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ABSTRACT OF THE DISSERTATION

Operator Valued Weights, L2-von Neumann Modules

and their Relative Tensor Products
by

Anthony Joseph Falcone
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 1996

Professor Masamichi Takesaki, Chair

A result of Haagerup, generalizing a theorem of Takesaki, states the following:

If N C M are von Neumann algebras, then there exists a faithful,
normal and semi-finite (fns) operator valued weight T: M, — Kf:_ if
and only if there exist fns weights ¢ on M, and ¢ on A satisfying
of(z) = of(x), Yz € N, t € R. In fact, T can be chosen such that

$ =@oT,; T is then uniquely determined by this condition.

This thesis presents a proof of the above which does not use any structure theory.
Additionally, we develop a theory of L?-von Neumann modules, which encom-

passes a reformulation of Connes’ Spatial Derivative, and the Relative Tensor Prod-

vil



uct of Sauvageot. We demonstrate the naturality of the relative tensor product
construction in the category of L2-von Neumann bimodules. Finally, we give evi-
dence for the claim that the relative tensor product is essentially the only tensor

product which should be used when considering this tensor category.
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CHAPTER 1

Introduction

As can be surmised from its title, this thesis comprises two parts, which are only
partially related. The first task is to demonstrate that it is possible to expound a
complete theory of Operator Valued Weights, and arrive at the results of Takesaki
and Haagerup, without recourse to the crossed product. We then consider the
subject of L2-modules over von Neumann algebras: their properties, their role in
the development of a formulation of the Spatial Derivative (see [13]), aﬁd their

Relative Tensor Products. Finally, we mention a few areas for future research.

1.1 Non-Commutative Integration

It has long been known that an abelian von Neumann algebra is essentially
Lee(X, u), for some measure space {X,u}. In the non-abelian case, then, much
work has been done to try and extend some of the usual notions from Measure,
Probability and Integration Theories. For example, Haagerup 3] intrpduced the
concept of “non-commutative L?-spaces”, extended by Kosaki [4]. Takesaki (8]
described necessary and sufficient conditions for the existence of (normal) condi-

tional expectations whenever we have one von Neumann algebra N sitting inside



another, M. This led Haagerup {1, 2] to the theory of Operator Valued Weights,
and a generalization of Takesaki's theorem. However, Haagerup’s ex_position de-
pends heavily on the existence of a crossed product decompostion for a. general
von Neumann algebra, i.e., on Structure Theory. It appeared possible to achieve
a theory of Operator Valued Weights without resorting to structure theory. In
particular, this thesis offers a proof, which does not use Structure Theory, of the

following theorem:

Theorem 1.1 (Haagerup) Let N' C M be von Neumann algebras. There ezists
a faithful, semi-finite normal operator valued weight T: M, — ﬁ; if and only if

there exist faithful semi-finite normal weights ¢ on M and ¢ on N such that

If this condition is satisfied, then T can be chosen in such a way that $ = poT;

moreover, T is uniquely determined by this identity.

The method for showing this depends critically on a result of Connes/Masuda
[12] which provides a converse to the theorem positing the existence of the Radon-
Nikodym cocycle derivative. (Masuda’s result does not use structure theory, unlike
that of Connes.) This result implies that, given an invariance condition like that
in the hypothesis, a weight on A induces one on M. With the ability to' associate
weights on N to weights on M, it is possible to construct an operator valued

weight T: M, — .7\7:



In particular, we make use of the fact that, given a fixed faithful, normal and
semi-finite (fns) weight ¢ on A, the existence of a one parameter fami_lly of partial
isometries {u,} satisfying a one-cocycle condition with respect to o? implies the
existence of a corresponding normal weight 1 on AM. This v has the property that
uy = (D 1 Dg),, YVt € R. With the ability to associate ¢ to ¢, we can construct an
operator valued weight T': M, — JV: We then show that such a T is a faithful,
normal and semi-finite operator valued weight. |

The desire to recast the proof of Haagerup’s Theorem in a form which does
not depend on any structure theory is motivated by the belief that it is a result
which is fundamental in the theory of Non-Commutative Integration. Specifically,
application of an operator valued weight to a positive element of M (which results
in an element in the extended positive cone of M) can and should be thought
of as “partial integration.” The “space” over which we are integrating is not
always explicit; however, just as we often think of von Neumann algebras as “non-
commutative L°-spaces,” we sense the presence of an underlying measure space
indirectly, by observing the interactions of function-like objects defined on this
“space.” Moreover, this point of view allows us to interpret the expression ¢ = @oT
as a form of Fubini’s Theorem (or more precisely, Tonelli’s Theorem). Because we
believe that structure theory should, in some sense, be a consequence of the results
of integration theory, and not vice-versa, a proof which does not involve the crossed

product is indicated.



It should also be noted that work in this area was done by Hirakawa [7]. The
work presented herein addresses the problem from a different perspective than did

he, however, and therefore represents a new approach.

¥

1.2 L2?-von Neumann Modules and their Relative Tensor Products

It should come as no surprise (due to their origins) that von Neumann algebras
play a role in current Conformal Field Theories. In particular, the tensor category
of bimodules over one or several von Neumann algebras is fundamental in their
exposition. Hence, it is important to understand the special nuances that arise
in considering tensor products of von Neumann algebra bimodules. In general, a
purely algebraic approach to their theory is insufficient. Sauvageot [5] outlined a
construction for the tensor product (the Relative Tensor Product) of two bimod-
ules which is not canonical, but depends on the choice of a faithful, normal and
semi-finite (fns) weight. (In the case where the weight is actually a vector state,
this choice of weight corresponds, in Field Theory, to fixing a so-called “vacuum
vector.”) Some work subsequent to Sauvageot’s in this area has at times neglected
the extreme care which is required when dealing with weights. However, it is pos-
sible to show that, given a bimodule $ over a fixed von Neumann algebra, if the
existence of another bimodule ® having certain “universal, tensor product-like”
properties is assumed, then £ is (i.e., is isomorphic to, as M-M bimodules) the

relative tensor product Hi®. § with respect to a trace 7 on M. Therefore, we see



that the existence of such a bimodule implies that tile von Neumann algebra must
be semi-finite. Moreover, it turns out that the existence of such a R, i1.1 which the
tensor product of any two arbitrary elements is defined, forces the algebra M to
be atomic.

Originally, substantial inroads into the theory were made by Sauvageot. We
show herein that the relative tensor product introduced by Sauvageot is, in a
sense, the only bimodule tensor product which encompasses the intricacies present
when dealing with infinite von Neumann algebras. Naively, one would expect the
“tensor product” of the AM-M bimodule L2(M) with itself to also be an M-M
bimodule, poséessing the usual universal property of tensor products, viz., that
any (continuous) “M-bilinear” map on the Cartesian product should induce an
M-bimodule morphisin on the tensor product. If we require that an AM-bilinear
map [ include the property that I(z,n) = I(£,zn), Yz € M, then we will show
that the only M-bimodule tensor product which exhibits the universality described
above is the relative tensor product L2{M)®, L2(M), where 7 is a trace on the
atornic von Neumann algebra M. (Once again, recall that the relative tensor
product of is not canonical, but rather depends on a choice of fus weight.) This
result demonstrates that no such universal object can exist when M is not simply

of the form
M= L(Ha),

where each §, is an arbitrary Hilbert space. Since Type II and Type III algebras



can (and often do) arise in physical theories, it is obviously important to be able
to decide whether one may assume the existence of a tensor product having the
aforementioned characteristics. If the algebra is non-atomic, then it is impossible,
in general, to define ¢ ® n for arbitrary £, n. This implies that any strictly alge-
bric approach to the theory will necessarily be incomplete. Hence, a satisfactory
resolution of this issue is needed.

Interestingly, in formulating a theory of L?-von Neumann modules, a serendip-
itous byproduct emerges: a clear exposition of the Spatial Derivative, originally
introduced by Connes {13]. Suppose we are given a right L?-module § over a von
Neumann algebra A/, and we denote by M the von Neumann Algebra L£(,),
i.e., the set of (bounded) operators on $ which commute with the right action
of /. Then, given an fns weight ¢ on N (which induces an fns weight ¥’ on
N°© = L,(9), the commutant of M in £{)), and a normal, semi-finite weight ¢
on M, the spatial derivative %ﬁ‘% arises naturally in the L2-module context: it ap-
pears as the relative modular operator A, ;. Hence, the L2-von Neumann module

theory incorporates the theory of the spatial derivative.

1.3 Future Research

The Hilbert spaces on which von Neumann algebras act from both the left
and right have been referred to as “L2-von Neumann modules.” What should

be inferred from this usage is that there exist other types of modules. Indeed,



following the work of Lance [6] on “Hilbert C*-modules”, it is possible to define a
notion of an L®-von Neumann module. £ is an L*°-von Neumann module if it is
the dual of a Banach space £,, and if a von Neumann algebra M acts Em £ (from
either the left or the right); additionally, £ should be equipped with an “M-valued
inner product.” Proceeding in a fashion analagous to the methods used in the L?
theory, we can characterize L>°-modules as “sitting in” von Neumann algebras.
Moreover, we may develop a tensor product of these modules which respects their
module structure. This leads directly to a theory regarding the preduals, which
may well be termed an L! theory. We may then proceed to a tensor product of
these modules. The ultimate goal is to arrive at a satisfactory L» theory, which
would of course encompass all previous results.

In the course of developing a theory of Operator Valued Weights without the
use of structure theory, an interesting byproduct arises: the need to more fully
understand “generalized weights.” These extend the usual concept of weight on a
von Neumann algebra in that they are not defined on (some subset of) the pos-
jtive cone, nor are they restricted to take values in the extended positive reals.
Intuitively, generalized weights are usual weights which have been “twisted” via
a partial isometry. Such objects appear when considering 2 X 2 matrix algebras,
M, (M), over a von Neumann algebra M, and its corresponding weights; the gener-
alized weights occur on the “off-diagonal.” It appears possible to formulate a type
of “polar decomposition,” in which the generalized weight is written as a product

of a usual weight (which plays the role of the “absolute value” of the generalized



weight), and a partial isometry. Such a generalization is necessary for the further
understanding of non-commutative measure and integration theories. .

In addition, it would be beneficial to understand the relationship between the
existence 6f an fns operator valued weight T: M, — Jv:, and the presence of
an “anbounded projection” E: D(E) — L?(N), where D(E) C L?(M) is a dense
subspace on which E is defined. This would clearly extend (once again) the work
of Takesaki, in which the existence of a normal conditional expectation £: M — N
implied the existence of a projection from L2(M) onto L2(A). The goal is to glean
as much information about the structure of the inclusion A C M as one can by
examining this E. Note that calling E a projection is misleading — one cannot
think of L2{N) as “sitting in” L2(M).

Finally, the previous paragragh indicates how work on operator valued weights
and on von Neumann bimodules can be unified. Much current research is con-
cerned with the question: given two von Neumann algebras, N' C M, what is the
nature of this inclusion? The study of bimodules arises naturally in this setting;
hence, it is not unreasonable to hope that techniques arising in the study of the un-
bounded projection alluded to above can be applied to research into the structure

of bimodules.



CHAPTER 2

! Operator Valued Weights

2.1 Notation and Preliminary Results

In order to discuss the subject of operator valued weights, we begin with a
review of some of the relevant terms and concepts. When studying weights, we
consider the extended positive real numbers R, U {oo}. To study “unbounded
conditional expectations” (i.e., operator valued weights), we need to consider the
“extended positive part” ]\7:_ of the von Neumann subalgebra A of M. We begin

with the following:

Definition 2.1 For ¢ von Neumann algebra M, the extended positive cone M,

of M is the set of maps m: M} — [0, 00] with the following properties:
(i) m(Ap) = dm(p), weMf, A20,

(ii) m(p +¥) = m{e) +m(¥), @, %€ ML,

(iii) m is lower semi-continuous.

Clearly, the positive part M, of Misa subset of ./(4:_ It is easy to see that ./U[; is

closed under addition, multiplication by non-negative scalars and increasing limits.




Example. Let {M,$} be a von Neumann algebra and A a positive self-adjoint

operator on § affiliated with M. Suppose that

A:fom)\de()\)

i

is the spectral decomposition of A. For each p € M, set

mae) & [ Adi(e().

Then m, satisfies the all three conditions of Definition 2.1. The last condition,

the lower semi-continuity, is a consequence of
ma(p)=sup w(A,) with A, = / Ade(X) € M.
n 0

It now follows that

- J4veelz, € € D(AY2),
malwe) = [ Ad(e(VE &) =
+00, £ ¢ D(AY?).

Hence if B is another positive self-adjoint operator on $) affiliated with M, then
the equality m 4 = mp means precisely A = B. Hence the map A—m, € ./\7[?iL is
injective. Thus, the set of positive self-adjoint operators affiliated with M can be
identified with a subset of the extended positive cone M, + O
We shall see that the above example is in fact generic, in a sense that will be
made precise in what follows.
We continue the exposition by defining several operations on elements of ./U[:_,

which justify the terminology “extended positive cone.”

10



Definition 2.2 For m,n € Jﬁ;, A > 0 and a € M, we define the following

operations:

(Om)(e) = dm(p), v € MF,
(m +n)(p) 2 m(p) +nlyp), @€ M,
(a*ma)(¢) = m(apa’), @ € M.

We also note here that sup; m; of an increasing net in f\:ﬁ can be naturally defined.

Lemma 2.3 Let {M,$H} be a von Neumann algebra. To each m € H+, there
corresponds uniquely a pair {A, R} of o closed subspace R of § and a positive

self-adjoint operator on & such that

(i) & is affiliated with M, in the sense that the projection o R belongs to M,
and A is affiliated with M;
(ii)
| AV2E||2, € € D(AYZ)

+00, otherwise
Here we means, of course, the functional z € M — (z€ | §).
The proof of the above lemma, as well as the next theorem and its corollary, is
standard, and is therefore omitted. (See, for instance, {1].)

We say that an element m € M, is semi-finite if {x € M7 : m(p) < +oo} is

dense in M, faithful if m(yp) > 0 for every non-zero ¢ € MF.

11



Theorem 2.4 Let M be a von Neumann algebra. Each m € J\Tﬂ has a unique

spectral decomposition of the form:

(2.2) (@)= [~ Adp(e(N) +oop(p), v € ME,

¥

where {e(\) : X € R} is an increasing family of projections in M which is o-
strongly continuous from the right, and p = 1-tim,_, , e(}). Furthermore, e(0) = 0

if and only if m is faithful, and p = 0 if and only if m is semi-finite.

It is now apparent, given the above Theorem, that Example 2.1 represents a generic
element in ﬁ,,,.

To simplify notation, we shall write
(2.2) m = H + oop, H=/°°,\de(A),
0

when m has the form of (2.2). We keep the convention 0 - (+o0) = 0. Although

we consider H as an operator affiliated with M, we use the following notation:
D(HY?) = {¢ € H : m(w;) < +oo},
as long as doing so causes no confusion.

Corollary 2.5 Any normal weight ¢ on M has a unique ectension, denoted by ¢

again, to J\Z_ such that
o(hm) = Ap(m), A>0, meM,,
p(m+n) = p(m)+@(n), mmne M,

w(SI;p My) = sup @{m,),

12



for any increasing net {m,} in J\Z_, where, in this contezt, {m,(w)} is increasing

for every w € M+,

So, we may think of the extended positive cone of M as M_, along with a myriad

£

of “points at infinity” adjoined to it. There will be a different infinite point for
each projection in M. When we think about the extended positive cone in this
way, it is clear why we adopt the notation in (2.2').

Now, for each m = H + oop, we put
L -1
me=(1+H) (1 -p),

1
mEéH(1+5H)"1(1—p)+;p, e>0.

We note that both my and m, are bounded.
Lemma 2.6
(i) For each m, n € .)T/l:, we have the following equivalence:
m<n&my2n, e m Sn,, e > 0.

(ii) Let {m,} = {H, + cop,} be an increasing net in M, and m = H + oop.

Then we have

mCl / m ¢> (ma)o \ mO <:> (mC!)E / mE! £ > 0‘
Proof.

(i) Suppose m < n. Let m = H+oop and n = K +o00g. By assumption, we have

p<gq Let R=(1-p) $Hand £ =(1— ¢q)9, where  denotes, as usual, the

13



underlying Hilbert space of M. Forany £ € £,set n=(e1+ H)"'{ € D(H)

and ¢ = (14 K)~1£ € D(K). We then have

(e1+ K)7 | 2= (€| (1 + K)7€) = ((e1 + H)n | ()
| = ((e1+ H)*n | (e1 + H)Y2()?
(¢ € D(K) ¢ D(K'Y?) C D(HY?) = D((e1 + H)U/Y)
< ||(e1 + H)l?ll(e1 + H)Y2(|1”
= ((e1+ H)n [ n){(eX+ H)(| )

< ((e1+H)n|m(e1+ K)C | <)

= (€] (e1+ H)TOE | (e1+ K)2E),

so that

1+ K)') ) < (A+ H)TE| ), £€8.

Hence we get ng(wg) < mg(wg) for any £ € £ by setting e =1. If { € £+,

then ny(we) = 0. Thus we conclude ng < my.

Conversely, suppose ng < mg. It follows that p < ¢g. Let & and £ be as

before. The assumption means that

(A +H)E1)2(A+EK)E[E, (e

Setting (1+K)~1€ =0 for £ € L1 N R, we view (1+ K)~! as an operator on
£ and have (1+H)~! > (14 K)~1. Then we have (1+H)~1/2 > (1+K)"1/2,
and

D(H?) = (1+ H)"V28 D (14 K)128 = D(K/2) .

14



(i)

The argument in the first paragraph shows
(1+H)(14+e(Q+H)y ) 1=(e14+(1+H))!
<(EI+A1+K) ) '=10+K)(1+e(1+ K)-1).
Ifée DF(KV?), we have
1@+ B2 = lim [(1+ F)MA(1+ (1 + K)~2)-3/2¢
2 lim ||(1 + H)'2(1 + (1 + H)=1)=2¢g]|f?

= L+ By,

so that we conclude 1+ n > 1 + m; equivalently n > m.

Now, we have already demonstrated m < n < my > ng. For a fixed € > 0,

we have then
m<ne&em<en s (em)y > (en)y
& 1—(em)o <1 - (en)y
1 1

& m, = E(l —(em)o) £ 2(1 - (en)o) = ne.
By (i), the net {{m,)o} is decreasing. If £ = inf,(m,);, then there exists
n e J(/[—:r such that ny = £ because (m, )y < 1 implies £ < 1. If m = sup, m,,
then we have my, < (m,)g, s0 my < ng, which implies n < m, again by

(i). Hence my = inf,(m,)e = lim(m,)o- Thus we prove the equivalence:

Me .~ M & (Mg)y \, . Finally, the equality
1
m, = (1 - (em)o)

gives the remaining equivalence.

15



|
We now state and prove a proposition which gives some indication of the di-
rection in which we are headed. We are trying to see how to associate elements in

the extedded positve cone of a subalgebra with weights on the whole algebra.

Proposition 2.7 Let @ be a faithful, semi-finite normal weight on M, and set
N =M,. (Where M, denotes, as is customary, the centralizer of v in M.) For

each m € ./v:, set

(2.3) om(r) =lme, (), €M,

e—f

(Recall, as m, € Ny = (M), @m, =]

o(m,-) gives a weight on M.)
Then the map m € J\7; — @, is an order preserving bijection from J\!/'_HF onto

the set of all of -invariant, not necessarily faithful nor semi-finite, normal weights

on M. Furthermore, we have
m, / m in m & Om, /" Pm pointwise on M.
Proof. For a fixed z € M., we “define” a normal weight ¢* on N by
©*(a) 2 p(a¥/?zal/?), @€ N,.

Of course, we must check that ¢ is, in fact, a weight, and that it is normal.
Positive homogeneity is not a problem; but linearity (“additivity” } must be verified.
Observe, however, if we prove the additivity of ¢®, then the normality will follow

from that of .

16



Let a, b € N, and ¢ = a+b. Choose s,t € N as usual so that al/? = scl/2,
pl/2 = tc1/? and s*s + t*t is the range projection of ¢. If ¢®(c) < +oo, then
y = cl/2zcl/? € m,. (Here, m, denotes the domain of ¢, having been extended by

linearity.) Hence, sys* and tyt* both belong to m,, and we get
o(sys*) + p(tyt*) = p(ys*s) + p(yt't) = p(y(s*s + 1)) = w(y) = ¥*(c);
plsys*) = platzal?) = o7(a);

p(tyt) = p(b/2xb'/?) = ©™(b).

Thus, ¢*(a) + ¢=(b) = ¢*(c). Now, we have
8= lin%al/?(c +el1)"V2, = lim B2 (e + £1)~1/2
£— P,

s0 that

M2zl = lim(c + £1)~Y2cze(c +e1)71/2
= lim(c+ £1)"1/%(a + b)z(a + b){c + 1)1/
<2 lir%(c + e1)"1[aza + bzbl(c + 1) ~H/?

= 2(s*al/2zal/2s + t*H1/2zb/2t).

Therefore, if p=(a) < +oo and ¢=(b) < +00, then *{c) < +oo; hence *(a+b) =
@=(a) + @=(b) for a,b € N,.

Now, for each m € N, we set
) I
(Pm(x) =y (m): T € M+'

This makes sense by Corollary 2.5: we have ©*(sup, m,) = sup, ¥~ (m,) whenever

m, ~ m. Hence we obtain

Pm(z) = ¢™(m) = lim *(m.) = lim o, (2).

17



If z, /= in M_, then
p*(m) = sup @, (T) = SUpsup Pp, (7,)
>0 >0 o
= SUP SUP P, (To) = SUP Pu(Ta )
¥ a g>0 2]

s0 that ¢, is normal. The additivity of ¢,, follows from the convergence in (2.3).
The invariance of ¢,, under {¢f : t € R} follows from that of ¢, . The
remainder of the proof is straightforward. [
We now define operator valued weights. These will generalize ordinary weights,
as they are allowed to assume infinite values; also, they extend the concept of
conditiona} expectation (“projection of norm one”) in that they map from a larger

von Neumann algebra onto (the extended positive cone of) a subalgebra.

Definition 2.8 Let M be a von Neumann algebra and N a von Neumann subal-
gebra of M. An operator valued weight from M to N is a map T: M, . .Kf:_

which satisfies the following conditions:

(i) T(Az) = AT(z), A>0, zeM,.
(i) T(z+y)=T{z)+T(y), =z,y€ M,

(iii) T(a*za) = a*T(z)a, zE€M,, a€N.
In addition, we say that T is normal if

() T(z,) / T(z) whenever z, / z, T, T € M,.

18



As in the case of ordinary weights, we set

nr = {z € M: ||[T(z*z)| < +o0}

Myp :ﬂ.;—.ﬂT: {Zy:mi:wls"' Ty ¥y oo 2 ¥n enT}
i=1

F

We now state the following lemma, whose proof is standard:

Lemma 2.9
(1) mqp is spanned by its positive part:
m} = {zx € M, : [|[T(z)|| < +oo}.

(i1) my and np are 2-sided modules over N.

(iii) T has a unique linear extension T: my — N, which enjoys the module map
property:

T(azb) = aT(z)b, a, bEN, € mq.
In particular, if T(1) =1, then T is a projection of norm one from M onto N
In the sequel, we shall not distinguish 7' and T unless we need to.

Definition 2.10 We say that T is semi-finite if ny is o-weakly dense in M; faith-
ful if T(z*z) # 0 for z # 0. We denote by WM, N) (resp., Wy(M,N)) the set
of (resp. faithful, semi-finite) normal operator valued weights from M to N. In
the case that N' = C, we write (M) (resp., L0y(M)} for (M, C) (resp., for
20, (M, C)).
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Note that if T: M — .7\7:_ is a normal operator valued weight, it can be extended
to a normal “linear” map from M, — N. Therefore, if P C N C M is an
inclusion of von Neumann algebras, and if T € 20(M,N) and S € (N, P), then

we have SoT € W(M,P).

Proposition 2.11 If P ¢ N C M are von Neumann subalgebras and if T €

W, (M, N) and S € Wy(N,P), then So T € Wy(M,P).

Proof. The only non-trivial part is the semi-finiteness of So 7. If z € ny, then
T(z*z) € NM,. Choose a net {a,} in ng such that a, — 1 o-strongly. Then we
have

(S 0 T)(azz"sa,) = S(e;T(az)a,) < |T(@*2)||S(a3a0),

so that za, € ng,p. Hence ng.r is o-strongly dense in M because nr is. |

Proposition 2.12 Suppose N', M are von Neumann algebras, N ¢ M, and T €

mg(M, N), then

(i) T(myg) is a o-weakly dense 2-sided ideal of N;

(11) After extending T to T: M, — N, we have T(M—;) = Kf;
Proof.

(i) From the module map property of 7' (Lemma 2.9(iii))

T(azb) = aT(z)b, @a,b €N, z €my,
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it follows that T(mg) is a 2-sided ideal of . Let z denote the greatest
projection of the o-weak closure of T(mz); note that z is central in A
Assume z # 1. As ng is o-weakly dense in M, there exists z € 'nT with

z(1°— z) # 0, so that (1 — z)z*2(1 — z) € ms \ {0}, and as T is faithful
0#T((1—2)z"z(l — 2)) = (1~ 2)T(z*z)(1 — 2) = 0,

which is a contradiction. Hence z = 1, which means that T(my) is o-weakly

dense in N.

Take any b € T(mg),. Then b is of the form b = T(h), h € my. Replacing h
by 2(h + k*), h can be chosen to be self-adjoint. Now, by Lemma (2.9), we
know there exist a;, a, € mf such that b = T(a,) — T(a;). Then, we have
b < T(a,), so we can find s € N such that b = sT(a,)s*. With a = sa,s*, we

have b= T(a), a € m#. Hence T(m;), = T(m}).

Now, let {b,},c4 be a family in the positive cone of the ideal T'(my), , maxi-
mal with respeet to the property 3,c4 0, < 1. By this maximality, and an ap-
peal to the Kaplansky Density Theorem, we may conclude that 3¢, 8, = 1
in the o-strong topology. Every y € N, is then of the form y = ¥4 y%bzy%,

so that we have y = 3,5 T(z,) with {z,} C mf.

Finally, suppose z € JV:L From (2.2}, it follows that there exists a sequence
& )y
{¥a} C N, such that y, / 2. Set z; =y, and 2z, 2y, — y,_;, © > 2.

Then we have z = 33> 2,. Each 2, can be written 2, = 3 T((z,),) with

n=1"n
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{{z,),} € m}. Hence we have

=7 (S 30)

where T has been extended to M. Thus T maps M, onto M.
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2.2 Haagerup’s Theorem without Structure Theory

We now state Haagerup’s theorem. It is obvious how it generalizes Takesaki’s
Theorem [8] which states that a necessary and sufficient condition for the existence
of a normal conditional expectation £: M — N with respect to a normal, faithful

and semi-finite weight ¢ is the invariance of N under the modular automorphism

group {07 }.

Theorem 2.13 Let N' C M be von Neumann algebras. There exists a faithful
semi-finite normal operator velued weight T: M, — J’\-C. if and only if there exist

faithful semi-finite normal weights @ on M and ¢ on N such that
(2.4) of(z) =of(z), zEN.

If this condition is satisfied, then T can be chosen in such a way that ¢ = ¢oT;

moreover, T is uniquely determined by this identity.

In order to prove this, we begin first with a Lemma which is of independent
interest; note its measure-theoretic Havor. A proof similar to the one included

herein can also be found in [1]; we have included it for completeness.

Lemma 2.14 An estended positive real valued function m: M} — [0, +00] having

the properties
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(i)
m(hg) = dm(p), A >0, p € M}
(i)
m(p + ) = m(p) + m(¥), v, ¥ € M,
is lower semi-continuous, and hence a member of the extended positive cone f/l:,,

if and only if m is countably additive in the sense that

m (g:l wn) = i m(p,)

n=1

for every {@,} C M+ with T2 [lgn]l < +oo.

n=1

Proof. The forward implication is trivial, so we prove only the reverse direction.

Suppose m is countably additive. Represent M on a Hilbert space § and
consider m: w € L(MF > m(w|m) € [0,+00]. We claim first that m is lower
semi-continuous if 7 is. Suppose 7 is lower semi-continuous. Then there exists a
unique pair {A, &} of a closed subspace & of £ and a positive self-adjoint operator
A on £ such that (2.1) holds. As uwu*|s, = wy for every u € UM, urmu = m,
so that {A, &} is affiliated to M, and m = m,. Thus, m is a member of E
Therefore, it suffices to prove the lemma for M = E(S’J). Replacing m by m'
defined by m'(¢) = m(p) + (1), we may assume m(p) > loll, ¢ € MF. As
M, = LY(M,Tr) is an ideal of M, we can define a map ¢: 7 € M, 5 [0,+0oc] by

mlw,), z € LY{(M,Tr),

w(z) = :

+00 otherwise
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where w,(a) = Tr(az), a € M, z € LY(M,Tr). Then ¢ is a weight on M, and
@ 2 Tr. Let {z,},c4 be a family of positive operators with z = 2T, EM I

Tr(z) = +o00, then ¥, Tr(z,) = oo and

00 =3 Tr(z,) < 3-¢(za) < (2),
80 that p(x) = oo = T p(z,). If Tr(z) < +oo, then ¥ Tr(z,) < +o00, so that

T, # 0 for at most countably infinitely many o's. Hence we have

> olza) = 3 omlwy,) = m(Y w,,)

aEA

Thus, ¢ is a completely additive weight on M, and hence is normal. If {z,} is
a sequence in LM, Tr), with lim,_, ||z — z,[|, = 0, then {z,} converges to T

o-weakly, so that
m(w,) = ¢(z) < liminf ¢(z,) = lim inf m(w, ).

Hence m is lower semi-continuous. [
We will also need the following Lemma, which appears without proof. It can
be demonstrated by an application of one of the results in the theory of the cocycle

Radon-Nikodym derivative. (See, for example, [10].)

Lemma 2.15 Let ¢ € W(M) and {a,} be a sequence in M) (Here, as usual,
My represents the reduced algebra.) Then the following two conditions are equiv-

alent:
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(3)

p(z) =Y wlayzay), TE€M,

n=1
(i4)
{a.} C 'D(Uf,-,,az) and Z Uf,‘/g(an)*gfi/z(an) = s(¥)
n=1
Here, D(Ufin) is the set of z € M for which the map t — of from R — M extends

to an analytic map z — o¥, taking {z € €:0 < &(z) € -1/2} = M.

We can now proceed with the proof of the main theorem of this section.
Proof. (of Theorem 2.13)

Suppose that N” C M are von Neumann algebras, and
of(z) =of(z), TEN,

for some ¢ € Wy(M) and ¢ € Wy(N). We fix @ and . For each ¢ € 2W(N),
we have the cocycle derivative u;, = (DY : Dy), € N, t € R By a result of

Masuda [12], there corresponds to ¢ a ¥ € (M) such that s(¢p) = s(¥) and
(DY : D), = u, = (D : Dy),. As we have
(D(M) : Dg), = X(Dv : Dy), = Xit(Dv - D@),
= (D(M) : D)y,
we obtain ’):Ebf = AP, A> 0.

By the chain rule for cocycle derivatives, we know (D'J)l . Dy), = (D - D)y

for any ¥, € I(N) and 9, € We(N). Let {+.} be a sequence in N} satisfying
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Y= ¥, € NF. Let uﬁ") = (D%, : D), (when we restrict our consideration

to Ny and M ;). Then we know that u(_’:)/z is defined, and

Ya(2) = Y, s (w),)), T EN.

13

Therefore, Lemma 2.15 implies
S() = 32 %0502
= 2 a;’:’,z(u(_'?ﬂ)a:‘fm(u(_";%)*
= 3= 08D DI)-im)ou(DFr: DY)y

As s(1) = s(¢), the above calculation shows that

oo

P(z) =Y wa(z), = €M,

n=1
It follows that the map ¢ € Nt — W € MW(M) is homogeneous and countably
additive. Hence, the map ¥ € Nt — P(x) € [0, 4+00), z € M, gives rise to a map
T: M, = N,.
Note that we also have the following: for every u € U(N),
(D(uypu*)™ : D@), = (D(uypu*) : D),
= u(Dy : Dp)of (u*) = u(DY : DF),0f (w'),

so that (uyu*)” = uipu*, u € UN).

We now want to show

(2.5) T(aza*) = aT(x)a*, a €N, 2 € M,.
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First, we observe that if a € AN, with 9 faithful, then (Da*tpa : Dy}, = (a*a)™.
Here (a*a)'* should be considered in the reduced algebra N, ), with sr(a) denoting
the right support of a, so that (Dm : D’;B)t = (Da*ya : DY), = {a*a)®; hence
m = a*ya. I ¢ is not faithful, then we consider ¥ = ¥ + ' with ¢ € M(N)

such that s{¢') = 1 — s(¢)); we apply the above argument to 9" to conclude
a*da = a*va, a € Ny.

Now, we repeat the preceding argument using N ® M,(C) and M @ M,(C) in
place of N and M, respectively. (Accordingly, we replace ¢ with 1 ® Tr, and "
with 9 ® Tr.) We observe that ¢?®T(z) = af-@n(x) for every z € N ® M,(C).

This implies that there exists a map §: (M & M,), — (Nth such that

(v @Tr)eS(z) = (¥ @Tr)(z), =€ (M®M),.
As C® M, C Nygr, for any faithful ¢, we have Mr =9 ®@Tr. If « € N such
that [|a}] < 1, we set

a (1 — aa*)1/?
U= eEN @ M,;
_(1 _ ata)1/2 a*

then v is unitary. Therefore, we have

T

w* (1 ® Tru = v* (¢ ® Tr)u.
With {e;;} the standard matrix unit of M,, we have

(1®e;)(¥@Tr(1®e;)] =(1® e (W Tr(1® €:5)
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since (1 ® e;;) € (N @ My)ygny- Hence we conclude that
[(1®e)u (1 ®@en)(¥® Tr)(1®e;)u{l @ en)] =(@® 611)"(@ ® Tr)(a ® eyy),
ie.,
[(e*®en) ¥ @Tr)(a@ey)]” =(a*® en)(¥ ® Tr)(a @ ey).

This means that

a*pa = a*ya

for every a € N with |je|| < 1, which gives us (2.5). Therefore T is an operator
valued weight of M, onto N: such that '45 = oT, ¥ € Wy(N). As 1,[1 is faithful
for any v € Wy(N), T is faithful.

The semi-finiteness and uniqueness of T', together with the converse in Theorem

2.13, are consequences of the next Lemma. |

Lemma 2.16 Let N C M be von Neumann algebras and T: M, — N be a

normal operator valued weight.

(i) If ¥ o T is semi-finite for some ¢ € Wo(N), then T is semi-finite.
(it) If ¥ € W(N) and S € WM, N} satisfy poT =9 oS, thenT = S.

(i5) If T € Wo(M,N), then
(2.6) o?T(z) =0 (z), zTEN.

Proof.
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(i)

Set =1 oT. Let hemg and
T(h) = /m,\de(,\)+oop
1)

be ‘the spectral decomposition. As 7o T(h) < +oo, and ¢ is faithful, we
have p = 0. Hence e{)) /1 as A / oo, so that e(A)he(A) — h strongly
as A/ o0, and T(e(AYhe())) = e(A)T(h)e()) € N,; hence e(A)he(]) € mi.

Therefore m¥ is o-strongly dense in M.

For any = € M, and a € N/, we have
W(a*T(z)a) = $(T(a*za)) = $(S(a*za)) = P(a*S(z)a),

so that (aya*) o T = (apa*) o S for any a € N. Therefore, if z € mE Nmi,
then T(z) = S(x), since {aya* : a € n,} is a dense subset of N+, For a
general x € M, consider the spectral decompositions
m= 5(z) = f()mAde(A) +oop €Ny
n="T(z) = /Om,\df(,\)—l—ooq e V..
Then we bave e(A)ze{)) € m{ NmF and
me(X) = e(A)S(z)e(X) = S(e(A)ze(A))
= T(e(Nze(N)) = e(AN)T(z)e(r)
= e{A\ne(A);

similarly

nf(3) = FA)mfR), A0,
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(iif)

So we have, for every & € Usxo e(A)9y,
|m/2&|2 = m(wﬁ) =n{w) = lint/2€|1%;

similarly

[mb/2elf2 = In/2g||2, &€ U f(N)Dy.

AZ0
But m1/2 (resp. n!/2)is essentially self-adjoint on Ue(M)$H, (resp. U F(A)Hy),
so we get

lmi2g|2 = |nt/2€ll, € € D(mH?) N D(r!/?).

Hence there exists a partial isometry u € A such that ml/2 = un!/? and
nl/2 = y*m!/2; the uniqueness of the polar decomposition implies m!/2 = n1/2

and (1 —p)=(1—g). Thusm =n as elements of A,. Hence S=T.

We shall prove G(¥;) C G(o¥T). (Here, G(o¥,) represents the graph of
the (densely-defined) map o?.) Let % =1woT, and (a,b) € G(c¥,). As
a € D(”ﬂ:/g) and b* € 'D(a‘_”iﬂ) = ’D(cr:f,z)‘, there exists M > 0 such that for

every z € N,
¥(aza*) < M*Y(z), P(brzb) < M2Y(z).

Taking increasing limits, we see that the above inequalities are valid for every

T € E, so that

dlazar) < M2(z), (b zb) < M2(z)
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for every = € M, ; therefore nza* C ng, nJ,b cny and, Vr € ng,

[ng(za* )|l £ Mlng(z)|| ond
(2.7)

|7 (zb)| £ Mling ()]l

(2

We will prove (a,b) € Q(J’f’-_,;). By invoking a result from the theory of cocycle

derivatives [10], it suffices to show
1@(@9:) = 1/3(:5!)), T € my.

Fix zq = y}2o with Yo, 2o € ng Ny, Since nja* C ng, and because nr is a

right A-module, we have
azy = (Ypa*)*zp € (ny Nnp)*(ng N np) C my Nmr.
Similarly, we get
Tob = y3(20b) € my Nmy.
‘Since (a,b) € G(o¥;), we have
¥ o T(azg) = ¥(al(z,)) = (T (2)b)

= w 0 T(mﬂb))a

so that
’%B(leu) = Tf;(ffob)-
Now suppose ¢ = y*z with y, z € n;. Since ¢ o T(y*y) < +oo, we have the

spectral decomposition of T(y*y),

Tlyy)= [ rde().
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For any A > 0, we have ye()) € ny and
o T(e(Nyye(N) = Ye(NT (y*y)e(X)
<y oT(y'y) < +0o,
so that ye(}) € n. Furthermore,
lng(ye(X) = wII> =¥ o T((ye(M) — y) (ye(X) — ¥))

= (1 = ()T ()1 — (V)

_—_w(f:ofyde(fy))—>0 as A — 00.

Similarly, with the spectral decomposition of T (2*z),

T(etz) = [ AdFOV,

we have zf(X) € ng N0y and
Lim |ng{zf(}) — )il =0
By (2.7), we get
Jim llns(ye(Nat) — nglyar)ll =0 and

lim iy (2f (V)b) = ng(zb)l] = 0.

Therefore, we obtain, by the previous arguments for zy,

Baz) = (1g(2) | (mglua?) = Jim (mp(2f ) | s(wee”)
— tim Palye(N) ()
= }ﬂ&(@e(A))*(Zf(A))b)
= lim (n(2 FOOB) | g lve(N))

= (ny(zb) | ny(w)) = ¥(zb).
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Hence, we may conclude that (a,b) € G (o"_f’,-), ie., G(a¥) C g(cri- .

Now, we know that = € M is of exponential type relative to {cr;":} if and only
if

r€ () D(o%,) and
nel

sup [|o% . (2)[le~" < +o0

for some ¢ > 0. Hence N 'f‘p C My . For each z € N} oy We consider
L 4v ¥ C
y(a) = o¥(z) —o¥(z), a€l.

The preceding discussion shows that the function f,: o € C— w(y(a))e €
(where w € M,) is an entire function of exponential type, and that f,(—in) =
0, n € Z. Hence f,{a) = 0 for every o € C, and, since w € M, was arbitrary,

we must have y(a) = 0. This means that

o¥(z) = o¥(z), TENY

exp’

As N¥_ is g-weakly dense in N, we may conclude (2.6).
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2.3 Some Examples of Operator Valued Weights

We now wish to present a few examples in which the action of the operator
valued weight can be made explicit. These examples will demonstrate the ap-
propriateness of interpreting the application of an operator valued weight as a(n)
(partial) integration. In each of the cases to be discussed, the role of M will be
played by £($) (for an appropriate Hilbert space $), @ will be Tr, and N will be

a subalgebra of M which possesses its own trace ¢. Hence, the condition
cf(z) =0f(z), TEN

is trivially satisfied. Note also that in the following examples, no distinction will

be made between T and its extension T.

1. Let G = Z, i.e., we are going to consider a discrete, countable abelian group.
Take any z € £(£2(Z)); we may write z = (x;;); jez- Then (believe it or not),

the operator valued weight

e ——

T: LOT))y — £2(2)
is given by
T(z) £ (Tan)nez:
that is to say, we are merely taking the “diagonal” of the “Infinite matrix”

z;:). For this to be an operator valued weight, one must specify how T'(x
3] y
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acts on elements of £=(Z)} = £(Z),. But in this case the action is clear:
given any w € fo(Z)F, we may write w as (;)icz- Then, given any €
L(£2(Z)), we have

¥

T(x)(w) = Z o

nel

Ohserve that in this very special case, my = M in fact, T(14) = T(1 ) 5O

T is actually a conditional expectation.

Let G = T, i.e., we are considering the compact, abelian group case. Then

the operator valued weight is given by

z € LIAH(TY)y m S uraut € L(T)y,
kel e

where (u£)(() £ (£(¢). Note that if we choose e,(¢)= ¢, then {¢; 11 € 7} is
a complete, orthonormal system for L*(T). Taking x =t (here, we define

teoe;” 2 (n | €;)¢;, for any n € L(L3(T))), we obtain:

(T(@)E) () = 3 € — k)¢

kel
= (I (0),

where

- 1 :
&n) = o [ emme(@)dc.

The previous calculation shows us that ¢, ., € mp Y i,j € Z,so that T is
indeed semi-finite. Once again, though, it is necessary to define T(x)(w) for
any z € L=(T),. Unlike in (1), however, T is nota conditional expectation,

so we cannot hope to define T (z){w) in as elementary a fashion.
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We proceed as follows: Let $ = L*(T); then for any z € L(LX(T)),, we

define a map ¢,: §H — [0,+00] via

(2.8) () & T Iz 2u gl

keZ
g, is then a lower semi-continuous quadratic form, whose domain D(q,) in-
cludes {t.,., : ¢ € Z} (again, by preceding calculation); hence, to it is asso-
ciated a positive, self-adjoint operator H_. Moreover, due to the form of ¢,
it is clear that H,nA. Hence, Ve > 0, H,(1+¢H,)™ € N, = L=(T),.
Moreover, we know that £, < €, = H (1+ e,H) ' < H(1+ ele)’l. We

may therefore define

T(a)(w) 2 lim (w, Ho(1+eH,) ™).

Throughout the remainder of the examples, whenever the action of an op-
erator valued weight T' is exhibited as a summation (or integration), it is to
be understood in the above context, viz., we should condsider the quadratic
form induced by our definition of T in a way entirely analogous to (2.8), and

then consider the appropriate (possibly unbounded) operator.

. Let G = R, i.e., we are considering a separable, locally compact but non-
compact, abelian group. In this case, the operator valued weight is given
by

T: z € L{LAR)), — /ﬁzn w(Nzu(-A) dr € L=(R);,
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where
A
(u(M)€)(s) = e*4(s), VEe LAR).
Taking {¢; : ¢; € L2(R) N L*(R),7 € N}, a complete orthonormeltl system for

L2(R), and again taking z to be ¢, ., we obtain:

In the general setting, where G is any (separable) locally compact, abelian

group, with dual group G, we will have T': L(L*(G)), — L% + given by

7(x)2 [ u(pau(-p)dp.

where
(w(p))(9) £ (p.9)e(9), VEELXG).

Here, of course, {-,-) denotes the duality between G and G.

. Suppose G is a discrete, separable group, but not necessarily abelian. If G
is ICC (i.e., infinite conjugacy class), then R,(G) C L(£2(G)) is a II;-factor,
and therefore possesses a tracial state 7. So again, we are motivated to look

————

for an operator valued weight T': L(£2(G)), — R(G),.

In this setting, the operator valued weight is given by

T(z) = Y. o(g)zp(g)*,

9€G

where

p(g)E(R) £ E(hg), ¥ &€ B(G).
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To see that this is so, we note immediately that T is clearly positive homo-
geneous and linear on all of L(£2(G)),. If we define ¢,: G — C, g € G via
€g(s) £ b, 4, then clearly {¢, : g € G} is a complete, orthonorma:II system for
£2(G). Take z =t ,; then z € LF(£2(G)) (the set of finite rank operators);

we calculate:

T(z) = T(tey ) = 2 A(S)egenP(8)"

s€G
_ —1
=5 ()t (57 = D PsKese,
s€G sEG
= Z tfg,—l Epa—1’
seG

Now, we will demonstrate that T (tegigh) is actually equal to A(gh—1), where

(as usual)

Mg)é(h) 2 €(g™ h), V&€ E(G),
For any k € G, we compute:

e es. z t€g,—1 gt €k

s€EG

"Efklfhs €451

seG

= Z 5k,hs_1 Egs_l

$€G

=D b k-1n€ges

s€G
= egn-1k = Agh7l)ex
Hence, we see T({t. ., : 9.7 € G}) € R,(G); thus T is semi-finite. Also,

T is faithful: to say T(z*z) = O implies L,eqp{s)z*zp(s)* = 0. But
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p(s)z*zp(s)* = (zp(s)*)(zp(s)*), so T(xz*z) is a sum of positive elements,
which can only be 0 if each (zp(s)*)*(zp(s)*) = 0. But since each p(s) is
unitary, this will only be so if z*z =2 = 0. Finally, the definition of T (i.e.,

as & “sum of positive elements”) ensures its normality.

It is also interesting to note that the form of T is that of “integration over
the commutant:” specifically, we are summing over {p(s) : s € G}, and we
recognize that {p(s) : s € G} = R,.(G) = Ry(G). This lends credence to
our earlier claim that the application of an operator valued weight should be

interpreted as integration.

As an aside, we mention that, on mr, T has the form

T(z) = Y Tr(M(g)*z)Mg) -

geG

Expressing T via the above allows us to view the application of T' as a kind

of “Fourier transform.”

CLet A, = My(C)® - @ My(C) = Mye (C), Ag = lim A, the algebraic direct
limit of the A,, and A = Iﬂ, the C*—alggbraic direct limit of the A,. Note
that in this context we may (and shall) consider A to be the “C*-algebraic
infinite tensor product” M,(C) ® M,(C) ® ---. Now, each A, possesses
a tracial state 7, 2 9-nTr,, where Tr, denotes the usual trace on My (C).

These, in turn, induce a tracial state on A, which we shall call 7.

In the usual way (i.e., via the GNS construction), we obtain a representation

of A, viz., {7,,9,,&}. Then, we know that 7, (A)* C L(H,) 1s a I1,-factor
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— in fact, it is the AFD II,-factor Ry. The trace on R, which will also be
denoted by 7, is given by wg, . Hence, we are now looking for the operator

valued weight T L£($,); — Ro, which satisfies Tr=70T.

To find T, it is helpful to change perspective. Let’s start by defining $ to
be {M,(C),3Tr,}, ie, Ma(C) considered as a Hilbert space, via the inner
product (X | Y) 2 Tr,(Y*X). We next define $, via 5, L5009
(n times). We embed £, < Ha41 via £+ £ @1, where 1, is the identity
matrix in M,(C). Since this map is clearly an isometry, we are free to consider

the “Hilbert space infinite tensor product;” we shall call this .

Now, it is easy to see that Ay acts on $ in a natural way via both left
and right multiplication; moreover, this action is bounded. Thus, we may
consider A(Ag), A, (Ag) C L£(5). It is also not difficult to see that we actually
have

H = H,, and (Ao} = Ro.

Let’s contemplate what occurs at the nth “stage” of the direct limiting
process. We have A, acting on 9, from both the left and right; in fact,
L£($,) = Ay, = A, @ A, Note also that we have Tr,, = Tr, ® Tr,, and

Ton = Tn @ T,. We can obtain a conditional expectation £,: £($,) — A, via
£.(x) 2 / wrutdu, ¥z € L(H,).
U(AL)

Here, we are integrating with respect to the normalized Haar measure over

the compact group U(A) = U(2"). Tt is clear that we have 15, = 7, 0 &,.
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However, note that if we want to have T.: £($,) — A, such that Try, =

A
7, o T,,, we must define T, = g

These observations guide us to the proper formulation of T'. For any = €

5(5734,, we define:

T(z) £ lim 2 [ Ad(J,ud,)z du,
H(An)

n—aoeo

where J. is the modular conjugation. (As 7 is a trace, we have JnAy) =
n,(y*), with n,: A — 9,) Forany r € A,, our previous considerations
show that this defintion yields the desired results; as Ag is o-weakly dense
in £($,), we observe (once again by an apj)eal to normality) that T is the

correct operator valued weight.

It is also interesting to note that it is possible to consider a different limiting
process applied to the previously defined £,’s. As each £ is a projection of
norm one, for any z € L£(H), {(To &,)(z) 1 n € N} € ¢=(N); if we choose
w a free ultrafilter (i.e., w € SN\ N, where, as usual, SN is the Stone-Cech

compactification of N), we may define

pu(z) & lim (70 £,)(2).

Then p,, is a hypertrace on £($}. It is, however, far from normal; it is singular
(see [9]). Hence p, is a transcendental object. Similarly, if we coﬁsider, for

any z € L£L(9), {€.(z) :neEN} € ¢=(N, £($)), we may define

&, (x) 2 lim £,(z).

n—w



®,: L(H) — Ry is a conditional expectation, but it too is highly singular.
So, it seems, we are faced with a choice: to forego boundedness for the sake
of normality (i.e., work with T'), or retain boundedness and éive up o-weak
continuity. Both techniques have utility; circumstances will dictate which

option is more useful.
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CHAPTER 3

¢ 72-von Neumann Modules and the Spatial Derivative

3.1 Left and Right Modules over a von Neumann Algebra

It is commonplace to think about von Neumann algebras presented spatially,
i.e., we consider the pair {M,$}. Then, H has a natural stucture as a left M-
module. We now want to consider a right action of a von Neumann algebra on a

Hilbert space. Hence, we are motivated to the following:

Definition 3.1

(i) Given a von Neumann algebra N, the opposite von Neumann algebra N°
means the von Neumann algebra obtained by reversing the product in N,
i.e., as a linear space equipped with *-operation we take N° to be N, denote
by x° the element in N corresponding to z € N, end then define the product

in N° via

(3.1) z°Y° & (yr)°, VYI,¥€ N.
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(i) A right N-module is a Hilbert space ) on which N.acts from the right, i.e.,
§ equipped with a normal anti-representation, T, of N on $; equivalently a
Hilbert space equipped with a normal representation of N°. To avoid unin-
teresting notational complezity, we consider only faithful right N-modules 5,
in the sense that ﬂ;.J(I) # 0 for every non-zero T € N. We denote the right

N -module $ by H, to emphasize that 9 is being viewed as a right N-module.

(iti) For a pair M, N of von Neumann algebras, an M-N bimodule means a
Hilbert space ), (often denoted pH)y to emphasize its bimodule structure),
equipped with a normal representation m of M on 9 and a normal anfi-

representation w' of N on § such that (M) and 7'(N) commute. We write:
(3.2) zfy = 7m(z)n'(y)l, VzeEM,y¢€ N.

The commutativity of 7(M) and ©'(N) is equivalent to associativity: z(£y) =
(z€)y, £ € M and y € N. Once again, we will consider only faithful bimod-

ules.

Now, let’s fix von Neumann algebras M and N. If % is an M-N bimodule,

then its Banach space dual % is canonically an A-M bimodule by the action:

)

(3.3) Ey 2 yErt, zeEM, yeN

where £ denotes the vector in % corresponding to £ € ) by the pairing: (n,&) =
(n] £), with n € $ and £ € $H. This left N-module $ will be called the conjugate

bimodule or the bimodule dual to the original bimodule .
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Of special interest is a von Neumann algebra in standard form. Let us fix an fns
weight 1 on A (so we can and will write ¢ € 2,(A)), and consider the standard
form, which we will denote by {L2(N), L2(N),,J}. The right action of N is given

by )
(3.4) &x £12°JE, zEN.

Thus we obtain an A-A bimodule L2(A), which will be called the standard bi-
module. Sometimes, we write £* for J¢, £ € L?(N). We state here the following

easy but important propostion:

Proposition 3.2 For a von Neumann algebra N, the standard bimodule L2(N)

is self-dual under the correspondence: §* < £, teL*N).

The proof is straightforward, so will be omitted.
With ¢ € Wo(N), the left action on L?(N) is nothing but the semi-cyclic

representation 7, on f,. The right action 7 of A is then given by:

It then follows from the theory of the cocycle Radon-Nikodym derivative (see [10])

that the right action of A/ is also given by the following:

(3.6) Ny (z)b = %(xcrﬂ/z(b)), ZEMN, bE D(ofm).

This twist on the right action suggests that we write zy1/2 for ny(z), = € ny,

viewing ¥1/2 as a vector of infinite magnitude "in” L*(N). Then (3.6) can be
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written more suggestively as
(3.6))  oyl/?b = (zp/2byp- Y22 = (za?, , (B))Y1/?, T €My, bE D(c?, ).
We now introduce a new notation:

fal
3.7 m,(z) = Iyng(z*), T €M,

which can be written as ¢1/2z, x € ny,. This new map n: z € nj, — ny(z) € LAN)

allows us to write (3.5) as simply

(3.8) !, (b), () = 7, (zb) = m,(z)b, zTEN, bE N.

We now consider a general right A-module 5. First, we define, given a pair

{51, H,} of right M-modules,

39)  LUH)x D2)n) 2 {t € L(91,5,) : t(€y) = (#)y, y €N},

and for L($, ), we shall write £(5,). With this notation, the right A-module
# becomes canonically an £($),)-A bimodule. Also, we note that £(L? (M) =
N (a direct consequence of Tomita-Takesaki theory) — a fact that will be used
throughout. For the pair {9;,9,}, we shall also consider the direct sum right
N-module $H, = (H,)x © (Hy)n; if we let e, and e, denote the projections of
down to $, and 5, respectively, then we have £((£;)x, (92)n) = e L(Hp)er-
Now let {M, H} be a von Neumann algebra. We want to study the relation
between a semi-finite, normal weight ¢ on M and an fns weight ¢ on M’. Set

N = (M’)°, which allows us to view § as an M-N bimodule. Let ¢ be the weight
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on N defined by

D) 2VE°), yEN,.
We first pair the von Neumann algebra {M, %} with one in standard lform, in the
following manner: let $ = LH(N)® 9 as a right A-module. Then, set R = L{(Hn)-
It is easy to verify that L(L2(N )y, fiy) = fRe, where ¢ and f are the projections
of $ onto L2(N) and $), respectively. The semi-finite, normal weights 1 on N and

w on M give rise to a semi-finite, normal weight p on R given by

o(z) & (exe) + p(fzf), z€R.

“We set
n,(H) = fre={te LIL2N ), Har) « $(t*t) < +ool;
(3.10)
D(H, ) ={E€H: |zl £ CE"‘T];)(.’E)”, z € n, for some C, > 0}.

Observe that each & € D(H,v) gives rise to an operator, denoted L (§), which

belongs to L{L2(AN)x, Hu); it is defined by the equation

(3.11) Ly(E)n,(z) £ €z, zeny, £ €D(HY).

Lemma 3.3
(i)
n,(H) = LILEN)x, Ha)ny

and

D(H,%9) = LILA(N)x, Ha) By,
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where B, = 0, (ny) C LAHN).

(it) The mapt @y y € LN )y, Ox) Onr iy =ty (¥) € D(H,y) gives rise to

a map, denoted 7, from n,($H) onto D(H,¢) such that

(3.12)

fa(to? () = (Db, tEmy(H), be D(a? ).
Here, LILX(N )y, Ha) On 1y represents the algebraic tensor product of the
(algebraic) right N -module L(L? (M), 5w) and the (algebraic) left N -module
n.

(i) D(H, ) is dense in H.

(iv) The maps Ly: & € D(H,¥) — Ly(€) € ny(H) and 7,: t € n,($H) — Ny(t) €

D($H,v) are the inverse of each other.

(v)
(3.127) Ly(6o0,(0) = Ly(€)b, € € D(H,9), b€ D(of,).

(vi) With the semi-finite, normal weight ¥ on R defined by ¥(x) £ y(exe) =
plexe), z € R, we have ng = 1y @ n,(9) @RS, with Rf C Ny, where Ny
means the left kernel of ¥ (i.e., {y e N P(y*y) = 0}). Moreover, the action
of R on $ is semi-cyclic relative to the semi-finite normal weight ¥ under
the identification ng((x,t,0)} € g < (ny(z), 7, (1)) € LAN) 5, = €y,

t € ny(H).
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Proof.

(i)

(i)

(iii)

If ¢t is in n,($H), then the absolute value |¢| belongs to ny by definition, so
that the polar decomposition of ¢ shows that t = u|t| € LIL2(N ), Ha)ny.
Con;ersely, if a € L(L2(N)p, Hx) and = € ny, then the inequality z*a*az <
le||?z*z implies that ez € ny($H). If £ € D(H,¥), then a = L,(£) belongs

to L{L2(N )y, Hy), and with the polar decomposition a = ula| we conclude

first that |a| belongs to ny, and also that £ = uny(lal) € L{LAN ), Har}By.

If ty = 0 with t € L(LY(N )y, H) and y € ny, then again, writing ¢ = ult|,
we have |t|y = 0 and tn,(y) = u|t|n,(y) = wn,(|tly) = 0. This means that
if 1,y = toyy with £,t € L(L*(N)y, Hy) and y,y; € n,, then we have
tmy(y1) = tamy (1), so that the map 7, is well-defined. The rest follows

easily by calculation.

From (i} it follows that
[D(9,¥)] = [L(LXN)x, H)By] = [LLAN )w, ) L (N)].

Let £ € $. Consider w = w; as a functional over A, and let {(w) be the
representing vector in L2(N), of w for the right action of N on L2(N), i.e.,
{w,r} = (E(w)z | £(w)), for £ € N. Then we have a partial isometry « in
L{L2(N )y, H,) such that uf(w) = & Hence, LIL2(N )y, Hn ) LAHN) = H;

this implies, then, that D($, ) is dense in .
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(iv) Let & = #,(t) with t € ny(9), and take ¢t = u|t| Then |t| € ny, u €
L(LAN )y, Hy) and € = uny([t]) by (i). Now for each y € n, Nny ﬂD(afW)

such that o?, 12(y) € ny, we have

¢

L, (€)dymy(y*) = €y = uny(lthy = ung (1tlo?; (%))

= UIfI%(J'fi/z(y)) = tAil;,.ﬂ??ﬁ:(y) = tJ e (y*),
where we have used (3.8). Therefore, we have t = Ly (£). Conversely, suppose
t =L, (€) with § € D(H,v). With t = ult| the polar decomposition, we have,

foreach y € ny Ny N ’D(a'ft.ﬂ) such that afi/z(y) € Ny,

11Ty (u*) = wrtdymy{y*) = v (€y) = (wEy,

so that the vector w*€ € L2(N) is left bounded relative to the left Hilbert
algebra 9, = ny(ny Nn7), and |t| = me(u*€). This means that |t| € ny, and

so t € n,(H). It is easy to see now that £ = 7, ().

(v) This follows from (i), (iv) and results from the theory of cocycle derivatives.

(See {10)).
(vi) This assertion follows from a routine calculation of the actions of R on 9
and £

|
Now, it is a fundamental fact of Tomita-Takesaki theory that a, = n, Nng,
or more precisely its image 7,(ay), forms a left Hilbert algebra. Likewise, A =

D(o?, 2N ’D(ij,z) = 'D(of}z) N ’D(af}z)* is a self-adjoint subalgebra of &' which
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multiplies a, and ny from both sides. We then have the following tautological

statement:

Lemma 3.4 The anti-representation of A defined by

n Y-
(3.127) T, (B)7hy(8) = %(ta%m(b)), t € ny(H), b€ A,
extends to the original right action of N on $.

Proof. This assertion follows directly from (3.6), (3.12) and (3.12’). |
We now continue our investigation of the action of R on $. The direct sum

decomposition, £ = L2(N) @ 9, yields the following matrix representation of R:

Iy ZIrp _ zy €N, x5 € LA, 2N )w),
T = , with _
Zy1 Tz 291 € LILYN ), Dur)s Tog € M = L(Hy)
for each z € R.

Notice that we have not yet made use of the semi-finite, normal weight ¢ €
9G(M); all our considerations thus far have involved only ¥ € 20,(N). We recall
that the “balanced” weight p = ¥ @ ¢ on R gives a semi-cyclic representation
{7, $,} of R. We wish to characterize the representation 7, in terms of £ and

m,. To do this, we consider the weights  and @ on R given by ¥(x) = (exe) and

B(x) = w(fzf), z € R,. We then obtain the decompostion

(3 13) S"J _ T}P(enpe) np(enpf) L2(N) & [np(enpf)]

no(fnee)  mp(fn,f) 5 & 9,

I
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where | - - - | stands for the closure in the Hilbert space of the linear span, as usual.
We have already seen that n,(fn.e) = 7, (ny(H)) = D(H,¥). In addition, we know
fRe = LILAN ), 9On) and eRf = L(Hpr, LHN ) ). We now want to in-vestigate
en,f and its image under the map 7,. As we did not assume the faithfulness of ¢,

we don’t have complete symmetry between ¢ and . At any rate, we do have

en,f = {s € L(Hp, AN )p)) : o(s*s) < +o0}
(3.10")
= {t*: t € LILXN )y, Hpr)s @(tt*) < +o0}.

Given the decomposition described by (3.13), it is then natural to define

9y, = LAHN), 1o = [ﬂp(e“pf)]
9y = 5, Ly
We conclude this section with a Lemma which indicates the relationship be-
tween the weights ¢ and 4, at least on the level of their semi-cyclic representation

spaces.
Lemma 3.5

(i) The restriction of 7, to the second column space of (3.13), 913 © Ny, is

semi-cyclic relative to the weight @.

(i) The Hilbert space $;, 15 isornorphic to s{p)$,; (and hence = s(p)H) as an

N-M, bimodule under the natural map.

Proof. First consider the case when ¢ is faithful. Then with a, = n, N n,

A, = n,(a,) is a left Hilbert algebra. Furthermore, the R-R bimodule L2(R) can

o
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be naturally identified with $,. Under this identification, the components of 5,

defined in (3.13) allow us to write

O = el?(R)e, 9H1, =el?(R),

H91 = fLAH(R)e, Dy = fLAHR)f.
Thé modular conjugation J implements the desired isomorphism between Hy, and
$,,. This gives assertion (ii). Assertion (i) follows from the symmetry between
on N and ¢° on Mo,

In the general case, (i.e., if ¢ is not faithful), we consider an auxiliary semi-

finite, normal weight ¢’ on M with s(¢’') = 1, — s{w). We then define

ie, p= f—g We can now form an fns weight o/ 2,4+ ¢ on R, where ¢
is defined via ¢'(z) 2 ¢ (prp), = € R,. Observe that n, and 7, agree on eRe
and fRe and that 7,(z) = nx(zg), * € n,g. Hence we get H;; = eL*}(R)e,
H9 = fLHR)e, H1p = eL?(R)q and $Hyy = fL*(R)g. So, we may conclude
Jg$5 = JgL2(R)e = eL?*(R)q = H1,. This completes the proof of (i). For (ii), we
have $3;, @ H, = L*(R)g as an N-M, bimodule. Therefore, the representation

{7, 12 ® Hay} is precisely the semi-cyclic representation {75, 9z, 3 O |
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3.2 The Spatial Derivative

If we éxamine the details of the preceding proof, we recognize that the con-
jugation operator J: L2(R) — L2(R) restricts to the conjugate linear operator
St Hu(t) € f(n, ﬂ'n;)e — 1,(t*} € $y, which can also be viewed as the re-
striction of the map S, for ¢/ to the smaller domain gL*(R)e. Hence, S, ,
can be defined directly as the closure of the operator given by 7,(t) — 5,(t*) for
t € ny(H) Nn,(H)*, where n($H) £ {s € L(Hp, L2A(N)y) @ (s*s) < 4+o0}. Thus

we make the following definition:

Definition 3.6 The absolute value A, of S, is called the spatial derivative

of the semi-finite, normal weight ¢ on M relative to the fns weight ¢/ on the

commutant M', and is denoted di“%, since it is determined by ¢ on M and ' on

M.
Dualizing (3.10), we set
(3.10")  D'($H,0) 2 {€ €5 |z|? < Cepla*z), z €n, for some C; > 0},
To each £ € D'($, ) there corresponds an operator R,,(£) defined by
R (E)n,(z) S a6, z e,

which belongs to L, L2(M),m H). As @ is not assumed to be faithful, ¥ and ¢

are not symmetric. In fact, we have the following:
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Lemma 3.7 The closure of (N, ) is the range of the projection s(i), i.e.,

[2(9, ¢)] = s(9)H.

¢

Proof. If £ € D(H, ), then we have 11 — s(@)El?> € Cel(1 - s(p))) = 0.
Hence D/($),¢) C s(¢)9. Conversely, suppose & L D(H,p). With & = {w €

M 1w < ¢}, we know ¢(z) = sup, e w(z), T € M, and that

neD(Hp) & wy€ \J Cc2.
c>0

Also every w € ® can be written as a countable sum of w, with 7, € (9, ), s0
that s{p) = sup{s(w;) :m € D'($, )}; thus we may conclude s(¢)§ = 0. u

We now state the main result of this cection. Note that the spatial derivative
was originally defined by Connes [13]; however, his approach did not use (explicitly)

the notions of von Neumann bimodules.

Theorem 3.8 Let {M, 5} be a von Neumann algebra, ¢ o semi-finite, normal
weight on M and ¢ an fns weight on the commautant M. Then the spatial deriva-

tive %‘5 has the following properties:

(i) The support s(ﬁ’—, of the spatial derivative %‘f—, is equal to s(p). Note that
here what is meant by the support of a self-adjoint operator is the projection

to the closure of its range.
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(ii) On the reduced von Neumann algebra { My, s(@)9} and its commutant

lJ
sy WE have

(d—(p) x(d}‘o)‘ =af(z), =€ My,

(3.14) e v,
dp dy _ ¥ M
w) Y\aw) = ofu(y), ¥ € M,
(ii) If o, and p, are fns weights on M, then
dow\ i it
(315) ({7) — (Des: Do, (‘j’%} .

(w) If © 15 faithful, then

dyt (do\"
(3.16) E%:(a%) .

(v) With N' = (M')° end ¢ = (47)°, the square root of the spatial derivative,

(;‘if,—)%, is essentially self-adjoint on
A
D,4($) 2 {€ € D(H,9) : Ly(&)* € np(H)}
and is determined by

(3.17) ((%)%al(%)%n)w(w(fw(m*), € n€Dyy(5)

Therefore, the spatial derivative Fdd% of o relative to ' is directly computable

from ¢ and 9. (Again, see [18])

Proof. From the previous arguments involving M, N, ¢ and ¢, we know that
the spatial derivative dﬂf, is precisely the relative modular operator A, on the

subspace s()$, when we replace 5 by s5(¢)$ and assume that ¢ is faithful. Then
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the assertions (i) through (v) are really statements about the relative modular
operator; all of these are standard results in the theory of the cocycle derivative.
(See, for example, [10].) ’ |

Again; we wish to emphasize that, via (3.17), the spatial derivative 3"—57 is
completely determined by the weights ¢ and 9, without making use of the auxiliary
von Neumann algebra R. We will now investigate additional properties of the

spatial derivative; we begin with a Lemma.

Lemma 3.9 The linear span Jy, of {Ly(§)Ly(n) : & n € D($H,%)} is e o-weakly

dense ideal of M; moreover, we have

J5= {iLw(Ei)Ltb(&i)* (6 EDHY), =1, ,n}

i=1

Proof. It is easy to see that Ly(a€) = aLy(¢) for any @ € M and £ € D(H, ).
Hence J, is an ideal of M. The characterization of the positive cone is accom-
plished by using polariztion, which is a standard technique, so we omit that portion
of the argument.

To demonstrate the o-weak density of 7y, it is sufficient to prove that, if
any () = {0}, a € M, then a = 0, since Ly,(D(H,¢)) = n,($). So, suppose
any () = {0} for some a € M. This implies aL(§) = 0 for every § € D(H, ).

Thus for every = € nj, we have
0 = aLy (&) (z) = a(éz) = (af)z.

Since n}, is g-weakly dense in N, we have aé = 0. The density of D(H,v) in H

then gives a = 0. [



Proposition 3.10 The spatial derivative 25 d), has the following addttzonal proper-
ties:
(i)
dﬁpl d‘P2
{pl _<_ 992 d/l‘b’ — d’lp’ *

(i) If v, and @, are both finite, then

dor+ o) _ oy dips

dy' Ay dy

(3.18)

where the above sum should be interpreted as a form sum.
(i) If a € M is invertible, then

dlapa*) . (_d£ i
dy  \d')

(3.19)
(iv) The support of 2 il (;‘:—5), is equal to the support, s(¢), of ¢.
Proof.

(i) Suppose ¢; < ;. Then we have

dg /2 |2
(aﬂ :

for every £ € D($, ). Hence Eﬁ_' < %ﬁ_?'

2

= (L (E)Ly (6)*) < oLy Ly (8)*) =

(5)

Conversely, suppose E‘fb—, < H%' This means that we must have ¢,(a) < w,(a)
for every a € M, of the form a = ¥7, Ly (&)Ly(&)". Our assertion then

follows from Lemima 3.9.

59



(ii) Suppose that ¢;, p; € MY, and set ¢ = ¥1 + ©Pa. The boundedness of ¢,
and @, of course imply that ¢ is bounded: we also have seen that the square
roots of all the spatial derivatives %‘f;}-, %ﬁ% and d%f,— are essentially self-adjoint

on B(5, ). Let Hy 2 %1, H, £ 9 and H £ 2. Then we have || H 3¢ =

||H1%§I|2 + ||H2%§||2, £ € D($H, ). Hence our assertion follows.

iii) Again, take H = de 1t follows that aHa* is a positive, self-adjoint operator
& dy )

with domain (a*)"'D(H), and that for each { € D(H,¢)

[H3ax€||? = o(Ly(a*€)Ly(a6)") = ¢(a*Ly (§)Ly(€)"a)
= (apa”)(Ly (E)Ly(£)")-
(Note that ||H3a£||? can be +oo if ¢ is not finite. In fact, |Hza |2 <
too <= arf € D(H).)

) =D(H 2a*) and the absolute value of H tar

=

Since a is invertible, D((eHa*)

is precisely (aH a*)7. Hence we may conclude (3.19).

(iv) Let p be the support of H = c—‘f{j—, and ¢ = s(p). Then p is characterized by
the fact that 1 — p is the projection of $ onto the null space of H, i.e. onto
the subspace & = {¢ € f : Hf = 0}. Let (2,)o be the maximal Tomita
algebra associated with the left Hilbert algebra A, = ny(ny N n;,). (Recall
that we defined ¢ in the proof of Lemma 3.5 by adding an auxiliary weight
to our original weight p in order to make ¢ faithful.) Because f € R, we

have, with f' = JfJ, f(Ay)e = J@,)e C (Ap)o HE €K, then there exists
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a sequence {£,} C D($H,v¥) such that £, — £ and HE, — 0, as D(H,v) is a

core for H. For each 5 € f'(,),, we have 7,.(n)¢, — 7,.(n)¢ and

1 H 2, ()&% = lim || H 3 (m)€q]|2 = lim || H 3 my(En )il
= lim p(me(Eam)me(Eam)*)
< |lwe(ml* lim @(me(€ )me(€n)") = O,
which gives 7,(n)¢ € & Since {z,(n), : 1 € f'(%,)o} is o-weakly dense in

N, the projection p belongs to M = A (in R).

Now, if £ € (1 - ¢)D(H,%), then p(Ly(§)Ly(€)) = w(ely(E)Ly(§)9) =
p(Ly(g€)Ly(q€)*) = 0, s0 H3it = 0. If £ € (1 — ¢)$, then we choose a
sequence £, € D(H,¥) with £, — £ It follows that (1 — ¢)¢, — &, and
since H2(1 — ¢)¢, =0 ¥n, we see that £ € D(H%), and Hi¢ = 0. Thus
1-¢<1-p,ie,p<q Ontheother hand, ¢ is a faithful weight on M. It
is then easy to check that we can view the weight 1 as one on M/, without
changing H = d%;% other than to change the underlying Hilbert space from
$ to s(¢)$. By Theorem 3.8, 2% is non-singular on s{y)$), which means

’ dv:,f

p = s{y).
u

We continue our investigation of the properties of the spatial derivative. In
particular, we are interested in answering the question: given a positive, self-
adjoint operator H in %, and an fns weight 9’ on M’ (or equivalently an fns

weight ¥ on A), when is there a weight ¢ € 20(M) such that £ = H?
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Theorem 3.11 Let {M,H} and N = (M) be as before, and fiz an fns weight ¥
on N'. For a positive self-adjoint operator H in H, the following three conditions

¢

are equivalent:

(i) There exzists a semi-finite, normal weight ¢ on M with ;%, =H.

(i) For every y € N, Hitg?(y) = yH®, t€R, where Hit is considered only
on the closure of the range of H. (Note that we are not assuming that H 1s

non-singular.)
(iii) D(H, 1/))OD(H%) is @ core for H?, and the scalar 327 ||H%§,-_||2 depends only

on the operator T, Ly (&) Ly(&)* for {€,.. .6} C D(H,Y)N D(H%).

Proof. (i) <= (ii): Letp be the support of H. Each of conditions (i) and
(ii) implies p € M. Hence we may and do assume the non-singularity of H. (We
need only consider the reduced algebra M,.) The implication (i) = (ii) follows
from Theorem 3.8. Conversely, assume (ii); take any faithful weight ' on M. Put
K= %ﬁ—:, and define u, & gitg-it t € R It then follows that u, is a of -cocycle in
M. Again, the result of Connes-Masuda [12] guarantees the existence of a faithful
weight ¢ on M with (D¢ D), = u;, t € R, and hence H= ad—‘P—,.

(i) = (iii): By construction, we have

é“H%fi"Q = (z: pr(fi)L¢(fi)*) , {6, 6 DY),

so that the assertion follows.
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(iii) = (i): We need only construct a semi-finite normal weight ¢ on M such that

IH3E|2 = (L, (E)Ly(6)®), € € D(H,¥) ND(HE).

Any weight with this property is automatically semi-finite because D(H %)ﬂﬂ(ﬁ, )
is dense in $, which means that {L,(&)Ly(6)* : £ € D(H?) N D($H,%)} is non-

degenerate. The rest of the proof then follows from the next Lemma. [

Lemma 3.12

(i) Let H be as in Theorem 8.11(iii). Then there exists o preweight ¢, on J,

such that

(3.20) oL (E) Ly (6)*) = [|[HIER, € € D(9H,9),

where ]IH%f”2 =+ if ¢ ’D(H%). The preweight @, has the property that

for any net {z,} C M converging strongly to 1
(3.21) liminf ¢ (zay7,) 2 @1(y): ¥ € T

Here, when we say that @, is a preweight on 7, we mean that it is an
extended real valued map on J,, sotisfying the usual requirements of positive
homogeneity and (finite) additivity. In this case, however, the domain s
not the positive cone of a von Neumann algebra (recall that J, is merely
a o-weakly dense ideal in M), and so we refrain from calling p; a weight.

Howeuver,
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(i1) Any preweight ¢, on J,, with the property given by (3.21) extends to a normal

weight ¢ on M.

Proof.

(1)

By assumption, ¢, defined by (3.17) on L, (&)L, (€)* extends to a preweight

on JJ by Theorem 3.9, which we will continue to denote by ;. Suppose

Y= L¢(§k)L¢(fk)* € JJ. We then have
.’cayx; = z L¢'(magk)L¢(xa§k)*1
k=1

go that

n

a:y'r Z ]H%IaEkHQ‘

Hence inequality (3.21) follows from the lower semi-continuity of the positive

quadratic form associated with H.

Since 7y, is a o-weakly dense ideal of M, every element of M can be ap-

proximated by J; from below. So we put
A
olz) = sup{pi(y) vy € T, y <z}, zeM,.

It follows that ¢ agrees with ¢, on J J. Since z, / z and y, / ¥ =
(To+¥a) / (z+y), the additivity of ¢ follows from that of ;. We need only
check the normality of . Suppose that z, / zin M . T hen z/2 = a,z1/?
for a unique a, € M, with s,(a.) < s(x). Put by = a, + (1 — s(z)). Then

x, = boxbt and {b,} converges strongly to 1. For any y € Ji withy <=
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we must show that sup, ¥(Z.) 2 ¢,(y). But we have, by (3.21),
@1(y) < liminf ¢, (boyty) < lim inf (b, b}, ),

and we have seen b,xb% = T,
[4]

v

|
We conclude this chapter with a Corollary which will relate convergence in
(M), convergence (in the strongly resolvent sense) amongst positive, self-adjoint

and non-singular operators in §), and convergence in Aut{M).

Corollary 3.13 Let M, N and $ be as before, and fiz ¢’ an fns weight on M.
If {¢.} is en increasing sequence of fns weights M and if p = sup, @, is semi-
finite, then {‘—ffb%} is increasing, and converges to ;}1};"—, in the strongly resolvent sense;

hence, {of"} converges to of in Aut(M) uniformly on any finite interval (of R).

Proof. Let H, z %5"—“. By Proposition 3.10, {H,} is increasing and bounded

."bl

by H = d%% from above. Hence {H,} converges to a positive self-adjoint operator
K in the strongly resolvent sense. Since HityH;# = o¥,(y) for every y € N,
KityKit = o%(y), y € N. By Theorem 3.11, there exists a unique weight 2 on M

with K = $%. The inequalities
H <K<H

show that ¢, < u < ¢. Hence p=¢ and K = H. The rest follows from general

facts about monotone convergence. |
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CHAPTER 4

The Relative Tensor Product of L?-von Neumann Modules

4.1 Definition of the Relative Tensor Product

We now proceed to define the relative tensor product of a right module and
a left module over the same von Neumann algebra A. Unlike the ordinary (i.e.,
spatial} tensor product, the construction of the relative tensor product depends
on the choice of an fns weight on N — hence, the use of the adjective relative.
Furtbermore, given a right A-module 9 and a left A-module &, the tensor product
of an arbitrary pair of vectors from $ and & cannot, in general, be defined. (In
fact, as we shall see in the next Section, the existence of the tensor product for
all possible pairs of vectors severely limits the possible type of the von Neumann
algebra AV.) The formation of the relative tensor product is restricted to a subset
of vectors from  and & which depends on the choice of weight. It is interesting
to mote that the tensor product actually behaves like the product of closed, un-
bounded operators. We shall begin our discussion by introducing some notation
and terminology to be used throughout the Chapter.

As in the case of right modules, for two left A-modules y&; and xR, we
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consider L(y8,x fo) = {t € L(K,R,) @ tan = ain, 7 € £, a € N}. For
L8 x R) we write L(yR). Throughout the remainder of this Chapter, § will
denote a right A-module, & a left N-module. Observe that a right N -module H
is also canonically an £($y)-N bimodule, while a left N-module & can always
be considered an N-L(yK)° bimodule in a canonical way. We are now going to
construct the relative tensor product $®, & of a right N-module $ and a left
N-module &, which will depend on the choice of a fns weight v on N.

So, we fix a von Neumann algebra N, a right AM-module $ and a left A-module
#. We also fix a faithful, normal and semi-finite weight ¢ on N. We have seen
(Lemma 3.3) that the right module 9 can be recovered from D(,¥), and that
the left module £ is also recoverable from D'(%,%). (Observe that in this case, the
roles of v and 4° are symmetric, as they are both faithful). We state here a few
facts about D(H, 1) (resp., D'(K,¢)) and Ly (resp., R,,) which have been implicit

in our previous results.
(€ ] &) = W(Ly(&) Lyl6)), & &2 € DD, ¥);
(m | mp) = PRy (m) Ry(m)Tg)s My m2 € D'(R, 95
1o (Lp(Ea) L(6)) = Ly(&2)&, &, & € D(H,¥);

??¢(J¢R¢(7?1)*Rw(??2)']w) =Ry(m)*m, M M€ D'(R, ¥).
Tt is also easy to see that if we consider §) = LN, ), with the standard right

action of N (resp., & = L*(N, %), with the usual left action of M), as a right
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(resp., left) module, then

Q(ﬁa’iﬁ) = 7?¢(“¢) = %wv Lw(&) = 71'@(5), g € B,p,

(resp., D'(R,9)="B,, Rym=mm) 7€ B,),

¥

where B, (resp., ‘B;) means the algebra of all left (resp., right) bounded vectors

in LN, ¥).

Proposition 4.1

(i) The sesquilinear form B: D(H,Yv)0R—C determined by

(4-2) B¢ ® T, & @ 72) = (Wﬁ(L¢(fz)*L¢(§1))?’I1 | 7)

is positive semi-definite, and so defines an inner product on D(H, V) © R,

which i3, in many cases, degenerate.

(ii) If £1:£2 € @(ﬁ,’l,b) and N, € D'(ﬁ,’gb), then

(43) (Wﬁ(Lw(fz)*Lw(ﬁl))m | m) = (W},(JwR¢(7?1)*R¢(7?2)J¢)§1 | &)

(') Dual to (i), the sesquilinear form B’ defined on HOD(R, ) and determined

by
. t JAN *
(4.2°) B(&®m,&®m) = (ﬂ},(Jwa(T?l) Ry(m)J)r | €2)-
is also positive semi-definite, and agrees with B on D(H, V) O D' (K, %)

Proof.
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£} € D(H,¥). Let ay 2 Ly(6)"Ly(&;), with j,k €
In} C A,

(i) Suppose that {&1,---

{1,...,n}; then a = (ar;) is an m X 7 matrix over N. If {Zy,...

where, as before, A = D(af:,z) N ’D(aiﬂ), then we have, by (3.6’),.'

S apage; = oo tile(€) L)%
j’k=1 _’f,k-_—l

= f: L¢(€k032($k))‘Lv,b(&jog:lz(xj))

Fk=1

_ (2 L,p(akazf;z(mk))) (§L¢<aja;ﬁ?(xj))) >o0.

Because A is o-weakly dense in N, the matrix a is positive in M, (N) =

N ® M, (C); hence there exists & b = (by) € M,(N) such that a = b*b, i.e.,

Qr; = 2igey b1bejy 3.k € {1,...,n}. We then have, for any {m, - Mt C &,

B (E ¢ @ﬂj,z &k ®1?k) = Z (ai;"; | M) = Z I Z bkj"?jnz > 0.
j=1 k=1 k=1 k=1 j=1

Hence the sesquilinear form B is positive.

(ii) Suppose £,6 € D(H, ¥) and 7,72 € D'(8,1). Then, as both L¢(§2)*L¢(£l)

and JyRy(m)*Ry (n}J,, are elements of my CnyNny,
(WR(L¢(§2)'L¢(§1))??1 | n2) = (M(m)%(%(&)*%(&)) | )

= (Ly(€2)"6 | Ry(m) ) = (Ly(€2)&r | ??:p(J¢R¢(7?2)*R¢(?71)Jw))

=& \ Lw(52)77:;,(J¢R¢(W2)*R¢(ﬂ1)~]w)) = (& ‘ ﬁ%(%%(m)*ﬁw(m)%)&z)

= (W%(JxoR:p(’fh)*Rrp(’fb)wa:)El | &)

(i") The positive semi-definiteness follows from (i) by symmetry. ‘The second

assertion follows from (ii}.

69



Definition 4.2 Let M be the subspace of D(H,¥) ® K comprising those vectors
¢ with B(C,C)‘. — 0. The Hilbert space obtained as the completion of the quotient
space D(HY)OKR / "N relative to the inner product induced by the positive-definite
sequilinear form B will be called the relative tensor product of the right N -module
$ and the left N-module & with respect to the fns weight ¥ and will be written
Hr, & The image of £ @7 will similarly be denoted £ &y n for € € D(H,¥), n € &
By Proposition 4.1, the relative tensor product H®y & can also be obtained as the
completion of the quotient space of the algebraic tensor product H OD'(R, ) by the
subspace ', where N’ consists of null vectors with respect 1o the positive-definite

sequilinear form B'. In this way, we can consider the tensor product £8, 7 for a

pair £ € 9, n € D'(K, ).

Theorem 4.3 Let N be a von Neumann algebra equipped with en fns weight ¥,
% a right N-module and 8 a left N-module. Set PEL(Hy) and O 2 L R).
We construct the direct sum $ 2 LN, ) D HD R as aright N -module and then
consider R £ L(Hy), together with the "balanced” fns weight p =1 ® ¢ @ v, where
¢ is a faithful, normal and semi-finite weight on P and v is an fns weigf_ut on Q.
Let e, f and g be, respectively, the projections off) onto L2(N,v), H and R, which,

we note, belong to R. Represent the standard Hilbert space ), as the space of 3x3
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matrices

LN 5 R
(3.13") N, & $ LAP,p) D
' R ., L2HQ,v)

Then there ezists a natural isomorphism between Hm, R and Hys.

Proof. Let 2 {=2,) be the left Hilbert algebra associated with p, B (= B,) the
algebra of left bounded elements in L? (R,p) and, as usual, n,={r € R : plz*z) <
+o0}. Since e, f and g are all in R, 2% and B can each be decomposed into the

matrix direct sum relative to (3.13"), e,

Qin mlg Q[]_g, ‘Bll sB12 ‘313
(3.13") A=Ay Ay Upz|> B=|By By Ban
%1 2[32 m33 %31 %32 ‘333

It follows from Lemma 3.3 that B, = D($,¢) and B, = D(R,¢). Also, we note
that Ly(€) = 7e(§)], , € € D($,V) = By, and Ly () = m(M|, 7€ DRY) =
B,,, where 7, means the left multiplication representation of B on £, At this
point, one can see (through symmetry) that the right Hilbert algebra 2, and the
algebra 9B’ of right bounded vectors, admit similar matrix decompositions; we can
use these to obtain B, = D'(H,¢¥), B, = DA, ¥) and Ry(n) = W’"(W_)l;,,,’ n €
DR, ).

We claim that £®, 7, with £ € D(H,¢) and 7 € £, can be naturally identified

with 7,(€)n € $y3. Let U, be the map from D($H, %) © £ into H, determined by
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Up((®7) £ m(E)n for £ € D(H, ¥}, n € K. Since £ € By and 1 € &= H3, T(§)n

belongs to £,3. Now we have, for £,§; € D(H,¢) and 7,1, € R,

(Uo(& @ m) | Up(€z ® ma)) = (me(&1)m | 7€) = (me&2)* Te(€1)m | ma)

= (Wﬁ(L¢(§2)*L¢(§1))TI1 | 7o) = (§1Bym | €22 )

Therefore, the map Uy gives rise to an isometry U of Hm, & into Hyz. Let M =
U(firy, R) = [1,(B,)A]. First, we observe that §,5 = fL*(R,¢)g, P = Ry and
Q = R,. Hence 74,,(P) = 75, (Q). We know that 90 is invariant under the right
action of Q. Thus, the projection P of f; onto M belongs to 7g,, (P), i.e., P can
be identified with left multiplication by a projection in P, which we shall call p.
This implies that I = pHas, with p € Proj(P). But as m,(af) = amy(€) fora € P
and £ € D(H,v) = By, By is invariant under left multiplication by elements of
P, which in turn implies the invariance of 9 under the left action of P. We may
therefore conclude that the projection p belongs to the center Z (P) of P, which is
of the form Z(P) = Z(R);. So p may be viewed as a projection in Z(R). When
we view p as an element in Proj(Z(R)), we see that we may write (f —p)9N = {0},
so that 0 = (f — p)m(&)n = 7 ({f — p)€)n for every £ € By, and n € R Thus,
mal{me((f — p)E)me((f — p)€)) = 0. Because R is a faithful left A-module, we must
have m,((f — p)€) = 0, £ € D(H,¥), which means that f —p = 0. Therefore, we
see that f = p, l.e., as an element of Proj(M), p = 1, which in tﬁrn implies
M= Ny

Thus, we may conclude that, via the isometry U, $®, & can be identified with
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523'

Using the preceding theorem, it is not difficult to arrive at the following Corol-

lary, which is presented without proof.

Corollary 4.4

(i) If $ and R are, respectively, right and left N-modules, with N a von Neu-

mann algebra equipped with a fns weight ¢, then the relative tensor product

$®, & is naturally an L($ N )-L(R)° bimodule, whose bimodule structure 15

guven by

(4.4)

a(cm,mb 2 (af)m (b), @ € L(Hy), b€ LWR], E€DD 1Y), nER

(ii) In terms of operators acting from the left (as usual), if T € L(Hy) and

y € L(yR), then there exists a unique operator T8y Y € L(Hr, R) defined by

)

(4.5) (z8, y)(Emyn) = (@) & (y1), €€ D(H,¥), 1€ R

The map (z,y) € L(Hr) X L(R)+— zB, ¥ € L(HB R) extends canonically

to an injective *-homomorphism from the algebraic tensor product, L(Hx) ©

L(yR), into L(H&, R).

(iii) Although N does not act on the relative tensor product H@, &, we have

(4.6) (£0)myn =&y (0%,p(b)M), D E D(c¥;p), E€DHYP), nER
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atrix decom-

In order to summarize the preceding arguments, we restate the m

tion of §, in the following form, making explicit use of our results up to this

posi
point:

, N,Y) B &
(4.7) R =| 5  LAPe) 9B

:ﬁ —ﬁg\p?} Lz(Q,L’)

Proposition 4.5

(i) Viewing L? (N, %) as a Tight N -module, the map

vy w(y)ﬁmeLZ(N,’t/))mﬁHyneﬁ, yen, n€R

gives rise to an isomorphism of L2(N,¥) &y R onto & as N-L(yR)° bimod-

ules.

(i) Simalarly, if we regard LN, ) as a left N -module, then the map

U tmn,y) € Hm PN, 9) — gy €9, LEDY en,

LN, ) onto § as L5 W )-N bimodules.

extends to an isomnorphism of H &,

The proof of the preceding Proposition is entirely routine, and is omitted. Note

that in light of this Propositon, it is reasonable to refer to L? (N, ) as a sort of

“identity” (both right and left) amongst N modules, relative to the weight 9.

It is also easy to verify, using our previous technique, viz., the 3 X 3 matrix

decompostion, that we have the following identities, after making the necessary
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(implicit) identifications:

(5, D H,y) B R = (5, 8, &) ® (H: 8, R),
(4.8)

or, (R & Ry) = (OB R)®(Hey Ry),

v

where §, $, and 9, are all right N -modules, while £, &, and &, are left A-modules.
Given the distributivity evidenced above, it is patural to inquire about the
associativity of the relative tensor product. This issue is dealt with in the next

Theorem.

Theorem 4.6 Let M and N be two von Neumann algebras eguipped with fns
weights ¢ and ¥, respectively. If §) is a right M-module, 8 en M-N bimodule and

9% a right N-module, then aﬂer natural identifications we have

(4.9) (Hz, R)g, M= HR, (Am, M),

as L(H)-L(wIN)° bimodules.

Proof. Foreach £ € D(H, ), n€R and ¢ € D'(9M, ), set
U((Ewm, m)ay () 2 E8 (24 ).

Let &, n; and ¢, i = 1,2, denote clements in D(H, ), & and D'(IM, ¥). We want

to show

(U({&1 e )Ry G) | U((&aB. n2) By G)) = ((€1 2 ) By §1 | (€22 7o) By $a)s
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as this will demonstrate that U is well-defined and a unitary. We compute
(U618, ) e $) T U (62 B ) B4 () = (€18 (8 G1) | L2880 (2, Cz))
= (ﬂ'ﬁm M(L¢(§2)*Ltp(£1))(nl B (1) | 728y G2)

i

= (a(Lp &) L)) By Gy | 125 o)

= (G Ry Ry ()T Ta(Ly @)Ly (€))m 1 1) (by (43))
= (Ma(L (€ L)) (TR () R (G) o) | )

= (628 (I Re(C) Re (G | & m0)

= (T g, a(JuRu () Ry (G)Iy) (@ ) | 28, ;)

= (&8 ) R G | (§22 M) By ().

Now we also have, for each a € £(H,,) and b € L{,MM)°,
U(a((§ 8, n) 8y ()b) = U({(a€) =, m)®y (¢B))
= (a&) =, (n®y (¢b)) = a({ . (n2y ()b
= o(U((Em, 1) 8, O))b.
Hence, we see that U is indeed an isomorphism of (f3®, R} ®, 9 onto H®, (AR, M)
as L{H)-L(9M)° bimodules. |
It is natural at this point to ask what happens to the relative tensor product
H=, & when we change the fns reference weight ¢. In order to investigate this
issue, let us first recall some notation: 2U(N'} is the set of semi-finite, normal
weights on the von Neumann algebra A/, while 20,(AN'} represents the set of all

faithful such. Once again, we fix A/, the right M-module £, and the left A-module

R.
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Theorem 4.7 Let N be a von Neumann algebra, and let and & be, respectively,
right and left N -modules. To each pair (1, ¥2) € 2, (N) x Wo(N), there corre-
sponds a unigue L(5 ) -L(WR)° bimodule isomorphism, Ugf"'b‘, from Hg,, K onto

H8,, R, Which makes the following diagram commute:

Joa
Hry, 8 24, Hry, R
l“‘ By, B 1” By, b}
(4.10) LAN ) &y, LXN %) LAN, ¥,) 8y, LN, ¥2)
luﬂw,\»l) lUf%(N,¢z)
LN %) T LN, )

Here, we take the pair (a;,b;) € L(Hx, PN i) X L LN, ;) R), for i =
1,2, such that ay = Uy @15 by = 03Uy 0 with Uy, 4, representing the canonical

unitary which implements the equivalence of the standard forms, i.€.,
Ugoin: (N, LAN 90, B Jo} — {N,LZ(N,%),%,,JW}-
Moreover, the correspondence
(1, ) € W, (N) X WWy(N) — Uip,zéwl
satisfies the chain rule, viz.,
(4.11) U},bf‘}"’b”Ug}"b‘ = U;,"f‘g"'“, Y1, .3 € Wo(N).

Proof. We start with existence: we will use the notation established in Theorem

4.3. Choose fns weights @ € 25,(P) and v € 0,(Q) and set p; = D, ®p Dy, for
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i = 1,2. We observe that the construction of R does not depend on the choice of the
J’s: there is a canonical isometry U,, ,, from L*(R, py) onto LA(R, pq). Moreover,
this isometry implements an R-R bimodule isomorphism. As the -Il)rojections e, f
and ¢ commute with the fns weights p; and pa (by their definitions), it 15 easy
to check that U, ,, preserves the matrix decompositions in of L2(R,p;), 1= 1,2,
which were given by (3.13). With J the conjugation operator 7 € A1 € R, set

be £ Iy J € L(Ry, LN, ¥), i = 1,2 We then have

0 a O 00 &

Hence, we see that the restriction of the operators 7, (d;)7), (b;)* to the (2,3)-
component of L*(R,p;) is equal to Uf{iwlw(ami br), with 7, the semi-cyclic
anti-representation of R defined by T, (z) 2 Ir, (2], = € R. Since U, , 18
an R-R bimodule isomorphism of L*(R,p,) onto L? (R, p,), and carries the ma-
trix decomposition (3.13") of L2(R,p,) onto that of L2(R, po), by restricting to
the (1,1)-compouent, we obtain Uy, 4 similarly, by considering the restriction of
U, tothe (2,3)-component, we get U}ff;b‘.

Now, let us turn to unicity. Let %; (= 9,,), for i = 1,2, be the left Hilbert

algebras associated with {N,9,}, and (%), be the corresponding Tomita algebras.

Set a;, = tl,r,,{ rnn*

v = (%), and (a;)o = 7((2,)5), i = 1,2. Foreach § € D5, ¥1),

ne D (R ) and y1, 2 € (a,)o, if we take ay = Ly, (6)* and by =Ry, (), then by
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(4.10) we obtain

m M ey By, yam) = % ” (Ly, (€)my, (1) ®y; Ry, ()70, (32))

W wl(Lm (€) 2y, Ry, () (i, (1) By, My, (12))
v2i (a) 8y, bl)(nglw,.j,l))*(Uﬁfz (1)1, (v2))

= (a3 Be, /U 1)) Uinon (0222 (011, (92))-

This means that U'j"”'j’1 is uniquely determined on the vectors of the form

{({yl) E\h (y2n) : 6 € 53(51%[’1), n € iy(ﬁ: ’401), y ¥ € (al)ﬂ}a

which is dense in fi®,, R. Hence, Ug’ 'j” ¥1 i uniquely determined by the commutative
diagram of (4.10}).

The chain rule (4.11) follows from the uniqueness of U, g?,{"’l. |

At this point it is necessary to make the following remark: The bimodule iso-
morphism U}fféwl does not send £ 8y, 1 into 8y, for £ € H and n € K. One must
always be careful not to make this mistake when performing calculations involving
the relative tensor product.

Before concluding this section, we wish to address (briefly) the following: is it
possible to construct the “tensor product” H® £ directly from the right N-module
$ and the left A-module £, i.e., without recourse to a reference weight? It is, in
fact, possible to do so if one abandons the notion of the tensor product £ @ % of
the vectors themselves. To see this, suppose we are given a von Neumann algebra
N, a right AM-module H, and a left N-module & We define FELAN) D H D R,

recognizing that L2(A") has meaning independent of any choice of fns weight on
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N. Then $ is a right N _module in the obvious way, and we may view L? (N), 9
and R as closed subspaces, with e, f and g the projections down to these; note
once again that e, f and g are all projections in R = L(Hy). Then we have seen
that we have $ = fL}(R)e and B = gL2(R)e, which jmplies that & = el?2(R)g.
We may then define the «relative tensor product of $ and & over N?, 5H®y R, to
be fL?(R)g. It is clear that, when defined in such a way,  ®p & has a natural
L{Ha)-L( w8)° bimodule structure. In fact, itisa straightforward exercise t0 show

that there exists a bimodule isomorphism H @y & — HEB, & for any ¥ € Wy(N).
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4.2 An Example and a Theorem Involving Relative Tensor Products

In order to make the ideas presented in the previous section more concrete, we

begin this section with an example of the relative tensor product. While this ex-
ample will deal exclusively with matrix algebras (and hence the spaces in question
will be finite dimensional), all the essential notions regarding the relative tensor
product will be evident. In particular, it is not the finite dimensionality which
distinguishes this example; we will have more to say about this later.
Example. Let M be M,(C), = {M(C), (- | )g}, and ¥ = Tr(H), H € M,
non-sinugular. As any (faithful) positive linear functional on M is of this form,
this is, in fact, the general case. We take $ to be the Hilbert space which arises,
using v, via the GNS construction. In order to differentiate between elements of
M and those in $, we will denote the latter using the usual () notation, e.g.,
((X) | mp(Y)), = THHY*X).

$ has an M-M bimodule structure, in which the left and right actions of M

on § are given by

(4.12) Ang(X) 2 ny(AX),  my(X)B 2 no(XHYBH™1),

where A, B € M. It is important to realize that, while the left action of M on
# coincides with the usual matrix multiplication, the right action is “_twisted” via

conjugation by H 1 This defintion of the right action is necessary in order to have
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(e (X)B | 1,(V)), = (1y(X) [ 0 (Y)B")g;

We also note the following:

Jym(X) = W)(H%X*H_%)s Altny(X) = g (H*XH™)

¢

(4.13)
= o¥(A) = H*AH™.

Now, define ¢ by ¢ 2 Tr(K-), where K too is a positive, non-singular element
of M. How can we give a realization of H®, H? More precisely, by combining the
results of Theorem 4.7 with Proposition 4.5, we see that ﬁxf f ~ H. (Note that
% is really just L2(M,¢).) What we would like to do is to exhibit this M-M
bimodule isomorphism explicitly.

We know that
(e ()2 (Y1) | 1 (X2) B 76 (Y2)) 5,

= (7,(X1) TRy (Y1) Ry (Y2)dy | 7y (X2

from (4.3). Using (4.13), we can compute TRy (Y1) Ry(Ya)Jys we obtain
(4.14) TR, (V)R (Yy)y = KAV HY K2,

Now, using (4.12), we know how K‘%YIHY;K‘% € M acts (from the right) on

#. Hence, we can calculate
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(ne (X)) K FY HY; K5 | my(Xa))g
= (g (X, HYK 3V HY; K-4H3) | 1y(X2))g
= ﬁ(HXEXIH%K—%quY;K-%H—%
= Tr(HY;K—%H%X;JQH%K-%m
= Te(H(X,HI K-}, X, HiIK™3Y))

= (e (X HIK3Y,) | (X HEKTY)),.

Qo we see that the M-M bimodule isomorphism is implemented by the map

AR, H — 5 given by
n(X) 8, 14 (Y) > my(XHEK3Y)

a
Let's examine our example further. Suppose we were interested in formulating
a theory of “bimodule tensor products,” and proceeded naively: then we would

expect the elements of M to merely “move through” the =, , l.e., we anticipate
(4.15) (XA, 7 (Y) = 1 (X) 8 Ay (Y).

Using calculations found in the example, we have
no(X)AB, 1u(Y) = n(XHEAH 3)m, 1,()
o (XHYAH 3 H}K™3Y) = no(XHEAK™TY),

while

(X)) ®, Any(Y) no(XHIK 1AY).
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So, if we want (4.15), we must have XHIAK-3Y = XH3K~1AY, or equivalently
AK-} = K-%A. This in turn yields K3AK~% = A, YA € M, which says that
a?, /2(A) — A. Hence we see that the modular automorphism group comprises only
the identity automorphism, which says ¢ = Tr, so K = I, the identity matrix in
M= M (C).

Of course, we could have obtained the above directly from (4.6), which told
us what happens to elements when they move through ®,. However, it was our
intention to illustrate the theory derived in the previous section directly.

The example presented above is not entirely unmotivated. We now present a
theorem which demonstrates that the relative temsor product is really the most
natural product construction possible in the category of von Neumann bimodules.
As the theorem will show, attempts to formulate a theory motivated solely by

algebraic construction can succeed only under restrictive circumstances.

Theorem 4.8 Let M be a o-finite von Neumann algebra. Take 1 a faithful state

on M, and let 1, denote, as usual, L*(M, V). Suppose there exists a €-linear map
I: 5, x Hy, — &, where R (like ) is a faithful M-M bimodule. We also assume

1 is continuous in each variable separately, and satisfies the following conditions:
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()
al(€,n) = 1(a€, ),

1(¢b, m) = 1§, bn),

1(¢, me) = 1€, m)e,

where a, b and ¢ are in M, §, 1 € Hy-
(ii) Spanc{I{({,n):& n€ $,} is dense in R.
(iii) 1 is non-degenerate, i.e., jor any 0 # £ € $y, there exists 1 € 5y such that

1(¢,1) # 0.

Then M is an atomic von Neumann algebra (hence semi-finite), and & =~ £, & Ny,
where 7 is a faithful, normal and semi-finite trace on M. (Note that T may be a

tracial weight; M may possess no tracial state. )

Proof. We will prove the above assertion in stages. We begin with an observation,

viz., that the usual appeal to Uniform Boundedness allows us to conclude that

30 < C < 400 such that
(4.16) g, Ml < Clllllinll V&7 € Dy

hence, ] is actually jointly continuous.

Now, define &, 2 7y(1aq); then we know that &, is both cyclic and separating

85



for §,, —so0, {z€y 1 T € M} and {£,y: y € M} are both dense in . Now, we have
a= {16, &nen| = [{emut) =y € M}

= [{1(€y, 29&y) 2 Y € M} = [{1y. 08) 10 € M|

= {I{¢,, &40 € M}
If we define 7y € R a8 1y 2 (&g, &y )y then the preceding calculation shows that 7,

is separating for M in & (since it is cyclic for £x(#£)). A similar argument shows

that {an, : a € M} = f; hence 7 is both cyclic and separating for M in A

Certainly, we lose nothing if we assume that |[mlla = 1. Then, defining
@ 2 (-ny | M), We see that v € G,(M), and R = 9. (Here, &,(M) represents
the set of normal states of M.) Now, we can compute

p(zz) = (@ | 7o) = 1270l
(4.17) = Nal(€y, €% = (2 o)
< Czum.ﬁnlliw = Cy(z*z), VzeM.

Note that we have used (4.16). Hence, we see that ¢ < C%4). From the theory of

the cocycle derivative (see [9]), this allows us to infer the following:
(i) The map ¢+ (Dg: D), = u, extends to a map (z+u,) € Aum(Dy2)-
(11) (ID(fL'*CC) = 1,b(u:il2$*$u_i/2), Yz e M.

Here,

Am(D1s2) £ {f: Dy, —~ M: f is analytic on the interior of Dy,

and continuous and bounded on all Dy /2},

86



where

{zeC:—r<S(2) <0}, ifr=>0
D, 2

{z€C:0<3(z) < —r}, otherwise.

We now note that ¢ < C?¢ tells us that MY C My, e, the o-weakly dense
*_subalgebra of t-analytic elements of M is actually contained in the set of -

analytic elements. We can therefore compute as follows: Va € MY, we have
aky = &,ﬁoﬁz(a), while

any = ??0032(0)-

However,
oo = al(€g, &) = 1aty. &) = (Es07)2(a), &)

= I(fw":’fm(a)fdj) = I(éqbafwaf(@)) = I(£¢,£¢)a?(a) = ngo? (a)-

Hence we are forced to conclude
(4.18) of(a) = 0¥,(a), Vae MY

Now, it is a fundamental property of the cocycle derivative (D : D), = u,
that

0¥ (1) = ot (z)ur, Yz e M,

or, equivalently,
(4.19) of (z)u, = w0y (T).
Therefore we obtain, Va € M}f,

0% al@)uip = 1ipp0’ip(a),
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since the product of the analytic maps 1s again analytic, and these agree on all of

R, by virtue of (4.19). This gives us
Uz’?z(a*)*u_i/z = u_,-ﬂcrfj,z(a*)* = u?,,0i(e*) = afl’,z(a')u*_il,z.
Now, using (4.18), we obtain
u*_,-/gaf’(a*) = Jﬁz(a*)u:qz;

setting b = crf:,z(a*), we then have
(4.20) ut 00y (6) = bu, Vb E MY
Furthermore, we see from (4.20)

U_ijob" = Uf}g(b)*u—i/z = u_;pb* = a’f,-,z(b')u_,-/z;
hence we also obtain
(4.20") 0¥ (BYuijg = u_isb, VHE MY,

By combining (4.20) and (4.20’), we observe

Uiyt ;b = u-i/zafﬁg(b)u:i/g = oﬂ(b)u_iﬂu"‘_m.

So, we define h = U_ipp¥l ;0 and rewrite the above:

(4.21) hb = o?;(b)h, Vbe MY,

Now, we make use of a result from [14], which states that any positive, non-singular

I which satisfies (4.21) on the set of analytic elements for the one parameter
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automorphism group o must in fact be an analytic generator for o¥, 1.e., we must

have
(4.22) of(z) = hi*zh™, VzI€ M.

In particular, this means that crf’ is inner, and hence M is semi-finite.

Thus, we are lead to define 7 = 1,-1, where
bt (z) 2 lim (b~ (1 + eh)z), T € My;

note that this makes sense, since, once again, h € M. Then, this gives (D7 :
D), = b, and 6] = id: so 7 is a trace on M. (However, notice that 7 may be
a tracial weight.) Now, let k be such that (Dy : D7), = k; we remark that, due
to the fact that @ is a state, k is a non-singular, positive element in M. From the

chain Tule for cocycle derivatives,

(Dg - Dr), =Dy D), (DY - D)y,

we may conclude that k* = u,hit. Using (4.18), and the fact that h € M, C MY,

we have

kio? (R = k3ol (R)h,
or
(4.23) L3h = hki => kh = hk,

i.e., h and k commute.
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So, we may write ¥; = kith—#t = (kh-1)i*, which yields u_;;; = (kh'l)%, ie.,
u_s/y 18 a positive element in M. (Strictly speaking, u_;;2 = (kh‘l)% is valid only
on hf, the range of h; however, this set is dense in K, and since we a.lr;slady know
that u_;; is a bounded operator, its positivity follows by continuity.) But recall
that, by definition, by = jut, /2|; this means that we must have hZ = u*; 2 = Uoij2

and, from the above calculations we may conclude
(4.24) k= h2.

We will now demonsrate that £ is actually isomorphic, as an M-M bimodule,

to Hy &, $H,. We define the map V via

V. I(-wayﬁw) — z€y B Y&y Yz,y€M,
noting that, given the following:
leye,lly, = vy z*zy) = 7ihy*z"zy)

= r(ayhy*z”) < lyhytl| 7(zat) = lyhy || 7(z*2)
we have ny(n,) C D'(9y, 7). (In fact, such a fact characterizes 7 as a trace.) This

makes V well-defined.

This map is an isometry: first, we compute
[Ty, ye L = Mo, (@) Sl = (za®; . ()l
— |[U(zhdgh~ il = (A ty hizszhiyh™2)
_ (kh-byhdzrahiyhd) = o(h2hFyrhiztahiyho?)

= T(hy*h%a:*:ch%y) = w((mh%y)*a:h%y), TeEM,y€ D(U‘fin)-
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Now, we calculate

||x€p B yﬁxp“%'b B, Hy (IngfR"r(ygqb)*R‘r(yEgb)‘]‘r ‘ $£¢)ﬁ¢ = (3351,&’!/}1?{' | 555«.0)%
= (zhiyhy h~36, | 26y),, = P(z*rhiyhy*h 1)
= T(h:r*xh%yh'y*h‘%) = T(hy*h%a:*:ch%y)
= p((zhiy)zhiy), =€ M,y € D'(Hy,7)-

Hence, V is an isometry, and can be extended to a map from £ onto §, B Dy
1t is also immediate that & and ;8. H,, have the same M-M bimodule sturcture.
Thus, V is the desired M-M bimodule isomorphism.

Finally, we wish to demonstrate that M must be an atomic von Neumann
algebra. To see this, we simply note that the map zly n,(zh%) implements
the standard isometry between $, and 9, = L*(M, 7). Because of the preceding

argument, we may then view I as a map from $, X H, — H, B H,, via
1. (n,(zh¥), 1, (yh3)) = 7, (hF) @, (yh?).

However, §. &, §, is isometrically isomorphic to ), as an M-M bimodule under

the map
(4.25) n,(zh?) @, 0, (yht) = 0, (zhiyh?).

If we restrict ourselves to n(n* Nn,), i.e., the left Hilbert algebra 2, then (4.25)
is just telling us that the usual multiplication operation “lifts” to the relative
tensor product ), 8. .. However, when we combine this with our previous results

regarding the map I, specifically (4.16), we must conclude that (left or right)
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multiplication by eny element of §, acts as a bounded operator on 5. This can
only be the case when M is atomic. _ [

We now see that the example with which we began this Section is acltua,lly quite
general: we have discovered that if we wish to define a “naive” tensor product of
12-von Neumann modules we may do so only under very restrictive conditions,

viz., when the von Neumann algebra is essentially a “matrix algebra.”
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