м. А. БЕРДИКУЛОВ

УСЛОВНЫЕ ОЖИДАНИЯ НА ПРОСТРАНСТВАХ С ПОРЯДКОВОЙ ЕДИНИЦЕЙ

Мақолада тартиб буйнча бирлик элементи бор фазолардаги шартли кутилмалар урганилган ва бундай фазоларнинг бир синфи - умумлашган спин-факторлар учун шартли кутилманинг мавжуд булиш шартлари топилган.

Условные ожидания на алгебрах фон Неймана и на JBW-алгебрах изучены многими авторами [1-3]. Так как пространства с порядковой единицей являются обобщением этих пространств, то, естественно, ставится задача: изучить условные ожидания на пространствах с порядковой единицей.

Пространство с порядковой единицей представляет собой некоторую статистическую модель [4], как пространство аффинных функций на пространстве состояний и их теория в последнее время быстро развивается. В классической модели пространством состояний является симплекс, а в общем случае пространство состояний - произвольное выпуклое множество в некотором локально выпуклом пространстве.

Элементы пространства с порядковой единицей, как правило, истолковываются как пространство наблюдаемых некоторой физической

системы.

Предварительные сведения. Пусть A — действительное линейное, упорядоченное пространство. Через A^+ обозначим множество положительных элементов A. Элемент $e \in A^+$ называется порядковой единицей, Если порядок архимедов, то отображение $a \to \|a\| = \inf\{\lambda > 0 : -\lambda e \le a \le \lambda e\}$ является нормой. В случае, когда \hat{A} — банахово пространство относительно этой нормы, говорят, что (A,e) — пространство с порядковой единипей *e* [5].

В дальнейшем под проектором в пространстве с порядковой единицей А будем понимать линейное, положительное, слабо непрерывное

отображение $R: A \to A$, удовлетворяющее условию $R^2 = R$.

Проектор R называется гладким, если условие $\rho \in V^+$, <a, $\rho >= 0$ при $a \in \ker^+ R = A^+ \cap \ker^+ R$

влечет $\langle a, \rho \rangle = 0$ при $a \in \ker R$.

Проектор Q называется квазидополнением проектора R [5], если $\ker^+ R = \operatorname{im}^+ Q$, $\operatorname{im}^+ R^+ Q$.

Проектор R называется P-проектором, если он по норме не превосходит 1, гладкий и обладает гладким квазидополнением с нормой, не превосходящей 1.

3аметим, что гладкое квазидополнение к P-проектору R всегда

единственно и в дальнейшем будем обозначать его через R'.

Элементы множества $U=\{u=\mathrm{Re}:R$ -произвольный P-проектор в $A\}$ на-

зываются проективными единицами.

Основные результаты. Пусть (A,e) – пространство с порядковой единицей, В - его подпространство, являющееся пространством с порядковой единицей, содержащей е. $\mathit{Oпределениe}\ \mathit{1.}\ \mathsf{Линейноe}\ \mathsf{отображениe}\ \mathit{E}: A{
ightarrow} \mathit{B}\ \mathsf{назовем}\ \mathsf{условным}$

ожиданием относительно В, если:

1. E(e)=e;

2. $a \ge 0 \Rightarrow E(a) \ge 0$;

3. E(Ra)=R(Ea) для всех P-проекторов R в A таких, что $\mathrm{Re}{\in}B$ и

Нетрудно показать, что ||E||=1.

На самом деле, пусть $a \in A$ и $||a|| \le 1$, т.е. $-e \le a \le e$.

Тогда в силу положительности E имеем, что E (a+e)≥0 и E (e-a)≥0. Так как E линейное и E (e)=e, то последние неравенства означают -e<E(a) $\leq e$. Следовательно, $||E|| \leq 1$. Но E(e) = e. Поэтому ||E|| = 1.

Из определения 1 вытекает, что E идемпотентное отображение, т.е.

E(E(a))=E(a) для всех $a \in A$.

Действительно, если $u \in B$ – некоторая проективная единица, то u=Re для некоторого P-проектора R, и в силу условия 3 определения 1

$$E(u)=E(\text{Re})=R(Ee)=\text{Re}=u$$
. Далее пусть $a=\sum_{i=1}^K \lambda_i u_i \in B$. Тогда, очевидно,

$$E(u)=E(\text{Re})=R(Ee)=\text{Re}=u.$$
 Далее пусть $a=\sum_{i=1}^k \lambda_i u_i \in B.$ Тогда, очевидно, что $u_i \in B$ и $E(a)=\sum_{i=1}^k E \lambda_i u_i = \sum_{i=1}^k \lambda_i u_i = a.$ Значит, $E(a)=a$ для всех $a \in B.$

Так как $E(a) \in B$ для любого $a \in A$, то E(E(a)) = E(a).

Как сказано выше, примером для пространств с порядковой единицей является JBW-алгебра. Известно, что условные ожидания на JBW-алгебрах определены следующим образом [3].

Пусть A - JBW-алгебра с единицей 1, A_1 – ее JBW-подалгебра, содержащая 1.

Определение 2. Линейное отображение $E:A \rightarrow A_1$ называется условным ожиданием относительно A_1 , если:

- 1. E(1)=1;
- 2. $x \ge 0 \Rightarrow E(x) \ge 0 \ \forall x \in A$:
- 3. $E(ax)=AE(x) \forall x \in A, \forall x \in A_1$.

Это определение согласуется с определением 1, т.е. условное ожидание на JBW-алгебрах можно определить, как в определении 1.

На самом деле, в определениях 1 и 2 первые два условия одинаковы, поэтому проверим эквивалентность условий 3 в обоих определениях.

Пусть p — произвольный идемпотент в JBW-алгебре, соответствующий ему P-проектор R имеет вид: $R_X = U_{pX}$. Очевидно, что $R_1 =$ =p∈ A_1 , и условие 3 в определении 1 в этом случае выглядят как: $E'(U_p x) = U_p(E_x)$.

 $2 \Rightarrow 1$. Пусть $E(ax)=aE(x) \ \forall x \in A$ и $\forall x \in A_1$. Так как $U_px=2p(px)$ px, тогда для любого $p∈A_1$ имеем:

$$E(U_px)=E(2p(px)-px)=2E(p(px))-E(px)=2p(pE(x))-pE(x)=U_p(Ex).$$

1⇒2. Пусть
$$U_b(Ex)=E(U_bx)$$
 (1)

 $\forall x \in A$ и для любого $p \in A_1$. Тогда имеем $U_{p'}(Ex) = E(U_{p'}x) \forall x \in A$ и $p' = 1 - p \in A_1$ $\in A_1$.

Теперь покажем, что выполнено условие 3 в определении 2.

Известно [6], что имеет место пирсовское разложение

$$x=U_px+2U_{p,p}\cdot x+U_p\cdot x$$

для $\forall x \in A$ относительно идемпотента $p \in A$. Поэтому имеем $E_{X}=E(U_{pX})+E(2U_{p,p'X})+E(U_{p'X}).$

С другой стороны, пирсовское разложение для Ех есть $E_{X}=U_{p}(E_{X})+2U_{p,p}(E_{X})+U_{p}(E_{X}).$

Отсюда, учитывая предположение (1), имеем, что

$$2 U_{p,p'}(Ex) = E (2 U_{p,p'}x).$$
 (2)

Так как $U_{p,p'}x=2px-2p(px)$ по определению, то (2) означает, что $2p\;(Ex)-2p\;(p\;(Ex))=E\;(2px-2p\;(px)),$

а также равенство (1) означает, что

$$2p(pEx)-pE(x)=E(2p(px)-px).$$

Сложив эти равенства, получим:

$$pE(x)=E(px)$$
.

Так как линейная оболочка идемпотентов слабо плотна в JBW-подалгебре, а A_1 и E слабо непрерывны, то заключаем, что а E (x)= =E (ax). $\forall x \in A$, $\forall a \in A_1$.

В дальнейшем слово подпространство означает пространство с порядковой единицей.

П р и м е р 1. Пусть (A, e) – пространство с порядковой единицей, ρ – некоторое состояние на A. Для $a \in A$ положим

$$E(a)=\rho(a)$$
.

Тогда E – условное ожидание относительно подпространства $B=\{\lambda e: \lambda \in R\}$.

Пример 2. Пусть Q некоторый P-проектор в A. Положим E(a)=Qa+Q'a $\forall a\in A$. Тогда E – условное ожидание относительно подпространства $B=\{a\in A: a=Qa+Q'a\}=\mathrm{im}\,Q+\mathrm{im}\,Q'$.

На самом деле, выполнение свойств 1 и 2 в определении 1 вытекает из свойств P-проектора Q. Проверим свойство 3. Пусть $Re \in B$, т.е. $Re \in Im Q + Im Q$. Это означает, что R и Q совместны, т.е. RQ = QR и RQ' = Q'R (см. [5] 5.26). Следовательно, Re(a) = E(Ra).

Состояние т на A называется следом, если $\tau(a) = \tau(Ra) + \tau(R'a); \ \forall a \in A$ и P-проектора R.

Пусть ρ – некоторое состояние на A и $B \subset A$ – подпространство A, E – условное ожидание относительно B.

Определение 3. Если $\rho(Ea) = \rho(a)$ для всех $a \in A$, то говорят, что E сохраняет ρ .

Очевидно, что в примере 2 условное ожидание E сохраняет след, а в примере 1 — состояние ρ .

Актуальным является вопрос – при каких условиях существует условное ожидание относительно данного подпространства? В общем случае вопрос пока остается открытым. Здесь задача решается для одного класса пространств с порядковой единицей — обобщенных спинфакторов.

Пусть X – рефлексивное банахово пространство, единичный шар которого гладкое, строго выпуклое множество, т.е. собственными гранями X_1^* являются только множество вида $\{\sigma\}$, где σ – экстремальная точка X_1^* и для каждого $\sigma \in \partial e X_1^*$ существует единственный элемент $x \in \partial e X_1$ такой, что $\sigma(x) = 1$.

Рассмотрим пространства A=R+X и $V=R+X^*$. Порядок и норма на A (на V) определяются следующим образом:

$$\alpha = \alpha + x \ge 0 \Leftrightarrow \alpha \ge 0 \ (\rho = \beta + \xi \ge 0 \Leftrightarrow \beta \ge ||\xi||),$$

$$||a|| = |\alpha| + ||x||, (||p|| = \max(|\beta|, ||\xi||)$$

для $a \in A$, $\rho \in V$ соответственно.

После таких обозначений и определений A становится пространством с порядковой единицей, а V – пространством с базовой нормой, которые будут находиться в отделимой, порядковой и нормированной двойственности относительно формы:

 $\langle a, \rho \rangle = \alpha \beta + \xi(x),$ (3)

где ξ – ограниченный линейный функционал на X.

Пространства с порядковой единицей такой конструкции называют обобщенными спин-факторами [7].

След т на обобщенных спин-факторах определяется следующим об-

разом: $\tau(\alpha+x)=\alpha$.

Так как единичный шар X – гладкое, сторого выпуклое множество, то элементы вида $u=\frac{1}{2}+\frac{1}{2}x_0$, где $x_0\in X$, $\|x_0\|=1$, являются проективными единицами, а P-проектор – R, соответствующий u, имеет вид: $Ra=<a,\hat{u}>u$, где \hat{u} – непрерывный линейный функционал на A со свойствами: $<u,\hat{u}>=1$, $\|\hat{u}\|=1$.

Пусть A=R+X – обобщенный спин-фактор. $B\subset A$ – произвольное подпространство A. Нетрудно показать, что произвольное подпространство B имеет вид: $B=R+X_0$, где X_0 – некоторое подпространство X.

Теорема 1. В A существует сохраняющее след условное ожидание относительно В тогда и только тогда, когда существует проектор T из X в X_0 .

Доказательство. *Необходимость*. Пусть существует условное ожидание E, сохраняющее след относительно $B=R+X_0$. Для произвольного $a=\alpha+x\in A$, условное ожидание A и B имеет вид:

 $E = \alpha + Tx. \tag{4}$

Здесь T — проектор из X в X_0 .

На самом деле, пусть E $a=\alpha+f(x)+Tx$ для некоторого функционала f на X и линейного отображения $T:X\to X_0$. Берем $u\in B$ и пусть $u=\mathrm{Re}$. Так как Eu=u, то условие ERa=REa означает, что $< a,\hat{u}>u=< E$ $a,\hat{u}>u$, т.е. $< a,\hat{u}>=< E$ $a,\hat{u}>$.

Так как проективная единица и имеет вид:

 $u=\frac{1}{2}+\frac{1}{2}x_0$ $x_0\in X_0$, $\|x_0\|=1$ и ей соответствует состояние $\hat{u}=1+\xi_0$ в B^* ,

 $\xi_0 \in X_0^*$, $\|\xi_0\| = 1$, $<\xi_0, x_0> = 1$, то имеем

$$< a, \ \hat{u} > = < \alpha + x, 1 + \varepsilon_0 > = \alpha + \xi_0(x),$$

 $< Ea, \ \hat{u} > = < \alpha + f(x) + Tx, \ 1 + \xi_0 > = \alpha + f(x) + \xi_0(Tx).$

Отсюда заключаем, что f(x)=0 для всех $x\in X$. Значит, $Ea=\alpha+Tx$. В силу идемпотентности E, имеем $\alpha+Tx=Ea=E^2a=E$ ($\alpha+Tx$)= $\alpha+T^2x$.

Из этого следует, что $T^2x=Tx$. Значит, T тоже является идемнотентным.

Покажем, что $||T|| \le 1$.

Пусть $a=\alpha+x\geq 0$, т.е. $\alpha\geq ||x||$, тогда $E(a)=\alpha+Tx\geq 0$, т.е. $\alpha\geq ||Tx||$. Отсюда

 $\left\|T\left(\frac{x}{\alpha}\right)\right\| \le 1$. Так как $\left\|\frac{x}{\alpha}\right\| \le 1$, то $\|T\| \le 1$ в силу произвольности x и α .

Следовательно, T — проектор.

Достаточность. Если существует проектор T из X в X_0 , то $E(\alpha+x)=$ $=\alpha + Tx$ – условное ожидание относительно B.

Проверим выполнение условий 1 – 3 в определении 1.

Действительно, выполнение условия 1 очевидно, так как e=1+0 в обобщенных спин-факторах.

- 2. Пусть $a=\alpha+x\geq 0$, т.е. $\alpha\geq \|x\|$. Так как $\|T\|\leq 1$, то $\|Tx\|\leq \|x\|$. Поэтому $||Tx|| \le \alpha$. Это означает, что $E(\alpha+x) = \alpha+Tx \ge 0$.
- 3. Пусть $u = \frac{1}{2} + \frac{1}{2} x_0 \in B$ и ей соответствует состояние $\hat{u} = 1 + \xi_0$ в B^* , $\xi_0 \in X_0^*$. Тогда

$$ERa = < a, \ \hat{u} > u = < \alpha + x, 1 + \xi_0 > u = (\alpha + \xi_0(x))u,$$

 $REa = < Ea, \ \hat{u} > u = < \alpha + Tx, \ 1 + \xi_0 > u = (\alpha + \xi_0(Tx))u.$

Так как T — проектор из X в X_0 , то T * – проектор из X_0^* в X. Это означает, что $\xi_0(Tx) = \xi_0(x)$ для всех $x \in X$, $\xi_0 \in X_0^*$. Поэтому имеем, что REa=ERa.

Сохранение следа через E вытекает из определения следа. Теорема доказана.

Аналогичная теорема в случае, когда A – JBW-алгебра доказана в [8].

Теорема 2. Пусть A=R+X — обобщенный спин-фактор, $\rho=1+\xi_0$ — состояние на А. В=R+X0 - его подпространство. Для того чтобы существовало сохраняющее ρ условное ожидание $E:A\rightarrow B$, необходимо и достаточно, чтобы $T^*\xi_0=\xi_0$, где T – проектор из теоремы 1.

Показательство. Необходимость. По теореме 1 существует условное ожидание относительно B и имеет вид: $E(\alpha+x)=\alpha+Tx$, где Tпроектор из X на X_0 .

Палее, достаточно проверить сохраняемость ρ относительно E:

$$\rho(E\alpha) = \langle \rho, E(\alpha+x) \rangle = \langle \rho, \alpha+Tx \rangle = \alpha+\xi_0(Tx),$$

$$\rho(\alpha) = \langle \rho, \alpha+x \rangle = \alpha+\xi_0(x).$$

Если Е сохраняет состояние ρ, то

$$\xi_0(Tx) = \xi_0(x)$$
, $\text{r.e.} < T^*\xi_0$, $x > = < \xi_0$, $x > \forall x \in X$.

Следовательно, $T^*\xi_0 = \xi_0$. Достаточность вытекает из теоромы 1.

Следствие 1. Пусть A=R+X — обобщенный спин-фактор, $\rho=1+\xi_0$ состояние на A и B=R(A)+R'(A) для некоторого P-проектора R. Тогда существует сохраняющее ρ условное ожидание относительно $B \!\! \Leftrightarrow \!\! \rho \!\! = \!\! \hat{u}$, где *u*=Re.

В банаховых пространствах проектор на произвольное подпро-

странство не всегда существует [9].

Следствие 2. Пусть А=R+X - обобщенный спин-фактор. Относительно произвольного подпространства А существует условное ожидание, тогда и только тогда, когда X - гильбертово пространство.

ЛИТЕРАТУРА

1. U m e g a k i H. Conditional expectation in an operator algebra. //II. Tohoku Math. J.8 (1956). P. 86-100.

2. Takesaki M. Conditional expectations in von Neumann algebras. //Funct. Anal.,

1972. V.9. P.306-321.

- 3. А ю п о в Ш. А. Условные математические ожидания и мартингалы на йордановых алгебрах. //Докл.АН УзССР, 1981, № 10. С. 3—5.
- Холево А. С. Вероятностные и статистические аспекты квантовой теории. М.: Наука, 1980. 320 с.
- Alfsen E. M., Shultz F. W. Non commutative spectral theory for affine functions on convex sets. //Mem.Amer. Math. Soc., 172. Providence R.I.: AMS, 1976. 122 p.
- 6. Жевлаков К. А., Слинько А. М., Шестаков И. П., Ширшов А. И. Кольца, близкие к ассоциативным. М.: Наука, 1978. 432 с.
- Берднкулов М. А. Пространства с порядковой единицей однородного типа . //Изв. АН УзССР. Серия физ.-мат.наук. № 4, 1990.
- 8. Аюпов III. А., Бердикулов М. А., Азизов Э. Ю. //Условные ожидания на спин-факторах //Узб.мат.журн., № 3, 1991.
- 9. Канторович Л. В., Акилов Г. П. Функциональный анализ. М.: Наука, 1977.

Институт математики имени В.И. Романовского Дата поступления 25.11.02

M.A. Berdikulov

Conditional expectations in order—unit spaces

(Summary)

In this paper we study conditional expectations on order-unit spaces and conditions of existence of conditional expectations for generalized spin-factors are found.