \ \mathsf{MHz} \end{array}$

przybliżenie zależnością liniową

Par pomiarów - 4

 $\begin{array}{l} a = \ -0.04086905 \ [1/\mu s] \\ \Delta a = \ 0.00810505 \ [1/\mu s] \end{array}$

b = 2.42423 ∆b = 0.213903

czyli:

 $Uc_0 = 4.517412 V$ $\Delta Uc_0 = 0.96628797903 V$

 $\begin{array}{l} {\sf L} = 0.00680221341088 \Omega^* {\sf s} \\ {\Delta} {\sf L} = 0.00134905379579 \Omega^* {\sf s} \end{array}$

po zaokrągleniu:

 $Uc_0 = 4.52 V$ $\Delta Uc_0 = 0.97 V$

L = $0.0068 \Omega^* s = 6.8 \text{ mH}$ $\Delta L = 0.0013 \Omega^* s = 1.3 \text{ mH}$

ω = (7.25 ± 0.12) MHz

Wnioski i dyskusja wyniku

Otrzymane dwie różne wartości indukcji cewki są zgodne ze sobą w obliczu "testu 3σ ". Jest to wynik zadowalający. Jednakże już wartości Uc₀ dla obydwu oporników w obliczu "testu 3σ " nie są ze sobą zgodne. Najbardziej prawdopodobne wytłumaczenie tego faktu jest takie, iż po wymianie opornika zmieniła się także charakterystyka "pasożytnicza" obwodu, co spowodowało efekty "dyssypacji napięcia". Jeśli chodzi o różnicę w wartościach ω , to jest ona oczywista: wynika ona z różnych wartości R w obwodach (patrz: wzór (4)).

Ciekawostką jest fakt, szczególnie widoczny na wykresach 3 i 4, iż logarytmy modułów ekstremów mierzonych napięć układają się regularnie na przemian: raz poniżej prostej najmniejszych kwadratów, raz powyżej niej. Wydaje mi się, że wytłumaczenie tego faktu może być następujące: jesli zróżniczkujemy funkcję Uc(t), zapisaną zgodnie ze wzorem (5), to otrzymamy złożenie funkcji harmonicznych sin(...), oraz cos(...), tłumione gasnącą fukcją exp(...)². Oscylacje wokół prostej najmniejszych kwadratów wynikają więc ze swoistych "dudnień" pochodnej funkcji Uc(t). Potwierdza to ponadto fakt, iż wykonane (w celach przetestowania tej hipotezy) osobne wykresy dla samych minimów i samych maksimów znacznie lepiej dały się przybliżyć prostą najmniejszych kwadratów.

Nie zmienia to jednak faktu, iż wynik końcowy nie jest dokładny z powodu różnych czynników (poza dokładnością miernika) wprowadzających niepewność. Wśród najbardziej istotnych znajdują się:

- Na pewno i przede wszystkim bardzo mała liczba punktów pomiarowych. W przypadku R=(506±1)Ω dopasowywanie prostej do czterech punktów pomiarowych zakrawa nawet na przerost formy nad treścią. Niestety jednak w tym przypadku mogę się jedynie ograniczyć do bezradnej kontemplacji tego faktu, bowiem zarówno silne tłumienie (jak widać na wykresie) drgań, jak i dokładność oscyloskopu nie pozwoliły mi na uzyskaniewiększej dokładności.
- Nieidealność zasilacza i oscyloskopu jako woltomierza: idealny woltomierz posiada nieskończony opór. W praktyce oczywiście tak nie jest. Idealny zasilacz podaje zawsze stałe napięcie niezależnie od obciążenia, sądzę, iż tak też nie było.

² podaję zapis ciał tych funkcji w notacji "(...)", bowiem w tym rozważaniu nie są one istotne

- Wzory użyte w tej pracy były wzorami przybliżonymi, bowiem nie uwzględniały zarówno pasożytniczego wpływu otoczenia na charakterystykę układu, jak i pasożytniczych cech samych elementów obwodu.
- Stosowane przeze mnie przewody łączące woltomierz i zasilacz z płytką montażową, a także same wtyki do tych przewodów mogły się także przyczynić do generacji błędów. Niepomijalny wpływ wniosła też zapewne pojemność, indukcja i rezystancja kabli.