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PREFACE

The main subject of this book is differentiation in linear spaces of arbitrary
dimension. Infinite-dimensional spaces appear in particular as function spaces,
and for many purposes an appropriate calculus for such spaces would be useful.
We give two examples here.

The first one concerns commutation of integration and differentiation. For a
smooth (ie. infinitely often differentiable) function ¢: RxI—R, where
I:=[0, 1], we consider the function f: R—R defined by f(t):= j'(l,g(t, s)ds. Thus
f{t} is obtained by first associating to ¢ the function g(f, _): IR and then integ-
rating this function over I. This means that f'is actually a composite, f=mag ¥,
where g¥: R—C>(I, R) is defined by g “(t):=g(t, ) and »: C*(I, R)»R by
#(h):= j'éh(s) ds. We remark that the natural topology of uniform convergence of
the derivatives turns C*(I, R) into a non-normable (nuclear) Fréchet space.
Nevertheless one should have a natural notion of smoothness such that both
maps g and » are smooth. And since 4 is linear, differentiation of f=szag "
should give f "=as2=(g ). Since the derivative of g ¥ corresponds to the partial
derivative of g with respect to the first variable, ie. (g ") (t)(s)= 8, 4(t, 5), one
would have an elegant proof that f is smooth and f '(t)=fé@1 g(t, s)ds.

As the second example we consider flows on a compact smooth manifold M.
They can be considered as the 1-parameter subgroups of the group Diff(M) of
smooth diffeomorphisms of M. The smoothness of a flow should be expressible
by means of a differentiable structure of some kind on Diff(M), and Diff(M)
should behave similarly as a classical Lie group. For a finite-dimensional Lie
group G, the tangents at 0 of the 1-parameter subgroups form the domain for a
natural chart at the neutral element. Since the tangent at 0 of a flow on M is just
the corresponding vector field on M, one concludes that the infinite-dimensional
Lie algebra of vector fields on M should be the tangent space at the identity of
Diff(M). The space of vector fields which is thus the natural candidate for a
modelling vector space of Diff(M) is again in a canonical way a non-normable
Fréchet space.

Classical differentiation in linear spaces of arbitrary dimension uses Banach
spaces. Its main deficiency is the fact, illustrated by the two given examples, that
most function spaces are not Banach spaces. Owing to the need for a dif-
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X Preface

ferentiation theory also involving non-normable linear spaces, many general-
izations of Banach space calculus have been proposed during the last few
decades. Compared with these, the theory presented in this book has several
advantages. We first emphasize its naturalness and conceptual simplicity.

Former approaches usually involved several somehow arbitrary choices. The
first was the choice of some class of linear spaces. Should one replace the norm
by a topology, or a bornology, or a convergence structure, or by some other type
of structure? Then one used to choose a differentiability condition in order to
replace the classical condition of Frechet which involves the norms. And finally,
in order to consider higher derivatives, one needed a structure on the function
spaces L(E, F) of linear morphisms. We shall proceed differently, defining k-fold
as well as infinite differentiability classes not inductively but directly by
reduction to the respective differentiability of functions R—R. It then turns out
that starting with locally convex or convex bornological or convergence vector
spaces (or even others, such as smooth vector spaces) actually leads to the same
category of linear spaces, provided one looks for greatest possible generality and
identifies structures yielding the same differentiability.

In order to explain the fundamental idea of reducing differentiability of
general maps to that of functions R—R, we mention that one of the important
theorems which will be proved gives in particular the following new aspect for
Banach space calculus. For maps between Banach spaces one has:

(1) ¢: R—E is a smooth curve if and only if for all # e E'(E’ the usual dual of E)
the composite £ c: R—R is smooth;

(2) g: E—F is a smooth map if and only if for each smooth curve c: R—E the
composite goc: R—F is a smooth curve of F.

These two results show that in order to characterize smooth maps between
Banach spaces one only has to know the duals of E and F; one can forget the
norms, the topologies and the bornologies.

One hopes of course that analogous results hold for finite order differen-
tiability. Simple examples show that (1) and (2) both fail if ‘smooth’ is replaced
by ‘k-times differentiable’ or by ‘k-times continuously differentiable’, (2) fails
even in the finite-dimensional case. However, (1) and (2) both hold if one replaces
‘smooth’ by ‘k-times Lipschitz differentiable’, wheie Lipschitz differentiable
means Giteaux differentiable with locally Lipschitzian derivative (Frechet dif-
ferentiability then follows).

We mention two further reasons why ‘Lipschitz differentiable’ behaves better
than ‘continuously differentiable’. Already for functions f: R—R, differen-
tiability and continuity are of rather different nature; however, one simple
condition expresses simultaneously k-fold differentiability and Lipschitz con-
dition: fis k-times Lipschitz differentiable if and only if its difference quotient of
order k+1 is bounded on bounded sets. And for a Giteaux differentiable
function g: E— F between Banach spaces, the derivative f': E— L(E, F) is locally
Lipschitzian if and only if the differential df: E x E—F is; however, continuity of
df does not imply continuity of f”.
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The given reasons justify why we shall generalize the notion ‘k-times
Lipschitz differentiable’ rather than the notion ‘k-times continuously differen-
tiable’. The way to do this is absolutely natural. One needs vector spaces
structured by a given dual space E’, where E’' may at first be any subspace of the
algebraic dual (not necessarily separating points of E). We call such spaces
dualized vector spaces and define for 0 <k < oo (a function f: R—R is called cc-
times Lipschitz differentiable iff it is smooth):

(1) ¢: R—E is a Zig*-curve of E if and only if for all /e E’ the composite
£oc: R->R is k-times Lipschitz differentiable;

(2) g: E—F is a Zi4"-map if and only if for each Zist-curve c: R—E the
composite goc: R—F is a Zip*-curve of F.

For a fixed vector space E, the set of all possible duals (i.e. all dualized vector
space structures) can be decomposed in equivalence classes as follows: Two
duals are called equivalent if the identity is a Zg*-diffeomorphism, or,
equivalently, if they yield the same Z.4*-curves. Luckily enough it can be proved
that these classes do not depend on k. Each class contains a canonical represen-
tative, namely the maximal one, and a given dual is such a maximal represen-
tative exactly if it satisfies the saturation condition that it is not only included in,
but equal to, the set of all linear #4*-functions. Since replacing a given dual for
E by an equivalent one (in the above sense) does not change the sets of Zi#"-
maps with range or domain E, it is reasonable and no loss of generality to
consider only these representatives. This means that we will work with struc-
tures which not only determine the #.4*-maps, but are conversely determined
by the Zi4"-maps.

Of course, one would like Z/4"-maps to have unique derivatives up to order k.
It turns out that this holds, provided that at least smooth curves (i.e. ZLig™-
curves) have unique first derivatives. By a derivative of c: R—E we understand a
curve ¢: R—E, such that (£oc)=¢~c for all £€ E', or, equivalently, such that
c(t)=lim,_ ¢ (c(t+5)—c(t))/s, the limit being taken with respect to the weak
topology. Therefore one adds two restrictions to the dualized vector spaces. The
first one is necessary and sufficient for the uniqueness of ¢ and is of course the
condition that E’' separates points of E. Existence of ¢ is implied by various
possible completeness conditions. Among these we choose the weakest one,
which is not only sufficient but also necessary. By imposing only these two
additional conditions, we obtain the most general spaces for our approach. They
will be called convenient vector spaces.

We have so far indicated why for a differentiation theory as outlined the
convenient vector spaces form the natural frame and are as general as possible.
But much more important than great generality is the fact that they form a class
with excellent properties, which means that it is closed under important con-
structions. So one has arbitrary products and direct sums, as well as a tensor
product with the property that L(E; ® E,, F) not only corresponds to the space

of bilinear differentiable maps E, x E,—F, but also to L(E,, L(E,, F)). More-

over, closedness with respect to the formation of function spaces is achieved in
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great generality. For very general domains X (including any subset of a
convenient vector space or any classical manifold), the k-times Lipschitz differ-
entiable maps X —E form a convenient vector space Z#*(X, E) provided E is
one. Similar results hold also for spaces of sections of vector bundles with
convenient vector spaces as fibres. In the case of infinite differentiability, we get
an ‘exponential law’ expressing the fact that a map X - %4™(¥, E) is smooth
provided the associated map X x Y— E is smooth. This is important not only for
the examples mentioned at the beginning, but also for far-reaching applications
that will be discussed.

Convenient vector spaces were defined as certain dualized vector spaces,
because this is the simplest description and allows an easy access to %#4*-maps.
But there are several other descriptions within classes of linear spaces tradition-
ally used in analysis. We mention the following aspects.

@ On any convenient vector space E there exists a canonical locally convex
topology (the finest one) such that E’ becomes the topological dual. This
identifies the convenient vector spaces with the separated bornological locally
convex spaces that are locally complete (terminology of [Jarchow, 1981]).
Since metrizable implies bornological and complete implies locally complete,
all Fréchet spaces and in particular all Banach spaces are convenient.

@ On any convenient vector space E there exists a canonical convex bornology
(the coarsest one) such that E’ becomes the bornological dual. This identifies
convenient vector spaces with the separated topological complete convex
bornological spaces (terminology of [Hogbe-Nlend, 1977]).

@ On any convenient vector space E there exists a canonical convergence
structure (called Mackey convergence) such that E’ becomes the continuous
dual. This identifies convenient vector spaces with certain convergence vector
spaces. Completeness amounts exactly to completeness of the Mackey con-
vergence.

@ On any convenient vector space E there exists a canonical smooth structure in
the sense of [Frolicher, 1982] (the coarsest one) such that E' becomes the
space of smooth linear functionals. This identifies the convenient vector
spaces with certain smooth vector spaces. Similarly for % #*-structures.

@ Convenient vector spaces can also be identified with certain compactly
generated vector spaces and with certain nuclear spaces.

Though the convenient vector spaces have exactly the properties which
ensure that smooth curves have a unique derivative, one gets, nevertheless, those
theorems of calculus one can reasonably hope for. In particular one obtains for
0<k<oo and any Z4**'-map g: E—>F the following: the differential dg:
EnE—F exists (EnE denotes the product of E with E), is unique, is a Fig*-map
and is linear in the second variable; and the derivative g': E— L(E, F) defined by
g (x)(y):=dg(x, y) is a Lis*-map. Conversely, if dg exists and is Z#*, then g is a
Zef** !-map. From this one deduces that %4*-maps which are defined directly
can also be characterized recursively: g is Zip* if and only if it is k-times
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differentiable and its derivatives are %.4°. In the case of finite-dimensional
vector spaces this is due to [Boman, 1967]. In case of Banach spaces one shows
that %%x° is equivalent to being locally Lipschitzian and then easily deduces for
k-times Lipschitz differentiable maps the statement (2) mentioned earlier.
Furthermore, in our setting the chain rule not only holds, but is even easily
proved.

Of course we will not only consider globally defined functions, but also
functions g: U—F, where U = E is open and both E and F are convenient vector
spaces. ‘Open’ is meant with respect to the so-called Mackey closure topology,
and this is a very weak condition since it means that ¢~ *(U) is open in R for
every smooth curve ¢: R—E.

Let us mention a possible generalization of #4*-maps. J. Boman established
his result not only for Lipschitz differentiable maps but also for the case where
the Lipschitz condition is replaced by the more general Héolder condition. A
forthcoming paper of C. A. Faure will show that the important theorems of our
differentiation theory hold also for the respective differentiability classes
between convenient vector spaces.

In this book only real differentiability and therefore only real vector spaces
are considered. It is, however, possible to develop a corresponding complex
differentiation theory in infinite dimensions, cf. [Kriegl, Nel, 1985].

Now we give a short overview of the contents of the different chapters.

Chapter 1 contains some basic concepts and material which will be used later.
It starts with a section on categories generated by a set of maps. In order to
explain and motivate this notion we remark that for any classical smooth
manifold or any Banach space (cf. (1) and (2) mentioned above) the family of
smooth curves and the family of smooth functions determine each other in the
following way: a map belongs to one of these families if and only if its composites
with all the maps in the other family are in C*(R, R). This suggests that one
considers sets X structured by a family of curves ¥<X® and a family of
functions # = R¥ that determine each other in the same way as above and to call
them smooth spaces. Replacing C*(R, R) by the set Z#*(R, R) of k-times
Lipschitz differentiable functions, one obtains analogously %4*-spaces and in
particular, for k=0, Lipschitz spaces; all these spaces. are introduced in section
1.4. Tt is advantageous, to consider similar structures also in the case where not a
set of maps from R to R (such as Z4#*(R, R)) is given, but more generally any set
- of maps from S to R, where S and R are fixed sets. One thus obtains the
general notion of .#-spaces studied in section 1.1. The case .# =¢*< RN is
investigated in section 1.2 and it is shown that the #®-spaces form a useful class
of bornological spaces. The result that they satisfy an exponential law (cartesian
closedness of the category) becomes fundamental for showing in section 1.4 that
the category of smooth spaces is also cartesian closed. The relation used between
#”-maps and smooth maps is provided by means of difference quotients. These
allow, as shown in section 1.3, a simple characterization of smooth, and, more
generally, of k-times Lipschitz differentiable functions R™—R.
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Chapter 2 presents the many aspects of convenient vector spaces. It starts with
preliminary considerations of linear spaces with additional structures: locally
convex topologies and convex vector bornologies are discussed in section 2.1,
convergence structures in section 2.2, £*- and Z¢4"-structures in section 2.3. In
section 2.4 it is proved that all these categories have subcategories that can be
identified with each other; its objects are the so-called preconvenient vector
spaces. By imposing an additional separation and a completeness condition one
arrives at the convenient vector spaces. The various aspects of these two
conditions are examined in sections 2.5 and 2.6, where it is also proved that with
every preconvenient vector space there can be associated a convenient one (its
completion) having the usual universal property.

Chapter 3 deals mainly with those constructions of new convenient vector
spaces from given ones which involve only linear and multilinear maps. The
initial and final structures presented in section 3.1 constitute a useful tool for the
general results. Special cases are examined in the following sections: subspaces
and quotients in section 3.2, products in section 3.3, direct sums in section 3.4,
inductive limits in section 3.5, and linear function spaces in section 3.6. The
appropriate multilinear maps and the respective function spaces are examined in
section 3.7 and the corresponding tensor product in section 3.8. That every
convenient vector space embeds into its bidual is shown in section 3.9, where the
duals of products and direct sums are also determined. It is important that a
uniform boundedness principle holds for various function spaces.

Chapter 4 contains the main core of the theory. Calculus for convenient
vector spaces is developed there. According to the basic idea of characterizing
differentiability of a map by means of its composites with curves, it starts in
section 4.1 with differentiable curves, and in section 4.2 it is shown that the
respective curves form convenient vector spaces. Section 4.3 gives the main
properties of differentiable maps, in particular the equivalence of the Zix*-
condition with k-fold differentiability. Of course the section includes standard
results such as the chain rule and the symmetry properties of higher derivatives.
In sections 4.4 and 4.5 it is shown that in great generality function spaces are
again convenient, and that natural maps such as the composition maps have the
differentiability properties one hopes for. Taylor developments are used for
direct sum decompositions of the function spaces. The natural structure of the
space of functions on a manifold modelled on convenient vector spaces is
compared with classically considered topologies. In order to give in section 4.7 a
new proof for the fact that the group of diffeomorphisms of a compact smooth
manifold is a manifold we show in section 4.6 that spaces of sections of quite
general vector bundies are also convenient. In section 4.8 we study k-fold
Lipschitz differentiability of implicitly determined functions. This opens the way
for an implicit function theorem for #44*-maps under additional restrictions, cf.
[Hamilton, 1982].

In Chapter 5 we associate with any Z;4*-space X a convenient vector space
AX (called free over X) which has the universal property that for any convenient
vector space E, the #i#"-maps X —E are in bijection with the linear Zi4*-
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maps AX —E. If, in particular, X is a finite-dimensional smooth manifold, then
AX is shown to be the space of distributions on X with compact support.
Similarly, we associate to any #*-space X a convenient vector space £'X with
the property that one has isomorphisms between £#*(X, E) and L(£'X, E). The
classical Banach spaces formed by the absolutely summable functions on a set
are recovered. All these spaces £'X as well as the free spaces AX over smooth
spaces are actually convenient co-algebras, i.e. convenient vector spaces with a
compatible co-algebra structure, as shown in section 5.2. It is shown in section
5.3 that it is impossible to get certain closedness properties simultaneously with
certain additional properties of the spaces for a class of convenient vector spaces.
The chapter ends with investigations of the reflexivity of convenient vector
spaces.

Chapter 6 deals mainly with the Mackey closure topology. This is the
appropriate topology on convenient vector spaces for studying %/4"-maps. We
compare it with other natural topologies and examine its compatibility with the
vector space operations. The chapter concludes with a section on continuity and
differentiability properties of convex functions.

In Chapter 7 we analyze how the important functors involving convenient
vector spaces behave with respect to initiality, finality, limits and colimits.
Various examples and counter-examples are also given. In particular, it is shown
that a quotient of a convenient vector space by a closed subspace may have
smooth curves which do not admit even a local smooth lifting. Similarly, smooth
functions on a closed subspace do not always admit smooth extensions.

Let us finally mention the essential prerequisites. Since the differentiation
theory presented here is self-contained, knowledge of classical Banach space
calculus is required only where comparisons with it are investigated. We use
some well known theorems of functional analysis such as the Hahn-Banach
theorem and the Banach—Steinhaus theorem, which can be found in most books
on functional analysis, and we will explicitly refer to [Jarchow, 1981]. Defi-
nitions and elementary facts from the theory of bornologies will also be used; for
those we will refer to [Hogbe-Nlend, 1977]. Finally, we should mention that we
use categorical language and basic facts on adjoint functors whenever this seems
adequate. Chapter 8 is conceived as an appendix summarizing these notions and
results for those who are not familiar with category theory.

It is a great pleasure to express our gratitude to several colleagues and friends.
We mention in particular Peter Michor. His influence during the preparation
of this book was substantial. Stimulating ideas as well as suggestions for
including certain topics are due to him. We have, likewise, obtained vital advice
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from his profound mathematical insight. Our thanks also go to Bernard Gisin
for his collaboration concerning the generalization of Boman’s theorem.
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us valuable discussions we mention Ernst Binz, Max Kelly, Anders Kock,
Saunders Mac Lane, Louis Nel, Dieter Pumpliin and Gonzalo Reyes. Claude
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1 FOUNDATIONAL
MATERIAL

This chapter mainly provides the setting for the various structures which will be
used later. Since our approach to differentiation theory uses structures which are
not traditional, we give some motivations.

The Lipschitz condition certainly plays a fundamental role in many theorems
of analysis. It is usually considered for maps between normed spaces, since
its classical definition uses norms. However, since a map between normed
spaces turns out to be locally Lipschitzian iff its composites with the locally
Lipschitzian curves of the source and the locally Lipschitzian real valued func-
tions of the range are locally Lipschitzian functions from R to R, one can gen-
eralize the notion ‘locally Lipschitzian® to maps between much more gen-
eral spaces, namely to sets with a so-called Zegi-structure which consists of a
given family of curves and a given family of real valued functions such that these
two families determine each other by the condition that their composites are
locally Lipschitzian functions from R to R.

Among differentiable maps those which are smooth certainly form an ex-
tremely important class. Smoothness is a classical notion for maps between
Banach spaces and for maps between smooth manifolds. But again one can
prove that such a map is smooth iff its composites with the smooth curves of the
source and the smooth real valued functions of the range are smooth (i.e. belong
to C*(R, R)), and therefore one obtains a natural generalization of the notion
‘smooth’ to maps between much more general spaces, namely to sets with a so-
called smooth structure which consists of a given family of curves and a given
family of real valued functions such that these two families determine each other
by the condition that their composites are smooth functions from R to R.

A third situation where this kind of structure will be used is different in so far
as a classical notion, namely that of bornology, is not generalized but restricted.
A bornology on a set is a family of so-called bounded subsets satisfying simple
axioms, and a map is called bornological if the image of every bounded set is
bounded. Only special bornologies are determined by their bornological se-
quences (or curves) and their bornological real valued functions. But it seems
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2 1 Foundational Material

that (almost) all bornologies which are important for analysis are of that
restricted type. And those of this type allow interesting additional results which
fail for general bornological spaces, cf. section 5.2.

The mentioned structures all fit in the same scheme which is developed in
section 1.1. The special case of the specified bornologies is treated in section 1.2,
that of Lipschitz structures and of smooth structures in section 1.4. Particular
attention is given to the question of cartesian closedness. This is roughly
speaking the problem whether the respective function spaces admit a structure
of the same kind in such a way that morphisms into a function space correspond
exactly to morphisms on the respective product space.

Section 1.3 is more classical. There it is shown that difference quotients
provide a link between bornologies on the one hand and Lipschitz- and smooth
structures on the other: functions of finitely many variables have certain
differentiability properties if and only if certain of their difference quotients are
bornological. Some technical complications are due to the fact that we consider
functions on arbitrary open subsets of R™. The reader can avoid these difficulties
by sticking to functions which are defined on the whole R™ or on a product of
open intervals.

1.1 Categories generated by a set of maps

The examples mentioned in the introduction to the chapter motivate the
consideration of sets X structured by a set €y of ‘curves’ and a set % of
‘functions’, with the property that ¥, and % determine each other by the
condition that the composites fo ¢ have to belong to a given set of maps such as
the set Z4(R, R) of locally Lipschitzian functions or the set C*(R, R) of smooth
functions. The third example shows that it is useful to take as source for the
‘curves’ not only R, but any fixed set S; and as range for the ‘functions’ any fixed
set R (in [Frélicher, 19807 only the case S=R was considered).

1.1,1 Definition. We suppose in the following, that a set .# of maps from § to
R is given, S and R being any fixed sets. For an arbitrary set 4, maps c:S—A4
shall be called curves in 4 and maps f:A—R functions on 4.

(i) Any set % of curves in 4 determines a set ®% of functions on 4 as follows:
©%:={f:A>R;f (%)< .#}. Similarly any set # of functions on A determines a
set T'.# of curves in 4 as follows: T #:={c:S—A;c*(F)<.4}. Obviously one
has ¢ <T®¥ and & <O F, ¢, =%6,=0%,20%, and # = FH=>TF 2I'F;
hence ®@T'® =@ and I'PI' =T

(ii) An .#-structure (¥, F) on a set A consists of a set ¥ of curves in 4 and a
set F of functions on A such that these determine each other according to
F =% and € =T F. The elements of ¥ are called the structure curves, those of
F the structure functions.

(iii) An .#-space is a triple X =(Ay; %y, %), where Ay is a set (called
underlying set of X) and (6x, %) is an . -structure on Ay. An .#-map between
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M -spaces X and Yis a map g: Ax— Ay which satisfies the equivalent conditions:

(a) g*((gx)g(gy;
(b) g F=F;
() Fogebxs M.

(iv) The category .# generated by .# has as objects the .#-spaces. and as
morphisms the .#-maps.

(v) An -structure (¥,, %) on A is called finer (we also say smaller) than
a second one (¥,, %) if the identity id, is an .#-morphism from (4; ¢,, %) to
(4; 6., %), 1e. if €, <%, or equivalently # 2%,.

1.1.2 Lemma, (i) If %, is any set of functions on A, then there exists a coarsest
M -structure (6, F) on A with F=F. Furthermore, for any .#-space
X =(Ay; €x, Fx) a map g:Ax—A is an #-morphism from X to (4; €, F) iff
g* (Fo) = Fx.

(i) If €, is any set of curves on A, then there exists a finest 4 -structure (€, F)
on A with €,<=%. Furthermore, for any #-space X =(Ay; €y, #%) a map ¢g:
A— Ay is an M-morphism from (A; €, F) to X iff g, (6o) = Fx.

Proof. Obviously the structure in (i) is given by ¢:=T'%, and % :=®%. In the
dual way the structure in (ii) is given by #=0%, and ¢.=T'#. |

1.1.3 Definition. (i) In the situation of (1.1.2) we say that %, (respectively %)
generates the structure (¢, #). An .#-structure generated by an empty set of
curves is called discrete.

(i) In the case where R=R, an .#-structure on a vector space E admitting a
generating set %, that contains only linear functions is called linearly generated.

(iii) By initial (resp. final) #-structures we mean initial (resp. final)
J#-structures with respect to the forgetful functor to the category Set of sets,
cf. (8.7.1).

1.1.4 Proposition. The category # of .4#-spaces has initial and final structures.
Explicitly they are described as follows: Let X ; (je J) be any family of .4 -spaces.
The initial structure on A induced by a given family of maps g;: A—Ay, is
generated by the set of functions { fog;: A—R; jeJ and fe &} provided < F;
generates the structure of X; for all jeJ. It has as structure curves the set
{c: §—-4; gjoce®y, for all jeJ}. The final structure on A induced by a given
Jamily of maps g;: Ax,— A is generated by the set of curves {g;oc: S—A4; je J and
ce S} provided =€ ; generates the structure of X ; for all je J. It has as structure
functions the set { f: A= R; fog;e F, for all je J}.

Proof. Easy verification. a

Remark, In general one has no explicit description of the structure curves of a
final structure and the structure functions of an initial structure. So the structure
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curves of a final structure may fail to lift to structure curves of the given spaces
and the structure functions of an initial structure may fail to extend to the given
spaces. For an example see (7.1.8). In (7.3.1) and (7.3.2) an explicit description of
final morphisms will be given.

1.1.5 Corollary, The category # is complete and cocomplete. The forgetful
Sunctor from .4 to Set has a left and a right adjoint. Limits (resp. colimits) in M are
obtained by forming them in Set and putting the initial (resp. final) . -structure on
them.

Proof. (8.7.3) applies; cf. also the first remark after (8.7.1).

We mention in particular products of .#-spaces: The underlying set is the
cartesian product of the underlying sets, and the structure curves of the product
are those whose coordinates are structure curves of the factors. The product
with factors X and ¥ will be denoted by XnY.

1.1.6 Remarks. (i) A one-point set has two .#-structures if .# does not
contain all constant maps S—R; cf. [Frolicher, 1979]. For our purpose we can
restrict to the case that all constant maps S—R belong to .#. Then for any .#-
space (4; 4, #) the constant maps S— A4 belong to ¥ and hence the one-point set
has exactly one .#-structure. We denote the .#-space so obtained by {*} and
remark that {*} is a terminal object of .# and yields a representation of the
forgetful functor .# —Set.

(i) The set S has a natural .#-structure, namely (., .#); we shall from now
on also denote by § the .#-space so obtained. Similarly R shall also denote the
4 -space having R as underlying set and (#, ®.#) as .#-structure. This no-
tation may look dangerous, because the .#-spaces § and R can be different even
if the sets S and R are the same. But for the general considerations one uses
anyhow two symbols S and R; and in all our examples where the sets S and R are
equal, the .#-spaces S and R also coincide (this in fact holds iff .4 is a monoid).

By means of the special objects described above we get the following re-
presentations for any .#-space X =(Ay; €x, Fx):

Ax=M((+}. X Gx=M(S, Xy Fx=MX,R).

In particular one has .# =.#(S, R).

Using the canonical .#-structure on R one deduces that an .#-structure
(%, #) on a set X is generated by % < iff the .#-structure (%, &) is the initial
one induced by the maps f: X =R with fe #,,.

1.1.7 Theorem. Suppose that .# is a set of maps S—R containing all constant
maps and such that, with s, t):=c(s)(t),

Cw={c:S—.4; & SuS—R is an .4 -map}

is the set of curves of an .#-structure on M (i.e. T®E 4 =¥ .4). Then one obtains for
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any #(-spaces Y and Z an .#-space denoted .4(Y, Z) having .4(Y, Z) as under-
lying set and the following structure curves:

Ca.zy={e:S—> MY, Z), é: SUY>Z is an M-map}.

This function space structure behaves functorially and by the obtained functor
M MO X M — M the category of 4 -spaces becomes cartesian closed. Thus a map
g: X—>H(Y, Z) is an A -map if and only if §: XuY—Z is an 4-map, and all .&-
maps Xu¥—Z are of this form.

Remark. The use of the same symbol .# for the given set of maps and for the
functor closing .# simplifies notation and will cause no confusion.

Proof. We first show that one has:

(@) € yrzy={e:S> MY, Z); fyoc*aecb, for all feF, ceby}.

So let e:S—.#(Y,Z) be a map. Then ¢ is an .#-morphism Sn¥Y—Z iff
feéeolo,c)ed for all ce. 4(S,S), ce¥y and feZ. Since for ce¥y, also
cate%y for any 1€ .4(S, S) it follows that é is an .#-map iff foé (0, cat)e 4
for all o,7€.4(S,S), ce¥y and fe F,. Since feoéo(0,cot)=40(0, 1), Where
g= fy2c¥oe, our first assertion follows according to the definition of €.

An immediate consequence of (a) is:

(b) For ¥e®% 4, ce ¥y and fe #, one has: Wo f, »c* € DY 4y 2.

We now prove that % 4,z is the set of structure curves of an .#-structure on
Lﬂ(Y, Z), 1.e. that Iﬂq)(tfb,;((y,z) E%,‘ﬂ(y’zj- Solet ee F(D(gbﬂ(y,z), ie. e:S-—»Lll(Y, Z) is
such that peee.# for all pe®% 4vz. Then, by (b) one deduces that
Wef,ac*oee d for ¥ e®E 4, ce Gy, fe F;. According to the assumption this
implies f,oc*oee b, for ce ¥y and fe Z,. Hence e€ % 4y z by (a).

Functoriality means that for .#-maps ¢: Y,— ¥, and h: Z,-Z,:

(c) g*ob, MY, Z,)>M(Y,, Z,)is an #-map.

This in fact follows easily using (a). So let e€ € 4y, z,)- Then f o c*o(g*oh, ae)
=(foh)yo(gec)*oeeb4for feF;, and ce ¥y, since fohe F, and gece¥by,.

We next show that:

(d) The evaluations ev}: #(Y, Z)u¥Y—Z are .#-maps.

For this we have to show that ev-(e, ¢):S—Z is an .#-map for all structure
curves e:S—.#(Y, Z) and c¢: S— Y. This holds since ev}o (e, c)=¢=(ids, c) and é
is an .#-map.

(e) The insertions ins}: X —.#(Y, XuY) are .#-maps.

By definition one has ins{(x)(y)=(x,y). For any xeX the map
ins§(x): X—XnY is an .#-map since the composites with the canonical projec-
tions of XY both are .#-maps. For this one uses that any constant map X —» ¥
is an .#-map, but we remark that this holds only because of the hypothesis that
all constant maps §— R belong to .# (without this hypothesis .# can still be
cartesian closed, but not by a functor lifting the hom-functor; cf. [Frolicher,
1979]). For ins} to be an .#-map we have to show that for any ce%, the
composite insfec is a structure curve of #(Y,XnY), ie. that

(insyec)" :SmY—>XnY is an .#-map. This holds since (ins¥ec)" =cmidy.~ .« My
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It remains to show the claimed bijection:
(f) Forany .#-map g: X —.4 (Y, Z)themap §: XnY—Z is an .#-map. In fact,
g=evye(gmidy).
(g) Ifh:XnY —»Z is an .#-map, then h¥ : X —>.# (Y, Z) has values in .# (Y, Z)
and is an .#-map. In fact, h¥ =h, oins}. O

Remark, It can be proved that for sets .# that contain all constant maps the
condition given above is in fact equivalent to the cartesian closedness of the
category .#; for the case where .# is a monoid cf. [Frolicher, 1980].

The following result will be used later.

1.1.8 Proposition, Suppose .# is such that . is cartesian closed, and let X, X ;,
Y, Y; be .#-spaces, je J.

() If {f:X;>X; jeJ} is a final family such that X =\U;c;f(X)), then
{f*: (X, Y)>M(X;, Y);,jed} is an initial family.
(i) If {9;: Y- Y,; jeJ} is an initial family, then so is

{(gj)pV!/(Xa Y)_') v//(Xa K)’JEJ}

Remark. The special case where J =& will also be used later.

Proof. (i) Let c:S—.# (X, Y) be such that f*oc is a structure-curve of
M(X;,Y) for all jeJ. Using the universal property of the function space
structure twice one concludes that (f;* - ¢)™: X ;- .# (S, Y) is a morphism, where
I is defined by A(x)(y):= h(y)(x). By the same reasoning it is enough to show that
E:X—>.4(S,Y) is well-defined and a morphism. It is well-defined, since
for every xeX there exists a jeJ and an x;€X; with f(x;)=x and hence
Ex)=&(f;(x;))=(f*2¢)"(x;)e.# (S, Y). Since (f¥°c)"=c"=f;, the map ¢ is a
morphism. The assertion now follows, since for an arbitrary .#-space instead of
S one can test by means of the structure curves.

(ii) Letc:S—.# (X, Y)be such that (g;), ° ¢ is a structure-curve for .# (X, ¥))
for all j. Then ((g;)y°¢)" :SnX—7Y; is an .#-morphism for all j (recall that
h(x, y)=h(x)(y)). Since ((g;)4°€)" =g;°¢, the hypothesis implies that ¢ and
hence ¢ is a morphism. O

1.2 Bornologies and £ *-structures

We first introduce the category of bornological spaces and then study a certain
subcategory which will play an important role. The bornological spaces usually
used in analysis all belong to it. This subcategory admits a description in the
sense of section 1.1 and hence is easy to handle and has excellent categorical
properties.
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1.2.1 Definition (cf. [Hogbe-Nlend, 1977, p. 18]). A bornology on a set X is a
collection # of subsets of X such that

(i) xeX = {x}e%;
(i) B, cB,e#=B,e%,
(iii) Bje# forj=1,2 = B,uB,eA.

A bornological space X is a set (also denoted by X) together with a bornology
2 on it; the sets of & are called bounded subsets of X.

A basis for a bornology 4 is a subcollection %, of # such that every Be 4 is
contained in some Bye #,.

A subbasis for a bornology 4 is a subcollection %, of # such that for every
Be4 there are finitely many B,e 4, with B< {U;B; (any collection %4, of
subsets of X which covers X is a subbasis of a unique bornology #, obtained by
forming all subsets of finite unions of sets belonging to %#,).

The category Born has as objects the bornological spaces; Born(X, ¥) is
formed by the so-called bornological maps g: X — Y, i.e. those maps g for which
B = X bounded implies g(B) = Y bounded.

1.2.2 Remark. Itiseasy to verify that initial and final structures with respect to
the forgetful functor Born—Set exist. Therefore all categorical limits and co-
limits in Born exist, cf. (8.7.3). We explicitly mention products which will be used
later. The underlying set of a product IT ;. ;X ; of bornological spaces X is the
cartesian product of the underlying sets, and B <11, ;X; is bounded iff
pr;(B) € X; is bounded for all jeJ.

1.2.3 Definition. With £~ we denote the category obtained according to (1.1.1)
by choosing S:=N, R:=R and #:=¢%, ie. 4 is the set £{* of bounded
sequences of real numbers.

Thus notions like £ -structure, £*-space and £°-map make sense, cf. (1.1.1).

1.2.4 Proposition. The category £* embeds into Born as follows: To an £™-space
X with £*-structure (€, F) one associates a bornological space 1X by defining
B < 1X to be bounded (shortly: B < X bounded) iff B satisfies the equivalent
conditions:

(1) every sequence c:N—X with ¢(N) < B belongs to %;
(2) f(B) is bounded in R for all fe #.

The embedding functor 1:£*—Born has a left-adjoint n:Born—{™ satisfying
no1=1d. Both functors preserve the underlying spaces and maps.

Proof. The equivalence of (1) and (2) is trivial. For any bornological space
(X, #), the set of bornological functions X —R {where R is considered with
the standard bornology) generates an ¢ ™-structure (%, # ) on X, for which in
fact # is equal to the set of bornological functions, as one verifies easily. One
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puts n(X, #):=(X; %, F). The verification that this yields a functor # with
the stated properties is straightforward. O

Remark., We will show in (7.2.8) that # commutes with countable products.
The analogue fails for products with at least 2%°-many factors, cf. (7.2.9).

By means of the embedding of (1.2.4) £* can be identified with a full reflective
subcategory of Born. The following proposition gives equivalent descriptions of
that subcategory.

1.2.5 Proposition. Let X be a bornological space. Then the following statements
are equivalent:

(1) The bornology of X comes from an £ *-structure,

(2) Any subset on which all bornological functions f: X —R are bounded is
bounded in X;

(3) Every unbounded subset of X contains an infinite countable subset whose
only bounded subsets are the finite ones.

Proof. (1 =2)follows from (1.2.4).

(2=13) Let B X be unbounded. Then there exists a bornological function
f: X—R which is unbounded on B. Therefore one can choose for each ne N a
point b, € B with |f{(b,)| = n. Then {b,; ne N} is a subset of B which has the stated
properties.

(3=1) We show that (3) implies the equation X =mwX. Because of the
adjunction stated in (1.2.4) we have only to verify that the identity map from X
to X is bornological. So let BS X be unbounded. By (3) there exists a sequence of
points b, € B with b, #b,, for nm such that every infinite subset of {b,; ne N} is
unbounded. One defines a function f: X —»R by f(b,):=n and f(x):=0 for x ¢ {b,;
neN}. Then fis a bornological function since on any bounded set it takes only
finitely many values. Since f(B)=R is unbounded, the assertion B<X un-
bounded thus follows. O

We remark that according to (3) the bornologies coming from £*-structures
are Kolmogorov-bornologies (cf. [Hogbe-Nlend, 1977, p. 118]), i.. they have
the property that each unbounded subset contains a denumerable unbounded
set. However, condition (3) is slightly more restrictive as the following example
shows: take X =N and define Be# iff ) . 1/n<o0. Then # is obviously a
Kolmogorov-bornology, but (3) fails for the unbounded subset N. Furthermore
the £*-structure associated via # is the coarse ane since all bornological
functions are globally bounded.
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1.2.6 Definition (cf. [Hogbe-Nlend, 1977, p. 21]). For any separated topo-
logical space X, the relatively compact subsets of X form a bornology, called the
compact bornology on X.

1.2.7 Propositien. Let Y be a metric space, X < Y a subspace. The following two
bornologies on X are identical:

(1) The bornology induced by the compact bornology on Y
(2) The bornology associated to the £™-structure on X generated by the set of
those sequences in X that converge in Y.

Proof. Call #, and £, the bornologies on X described in (1) and (2). Let %, be
the set of sequences mentioned in (2).

(A, = #,) Let Be#,. We show first that every sequence in B has a sub-
sequence belonging to %,: Suppose indirectly that there is a sequence h:N—B
without accumulation point in ¥. Without loss of generality we may assume that
b, # b, for n # m. One considers the function f: X —R defined by f(b,):=n and
f(x)=0 for x¢b(N). If x: N—X is a sequence which converges in ¥, then only
finitely many b, can belong to x(N). Hence f- x takes only a finite number of
values and thus belongs to ¢*. We conclude that fe# and since f(B) is
unbounded we reach a contradiction to Be %,.

Let now ¢ be a sequence in the closure B of B in Y. We choose b, e B with
d(c,, b,) <1/n. Some subsequence of b converges to a point ye Y. The corre-
sponding subsequence of ¢ has to converge to y also, and therefore y € B. Thus B
is compact, being a sequentially compact subset of a metric space.

(#, 2 %,) Let Be#,. So there has to exist a compact K < Y with B = K.
Let f: X R be a structure function of the £*-structure on X generated by %,.
Suppose it is unbounded on B. Then there are b,e B with |f(b,)| = n. Some
subsequence of b has to converge in the compact set K and hence belongs to €.
But since f is unbounded on this subsequence we reach a contradiction. Thus
we have shown that Be 4,. )

Remark. The bornology on X considered above is the compact bornology of
X iff X is closed in Y.

1.2.8 Theorem. The category £ is cartesian closed (cf. section 8.6). The canoni-
cal £*-structure on £* is linearly generated by the elements of £* acting on £* (cf.
(1.1.3)).

Proof. We first remark that the bornology belonging to the canonical #%-
structure of N (cf. (ii) of (1.1.6)) is the coarse one (N itself is bounded), while for R
it is the usual bornology. So we get for the set ¥~ of (1.1.7):

Gp»={c:N->£7; N x N) bounded in R}.
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It is well known that the Banach space ¢ with the norm
%]l :=sup {|x,l;neN} is the dual of the space of absolutely summable se-
quences /= f.»c:N—x»[R;||x||1:=Z:°=1 |x,| < 00}; where the duality action is
given by (x|y> =) X,y for xef! and yes™.

We show first that the elements of #! act on ¢® as elements
of ®G={p:t*>R, @ocet™ for all @e@m}. So let xef!, and
ce%s». Then ¢:NxN-R is bounded, say by 4>0, and we obtain
I(xo )] =[xl =130, Xu bt m)| <A-|x]ly, ie. xecel™ and
therefore xe @6 ,~.

We show now that a sequence ¢ : N—¢® belongs to %= provided xece£* for
all xes!. For each xe/' there exists a constant A, such that |x(c(n)| < A,
for all neN, ie. the c(n) considered as elements of (¢!y form a pointwise
bounded family. By the uniform boundedness theorem of Banach—Steinhaus,
cf. [Jarchow, 1981, p.220], we conclude that this family is bounded with
respect to the norm, ie. there is a constant A with | e(m)| , <4 for all n. Hence
|é(n, m)| < A for all n,meN and therefore ce . This not only shows that
(=, DE =) is an £@-structure on £~, but also that it is linearly generated by
the elements of £*. |

Remark. If one is only interested in the cartesian closedness of /%, a much
shorter proof is possible: one shows that the #-structure on £® which is
generated by the function |||, :¢#*—R has exactly é,~ as set of structure
curves. But since this function is not linear the obtained result would not be
useful for investigating linear spaces and for showing the cartesian closedness of
the category ¥ of smooth spaces; cf. (1.4.3).

The category £ is even locally cartesian closed, cf. (8.6.5); since we shall not
use this result and since the proof is not hard, we omit it. We shall, however,
show in (7.1.6) that C™ is not locally cartesian closed.

1.2.9 Proposition. Let X be any £*-space and E a vector space with an £*-
structure that is generated by a set & of linear functions. T hen the following
families of linear morphisms are initial:

(@) c*:£2(X, B)»£2(N,E) (cet=(N, X))
(i) £,:07 (X, E)>L=(X,R) (LeS);
(i) £7(c, £):£°(X, B»¢ (N, R)=¢  (ce£™(N, X), (€ ¥).

Proof. This is an immediate consequence of (1.1.8).

1.2.10 Corollary. Let X be an {*-space and E a vector space with linearly
generated ¢ ™-structure. Then the structure of £ »(X, E) is also linearly generated.

Another way of obtaining the cartesian closedness of /% is to restrict,
according to the diagram (1.2.13), the functor Born: Born®® x Born—Born
which describes the cartesian closedness of Born. For bornological spaces X, Y
the space Born (X, ) is obtained by putting the following bornology on the set
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]Born(_X , Y): B< Born(X, Y) is bounded iff for any bounded 4 < X the set
B(A) is bounded in Y. Cartesian closedness of Born is then easily verified.

1.2.11 Lemma. Let X and Y be bornological spaces, A = X be bounded and
f:Y—R be bornological. Then the function ¢, ,:Born(X, Y)—R defined by
@4, r(@=sup {| f(g(x))]; xe A} is bornological.

Proof. Let B< Born(X,Y) be bounded. Then B(A)< Y is bounded
and hence there exists an M >0 with f(B(4)) =[—M, M] Therefore
Q4 rBYS[—M, M]. O

1,212 Lemma. Let X and Y be bornological spaces. If the bornology of Y
comes from an £ ®-structure, then the same holds for the bornology of Born(X, Y).

Proof. We use condition (2) of (1.2.5). Let B < Born(X, ¥) be unbounded.
Then we can choose a bounded 4 = X with B(4) = Y unbounded, and a
bornological f:Y — R with f(B(4)) unbounded. Hence, with ¢, , according to
the lemma above, ¢4 ,(B) is unbounded, as to be shown. ’ =

1.2.13 Corollary. The following diagram commutes:

£®

oyl — s £

Iz"" X1 Il

Born
Born®? x Born Born

In particular one has for £*-spaces X and Y: B< /®(X,Y) is bounded iff
B(A) < Y is bounded for all bounded A = X.

1.2.14 Proposition. The following diagram commutes:

Born® x £ —"L, (¢=)px g L0

1x1 ]

n Y
Born®® x Born Rer » Born

Proof. Since this result is not used in the following, we only indicate that one
uses the adjunction between 5 and 1 (1.2.4), the cartesian closedness of Born and
£* and the fact that y commutes with finite products. O

R_emwrk. The essential consequence of this proposition is the fact that for a
given ¢~-space Y the bornology of Born(X,:Y) only depends on X (or
equivalently: only on the bornological real-valued functions on X).
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1.3 Difference quotients

Difference quotients provide simple characterizations of differentiability proper-
ties of functions of one or several variables (cf. (1.3.22), (1.3.28)). They are also
used in numerical analysis because they yield direct algebraic approximations of
(partial) derivatives of higher order (cf. the remark after (1.3.15)). We first give
the fundamental definitions, proceed with the results for functions of one
variable and terminate with the corresponding results for functions of several
variables.

1.3.1 Definition. By N:={1,2,...} we denote the set of natural numbers.
And we will use the sets No=Nu{0}, N =Nu{ccj and Ny .=
Nu {0, oo}

Let D = R be an arbitrary subset and f:D— E a function with values in a
vector space E, ke Nj.

The natural domain of definition of the difference quotient of order k of f'is
D= {(to, . .., t,)eD**Y; t;#1¢; for i#j}. On D we always consider the
bornology induced by the compact bornology of DFTL of (1.2.7).

And the difference quotient 3*f: D> - E of order k of f is recursively defined
by:

3°f:=f

Mlto, . . » ty)= N CARES £ (7YRN ) El Ll { (7PN 9 )

to—tk

The solution of this recursive definition can be expressed explicitly:

1.3.2 Proposition. 8 (to, . .., )=k Yi_Bif(t) where the coefficients
B:=Bilto, - - -, t)=Tlocrnr#i{ti—t,) "' are independent of f.

Proof. By induction on k. O

1.3.3 Corollary., &*fis symmetric in its k+ 1 arguments.

Next we give the corresponding definitions for functions of several variables.

1.3.4 Definition. Let D = R™ be an arbitrary subset and f: D — E a function
with values in a vector space E. With k:=(k,, . . . , k,)€(N,)™ we denote a muylti-
index of degree |k|'=k,+ - -+ +k,.

The natural domain of definition of the difference quotient of order k
of f is D®=DAR* x ... xR&)c R+t x ... xR"1,  where
De={(x!, ..., xMeRu* x ... xR (x}, ..., xk)eD for i;=0... k;}.
On D we will always consider the bornology induced by the compact
bornology of D¥, cf. (1.2.7).
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In order to define the difference quotient §*f: D> - E of order « of f we use

Erlls;ead of a recursive definition the analogon to the explicit description given in
3.2)

) ki km
Sf(xt, ..., x’”):=ilz=:0 . izzo Bi(x') .. B (™) f(xh, ., X))

where f,(x):=k! x;—x;)"1 fi = &>
Osj}g’#i( ;) or x=(Xg, ..., X )eR¥,
In the special case where x has all components equal to O except the ith one

beigg equal to k, we define the ith partial difference quotient 8'f of order k of f
to be:

SifC . X =08 XL =85, XY L X L) (), with xTe R
and x’eR for j#i.

1,35 Remark. (i) In'case m=1, i.e. k=(k) with ke N, the general definitions
reduce to the special ones in the following way:

D(K} =D<k>, D* =D(k) =Dk+ 1’ 6uf= 51{ f= 5kf

(ii) In the case where D=D; x ... x D, one has D =D x .. x psem,

(iii) The partial difference quotients &*f even make sense for D < )}n L X

- XX; 1 XRx X, x ... xX, for arbitrary sets X;.

(iv) For k=1 we will write 6 f=6} f=4,f and for k=(0, . .., 0) we have
D¢ =D*=D and 6*f=f.

(v) We have the following recursion for the difference quotients:

X k I(m) 1 ,

5' =5’(“%1))° > Déﬁ;")) for any permutation [ of {1,...,m}. To interpret the
I'l%]flg side correctly one should remark that 6°f is defined on a subset of
R¥2>x ... xR%"> and then use remark (iii) (for the proof it suffices and is

easy.to show that 6*f=4§%(6*'f) where x'=(k,,...,0,..., k,)), ie. «' is
obtained from « by replacing the pth entry by 0.

We return now to functions of one variable.

1.3.6 Lemma. For any f: D—~E and any (t,, . . . , ;)€ D one has

S0 =Ft0)+ 3 = 10)5*ltg )+
1
g —to) - (=t 1) fltor . . ., 1),

Progf. For k=0 this is trivial. Suppose the formula holds for k— 1 instead of k
and let (t,, . . . , t,)e D,
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So one gets six terms which obviously cancel two by two. O
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Applying the induction hypothesis to (to, . - ., ti—s,t,)ED¥ Y one has

1 o
ft)=flo)+ -~ +m(tk—to) o (b= t—g) 8 T fltgs - - s 2o te). The

claimed formula follows by replacing the last term in the above sum by

1

(k—1)! {ti—to) - - - (t—ti—2) O " ftos - - - 25 tk—1)

L to) - Bt )8l - )

according to the recursive definition of &% and its symmetry.

_|_

The interpolation formula of Newton follows from the lemma:

1.3.7 Proposition, Let f:D—E and (¢, . . ., t,‘)eDf"X '
(i) The unique polynomial function (the interpolation polynomial) p: R—E of

degree at most k satisfying p(t)=f(t;) for i=0, ..., k is given by

POF=Flto) 7y (= 10) 54, 1) + -+

+%(t—t0) e =t )8 oy - - s )
(i) For any te D\{to, . . ., t;;} the remainder is given by

1 5
f(t)—p(t)=(k—+1—)!(t—t0) o t—1) T (Lo - - - L t)

Proof. The uniqueness of such a polynomial function follows from the theory
of linear equations; the respective determinant is that of Va_ndlermondg and
hence different from zero. The function p as described above is polypomlal of
degree at most k; and p(t;)=f(t;) follows from the lemma (1.}.6) (W1th i instead of
k). The formula for f—p is a direct application of (1.3.6) with k+ 1 instead of k

O
and t, .=t

1.3.8 Lemma. Letf: D—>E; (ty, ..., t,)eD¥; and iy, iy,is€{0, ..., k} three
different integers. Then

— r
0=Z (ta(il)_ta’(iz)).ak lf(t07 e vy ta(13)9 IR tk)’
3

where the sum goes over the three cyclic permutations o of {iy,i,,1;} and where the
symbol ™ above a term indicates that it has to be omitted.

Proof. By the symmetry and the recursive definition the first of the three terms
is equal to

1.3.9 Corollary. Let (tg,...,t,)eD®, O<i<k and to<t;<t,. Then there
exist positive reals o and B with a+B=1 and & 'f(t,,..., 5, . .., t)=
a0 " (tg, . ., b )H BT, . L, 1) for any f: DS E.

Proof.  According to (1.3.8) a:=(t;—t,)/(ty —t,) and B:= (t,—1;)/(t,—t,) suffice.

O
1.3.10 Lemma, Lett,<t,< ... <t,and O=ig<iy< ... <iy=n. There exist
positive reals B, for r=0, ..., n—k with Bo+ - -+ +B,_,=1 such that for any
function f. D — E with t,e D for all i one has

—k
5kf(tioa IR Y ] tik)=z:‘=(; rakf(tn tr+1a p-9% ¢ tr+k)'

Proof.  One successively replaces a term 91 (tjos - - - » t;,) for which j, —j, >k by
a linear combination with positive coefficients « and B (x+f=1) of two terms
5kf(110, e e g tlk) With lk— lo =jk _jo - 1 using (1.3.9). D

This lemma is responsible for the fact that one can restrict in many situations
to equidistant difference quotients which are defined as follows:

L3.11 Definition. For s#0 one puts &%, f(£; s):=6*(t,t+s, . . . , t+ks).

1.3.12 Proposition. Let f:] — E where I < R is an interval; suppose that A < E
is convex and closed for a topology on E for which fis continyous. Iffor eacht and s
with s#0 and t,t+ksel one has 6%, f(t,s)€ A, then 5*f(t,, . . ., t)eA for all
(to,- .., t)el®,

Proof.  Since §*f is symmetric, we can suppose that f,< . . . <t.

(1) Special case: (t;—t,)/(t,—t,)eQ for i=0. .. k.

Let m be the smallest common denominator of these positive rational numbers
and put n/m:=(t;—t,)/(t,—1t,). Then we write ti=to+mns, ie. the points
to, . .., t, are among the points ty,t,+s, . . ., to+n,s. Therefore, by (1.3.10),
8*f(to, - . . , t,) is in the convex hull of the values M(to+rs, to+(r+1)s, ...,
to+(r +k) s)= 0%, f(to +rs, s) which by assumption lie in 4. So Ffl(to, ..., t)EA
since A is assumed to be convex.

(i) General case. Because f is continuous, &*f] {to, - . . , ) can be obtained as
limit of values 6*f(s, ..., s) where the so,...,s, are as in case i). So
0*f(so, - - - » 8,)€ 4, which implies 5*f (to> ..., t)e A since A is assumed to be
closed. O

Remark. Without the continuity assumption on f, (1.3.12) fails as shown by the
following example (using a basis for R as vector space over Q). Let f:R—Rbea
function which is additive (i.e. f(t +5)=f(t) +£(s) for all ¢, s) but not continuous.
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Then 62, f=0 but 62f is not locally bounded since otherwise f would be even

differentiable, cf. (1.3.17).

1.3.13 Lemma, Let T#S be two subsets of D with k+ 1 elements each. There
exist enumerations T={to, . .., t;} and S={s,, . . ., 5,) such that t;#s; for i<,
and then

1 &
fltgs - - s ) —0"f (S0 - s Sy =7 Z (ti—s) 0 fltos v - tinSia oo, Si)
k+1,=
for any f:D—E.

Proof. For the enumeration we put the elements of T S at the end in 7 and at
the beginning in S. Using the recursive definition of **! £, the sum on the right
can be written as a telescoping sum. |

1.3.14 Corollary, Let I <R be an interval of finite length L and
(Sos - - - » Sp)€I*. Then one has

sup|o* f(I4?)| < L-sup| 8“1 fI*T 1) 416 (5o, - - - 5 51

for any function f: 1> R.
In particular, ** ' f bounded implies 3*f bounded.

Remark. The last statement fails if [ is unbounded: If f():=t**?, then §**'fis
bounded on R<*1> since it has the constant value (k+ 1)}, but 8*(to, . . ., t)=
kl(to+ - - +t,) is not bounded on R¢**,

1,3.15 Proposition. (Ist Mean Value Theorem.) Let I = R be an open interval,
0<j<k, xeI®, and f:1 - R j-times differentiable. Then there exists a Ee I+~ 1?
such that 8*f(x)=8*"7f V().

Proof. Tt is obviously enough to prove this for j=1. Let x=(t,, ..., t,) and
without loss of generality to< ... <t,. Set ri=f—p where p is the inter-
polation polynomial of (1.3.7) for f and the points t,, . . ., t,. Hence r(t;)=0
for i=0, ..., k and by Rolle’s theorem there exists a &, s.t. t;<¢&;<t;,, and
r'(€)=0,1e.f (&)=p (&) Thus p’ is the interpolation polynomial for f* and the
points &, . . . , & _,. Comparing the highest term of p and p’ according to (1.3.7)
yields the desired result. U

Remark, This lemma has the well-known consequence, that for a function
fiI-R of class C¥, f®(t) is the limit of 8*f(t,, . . ., ;) where all the ¢; tend
towards t. In particular one then has f*(t)=1im,_,, 6%, f(t; ).

1.3.16 Proposition. (2nd Mean Value Theorem.) Let I < R be an open interval,
0<k, x=(ty, . .., t,)eI®, and f: 1 - R continuous on I and differentiable at all
t;. Then
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(i) 8" f(x,t;):=1lim, 6% f(x,1;+1) exists;
o PR l
(”) 5kf (X):m Zi=0 o+ lf(xs ti);

(iii) there exists a Eel with §*f (x)=8*1f(x, &).

- Proof. (i) Follows from the symmetry of 6**'f and (1.3.6).

(i) Is proved by induction. One uses that with the definition (i) above the
recursion formula (1.3.1) remains valid if two points coincide, provided that fis
differentiable at the respective point.

(iii) Consider the continuous map g:I—R defined by g(t):=56""1f(ty, .. .,
t.t). It takes on [ the value 6%/ (to, . . . , t;) since by (ii) this is the mean value of
g(to): ] g(tk) O

1317 Lemma. Let I =R be an open interval, f:1-R; and suppose 6*f is
bounded on I%*. Then f is differentiable.

Proof. Since

f(t+s; /(0 _f(t+s2 O o5 trnits)

the Cauchy condition for the existence of f () is satisfied. o

1.3.18 Lemma., Let IR be gn open interval, f-I1—-R, and MeR. Suppose
|8+ 11| is bounded on I**1? by M; then f is k-times differentiable and |5'f®| is
bounded on I‘1? by M.

Proof. One uses induction. For k=0 one has nothing to prove. So let us
assume it holds for k—1 and let |6***f| be bounded by M. Using (1.3.14) we
obtain that |6/ is bounded on J ¢*? for every bounded subinterval J of . Thus
by (1.3.17) gi=f": I-R exists and by (ii) in (1.3.16) d*g is bounded by M. The
induction hypothesis implies that g is (k— 1)-times differentiable and 6'g*~ ! is
bounded by M, as to be shown. O

1.3.19 Definition. Let E, F be normed spaces; D = E; and f:D—F.

(i) fis called Lipschitzian (on D) if there exists an M eR such that || f{x)—
JMI<Mix—y| for all x,yeD. The function f is called locally Lipschitzian if
every point of D has a neighborhood U in D such that f|,: U—F is Lipschitzian.

(i) Let D R™ be open and f:D—R. Then f is called k-times Lipschitz
differentiable if f i3 k-times differentiable and has a locally Lipschitzian deriva-
tive f® of order k.

1.3.20 Proposition. Let U = R™ be open; F a normed space; and f: U—F. Then
the following statements are equivalent:

(1) fis locally Lipschitzian,
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(2) fis Lipschitzian on every compact subset of U;
(3) the partial difference quotients 6, f(i=1 ... m) of f are bornological maps;
¢of. (1.3.4) and (iv) of (1.3.5). :

Proof. (1=2) Suppose fis not Lipschitzian on the compact set K. Then there
exist for every ne N points x,, # y, in K with || f(x,)—f(y.)| > nllx,— y. |, and we
may assume that lim,_, ,x,=x and lim,, , y,=y. If x#y we get a contradiction
with the continuity of f at x and y, the continuity being implied by the
hypothesis. And if x=y a contradiction with the fact that fis Lipschitzian in a
neighborhood of x results.

(2=>3) By (1.2.7) it is enough to show that §;f is bounded on sequences
n— (e ) of USO oo b0 02 that converge in U@ b0 0,
For such a sequence the points (], ..., t},..., ) and (t}, ..., ", ..., th)
all stay in a compact subset of U, hence the assertion follows.

(3=1) One chooses for any given point in U a box-shaped compact
neighborhood V. For x#ye V one writes

JE—-f(»)= 2 G XYt ) =Sl Xm0y D)

In the sum we drop all terms which are zero, divide by |x—y|l and use
% —y| = |x;—y;|]. Thus we obtain

I £G)—f (i

WO 5 15, fxss -3 %05+ vl 0
lx—yll

1.3.21 Lemma. Let U< R be open, k=1, g:U x U"—R be a k-times Lipschitz

differentiable map. Then 6,g: U x U"—=R extends to a (k—1)-times Lipschitz

differentiable map on U2 x Um=U""*2,

Proof. Since such an extension has to be locally unique, it is enough to show its
existenice locally. So let (a, a; b) e (U2\U<??) x U™ Choose an open interval I with
aelc U. Since g|;xym is k-times Lipschitz differentiable, 8,4, defined by
8,9(t. ;%)= 8,9(t+s(t' —t),x)ds, yields a (k—1)-times Lipschitz differen-
tiable map which extends d,g, as integration by means of the substitution
s'=t+s(t'—t) shows. O

1.3.22 Theorem. Let U< R be open, f:U—R, and 0<j<k. Then the following
statements are equivalent:

(1) fis k-times Lipschitz differentiable, cf. (1.3.19);
(2) Every point of U has a neighborhood ¥V < U such that 6*** f is bounded on

V<k+ 1)’

(3) &£ UT Y SR s g bornological function, cf. (1.3.1) for the bornology of
U(k+ 1>’

(4;) O'f:UP >R has a (k—j)-times Lipschitz differentiable extension
Sif: Uit SR,
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Proof. Obviously (4,) equals (1). We show first that (4;,=4,, ) for 0<j<k.
Thus we are given a (k—j)-times Lipschitz differentiable extension §/f of
SIFUP SR to UL,

We have to find a (k—j—1)-times Lipschitz differentiable map
It U2 R extending 6/ f: UV >R, For this it is enough to extend
8, (09U x U/-R to U/*2 This is guaranteed by (1.3.21).

Hence (1)=(4,)=>(4;)=(4,).

(4,=3) Since 6%fis locally Lipschitzian we obtain that its partial difference
quotients are bornological, i.e. 8***f=§,(5*f)| ya+u: is bornological.

(3=>2) One chooses a compact neighborhood V< U.

(2=1) Since (1) is a local property this is just (1.3.18). d

1.3.23 Remark. (i) From the remark after (1.3.15) it follows that under the
equivalent conditions of the theorem one has: f ® Q) =38%f(t,.. ., ©).
(i) Conversely one can prove the following formula for the extension:

Ekf(ro,...,tk)=f.. fa'go...a’;,»apﬁf(x",...,xp)dxv...de.
Ao Ap

Here (A, - . ., A,) denotes a partition of(t,, . . . , t,), each A, consisting of k; + 1
elements and such that all ¢; contained in A; are in the same connected
component of U. The integrals on the right side are defined by

re-1 ro 1

Jf(x)dx:= f . JJ'f(ro+s0(r1—ro)+ s —re— ) dsE L. ds®
A 0 00

for A=(ry, ..., 1)

(iii) Another interpretation of §*f(t,, . . . , t;), where the t; should be equal in
groups A;, is as highest coefficient p, of the polynomial p(t):=py+(t—1t,) p, +
oo +(E—to) ... (t—1t—,) p, that agrees with f at the points t;eA; up to
order card (A;); e.g. 6°f(a, a,b) is the coefficient of ¢ in the polynomial p of
degree at most 3 satisfying p(a)=f(a), p (@)= (a), p(b)=1(b).

1.3.24 Theorem. Let U < R be open and f: U—R. Then the following statements
are equivalent:

(1) fis smooth, i.e. has derivatives of all orders;

(2) Every point in U has a neighborhood V < U such that 6*f is bounded on
V< for all k (or infinitely many k);

(3) For all k (or infinitely many k), *f: U> =R is a bornological function, see
(1.3.1) for the bornology on U<,

(4) For all k (or infinitely many k) 6*f admits a smooth (a locally Lipschitzian)
extension to U**1,

Proof. This follows immediately from (1.3.22). O
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We turn now towards functions of several variables. First we rewrite the
recursive definition of &*:

1.3.25 Lemma, Let D =R, f: D—E be a map with values in a vector space E and
; j+k
let j,k>0. Then §7+*f= <’+

. ) 61(8*f). where 6"f has to be considered as map
defined on the subset D*> of D x D*.

Proof. This follows by induction, using that by the recursion formula in (1.3.1)
one has §**1f=(k+1)6,(5*f). O

1,326 Lemma. Let I, x ... x1, be an open box in R™, x=(k,, ..., k),
K=k +1,ky, ..., k), fiI x ... xI,>»R a map for which the first partial
derivative 3, f exists and 6* f is bounded. Then 6@, f is bounded.

Proof. By the second mean value theorem (1.3.16) we have
0, f(x, ..., x™)=58"(a, 6% A, X%, L, X" (xY) =
rrri(glea. .- k) f X2 XMNE XN =8 f((, x1), X2, ..., x™)

for some £el;. In the case where ¢ equals some coordinate xj of x', the
‘difference guotients” have to be interpreted in the sense of (i) in (1.3.16). [l

1.3.27 Corollary, Let I, x...x1I, be an open box in R™, k>0, fil; x...x
I,—R a map for which §*f is bounded for all x with |x|=k+ 1. Then the partial
derivatives @*f of order k with |k| <k exist and all 6,0“f are bounded for i <m.

Proof. By the recursion formula (v) of (1.3.5) for §“fand (1.3.14) we obtain that
0"f'is bounded for all [x|<k+ 1. Thus by (1.3.17) the partial derivatives , f exist
and by (1.3.26) 60, fis bounded for all i and all |x| <k. Applying this argument
inductively we obtain the existence of all partial derivatives 8" f for || <k and
the boundedness of their difference quotients 6;8%. O

1.3.28 Theorem. Let U <= R™ be open, f: U>R amap, ke N and 0<j<k. Then
the following statements are equivalent:

(1) fis k-times Lipschitz differentiable, cf. (1.3.19);

(2) Every point in U has a neighborhood V = U, such that 8*f(V <) is bounded
Jor each multi-index x with |k|=k+1;

(3) LU R is bornological for all k with |i|=k+1, cf. (1.3.4) for the
bornology of U<,

(4;) 6“f: U’ —R has a (k—j)-times Lipschitz differentiable extension to U™ for
all « with |x|=j.

Proof. (Compare with the analogous theorem for one variable (1.3.22))
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(4;=4;, ) for 0<j<k. We have to extend 6"ffor all x with || =j+ 1. At least
one k; has to be greater than 0, without loss of generality k,>0. Let
K'=(k,, ..., k,). Since the extension problem is a local question, we may
assume that U=1x W with IR, W< R™"' open. By (4;) we have a (k—j)-
times Lipschitz differentiable extension §%: 1 ¥) f of §*1 1. %) fto Uki—1. x> -
Mx W<=IxI""'xW*. By (1.3.21) we obtain a (k—j— 1)-times Lipschitz
differentiable extension of §, (6%~ 1*)f) to I2x [ " Ix WY =T 1 x W*' =
U )= ", which obviously extends at the same time 5°f.

Hence (1)=(4,) =(4;) =(4).

(4,=3) 0% ¥ f=5,(6% 1 9f) is bornological since 4% ~!'¥f has a locally
Lipschitzian extension for k; — 1+ |k|=k.

(3=2) One chooses any compact neighborhood.

(2=1) Since (1) is a local property this is obtained by using (1.3.27) and
(1.3.20). O

1.3.29 Theorem. Let U < R™ be open, f:U—~R a map. Then the following
statements are equivalent: '

(1) fis smooth, i.e. has (partial) derivatives of all orders;

(2) For every point in U and for every multi-index x there is a neighborhood
V< U, such that 6*f is bounded on V <*?;

(3) For all k the map &*f: U>—R is bornological, cf. (1.3.4);

(4) For all x the difference quotient 5*f:U¥>—R has a locally Lipschitzian (a
smooth) extension to U*.

Proof. This follows immediately from (1.3.28). O

The following proposition will be used in section 3.7 in order to determine the
differentiable multilinear maps.

1.3.30 Proposition, Let »z E, x ... XE,—F be a multilinear map between
vector spaces and c¢;: R—E; curves. Then

5k(i)z°(cl, s eate, -0 b))

k!
=Y —————— m(¥¢1 (fos - - - o B WO Ca(tys -« s By ka)s
kil... k)
c ey 6kmcm(tkl+ BT Y SR SRR Tk)),
where the sum is to be taken over all k;>0 with k,+ - - - +k,=k.

Proof. One first proves the case m=2. In this case the formula reduces to

; L€ 2 W
5k(79£0(cl,02))(t0, s ey tk)=2 ( )}}Z(ék_lcl(to,, “eey tk—i)ﬁ(sicz(tk—iﬂ ey tk))

i=0 l

and is proved by induction on k.
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The general formula is then derived by induction on m. Here instead
of the multilinear map »z E, x ... xE,—F one considers the associated
map s :E; X ... XE,_,—Lin(E,, F), where Lin(E, F) denotes the space
of linear maps from E to F. Define c{t)i=»"(c,(t), ..., ¢u—1(t)) and let
ev: Lin(E,,, F) x E,,—F be the bilinear evaluation map. Then wz°(cy, . .., ¢,)=
22" (e (@), . . ., Cue 1 () (cu(®))=0v(c(?), c,.(1)). Now apply step 1 of the proof.

O

1.4 Lipschitz structures and smooth structures

The notion of an .#-map introduced in (1.1.1) is particularly useful in order
to generalize classical notions of Banach space calculus such as ‘locally
Lipschitzian’, ‘k-times Lipschitz differentiable’ and ‘smooth’. For this we shall
use as .# one of the sets L, Li* or C* defined as follows:

14.1 Definition. (i) %% denotes the set of locally Lipschitzian function
R - R; cf. (1.3.19).

(i) Zig* denotes, for ke Ny, the set of k-times differentiable functions R — R
for which the derivative of order k belongs to %z. In particular #.4° is the same
as Fp.

(i) C* denotes the set of smooth functions R — R. This set C® will also be
denoted by Lis™.

(iv) With %4 , Lip * and C® we denote the respective category obtained
according to (I.1.1). Hence notions like %/s-structure, Zi4*-space and Zi4*-
map make sense. Zig-structures are also called Lipschitz structures, C*-
structures also smooth structures.

Any Banach space E, and more generally any vector space E with a given
linear subspace E’ of its algebraic dual has a natural #4"-structure for any
ke N, ,,, namely the one generated (in the sense of (1.1.3)) by E’. We first show
that a map between normed spaces is a Fig-map exactly if it is locally
Lipschitzian in the classical sense, cf. (1.3.19). This will be fundamental for
proving in Chapter 4 that a map between Banach spaces is a Zi#*-map
(respectively a C®-map) exactly if it is k-times differentiable with locally
Lipschitzian kth derivative (respectively smooth) in the classical sense.

1.4.2 Theorem. Let E, F be normed spaces, U S E open and g: U—F be a map.
Then the following statements are equivalent:

(1) gis a Zif-map (with respect to the natural Lipschitz structures generated by
the continuous linear functionals);

(2) g is locally Lipschitzian;

(3) g is Lipschitzian on every compact subset of U.

Proof. (Compare with the similar statement for finite-dimensional E, (1.3.20).)
(1=2) Assume that at a point pe U property (2) fails. Then there exists for
each neN points x,, y, with ||x,—p| <1/n% |y,—pll<1l/n* and |g(x,)—
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gyl >n-|x,—y,|. We consider the following curve c:R—E: c(t):=x,; for
t<0; ¢ runs with constant speed of norm 1 from x; to y, for t;:=0<
t<|xy =yl =:s,; similarly it runs from y; to x, for s; <t <s; +{y; —x,[| =ty
and so on. Since 1= | 1%, =yl + 3,2 X441 —X,|| is finite, c(z) tends to
p=Ilim x,=lim y, as t increases towards ¢t_; so we define c(t):=p for t>t_,. By
construction one has for any ¢, se R: ||c(t)—c(s)|| <|t—s| and therefore for all
LeE :[(Coc)t)— (o)) <] -1t —sl, where |£[:=sup{|£(x)l;]|lx||<1} is the
operator norm of /. This shows that ¢ is a Z/#-curve in E, and thus at least
locally around ¢, stays in U.

On the other hand we have |c(t,)—c(s,)=x,—¥.l =It,—s,, hence
(g ° &) tn)—(g = (sl = 1g(xa) — g(yu)ll >n- |, —s,|. This shows that the set

{(g *O(t)—(gee)(s) . _ N}

tn_sn

is unbounded in the norm. Hence it is unbounded under some element £ € F’ (cf.
(i) in (2.1.21)), ie.

{(!ogoc)(tn)—(fogoc)(sn),neN}

tn_sn

is unbounded. Thus £ < goc¢ %z, and this is in contradiction to property (1).
(2=3) This is proved in the same way as (1=2) in (1.3.20).
(3=1) Let c:R— ¥ be a Lpi-curve; I =R a bounded closed interval. Since for
any £ € E’ one has £oce %4, the set

{K<M>;t;&s, t,se]}
t—s

is bounded. By the uniform boundedness principle (cf. [Jarchow, 1981, p. 220])
there exists a constant N, such that |c(t)—c(s)||/|t—s|<N, for t#s; t,sel.
Since ¢ is continuous, ¢(I) is compact and so using (3) we find a constant N, with
lg(x)—g(W| <N, - [|x—y]| for x, y e c(I). Putting this together we get ||(g oc)(t)—
(goc)®)| <N,N,lt—s| rand hence for any ZeF':|(feogec)(t)—(£2geoc)s)
<N,N,I£]-lt—sl.

This shows that £ 0 g« ce %# and hence g is a Lig-map. O

The main result of this section, which states that the category C* of smooth
spaces is cartesian closed, was first proved in [Lawvere, Schanuel, Zame, 1981].
In (4.4.44) we will show that C™ contains all classical and even many infinite-
dimensional smooth manifolds.

1.4.3 Theorem. The category C* of smooth spaces is cartesian closed. The
smooth structure of C*(R, R) is generated by all functions of the form £ - 6*: C*(R,
R)—R where §*: C*(R, R)—»¢*(R*?, R) consists in taking the difference quotient
of order k and £ runs through the linear ¢ *-maps {*(R*>, R)—R. In particular the
smooth structure of C*(R, R) is linearly generated; cf. (1.1.3).
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Proof. In order to apply theorem (1.1.7) we have to study the set
Coni={c:R->C";¢e C*(RnR, R)}. Since R has to be considered with its natural
C™-structure (C*, C™) one gets:

Gcn={c:R=C"; ¢2(g,7)eC* for all 0,7eC™}.

Since according to a theorem of [Boman, 1967] (of which a new proofis given in
(4.3.30)) a function R*—R is smooth if and only if it is smooth along smooth
curves, this gives:

Ccn={c:R>C™; ¢:R*>R is smooth}.
Again one considers the associated function-set:
OFc={fC">R; foceC™ forall cebcux}.
We first show that it contains at least the following functions:

For any keN, and any linear /* -morphism #:/*(R**?, R)—>R, the function
£ = 8*:C* >R belongs to @ ..

According to (1.3.24) this can be proved by showing that for any ce%¢.. one has:
8¢ 2 6%« ¢) is an £* -morphism for all j>0. For c€ %« the function ¢:R*—R is
smooth and hence by (1.3.29): 8} 6% &:RY? x R’ R is an /™-map. According to
the cartesian closedness of £* (1.2.8) we conclude: (8} 6% €)Y (R’ —/£=(R¥*, R) is
an £ -morphism, where ()" is defined by h¥(x) (¥): =h(x, y). Since one has the
identity §(6%~c)=(5] 6%¢)¥ we obtain, using the linearity of ¢: &£ =6*=c)
={08(8"cc)=¢=(6]6%0)".

As composite of two £™-morphisms this is an /“-morphism, and this implies
that /= 6* belongs to ®%c=.

Now let ¢: R—C™ be such that foceC™ for all fe@ €~ which are obtained
according to the lemma, i.e. for f=¢+&" with £ as above. We have to show that
é:R?—R is smooth. By (1.3.29) this is equivalent with

8% 6% ¢:RY? x R¥*> >R is an £®-map for all j, k>0.
Which by (1.2.8) is again equivalent with
(64 8% &)Y :RY?5/*(R*, R) is an £*-morphism for all j, k>0.

Since by (1.2.10) the £=-structure of #*(R***, R) is linearly generated, we can test
this last map by composing with functions £ as in the lemma. We use again the
identity £ (8% 65é8)Y =8/(£=5*ac). By assumption, /¥ =¢ is smooth, so
87(£ 2 6% ¢) is an £*-morphism by (1.3.24) and the theorem is proved. O

1.4.4 Propesition. Let X be a smooth space and E any vector space with a
smooth structure that is generated by a set & of linear functions. Then the
Sollowing families of linear morphisms are initial:

(i) c*:C*(X,E)>C*(R,E) (ceC*R, X)),
(ii) £,:C*(X, E)»C*(X,R) ((eS);
(iii) C*(c, £):C*(X, E)»C=(R,R) (ce C*(R, X), £e ¥).
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Proof. 'This result is analogous to (1.2.9) and is an immediate consequence of
(1.1.8).

1.4.5 Corollary. Let X be any smooth space and E any vector space with a
linearly generated smooth structure. Then the smooth structure of C*(X, E) is also
linearly generated.

We give now some standard consequences of cartesian closedness.

1.4.6 Proposition, For any smooth spaces X, Y, Z the evaluation ey:
C*(X, Y)nX — ¥ and the composition comp: C*(Y, Z)nC*(X, Y)—C*(X, Z) are
C*-maps.

Proof. Since ev=(idcxy, y))", the first part is obvious. So is the second part
since comp“ (g, f, x)=ev(g, ev( f, x)) for appropriately chosen evaluation maps.
O

1.4.7 Definition. A smooth group G is a smooth space for which the underlying
set has a given group structure such that the group multiplication #:: GnG—G
and the inversion v:G—G are C*-maps.

1.4.8 Proposition. Let X be any smooth space. If one puts on the group Diff (X)
of all C*-diffeomorphisms of X the initial smooth structure induced by the two
maps i, j: Diff (X)—C*(X, X), where i(f):= f and j(f}:=f"", then Diff(X) is a
smooth group.

Progf. One has the following identity for the group multiplication:
ios =compe(imi). Hence, using (1.4.6), ios is a C*-map. Similarly

jem=comp(juj)op where o(f, g):=(g, f) shows that jos. is a C*-map.

Together this shows that s» is a C*-map. For the inversion map v it is even
simpler, since isv=j and jov=i. ]

1.49 Definition. A smooth action of a smooth group G on a smooth spage X is
a C*-map f: GnX —X such that

(1) f(9192, X)=f (g1, f (g2, X)) for gy, g, €G, xe X.
(ii} f(e, x)=x for xe X, e the neutral element in G.

Act(G, X) shall denote the smooth space formed by the C*-actions of G on X
with the smooth structure induced by its inclusion in C*(GnX, X).

1.4.10 Propesition. There is a natural isomorphism between the space Act(G, X)
of smooth actions of G on X and the space Hom(G, Diff (X)) formed by the C™-
homomorphisms G—Diff (X), where Hom(G, Diff (X)) has the smooth
structure induced by its inclusion in C*(G, Diff(X)) and Diff(X) the one used in
(1.4.8).
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Proof. To feAct(G, X) one associates f v:G-C*(X, X) and verifies that for
any ge G one has f¥(g)e Diff(X) and that f V:G:»Diﬂf(X ) is a C®-homomor-

phism. To he Hom(G, Diff(X)) one associates h:GnX —X and verifies that

heAct(G, X). Obviously these maps define a bijection between Act(G, X) and
Hom(G, Diff(X)). That the bijection is a C>-isomorphism also follows from
cartesian closedness, i.e. the universal property of the function space structures
one works with. O

2 CONVENIENT VECTOR
SPACES

In some sense convenient vector spaces are the most general linear spaces for
which a differentiation theory upholding the basic classical properties is
possible. For calculus one obviously needs limits and therefore certain
separation and completeness conditions. These conditions will be specified in
sections 2.5 and 2.6, but are not imposed for the preliminary considerations
which concern a bigger class of spaces called preconvenient vector spaces.
Various types of structures can be used to describe preconvenient vector spaces.
We shall discuss these structures carefully in sections 2.1-2.3 and show in section

-2.4 how for a preconvenient vector space they determine each other.

In section 2.1 we summarize classical material on locally convex and convex
bornological spaces. In section 2.2 convenient vector spaces are identified, by
means of Mackey convergence, with certain convergence vector spaces. The
Mackey convergence of filters and nets is discussed and it is shown that for most
results one can stick to Mackey convergence of ordinary sequences. In the same
section also the topology associated to the Mackey convergence structure, called
the Mackey closure topology, is introduced. Its main interest is due to the fact
that it is, as shown in section 2.3, the final topology induced by various families
of curves, e.g. the smooth ones. It is not compatible with the vector addition in
the classical sense but it is compatible if considered as arc-generated topology.
For calculus on vector spaces the structures as considered in Chapter 1, i.e. £%-,
Zif*- or smooth structures are important. Since all the structures mentioned so
far determine a dual we also introduce vector spaces structured by specifying a
subspace of the algebraic dual. The relations between the various structures are
investigated. An appropriate way to do this is in terms of (adjoint) functors. In
many cases a non-categorical reformulation is added. In particular (2.4.4) is such
a reformulation of (2.4.3) summarizing the various characterizations of pre-
convenient vector spaces. If the reader is willing to accept this result he can start
reading this chapter there.

In sections 2.5 and 2.6 the separation and completeness conditions are
described in terms of the various structures, and it is shown that they are not

27
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only sufficient but also necessary for the uniqueness and existence of the desired
limits. To every non-separated preconvenient vector space one associates a
separated one having the usual universal property. Similarly to every non-
complete preconvenient vector space an associated complete one will be con-
structed. The separation and completion functors so obtained are fundamental
in order to show in Chapter 3 categorical properties for the convenient vector
spaces.

2.1 Locally convex and convex bornological spaces

For many classes of linear spaces, in particular those mentioned in the title, one
has natural dual spaces. Since we do not suppose a separation condition it is
useful to work with the following

2.1.1 Definition. (i) By a dualized vector space E we shall understand a (real)
vector space (denoted also by E) together with a given subspace E' of the
algebraic dual of E.

(i) The category DV¥S has as objects the dualized vector spaces; the
morphisms from E, to E, are those linear maps »:E,—E, which satisfy
1}2*(E'2) C E}.

Remark. In the special case where the functions in E' separate points of E,
(E, E') is a dual pair in the usual sense.

We next recall the definition of {convex) bornological vector spaces; cf.
[Hogbe-Nlend, 1977, p. 19].

2.1.2 Definition. (i) A bornology £ (cf. (1.2.1)) on a vector space E is called
vector bornology if the addition Ex E—E and the scalar multiplication
R x E—FE are bornological maps with respect to the product bornologies (cf.
(1.2.2)), R being taken with its standard bornology. A bornological vector space is
a vector space together with a vector bornology.

(i) A convex bornological space is a bornological vector space for which the
convex hull of each bounded set is also bounded.

(i)} Born¥S denotes the category of bornological vector spaces with the
linear bornological maps as morphisms; CBS denotes the full subcategory
formed by the convex bornological spaces.

(iv) A bornological vector space E is called separated iff {0} is the only
bounded subspace, or equivalently if for 0#xeE the subspace R-x is
unbounded.

2.1.3 Lemma. A bornology # on a vector space E is a vector bornology if and
only if it has the following two properties:
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() Be #=~B+Be%,

Proof. Trivial verification. O

2.1.4 Lemma. A bornology # on a vector space is a convex vector bornology if
and only if it has the following three properties:

() Be#=>—Be %,
(i) Be #=2-Be %,
(i) Be #=<{B)> €A, where {_) denotes the convex hull.

Proof. Trivial verification. |

2.1.5 Propesition. CBS is a reflective and coreflective subcategory of
Born 8.

Proof. Let # be a vector bornology on a vector space E. Using the lemma
above one easily verifies that the following are convex vector bornologies on E:

%,:={B,; SE; B, =(B) for some Be #)};
%:={B,<E; (B,)e#).

Replacing 4 by %, resp. %, gives two functors Born ¥'S— CBS; the first is left, the
the second right adjoint to the inclusion functor. [

2.1.6 Remark., The categories 2 of linear spaces which we shall consider will
always contain R as an object and for any #-object X, the set Z(X,R) will
be a linear subspace of the algebraic dual of X. One therefore obtains a
dualized vector space 6X having the same underlying vector space and
(6X):=Z(X, R). This extends to a functor §:% —DVS preserving the underlying
vector spaces and the underlying maps. It will be called the duality functor for #
and will be denoted by the same & for various choices of &.

In most cases 2 has initial structures with respect to the forgetful functor
% —VS. We can then associate to any dualized vector space E an #-object oE as
follows: it has the same underlying vector space and the initial structure induced
by the family £: E-R (£ € E'). This extends to a functor o:DVS—Z preserving
the underlying vector spaces and the underlying maps. ¢ will be used with an
index indicating the respective choice of .

2.1.7 Proposition. The duality functor 3:CBS—DVS for the category of convex
bornological spaces has a right adjoint ¢,:DVS—CBS (given by scalar
boundedness) and both preserve the underlying vector spaces and the underlying
maps.

Proof.  Since the verifications to be made are trivial, we only describe explicitly
the structure of o, E according to the general definition given in (2.1.6): B = o E
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is bounded iff B is scalarly bounded, i.e. iff #(B) = R is bounded for all £ E’. This
is the initial bornology induced by all # € E’, where R is considered with the usual
bornology. O

2.1.8 Definition. LCS denotes the category of (nat necessarily separated)
locally convex spaces, cf. [Jarchow, 1981, p. 108], with the linear continuous
maps as morphisms.

2.1.9 Proposition, For the category of locally convex spaces the duality functor
8:LCS—DVS has a left adjoint u:DVS— LCS (given by the Mackey topology) and
a right adjoint o, :DVS—LCS (given by the weak topology); both pre-
serve the underlying vector spaces and the underlying maps and they satisfy
dopu=de0,=Id.

Proof. Let us first, for a dualized vector space E, describe pE; it is obtained by
supplying E with the finest locally convex topology with the property that E’ be-
comes the topological dual. That this topology exists and behaves functorially
is well known in the separated case; it is called the Mackey topology (cf.
[Jarchow, 1981, p. 58, p. 61]). For arbitrary E one considers the associated
separated dualized vector space E;:=E/E, where Ey:={xeE;#(x}=0 for all
¢{€E'}, with (E)Y:={{,:E,—R; ¢ linear and ¢, enekE’), n:E—E,; being the
canonical projection. One structures E; with the Mackey topology and then E
with the initial topology induced by = and calls the result pE, or w(E, E'). One
shows, using Hahn-Banach, that E’ becomes the topological dual of uE, and
that this gives the finest locally convex topology on E with that property. The
adjunction follows since by construction duE=E for every dualized vector
space; and id: udF—F is continuous for every locally convex space F. We recall
that a (separated) locally convex space F is said to be a Mackey space iff
F=udF.

The right adjoint o, is obtained according to the general construction of
(2.1.6): One puts on E the initial topology, denoted by o(E, E ), induced by all
£:E—=Rof F', called the weak topology, and one verifies that this is the coarsest
locally convex topology on E yielding E’ as topological dual, cf. [Jarchow, 1981,
p. 147]. O

We next recall the classical relation between locally convex and convex
bornological spaces, expresssd by a pair of adjoint functors
LCS<CBS.

2.1.10 Proposition, (i) For any locally convex space E the subsets B which are
absorbed by every O-neighborhood U (that means there exists at € R with B&t-U)
form a convex vector bornology (usually called the von Neumann bornology of E),
and thus one obtains a functor p: LCS—CBS.

(ii) This functor B has a left adjoint y: CBS— LCS (one takes as 0-neighborhood
basis the bornivorous absolutely convex subsets, i.e. those that absorb bounded
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sets), and both functors preserve the underlying vector spaces and the underlying
maps.

Proof. (i) is trivial.

(i)) On a convex bornological space E there exists a unique locally convex
topology having as 0-neighborhood basis the absolutely convex bornivorous
subsets of E, cf. [ Jarchow, 1981, p. 33]. The so obtained space yE has the finest
locally convex topology having as von Neumann bornology the original one,
or, in other words, such that id:E—ByE is bornological. This implies that
id:yfF — F is continuous for any locally convex space F. We thus have described
unit and co-unit of the stated adjunction. O

2.1.11 Remark. We shall often meet, as in the above proposition, functors
@
Z2 ¥ between concrete categories which preserve the underlying spaces and

']

the underlying maps. It is then a trivial consequence that ¢ and ¥ induce
isomorphisms between the full subcategories Z*:={Xe%;X=yoX} and
W*={Ye¥; Y=oyY). If in addition y is left adjoint to ¢ and unit and counit
of adjunction are formed by the respective identity maps, then Z* is coreflective
in & (with Yo as right adjoint to the inclusion); #* is reflective in % (with @y as
left adjoint to the inclusion) and @y = ¢, Y@y =y. In the case of the functors
and y of (2.1.10) one finds as 2* and #* well known subcategories.

We recall now the classical terminology and the consequences of (2.1.10)
according to the general remark above.

2.1.12 Definition. (i) bLCS denotes the full subcategory of LCS formed
by the bornological locally convex spaces, ie., the locally convex
spaces F satisfying F=7yfF; this equation means: the bornivorous absolutely
convex subsets form a 0-neighborhood basis of the topology. For any locally
convex space F, the locally convex space yBF is called the bornologification of F.

(ii) tCBS denotes the full subcategory of CBS formed by the so-called
topological convex bornological spaces, i.e. the convex bornological spaces E (cf.
(2.1.2)) satisfying E = ByE; this equation means: the subsets that are absorbed by
the bornivorous absolutely convex sets are the bounded ones.

2.1.13 Corollary.

(i) BLCS =tCBS;
(if) bLCS is coreflective in LCS;
(iii) tCBS is reflective in CBS;

Locally convex topologies, convex vector bornologies and the functors g, y of
{2.1.10) can also be described by means of seminorms.

2.1.14 Definition. A seminorm on a vector space E is a function p: E—R with
the properties: ‘
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(i) p(x)=0 for all xeE;
(ii) p(tx)=It|p(x) for all xeE and teR;
(iii) p(x+y)<p(x)+p(y) for all x, ye E.

A non-empty family 2 of seminorms on a vector space E determines a locally
convex topology on E (one takes the sets {x € E; p(x)< 1/n} for pe # and ne N as
subbasis for the 0-neighborhood filter) and a convex vector bornology (one
takes as bounded sets those which are bounded under each pe#).

2.1.15 Lemma, Let B# QS be an absolutely convex subset of a vector space
E. Then \U,.n nB is the linear subspace of E generated by B, and one ob-
tains a seminorm on it (called the Minkowsky functional of B) by defining
||x||g:=inf{s>0;x € sB}. With Eg one denotes the so obtained seminormed space.

2,1.16 Remark. Suppose B;# J is an absolutely convex subset of a vector
space E; and set E:==1I1;_, E; and B:=X;.,;B;<E. Then it is easy to show that
Ep=II;_ ;(E)),- Here we use the product of normed spaces Fj; it is the vector
space of those elements of the cartesian product of the vector spaces F; for which
the norm x> ||x || :=sup{[pr;(x)ll; jeJ} is finite, cf. [Hogbe-Nlend, 1977, p.
10]. In the case where J is finite, the underlying vector space of IT;.; F; is the
cartesian product of the spaces F; and the norm | _||, 1s equivalent to the norm
—|l, for any positive real number p where (||x||p)P:=Zj||p1rj(x)|| 2,

2,1.17 Remark. If U is an absolutely convex 0-neighborhood in a locally
convex space E, then E;=E as vector space and | is continuous. By taking
all U in a O-neighborhood basis %, one obtains a family of seminorms that
determines the topology of E. By defining U,>U, iff U,cU, the set %,
becomes directed (cf. (i) of (2.2.1)), id: Ey, —» Ey, is continuous for U;>>U,, and E
is the projective limit in LCS of the so obtained projective system, cf. (8.3.3). One
easily deduces that a locally convex space can always be represented as a
projective limit in LCS of seminormed spaces. By replacing the maps
Ey,—Ey, described above by those induced on the separated quotients one
deduces that every separated locally convex space can be represented as a
projective limit in LCS of normed spaces.

We shall use the analogous results for convex bornological spaces. There the
situation is dual to the one above.

2.1.18 Proposition. Let E be a convex bornological space and let B, be a basis of
the bornology of E consisting of absolutely convex sets. By defining B;>B, iff
B, 2B, the set B, becomes directed and for B> B, the inclusion Eg, S Eg, is
bornological. E is inductive limit in CBS of the so obtained inductive system of
seminormed spaces, cf. (8.3.4).

Proof. Since B, >B, implies |x|z <|xl, for all xeEp, the inclusion
Eg,—Ep, is bornological. One obviously has E=Uj. 4,Ep, and the inclusions

2.1 Locally convex and convex bornological spaces 33

Ep—E are bornological, since 4 < Eg bounded implies that there exists an n with
x|lg<n for all xe A, hence A<nB is bounded in E. Conversely, if ACE is
bounded then there exists a Be #, with A< B, hence AcEgand |A4|z<1,ie. A
is bounded in E;. The universal colimit property, cf. (8.3.1), is an immediate
consequence. ]

2.1,19 Proposition. Let E be a locally convex space and %, a family of absolutely
convex subsets forming a basis of the von Neumann bornology. Then the colimit in
LCS of the inductive system Eg (B € 9,) is the bornologification of E (i.e. is yBE).

Proof. A O-neighborhood basis for the inductive limit is given by all absolutely
convex sets U for which UnEj is a 0-neighborhood in the normed space Eg for
all Be 4,, cf. (3.1.1). Clearly UnEg is a O-neighborhood in Ej iff U contains ¢B
for some &> 0, i.e. iff U absorbs B. So the 0-neighborhood basis of the inductive
limit is formed by the absolutely convex bornivorous subsets, i.e. is exactly the 0-
neighborhood basis of the bornologification of E, cf. (2.1.12). O

2.1,20 Remarks, (i) If the topology of a locally convex space E is determined
by a family #, of seminorms, then a subset is bounded in BE iff every pe 2, is
bounded on it. Thus the family £, determines the bornology of BE (i.e. the von
Neumann bornology of E).

(i) If E is a convex bornological space and # the family of all bornological
seminorms on E, then the topology determined by £ is that of yE. In fact, for any
bornological seminorm p and ¢>0 the set {x€ E; p(x)<¢} is absolutely convex
and bornivorous, i.e. a 0-neighborhood in yE. Conversely, if U is a O-neighbor-
hood in yE then its Minkowsky functional is a bornological seminorm and
{x; xllg<1} e U.

However, a family 2, of bornological seminorms on E that determines the
bornology does not always determine the topology of yE. For example take a
Banach space E; its bornology is determined by the seminorms xi—|£(x)| (£ € E')
and these determine the weak topology of E, but that of yE is the
norm-topology.

{ili) As consequence we obtain:

(a) For a locally convex space E the topology of the associated bornological
locally convex space yBE is determined by all seminorms of £ which are
bounded on the (von Neumann) bounded sets. In particular, a locally convex
space E is bornological (i.e. E=yBE) iff its continuous seminorms coincide
with its bornological seminorms.

(b) For a convex bornological space E the bornology of the associated topo-
logical convex bornological space ByE is determined by the family of
bornological seminorms of E. In particular we have, cf. (2.1.24): the borno-
logy of E is topological iff B E is bounded provided p(B) is bounded for
every bornological seminorm p. Thus the bornologies determined by famil-
ies of seminorms on E are exactly the topological convex bornologies.
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(iv) Every metrizable locally convex space is bornological, see for example
[Horvath, 1966, p. 223] or [Jarchow, 1981, p. 273].

(v) A (separated) locally convex space is bornological iff it can be represented
as an inductive limit of seminormable (normable) spaces.

2.1.21 Proposition, The following triangles commute:

() LCs —cBs (ii) CBS ——DVS
5] / l d
/
DVS LCS

(iii) DVS—>CBS @iv) CBS ——LCS

" 1/

LCS DVS

In non-categorical language this means:

(i) For any locally convex space the bounded and the scalarly bounded subsets

coincide.

(i) On any convex bornological space a linear function is bornological iff the
inverse image of ]-1,1[ is bornivorous.

(iii) For any dualized vector space the scalarly bounded sets coincide with the
sets bounded in the Mackey topology.

(iv) For any convex bornological space an absolutely convex set is bornivorous
iff it is a O-neighbourhood in the Mackey topology determined by the
bornological linear functions.

Proof. (i) For separated locally convex spaces, this is a classical theorem, see
e.g. [Jarchow, 1981, p. 1517; similarly as in the proof of (2.1.9) the general case
can be reduced to the separated one.

(i1) This is a direct consequence of the adjunction stated in (ii) of (2.1.10).

(ili) Using (i) we get Bu=o0,0u=o0y; cf. (2.1.9).

(iv) (a) Using (ii) we have ué=udy and (since ud refines the topo]logy)
id: uédE—vE is continuous.

(b) Using the previous results we have y=1yf8y=ya,0y =y0,6 =yBud, hence
(since yf refines the topology) id: yE— udE is continuous. ‘0O

2,1.22 Corollary. A locally convex space E is bornological (i.e. E=yBE) iff E has
the Mackey topology (i.e. E=udE) and every linear function £:E—R which is
bornological (with respect to the von Neumann bornology) is continuous on E (i.e.
OBE =JE).
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Proof. (<=) Using (iv) of (2.1.21) one obtains: yfE=uépE=puéE=E.
(=) is trivial. d

Using (2.1.21) we also get a simple characterization of the topological convex
bornological spaces defined in (ii) of (2.1.12):

2.1.23 Proposition. A vector space E with a bornology 4 is a topological convex
bornological space iff a subset B < E belongs to # provided that {(B) is bounded
for all linear bornological ¢: E—R (i.e. iff scalarly bounded is equivalent with
bounded).

Proof. Since du=Id we obtain, using (i) and (iv) of (2.1.21): fy =000 =G40.
‘Topological’ for convex bornological spaces is defined as fy-invariant, while the
given condition means o,d-invariant. O

2.1.24 Corollary. For a convex bornological space E the following statements
are equivalent:

(1) E is a topological convex bornological space;
(2) The bornology of E comes from a dualized vector space structure (i.e.
E=a,F for some Fe|DVS))
(3) The bornology of E comes from a locally convex topology (i.e.
=fF for some F e | LCS|);
(4) A subset is bounded iff all bornological seminorms are bounded on it.

2.2 The Mackey convergence and the Mackey closure topology

Mackey convergence gives an embedding of the category BornVS of borno-
logical vector spaces into the category LimVS of convergence vector spaces; cf.
[Frolicher, Kriegl, 1985]. We start by recalling the basic definitions concerning
filters and convergence structures.

2.2.1 Definition. (i) A directed set .# is a set J together with a relation > which
is reflexive, transitive and such that for any j,,j, € J there exists a je J with j>j;
and j>j,. For j,>>j, one usually says: j, comes after j;.

(i) A filter basis on a set X is a non-empty collection of subsets of X which is
directed by inclusion (i.. by the relation 4> B iff A< B).

(iii) A filter on a set X is a filter basis s with the additional property that
Ae # and A= B< X implies Be 5.

(iv) If 4, o# are two filter bases on X, ¥ is called finer than 5# and we write
@ < # iff for every H € o there exists a Ge % with G < H. If ¢ is a filter then this
is obviously equivalent to ¥ =%.

2.2.2 Remark. (i) With the relation ‘finer’ all filters on a set X form a complete
lattice. This fails if one restricts the notion of filter (as is often done) by the
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condition ¢, a condition which eliminates just one filter on X, namely the
set of all subsets of X. This filter is also called the zero-filter, since it is the
smallest element of the lattice. As usual the lattice operations are denoted by A
and v;ie. # v Z=sup(,¥%) and # A ¥ =inf(H#,%).

(ii) If 5#, is a filter basis on X one obtains a filter # on X by taking all subsets
of X containing some set of 5#; # is called the filter generated by the filter basis
Hy.

(iii) If 5 is a filter on X and g: X — ¥ a map then {g(H); H € #'} is a filter basis
on Y. The filter generated by it is called the image of # and is shortly denoted by
g(#).

(iv) Forevery A< X the collection {A} consisting of 4 alone is a filter basis on
X.If A={p} for some pe X, then the filter generated by {p} is a so-called ultra-
filter, i.e. only the zero-filter on X is strictly finer.

2.2.3 Definition, (i) A convergence space X is a set (also denoted by X)
together with a convergence structure on X, i.e. a relation ‘# converges to x’
between filters # on X and points x of X, written J{*Tx, such that

(a) For all xe X the (ultra-)filter generated by {x} converges to x;
(b) If .%ﬂT»x and #, < then ,%’ZT»x;

(c) if .;fl—;—rx and %Z—YW then 5, v %ZT»x.

(i) Lim denotes the category of convergence spaces, the morphisms being the
so-called continuous maps g:X—Y, ie. those for which ,}?’Tm implies

oA ——g(x).

(iii) A convergence space is called separated or Hausdorff if no filter except
the zero-filter converges to different points.

Convergence of nets can be described using associated filters. We recall the
notion of a net and the relationship to filters.

224 Lemma, The final segments J;:={j, € J;j,>=j} of a non-empty directed set
S form a filter basis. The filter generated by it will be called the Frechet filter of the
directed set.

Proof. Trivial. d

Example. The Fréchet filter of the directed set (N, >) is formed by the subsets
of N which have finite complement.

2,25 Definition. A net in a set X is a map x: .4 - X from a directed set .# into
X. Nets are also called Moore—Smith sequences.
A net x: .# - X on a convergence space X is said to converge to x., € X if the
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associated filter, i.e. the image of the Fréchet filter, converges to x. In the case
where x, is uniquely determined by this property we write X, = lim;x( j).

On a topological space X one obtains a convergence structure by defining
%T»x iff # is finer than the neighborhood filter of x. One thus gets an

embedding functor 1: Top — Lim preserving the underlying sets and the under-
lying maps.

2.2.6 Proposition. The embedding functor 1: Top— Lim of the category of topo-
logical spaces into that of convergence spaces has a left adjoint t, which preserves
the underlying spaces and the underlying maps. For a convergence space X the
topology of ©X can be described in the following equivalent ways:

(i) O0=tX is open iff xe O and }’f'Trx implies O € #;
(ii) A=tX is closed iff&f—?x, AeH, ¢ H implies xe 4.

Proof. One easily verifies that the sets considered in (i) form a topology, that
those of (ii) are their complements, that 7 21 =1d and finally that idy: itX > X is
continuous for any convergence space X. So the adjunction follows by (8.4.2).

O

2.2.7 Definition. A convergence space is called first countable iff for every
converging filter there exists a coarser filter with a countable basis converging to
the same point.

2.2.8 Proposition. For a first countable convergence space X the following holds:

() If Jf———}{—»p A e and IS¢ H; then there exists a sequence of points in A

converging to p;
(i) A=tX is closed iff A is closed under convergent sequences,
(iii) The topology of ©X is the final one induced by the convergent sequences
N, —X, N :=Nu{oo} having the usual compact topology.

Proof. FEasy, cf. [Géhler, 1977, p. 254]. l

One can easily show that one has initial and final structures with respect to
the forgetful functor Lim—S8et and deduce from this by (8.7.3) that Lim is
complete and cocomplete. Moreover Lim is cartesian closed. We shall use only
products in Lim, so we restrict the consideration to these.

2.2.9 Proposition. The categorical product of any family X, (jeJ) of conver-
gence spaces exists and can be described as follows: it is the cartesian product of
the underlying sets supplied with the convergence structure for which q filter # on
the product converges to a point x iff pr;(#’) converges to pr;(x) in X ; for all je J.
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Proof. One easily verifies that this in fact yields a convergence structure having
the universal property. O

2.2.10 Definition. (i) A convergence structure on a vector space E is called

compatible iff the vector space operations EnE—E and RiE— E are continuous
(R being considered with the usual convergence).

(i) A convergence vector space is a vector space with a compatible con-
vergence structure; Lim VS denotes the catégory formed by the convergence
vector spaces as objects and the continuous linear maps as morphisms.

{iii) A Cauchy filter on a convergence vector space E is a filter 3¢ on E such
that ¢ —%’—E—>0; H — S is the image of the filter 5 x # on EnE under the

map (x,y)—»x—y, hence has a filter basis formed by the sets H—H:=
{x—y; x,ye H} for He #. A Cauchy net is a net such that the associated filter is
a Cauchy filter.

(iv) A convergence vector space is called complete iff every Cauchy filter
converges.

(v) A convergence vector space is called sequentially complete iff every Cauchy
sequence converges.

2.2.11 Remark. The convergence structure of a convergence vector space is
determined by the set of filters which converge to zero, since the translations are
Lim-morphisms.

2.2.12 Proposition. Every sequentially complete first countable convergence vec-
tor space is complete [Gahler, 1977, p. 369].

Proof. Let 4 be a Cauchy filter. Then by the countability property there is a
filter 5 with countable basis H, 2 H,2 ..., st. ¥—% < # 0. Choose G, ¥
and g,€G, with G,— G, H,, G,2G,. . Let ¢, denote the filter associated to
the sequence ni—g,. And let ¢, be the filter generated by the G,. Then 4,<%,,
%<% and 4, — %, < —0. Thus ¢, and consequently %, are Cauchy filters.
And the sequential completeness implies that 4;—x for some x. Since
G, —x<(%,—9)+(%,—x)<(%,—9,)+(%,—x)—0, the filter %, and thus also
the finer filter % converges to x. O

We now come to the Mackey convergence structure on a bornological vector
space. It will play an important role.

2.2.13 Definition. Let # be a filter on a bornological vector space E and
x: #—E a net on E.
(i) The filter # is called Mackey convergent (or shortly M-convergent)to pe E

. M 3 . z
and we write Jf?p or #——p if there exists a bounded B E with

H#H —p<U-B, where U denotes the filter of QO-neighborhoods on R. The
net x: £ = E is called M-convergent to p iff the associated filter is M-convergent
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to p. In the case where p is uniquely determined by this property we will write
p=M-lim; x( j).

(ii) The filter ¢ is called bounded iff # contains a bounded set. The net
x: # —E is called bounded iff the associated filter is bounded, i.e. iff there exists an
jo€d with {x(j)j>jo} < E bounded.

(iii) The filter #° is called Mackey—Cauchy iff it is a Cauchy filter with respect
to Mackey convergence. The net x: #—E is called Mackey—Cauchy iff the
associated filter is a Mackey—Cauchy filter.

2.2.14 Remark. An ordinary sequence x: N—E (i.e. with (N, >) as directed set)
is a bounded sequence iff x(N) is bounded, because the final segments of N have
finite complements and the union of a finite set with a bounded set is bounded.

2.2.15 Proposition. (i) For any bornological vector space E, Mackey conver-
gence yields a convergence vector space, denoted by EE, and one thus obtains a
Sunctor &: Born VS — Lim ¥S.

(ii) This functor has a right adjoint {: LimVS — BornVS satisfying { o £ =id.
Both functors preserve the underlying vector spaces and the underlying maps.

Proof. (i) is trivial. For (ii) let us describe for a convergence vector space G the
bornology of {G: B<{G bounded iff U -B—G>O, where as before U denotes the

filter of 0-neighborhoods on R. One verifies functoriality and shows easily that
{E=1d and id: é{G—G is continuous. So the adjunction follows by (8.4.2). [

2216 Lemma. Letx: #—E be a net in a sepgrated bornological vector space E.
Then x is M-convergent to x € E iff it can be written in the form x;=t;b;+x,
where t. # >R is a zero-converging net and b. # > E a bounded net.

Proof. One trivially reduces the general statement to the case x_, =0.

(<) Choose j, €J such that B:={b(j);j>>j,} is bounded in E. We claim that
the filter s associated to the net satisfies # <UB. So let Ae UB. Then
A>2[—6,0]B for some 6>0 and we choose j,eJ with t;e[ —46,5] for j>j,.
Using the directedness we obtain a j, € J with j,>>j, and j,>j,. Then for j>j,
one has x;=t;b;e[—6,0]1B S 4, and this shows that A€ 3.

(=) Suppose # <UB for some bounded B<E. Since [—1,1]B is also
bounded, we may assume that B=[ — 1, 1]B. In particular Be # and thus there
exists an j, € J with x;e B for all j>>j,. We define #:.# >R as follows:

_ finf{s>0; x;esB} for j>j, (analogous to ||x;{| of (2.1.15))
7711 otherwise
and b: ¥ —E by

b t;7'x; for t;%+0
7|0 for ;=0
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Then x;=t;b;, since t;=0 implies that Rx; is bounded, hence x;=0 by the
separation hypothesis.

We show first that b: #—E is bounded by verifying that {b;; j>j,} S E is.

bounded. For any j we have x;e€2t;B, i.e. b;e 2B and 2B is bounded. We finaily
show that 7:.# >R converges to 0. So let ¢>0. Since [ —¢,6]B=¢Be # there
exists a j, € J with x;e¢B for all j>>j,. Hence t;<¢ for j>>j, where j, is chosen
such that j,>j; and j,>,. O

2217 Lemma, Let x:.#—E be anet in a separated bornological vector space E.
Then x is a Mackey—Cauchy net iff the net ¥ x #—>E defined by (j{.j,)—
x(j1)—*(j2) can be written in the form x(j,)—x(js)=t j+j2)b(j1.j2) for some
zero-converging net t: ¥ X ¥ —R and some bounded net b: ¥ x ¥ —E.

Proof. We first remark that .# x .£ is directed according to (j,.j,)>(i;,i,) iff
Ji>i; and j, >i,. Let 5 be the filter associated to x. Then one verifies easily that
the filter associated to the net (j;,j,)—x(j,)—x(j,) is exactly 5# — #. The
result therefore follows from (2.2.16). |

2.2.18 Remark. For an ordinary sequence x: N—E the propositions (2.2.16)
and (2.2.17) can be formulated equivalently in the following way:

(a) x,=M-lim,, X, iff there exist (positive) reals ¢, with lim,_, ,.t,=co and
{t(x,—x,); ne N} < E bounded.

In case E is a convex bornological space this is also equivalent with the
condition that (x,) converges to x, in the seminormed space Ej for some
absolutely convex bounded set BS E.

(b) x is a Mackey-Cauchy sequence iff there exist (positive) reals t, ,, with
lim, -ty m=0c0 and {t, ,(x,—X,); n,me N} < E bounded.

In case E is a convex bornological space this is also equivalent with the
condition that {x,) is a Cauchy sequence in the seminormed space Eg for some
absolutely convex bounded set BSE.

For a family of nets .# — E one can define uniform Mackey convergence. It plays
a role for results on commuting double limits. We do not go further into that but
we will use uniform M-convergence in the differentiation theory. There it will be
shown that very weak differentiability conditions together with a Lipschitz
condition on the derivative actually imply very strong differentiability proper-
ties which can be expressed in terms of uniform Mackey convergence.

2.2.19 Definition. Let.# be a directed set, X a set, E a separated bornological
vector space, g: ¥ xX—F and f X—E two maps. One says that f(x)=
M-lim;g( j, x) uniformly in x iff one can write g in the form g(j, x)=¢;b(j, x)+
f(x) with t: #—R converging to 0 and b: .# x X —E uniformly bounded, i.e. such
that there exists a j,€.# with {b(J, x); j>j,, x€ X} < E bounded.
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We shall now characterize those convergence vector spaces which correspond,
by means of Mackey convergence (i.e. by the functor £ of (2.2.15)) to borno-
logical vector spaces.

2.2.20 Definition. We call a convergence vector space G a bornological conver-
gence vector space iff G=£{G, and we denote the respective full subcategory of
Lim VS by bLimVS.

This terminology is justified by the following

2.2.21 Corollary. (i) & (i.e. Mackey convergence) yields an isomorphism of the
category Born VS of bornological vector spaces onto the category bLim VS8
of bornological convergence vector spaces.

(ii) bLim VS is a coreflective subcategory of Lim VS.

We next introduce the so-called Mackey closure topology of a bornological
vector space. It should not be confused with the Mackey topology, which was
introduced in (2.1.9)!

2.2.22 Definition. The Mackey closure topology of a bornological vector space
E is the topology of T£E, i.e. the topology associated to the Mackey convergence
structure, cf. (2.2.6) and (2.2.8).

If a subset of E is open (closed, dense) with respect to this topology we shall
say it is M-open (M-closed, M-dense). In contrast M-convergent or M-con-
tinuous will always mean convergent or continuous with respect to the Mackey
convergence structure.

2.2.23 Remarks, (i) Since the Mackey convergence structure is obviously first
countable, cf. (2.2.7), one can apply (2.2.8) and conclude that ‘closed’ and
‘sequentially closed’ is the same for the Mackey closure topology and that the
Mackey closure topology is the final one induced by the M-converging se-
quences. However, the closure of a subset is often strictly larger than the ad-
herence, ie. the set of limit points of sequences in the subset (or of filters
containing the subset); see (6.3.1) for an example.

(i) Using the remark (2.2.18) one deduces that the Mackey closure topology
of a convex bornological space E is the final topology induced by the inclusions
of the seminormed spaces Ej for Be #,, with 4, a basis of the bornology of E
consisting of absolutely convex sets.

(iii) In general the Mackey closure topology is not a vector space topology
since addition is often only partially continuous; see (6.2.8) for various examples.

2.3 />-vector-spaces and % 4"-vector-spaces

We shall consider vector spaces with an additional .#-structure, cf. (1.1.1), for
M={% or M=Lip* with ke N, . In these cases the structure functions are
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real-valued, and R shall then denote the reals with their natural .#-structure, cf.
(i) of (1.1.6).

2.3.1 Definition. An .#-vector-space E is a vector space together with a
compatible .#-structure on it, ie. such that addition EnE—E and scalar
multiplication RnE—E are .#-morphisms. By .#-¥S we will denote the cate-
gory of .#-vector-spaces, the morphisms being the linear .#-morphisms.

2.3.2 Proposition. The duality funtor 6: #4-VS—DVS, which associates to an
M -vector-space E the dualized vector space OE with (OE) =.#-VS(E,R), has a
right adjoint o: DVS—.#-VS. Both functors preserve the underlying vector spaces
and the underlying maps, and for a dualized vector space E, the .{#-structure of cE
is the one generated by E'.

Proof. Functoriality of 8 and ¢ was established in (2.1.6). The definitions imply ’

that id: S6E—E is a DVS-morphism. And that id: E—adE is an .#-morphism
for any .#-vector-space E can be easily verified by composing with elements of
(6E). The stated adjunction now follows, cf. (8.4.2). O

Let us consider the case .# =#% first. In this case we write g, instead of o.
2.3.3 Proposition. The following diagram commutes.

DVS—> _,CRS

ja; 5

/.S —> 5 DVS

i.e. on any dualized vector space E a linear function is an {®-morphism for the £*-
structure generated by E' iff it is bounded on the scalarly bounded sets.

Proof. Let E be a dualized vector space. Since the bornology of ¢,E coincides
with the bornology associated to the ¢®-structure of o/E, the assertion
follows. O

The analogous result for the case .# = %i#*, where we shall write o, instead of
o, is less obvious and is based on the following lemma, of which a much more
general version will be given in (4.2.15).

2.3.4 Proposition. (Special Curve Lemma.) Let a, be a sequence in a dualized
vector space E such that for all £ € E' the set {{n"a,; ne N} is bounded. Then the
infinite polygon through the points a, can be parametrized smoothly: There exists a
curve ¢: R—E with the following properties

(i) £ oc is sthooth for all £ E';
(i) ¢(1/2*)=a, for all neN,;
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(i) ¢([1/2"*1,1/2"]) is the segment between a, ., and a,;
(iv) c(t)=0 for t<0.

Proof. Using a fixed smooth function hy: R—[0, 1] with hy(t)=0 for t <0 and
ho(t)=1 for t>1 we define a smooth function h: R—[0, 1] by

1—hot) for t=>0
h(t):= a
© {ho(l +2t) for t<0

and then the curve c: R—E by c(t):=) ~_, h(2"t—1)a,.

The sum exists, singe for each t € R at most two summands are different from
0. Let us verify the stated properties.

(?) Fc_)r £ EE’ one has (£ ¢ c)(t)=z S(0), where £, t):=h(2"t—1) £(a,). An easy
estimation using the boundedness assumption shows that for all k the series

Z,, f%(¢t) formed by the kth derivatives converges uniformly with respect to .
Hence £oceC™.

(11) and (iv) are obvious by construction.
(iii) For 2"e[4,1] one has 2—1<0 and 22%—1>0 and thus
B2t — 1)+ h(2-2°t—1)=1. 0

2.3.5 Proposition. The following diagram commutes (ke N, ).
DVS— ,CBS
o S
8
Lif*-VS — DVS

i.e. on any dualized vector space E a linear function is a Lef*~function for the Lif*-
structure generated by E' iff it is bounded on the scalarly bounded sets.

Proof. Let E be a dualized vector space. We have to show that for a linear
function £,: E—~R one has:

Zo: a,E—R is bornological <=/ 6, E-R.is Z#"-morphism.

(=) Let ¢ R—oE be a Lig*-curve and 4 =R be bounded. For £ € E' one has
£ oce Lif*, hence the difference quotient 6+ (£ =c)(A** 1) of order k+1 is
bounded, cf. (1.3.22). Since 6**! commutes with # we obtain that 8+ 'c(4¥+ 1)
is bounded in o,E. Thus £,(6* T (A% )= (£, 2 ) (A4 D) is bounded.
From (1.3.22) we deduce that £, ce Zis*, showing that £, 0, E—>R is a L4
morphism. This proof is for k< o0; the modifications for k= oo are obvious.

(+) Assume 7, 6,E—R is not bornological. Then there exists a B<a,E
bounded with £4(B) unbounded and we can choose b,e B with |4 (b,)|=n"*1.
The sequence g, defined by a,:=n""b, satisfies the hypothesis of the special
curve lemma (2.3.4). Hence there exists a curve c: R—E with ¢(1/2")=gq, and
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£oce Lip™, so certainly £ = ce Ligi* for every £ € E'. But |(Z, ° ¢)( 1/2'")| >n shows
that £, c ¢.%4* (not even continuous!). So &, is not a ##*-morphism g, E—~R.
L]

2.3.6 Proposition. For a curve c:R—E into a dualized vector space E the
following conditions are equivalent (ke N, ).

(1) c:R—a,E is g Lig-curve;
(2) 6c: R > gy E is bornological for 0<j<k+2.

Remark. We write j<k+2 instead of j<k+1 in order to include the case
k=cc.

Proof. By the definition of the %iz"-structure of a, E, (1) holds iff £ ce Lip
for all /€ E. For k=0 this is by (1.3.24) equivalent with §%(¢~¢c): Rf”—»R
being bornological for all j<oo. For finite k it is by (1.3.22)_ equuyalent
with 8**1(£0c): R** >R being bornological; and by (1.3.14) with 6/(¢ - c):
R R being bornological for all j<k+ 1. Using the identity 5_’{/ nc)={¢ o.élc
and the fact that a map g: X —a,, E is bornological iff fa g: X =R is borno?loglcal
for all £ € E’ (definition of ¢, E) one concludes that in both cases (1) is equivalent
to (2).

The special curve lemma (2.3.4) also allows to give still another characte‘riz-
ation of the Mackey closure topology of a topological convex bornological
space:

2.3.7 Proposition, The following diagram commutes (ke Ng ):

[ 4
DVS —CBS — Lim VS

[ T

Lifh-vS —L— Top

i.e. for any dualized vector space E the Mackey closure topology of o E is t.heﬁnal
one induced by the Lif*-curves. The functor 1, associates to an object the
underlying set with the final topology induced by the structure curves and preserves
underlying maps. (This topology is called c*-topology in [Kriegl, 1982] and
[Kriegl, 1983].)

Proof. Let 7, be the final topology induced by the Zi#"-curves; ie. the
topology of 0, E; 7 the Mackey closure topology, i.e. the topology of 1o, E.,

(7,<7y) Let cR—E be a ZLig*-curve and aeR. Then for any /€E
£ ace Lip* < Lig. Hence

w'0<lt—a|<l}
t—a ’ -
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is bounded in R, so {(c(t)—c(a))/(t—a); 0<|t—a|< 1} is bounded in o, E. This
shows that for 1—0 the values c(tf) are Mackey convergent to c(a), ie. that
¢:R—{a, E is continuous. Hence also ¢: R — téo, E.

(7= y) Let A < E be closed for 7, and suppose (a,) is a sequence in A
which is Mackey convergent to some ae E. We can choose a subsequence A,
such that {k*(a,,—a); keN} is bounded in o, E. By the special curve lemma
(2.3.4) we obtain a smooth curve ¢ with c(1/2%=a,, and c(Q)=a. Since ¢ is
continuous for 7, one deduces from 1/2*ec™!(4), that Oec™!(A4), ie.
a=c(0)e 4. According to (ii) of (2.2.8) this shows that 4 is closed for 7. [

As remarked in (iii) of (2.2.23) the Mackey closure topology is not a vector
space topology in general. In order to discuss continuity of addition it is useful
to work in a subcategory of Top. For this purpose the following will suffice:

2.3.8 Definition. By Arc we denote the full subcategory of Top formed by the
arc-generated topological spaces, i.e. by those whose topology is the final one
induced by their continuous curves.

This subcategory is similar to that formed by the compactly generated spaces;
cf. [Engelking, 1968, p. 123]. The inclusion functor has a right adjoint
a: Top—Arc; for a topological space X one obtains a X by supplying X with the
final topology induced by the continuous curves. According to the adjunction
one obtains products in Arc by applying a to the product formed in Top. It is
also well known that Arc is cartesian closed, but we will not use this.

2.39 Definition. ArcVS denotes the category whose abjects are vector spaces
with arc-generated topology such that the vector space operations are con-
tinuous with respect to the product formed in Arc, and whose morphisms are the
linear continuous maps.

Remark, Every arc-generated space is of course compactly generated. Using
results of [Kriegl, 1980] it can be shown that every arc-generated vector space is
a compactly generated vector space; cf. [Seip, 1979].

2.3.10 Lemma. Let E be a dualized vector space and x:N—E be a sequence.
Then the following statements are equivalent:

(1) x is convergent to x, with respect to the Mackey closure topology of o, E;
(2) every subsequence of x has itself a subsequence which is M-convergent to x .

Proof.  (2=>1) One uses that any M-convergent sequence converges with res-
pect to the M-closure topology of a,E, cf. (iii) of (2.2.8), and that for a
topological convergence the Urysohn property holds, i.e. a Sequence X Converges

to x,, iff every subsequence of x has itself a subsequence which is convergent
to x,..




46 2 Convenient Vector Spaces

(1=2) It is enough to show that x has a subsequence which M-converges to
x... We write a for the closure in the Mackey closure topology of a singleton {a}.
One easily verifies that a={xeE;¢(x)=¢{(a) for all /e E’}. In the case where
x, € X, for infinitely many n one chooses a subsequence () with x,, € X, which
is trivially M-convergent to x .. Otherwise we can assume that for all ne N one
has x, ¢ X and we consider 4:= U,.n%, Since x,, ¢ 4 the set 4 is not closed in
the Mackey closure topology and hence there exists a sequence y: N— 4 which is
M-convergent to some ¥, ¢ A. Since every finite union U, <yX, is closed in the
Mackey closure topology and y,, ¢ A, the image ¥{(N) cannot be contained in
such a finite union and therefore we can choose strictly increasing sequences (k;)
and (n,) of natural numbers with y,, € X,.. Then (x,,) is convergent to x, and to
v, in the Mackey closure topology, which implies y,, € X. This subsequence is
M-convergent to y,, and hence also M-convergent to x. O

Remark. One can prove that there exists a dualized vector space (in fact a
convenient vector space) with a sequence that satisfies (2) of the previous lemma
but is not M-convergent. This implies that the M-convergence of sequences does
not have the Urysohn property and thus is not topological, cf. [Frélicher,
Kriegl, 1985].

2.3.11 Corollary. Let E be a dualized vector space and c:R—E. Then the
Jfollowing statements are equivalent:

(1) c is continuous with respect to the Mackey closure topology of o,E;
(2) Ift,—t,, then there exists a subsequence t,, such that c(t ) is a Mackey limit
of c(t,,) for k—oco.

2.3.12 Corollary. For any dualized vector space E one has with respect to the
Mackey closure topology of o E: The sum of conuverging sequences is converging
and the sum of continuous curves is continyous.

2.3.13 Corollary. For any dualized vector space E, the Mackey closure topology
of aE yields an arc-generated vector space.

Proof. The verification that the addition of E is continuous with respect to the
arc-generated product is trivial, since its topology is exactly the Mackey closure
topology of the product, as can be seen easily using the lemma above. O

2.3.14 Definition. We denote by 1, DVS—ArcVS the functor which pre-
serves the underlying vector spaces and the underlying maps and for which 7y E
carries the final topology induced by the smooth curves R—E, i.e. the Mackey
closure topology of a,E, or shortly the topology of téa,E.

2.3.15 Proposition. The following diagram commutes:
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DVS—> . CBS
Tar )

ArcVS—2 DVS

i.e. on any dualized vector space E a linear function is bounded on the scalarly
bounded subsets iff it is continuous for the Mackey closure topology of 6, E.

Proof. Let £: E—R be a linear function. Then one has:

¢ is continuous for the Mackey closuse topology;
< {:1¢0, E—>R is continuous;
<« (: o, E—R is continuous;
< ¢: g,E—R is bornological;
< ¢ is bounded on the bounded subsets of o, E, i.e. the scalarly bounded
subsets of E. The first and the last of the equivalences hold by definition, the
others according to the adjunctions (2.2.6) and (2.2.15). |

2.4 Preconvenient vector spaces

For the differentiation theory we shall work with #4*-structures on dualized
vector spaces, the ZZ#"-structures being generated by the duals. We might
therefore consider arbitrary dualized vector spaces E. However, since E and
60, E yield the same Z#*-structure (use 6,06, =0, and g, = dg, according to
(2.3.5)) and since the endo-functor da,; DVS—DBVS is idempotent, one can
without loss of generality restrict the considerations to doy-invariant dualized
vector spaces. This means that among all duals for a given vector space which
yield the same Ziz*-structure one chooses the largest one or, equivalently, the
one whose set of linear Z/4*-functions is exactly the given dual. The dualized
vector spaces so obtained will be called preconvenient. The vector spaces which
are convenient for differentiation theory shall be obtained by adding a separ-
ation and completeness property.

In the previous sections we described different decompositions of the endo-
functor éay,. They will be used now in order to show that the category
Pre of preconvenient vector spaces embeds in many other categories. This
means that preconvenient vector spaces carry in a canonical way many different
structures. Since each of these structures determines all the others, any of them
could be used in the definition. We choose for the explicit definition the structure
as dualized vector space, because it is the simplest one. But others are important
too. In particular, as the results of section 1.3 already indicate, the bornological
characterization is closely related to differentiation; and the locally convex
characterization is important for comparison with classical differentiation
theory, e.g. for the case of Fréchet spaces.
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2.4.1 Proposition. The following endo-functors of the category DVS of dualized
vector spaces are identical:

() DVS—2"> CBS— DVS

é
(i) DVS—24s = ¥VS—"DVS

: 8
(iii) DVS—> Lip*-VS—— DVS

) I
(iv) DvsP . cs—pys

¢ 3
(v) DVS=2 bLimVS— DVS

é
(vi) DVS—% ArcVS—— DVS

In (i), (ii), and (iii) the respective duality functor 6 is left adjoint to the respective
Junctor a.

Proof. The composite functors in (i) and (ii) coincide by (2.3.3); those in (i) and
(iii) by (2.3.5); those in (i) and (iv) by (ii) and (iii) in (2.1.21); those in (i) and (vi) by
(2.3.15). Finally those in (i) and (v) coincide since by (2.2.15) even the following
triangle commutes:

BornVS— " Lim VS

1 )

DVS

The stated adjunctions were proved in (2.1.7) and (2.3.2). O

2.4.2 Definition. A preconvenient vector space is a dualized vector space which
is invariant under the endo-functor of DVS described in six equivalent ways in
(2.4.1); the respective full subcategory of DVS is denoted by Pre.

Remarks. (i) The invariance imposed in the above definition means a closure
condition for E'. According to the various descriptions of the endo-functor given
in (2.4.1) this closure condition can be expressed equivalently in the following
ways: a linear function belongs to E’' provided it is a morphism with respect to
either the bornology or the #*-structure or the Z#*-structure determined by E’;
or provided it is continuous with respect to the locally convex topology (i.e. the
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topology of yBuE) or the Mackey convergence structure or the Mackey closure
topology.

(i) A dualized vector space belongs to Pre iff there exists a (convex) vector
bornology on E such that E’ becomes the bornological dual; comparison with
(2.1.9) shows that in this respect bornologies behave quite different from locally
convex topologies.

(iii) For a locally convex space E the following statements are equivalent:

(1) OE, i.e. E structured by its topological dual, is preconvenient;

(2) Every bornological linear function on E is continuous;

(3) The Mackey topology of E coincides with the bornologification of E (i.e.
HOE=yBE);

(4) The Mackey topology of E is bornological.

Examples of dualized vector spaces that are not preconvenient are obtained by
using the classical examples of locally convex spaces not satisfying (2), like the
uncountable direct sum of copies of R with the box topology. Then the bounded
sets are the same as for the direct sum topology [Jarchow, 1981, p. 807, thus the
function ‘sum over all coordinates’ is bornological; but it is not continuous with
respect to the box topology. Another example is /* with the Mackey topology
with respect to #* [Jarchow, 1981, p. 223].

24.3 Theorem, The functors with source DVS in the list of (2.4.1) induce
embeddings (i.e. full and faithful functors) as follows (in parentheses we recall the
Sfunctors):

() Pre—>CBS

(i) Pre—2¢=-¥S
(iii) Pre—2> Lip*-Vs
(iv) Pre——LCS

(t) Pre—%bLim VS

(vi) Pre—> ArcVsS

(bornology associated to E');
(£°-structure generated by E');

( Zepk-structure generated by E);
(Mackey topology);

(Mackey convergence structure),

(Mackey closure topology);

The respective full subcategories which are thereby isomorphic to Pre are the
Jollowing:

(i) The category tCBS of topological convex bornological spaces;
(i) The category of linearly generated £*-vector-spaces;
(iii) The category of linearly generated Fip*-vector-spaces;
(iv) The category bLCS of bornological locally convex spaces;
(v) The category of Ea\,8-invariant convergence vector spaces;
(vi) The category of Ty 0-invariant arc-determined vector spaces.

The embeddings (i), (ii), (iii) and (v) are reflective; the one in (iv) as well as the
inclusion Pre — DVS are coreflective.
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Proof. The embeddings follow from the functors of (2.4.1) according to
the general procedure mentioned in (2.1.11). We only remark that in (iv) we
put p instead of yfu, since applied to a preconvenient vector space E it gives
the same: using E=0J0,E, yfy=7 and y=ud (as previously proved) one has
yBuE=ypude E=ypys, E=yo,E=udo,E=pE. In words this means: the
Mackey topology of a preconvenient vector space is always bornological.

The categories isomorphic to Pre are in all cases formed by the objects
invariant under the respective endo-functors; they have already been discussed
for the cases (i) to (iv).

The embeddings in (i), (ii) and (iii) are reflective as a consequence of the
adjunctions stated in (2.4.1); that of (v) because according to (2.2.21) it is up to
the isomorphism ¢ the same as that in (i). For the coreflexivity in (iv) one
remarks that for any locally convex space E one has yfudE =ya, 6 E =yBE, hence
id: yBudE—E is continuous. Coreflexivity of Pre in DVS is implied by the
adjunction of (2.1.7) together with (2.1.11). O

Remarks. (i) We saw that Pre-bLimVS is reflective, while
bLimVS —» Lim VS is coreflective. The composed embedding of Pre in
Lim VS has neither a left nor a right adjoint, ¢f. (7.2.10). The same holds for
Pre—Arc VS. The reason is that the Mackey convergence structure and the
Mackey closure topology behave in a complicated way with respect to
categorical constructions in Pre.

(if) Since, as shown in (2.6.5), the convenient vector spaces form a reflective
subcategory of Pre, those of the embeddings of Pre which are also reflective yield
reflective embeddings of the category of convenient vector spaces.

{ii1) Convenient vector spaces were introduced independently according to
their characterization as smooth vector spaces (embedding (iii) above for k= o0)
in [Frdlicher, 1982] and according to their characterization as locally convex
spaces (embedding (iv)) in [Kriegl, 1982]; that they can be identified was proved
later in [Froélicher, Gisin, Kriegl, 1983].

(iv) Pre has still other embeddings. For example, in any reflective subcategory
% of LCS containing R and such that the reflector : LCS—% changes only the
tapologies but preserves the underlying vector spaces and the underlying maps.
One only has to consider the composition A ¢ yfu: DVS — LCS—%. Composing
it with 6: & — DVS gives again the same endo-functor as in (2.4.1), since
adjointness of 1 yields (JAE) =% (AE, R)=LCS(E, R)=(6E). As examples one
can take as & the category of nuclear locally convex spaces or that of locally
convex spaces with weak topology.

We add now a recapitulation of the main results in non-categorical terms. We
shall also simplify henceforth the writing by suppressing the various embedding
functors.

2.4.4 Summary (non-categorical version of theorem (2.4.3)).

(i) A preconvenient vector space E has the following structures:
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(0) a subspace E' of the algebraic dual, called its dual,

(1) a topological canvex vector bornology (cf. (ii) in (2.1.12)), called its borno-
logy; _

(2) a linearly generated (cf. (1.1.3)) £®-structure, called its {™-structure;

(3) a linearly generated Lip*-structure for each keNg ., called its
Lipt-structure;

(4) a bornological locally convex topology (cf. (i) in (2.1.12)), called its locally
convex topology;

(5) a convergence structure (cf. (i) in (2.2.3)), called its Mackey convergence
structure;

(6) an arc-determined topology (cf. (2.3.8)), called its Mackey closure topology
(cf. 22.22) and (2.3.7)).

(ii) Each of these structures determines gll the others. We recall how one gets
them from each other: BE E is bounded iff £ (B) is bounded for all £ € E'; the {™-
structure resp. the Lifi*-structure is generated by E'; the locally convex topology is
the finest one yielding E’ as topological dual; a sequence (a,) is Mackey convergent
to Q if there exist reals t,— oo with {t,a,; ne N } bounded in E; the Mackey closure
topology is the final one induced by the smooth (or Lif*-) curves. The dual E' is
obtained from any of the other structures by forming the set of linear functions
respecting the structure in question.

(iti) For alinear map g: E— F between preconvenient vector spaces the following
statements are equivalent:

©) g*(F)<E;

(1) g is bornological,

(2) g is an £™-map;

(3) g is a Lip -map;

(4) g is continuous for the locally convex topologies;

(5) g is continuous for the Mackey convergence structures;
(6) g is continuous for the Mackey closure topologies;

Remark. For these and further equivalent conditions for linear maps see also
[Kriegl, 1982].

On a preconvenient vector space E one can consider other locally convex
topologies (e.g. the nuclear one or the weak one, as mentioned above) and other
bornologies (e.g. that generated by the bornologically compact subsets, which
will be introduced later). But if we shortly speak of the locally convex topology
or the bornology of E we shall always mean those specified above.

2.4.5 Remark, Itis, however, important to specify for convergence of filters or
even sequences on a preconvenient vector space which structure one considers,
One has the following implications for a filter:

{a) convergent for the Mackey convergence structure =
(b) convergent for the Mackey closure topology =
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(c) convergent for the locally convex topology =
(d) convergent for the weak topology.

(a) is equivalent to (c) iff the locally convex topology of E is semi-normable.

Every metrizable locally convex space can be considered as preconvenient
vector space according to the remark (iv) in (2.1.20). For these spaces (a) and (c)
become equivalent for sequences, cf. [Jarchow, 1981, p. 197]. Hence the given
locally convex topology of such a space is equal to its Mackey closure topology
(i.e. is the final one induced by the Z#*-curves for any 0 <k < oo, cf. (2.3.7)); in
other words: (b) and (c) become equivalent (one uses that both topologies are the
final ones induced by their converging sequences, cf. (2.2.23)). For a different
proof of the last statement see (i) of (6.1.4).

2.4.6 Definition. An initial Pre-morphism is a Pre-morphism which is initial
with respect to the forgetful functor Pre — VS. An injective initial Pre-morphism
is called a Pre-embedding; cf. (8.8.1).

2.4.7 Remark. For any linear map #:E—F from a vector space E into a
preconvenient vector space F one gets an initial Pre-morphism if one supplies E
with the initial #*-structure, i.e. the /®-structure generated by »* (%) where
S S F' is some set that generates the £%-structure of F, cf. (1.1.4). The bounded
sets of E are then those having their image bounded in F. The #/#*-curves of E
are those for which the composite with » is a Z#*-curve of F.

2.5 Separation

In the following two sections we are going to specify the convenient vector
spaces among the preconyenient ones. The reason for restricting the spaces a
little more is that we want to do calculus in those spaces. And the maost
important construction in calculus is that of forming derivatives, which are
obtained as limits of certain expressions like difference quotients. For
uniqueness of these limits some separation condition is necessary and for
existence some completeness property. We will restrict the spaces in a minimal
way by imposing conditions which are necessary and sufficient in order that dif-
ferentiable curves have unique derivatives. In Chapter 4 we will see that these
conditions also suffice to get the analogous results for maps in full generality.

2.5.1 Definition. Let c: R—E be a curve into a preconvenient vector space. We
say that a point ¢(t)e E is a weak derivative of c at t iff the derivative (£ c) (f)
exists and equals 7 (¢(t)) for all /e E'. We say that a point [‘ceE is a weak
integral of c iff the integral [;(# ¢ ¢) (r)dr exists and equals £( |, c) for all e E".

Note that we already use the usual notation for derivatives and integrals
although they are not necessarily unique. But this will be remedied immediately
by characterizing the necessary separation condition in different ways:
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2.5.2 Theorem. Let E be a preconvenient vector space, ke N, .. Then the
following statements are equivalent:

(1) E’ separates points;

(2) Every %if** *-curve has at most one weak derivative (say at 0);

(3) Every Zip*-curve has at most one weak integral (say from 0 to 1);

(4) The bornology is separated, i.e. {0} is the only bounded linear subspace;

(5) The locally convex topology is Hausdorff;

(6) The M-convergence structyre is Hausdorff,

(7) The Mackey closure topology is Hausdorff;

(8) For every absolutely convex bounded subset B, the seminormed space E (cf.
(2.1.15)) is a normed space.

Proof. (1=2) and (1=-3) are trivial.

(2=1), (3=1) Assume £ (a)=0 for all /e E'. Then a and 0 are both weak
derivatives at 0 resp. weak integrals from 0 to 1 of the constant smooth curve
c:t—=0.

The scheme of proof for the remaining equivalences is:

|

(1==5) is clear, since LCS (E, R)=E' and functionally separated implies sep-
arated.

(5=7=6) By means of the embedding i: Top—Lim one has successively finer
convergence structures, cf. (2.4.5). Since a topological space X is Hausdorffiff 1.X
is, the implications follow.

(6=-8) We have to check only: || x| ;=0=x=0. But if || x[|z=0 then n- xe B
for all neN and thus x=(1/n)- nx is M-convergent to 0 for n—co.

(8=>4) For any bounded subspace F, | _| =0.

(4=>1) Suppose £(x)=0for all /€ E". Then the linear subspace generated by x
is bounded. [it]

Remark. For non-topological convex bornological spaces the separation
condition (4) does not imply that the bornological dual separates points; for an
example see [Hogbe-Nlend, 1977, p. 128].

2.5.3 Definition. A preconvenient vector space E is called separated iff E
satisfies one and hence all conditions of the proposition above. With sPre we
denote the full subcategory of Pre formed by all separated preconvenient vector
spaces.

We will discuss general products of preconvenient vector spaces in section 3.3.
For the moment we only need products of copies of R.




54 2 Convenient Vector Spaces

254 Lemma. Let J be a set. Then the vector space I1;R with the £ ®-structure
generated by the projections pr;: II; R—R (jeJ) is a separated preconvenient
vector space.

Proof. Since the projections pr; are linear, the considered £ *-structure is

linearly generated, and thus the result follows by (2) of (2.4.4). Obviously the

projections separate points. O

2.5.5 Proposition, (Special Embedding Lemma.) For any preconvenient vector
space E the canonical map 1p: E-TIg. R defined by 15(x):=(£(x))seg is an initial
Pre-morphism.

Proof. This follows from (2.4.7) by using as & the family of projections

{pr;; £ € E'}, which generates the structure of the product according to (2.5.4).

m

It is possible to associate to any preconvenient vector space in a natural way a
separated one.

2.5.6 Proposition, For gny preconvenient vector space E there exists a morphism
onto a separated preconvenient vector space wE, such that any morphism into a
separated preconvenient vector space factors uniquely over wE. By (8.4.3) one thus
obtains a functor w:Pre—sPre which is left adjoint to the inclusion
1. sSPre— Pre. Explicitly oE can be constructed as the Pre-subspace 15(E) of IIp R,
¢f. (2.5.5). The kernel of 15: E-wE is exactly the closure of {0} with respect to
either the Mackey closure topology or the locally convex topology. It is the largest
bounded subspace. Furthermore 1, is a retraction in Pre, i.e. admits a right-inverse
in Pre.

Proof. As Pre-subspace of the separated preconvenient vector space Iz R, cf.
(2.5.5), the described space oE is also separated. Let g: E—F be a Pre-morphism
with F separated. Then 1;: F-II; R is an injective and initial linear £%-
morphism. Obyviously g: E»F extends to a Pre-morphism g: [Ty R—ITp. R
characterized by pr,eg=prs., for all /eF. From gwE)=dg(g(E))
=1p(g(E))=1z(F) it follows that g restricts to a Pre-morphism wE—F. It is
unique since 1;: E-oE is surjective.

Denote the kernel of 1;: E->wE by Eo. Then E, is equal to Mg £~ 1(0).
Hence E, is bounded, and any other bounded subspace has to be included in E,
since it gets annihilated by all £ e E'. Being a kernel, E, is obviously closed with
respect to the locally convex topology, hence also with respect to the Mackey
closure topology. On the other hand the constant sequence O converges Mackey
to any x € E,. Thus E, is the closure of {0} in both topologies. Finally E,, is the
largest linear subspace F with trivial dual, since F'={0} implies that F is
bounded.

The map 1;: E->oE is a retraction, since by the initiality of 1z every linear
right inverse map is a morphism. O
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2.6 Completion

Now we turn to the question of existence of certain limits which are needed for
calculus. Again we give equivalent characterizations of the respective complete-
ness property, using various of the structures on a separated preconvenient
vector space. For the case of Mackey convergence we need a lemma:

2.6.1 Lemma, Let% be a Mackey—Cauchy filter on a preconvenient vector space
E (with 4 — % < UB for some weakly closed B). If ¢ converges weakly to xe E, then
@ is M-convergent to x (with 4 —x<UB).

Proof. By definition a Mackey—Cauchy filter satisfies ¥ —% <UB for some
bounded B, which may be assumed to be weakly closed, since the weak closure
of a bounded set is bounded. Then there exists for any ¢>0 a Ge¥ with
G—G<[—¢&e]Bandso[—¢ e]BRg—Geg—% foreverygeG. Since [—¢&,¢]B
is weakly closed and g—% converges weakly to g—x one concludes that
g—xe[—e, e]B. Therefore G—x < [—¢, ¢]B, showing that ¥ —x <UB. [

2.6.2 Theorem. Let E be a separated preconvenient vector space, ke Ny . Then
the following statements are equivalent:

(1) The Mackey convergence structure is complete,

(2) Every Mackey—Cauchy sequence converges (weakly);

(3) The bornology is complete (c¢f. [Hogbe-Nlend, 1977, p.42]), ie. every
bounded set is contained in an absolutely convex bounded set B, such that Eg
is a Banach space;

(4) For-every Lif*~curve c the weak integral jé ¢ exists;

(5) For every Li**'-curve c the weak derivative ¢(0) exists;

(6) For every Lif** -curve c the difference quotient 8'c:R¢!>—~E has a Lip-
extension to R?;

(7) If {x,;neN}CE is bounded and (t,)e{* then I,t,x, converges (weakly);

(8) For every Pre-embedding of E into a preconvenient vector space the image is
M-closed.

Proof. We will show the implications, cf. [Kriegl, 1982]:
1 ==2 7

| 1|

b 5—> B8+==4+—3
(1=5) We first show that
{_1_<c(t)—c(0)_c(s)—c(0)
s

t—s t

);t,se[—l, 1]\{0},t#s}
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is bounded. By composing with £ € E’ one reduces this to the case E=R. In this
case t—(c{t)—c(0))/t has a Z*-extension to R by (1.3.22), hence is locally
locally Lipschitzian and the claimed boundedness follows. This boundedness
implies the Mackey—Cauchy condition for the net t+—(c(t)—c(0))/t (t #0), where
ti>=t, iff [t,|<|t,|. So by (1) the Mackey limit and hence the weak limit exists.

(5=6) One defines the extension d'c of the difference quotient by
dle(t, t):=¢(t). Since £281c=351(¢ > c) has a L p*-extension to R* by (1.3.22) it
has to coincide with #<3'c, and thus 6'¢ is Leg*.

(6=>5) This is obvious since 8¢ (0, 0) is the weak derivative ¢(0) of c at 0.

(5=8) Let E be contained as Pre-subspace in some F and let ye F be the M-
limit of a sequence in E. Then there exists a subsequence x,€E with
{n"(x,—y); ne N} bounded. The special curve lemma (2.3.4) yields a smooth
parametrization ¢: R— F of the infinite polygon through the points x,— y. Using
a smooth monotonic function h: R—[ —1, 1] with h(t)=t for ¢ in a neighbor-
hood of 0 we define a smooth curve e:R—F by e(t)=t(c(h(t))+
y+c(—h(t)). Then ¢(0)=0 and for t#0 the point e(t) lies on the segment
between tx, and tx, ., for some neN. Hence the smooth curve e lies in E. Its
weak derivative at O is equal to y and lies in E by assumption (5).

(8=2) Let (x,) be a Mackey—Cauchy sequence in E. Then #(x,) is a Cauchy
sequence for every £ € E’ and hence converges to some number t,. Consider now
the embedding 1: E~TIL R of (2.5.5). From (2.6.1) it follows that i(x,) is
M-convergent to (t; )5 . Since, by (8), i5(E) is M-closed in IIR this M-limit has
to lie in 1;(E). Using that 1 is an initial injective #*-morphism we conclude that
x, converges in E.

(2=1) is an immediate consequence of (2.2.12).

(2=>7) Let B be a bounded convex set containing all x,,. Then s, - /%, t,x; is
contained in B, where s,,=(Z™,|t;])"'—>o0. Hence the series is a
Mackey—Cauchy sequence.

{7=3) For ASE bounded take as B the weak closure of the absolutely
convex hull of 4. Use then the fact that a normed space like Ep is complete if
every absolutely summable series is convergent. By definition a series
Xy, is absolutely convergent in E, iff £t, converges where f, is the Eg-norm of
Vn- Define x,:=(1/t,)y, for t,#0 and x,=0 for t,=0. Then {x,;neN} is
bounded and hence Xt,x,=Zy, converges weakly by (7). Using (2.6.1) we
conclude that Zy, converges in Eg.

(3=>4) Let c be a Lx°-curve. Then clyq, 4, is continuous into some Eg, which
can be assumed to be complete. Hence |, ¢ exists in Ep and thus in E. Another
method, ¢f. (4.1.3), to prove this would be to show that the Riemann sums form a
Mackey—Cauchy net and then use (3).

(4=>8) Let F, x,, y, c and h as in (5=8). One defines a smooth curve e: R—F by
ex=(coh). Then e(0)=0 and for t#0 the point e(t) lies in E since {c°h){r) is a
multiple of some difference x, ., —x,. Hence ¢ is a smooth curve in E. Its weak
integral from O to 1 is equal to (¢ h)(1)—(c = h)(0)=c(h(1)) and lies in E. Since
c(h(1)) lies on the segment between x,—y and x,,,—y for some neN, one
concludes that y lies in E. O

—
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Remark. Note that we gave no characterization of completeness in terms of
the locally convex topology. A locally convex space E is called Mackey complete
(or locally complete, cf. [ Jarchow, 1981, p. 196]) iff the associated preconvenient
vector space SE (cf. (2.1.10) and (1) of (2.4.4)) is complete. Since every Mackey—
Cauchy sequence is also a Cauchy sequence in the locally convex topology, the
sequential completeness of this topology is enough to ensure Mackey com-
pleteness. Although it is quite likely that the converse is false, we do not know
any counter-example, 1.e. a bornological (!) locally convex space that is Mackey
complete but not sequentially complete. An example showing that Mackey
completeness does not imply (quasi-)completeness of the locally convex topo-
logy can be found in (7.4.3). For metrizable locally convex spaces E, however,
Mackey completeness is equivalent to completeness, cf. [ Jarchow, 1981, p. 197].
In fact, for a Mackey complete metrizable locally convex space the completion is
metrizable, cf. [ Jarchow, 1981, p. 60]; hence one can apply (8) of the previous
theorem to conclude that E coincides with this completion.

For non-topological convex bornological spaces Mackey completeness does
not imply bornological completeness; cf. (7.4.4).

2.6.3 Definition. Any separated preconvenient vector space that satisfies one
and hence all conditions of the proposition above is called complete and the
complete separated preconvenient vector spaces will shortly be called convenient
vector spaces. With Con we denote the full subcategory of Pre formed by all
convenient vector space.

By the previous remark and (iv) of (2.1.20) Frechet spaces, ie. complete
metrizable locally convex spaces, are convenient,

Let us give some useful information on M-closed subspaces of convenient
vector space.

2.64 Proposition. (Closed Embedding Lemma) Let m:F—E be a PRE-
embedding into a convenient vector space E with M-closed image. Then F is a
convenient vector space and the Mackey closure topology of F is the trace topology
of the Mackey closure topology of E.

Proof. In order to show that F is complete, let x, be a Mackey—Cauchy
sequence in F, hence in E. But in E it has to converge Mackey towards an xe E.

. . . M A
Since F is assumed to be M-closed we obtain that xe F and x,——x in E.

The spaces E and F with their Mackey closure topologies are again denoted
7y E and 7, F. Obviously the injection 1,,F— 7, E is continuous. Conversely let
A be closed in 14, F and a, € 4 a sequence converging Mackey to x € E. Since F is

M
M-closed, a,——x in F. Therefore x € 4, showing that A4 is also closed in 7,,E.
1

Remark. For an arbitrary Pre-subspace F, the Mackey closure topology of F
is not always the trace topology of that of E, cf. (6.3.3).
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We now show that for every preconvenient vector space there exists a
completion having the usual universal property.

2.6.5 Theorem. For any preconvenient vector space E there exists a convenient
vector space E which is the universal solution for extending bornological linear
maps into convenient vector spaces. One thus obtains a functor @: Pre—
Con which is left adjoint to the inclusion Con—Pre. Explicitly ®E=E can be
constructed as the M-closure of the image of E under the initial Pre-morphism
1g: E-TI R, ¢f. (2.5.5). This E will be called the (separated) completion of E and &
the completion functor.

Proof. We first show that IT;R as defined in (2.5.4) is convenient. For any
Mackey-Cauchy sequence (x") the coordinates x} from a Cauchy sequence in R
and thus converge to some x°. Let x® € IT; R be the point with coordinates x{°.
By construction x" converges weakly to x*, thus II;R is convenient by (2.6.1).

From this and (2.6.4) it follows that the M-closure of iz(E) in II;R is
convenient.

Let now g: E-F be a Pre-morphism into an arbitrary convenient vector
space F. Then F is M-closed in IT;. R by property (8) of (2.6.2) and g extends to a
bornological linear map §: ITz. R—1IT;. R. Hence g(M-closure of E) =M-closure
of g(E)< M-closure of F =F. Furthermore this extension is unique, since i5(E) is
M-dense in £ as (2.6.4) implies. 0

Remark. The separated completion of E can also be obtained in two
steps: first one forms the associated separated space wE and then the con-
venient vector space @(wE ) associated to wE. More formally: @ = é@ ° 1o w, where
1: sPre—Pre denotes the inclusion.

One might believe that the completion of E can be obtained by taking the M-
closure of E in any convenient vector space F that contains E as a Pre-
subspace. However this is not true in general; see (6.3.2) for an example. We will
show in (2.6.7) that it holds under an additional assumption. The following
lemma will be useful.

2,66 Lemma., (Linear Extension Lemma.) Let X be a set, F a preconvenient
vector space, G a convenient vector space; f:X—F and g: X -G two maps.
Suppose that the linear subspace { (X)) generated by f(X) is dense in F with
respect to the Mackey closure topology of F. If for every £ € G’ there exists an
{p€F' with £og={p°f, then there exists a unique Pre-morphism §: F—G with
g=gef.

Proof. Let 15:G-IIgR be the Pre-embedding of (2.5.5), %:
F—-IIgR the Pre-morphism with prses=¢, for all £eG. Then
prgemef=fpof=Log=prsoigeg for £eG, hence mof=i50g,
which implies 4 ( (X)) S14(G). Using that 5 is linear and continuous with respect
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to the Mackey closure topologies one obtains: 4 (F)=#{({f(X)D)< #{f(X))
S (X)) €<16(G)) =15(G). Therefore #: factors as #=15°4 and by in-
itiality of 15 one concludes that §: F—»G is a Pre-morphism. One has £ogsf
=prsoigogof=prsemof=prso1g°g=1~£og for all £ G’, thus §° f=g. Unique-
ness of g is trivial. O

2.6.7 Proposition. Let »:: E—F be an injective morphism from a preconvenient
vector space E into a convenient vector pace F with M-dense image. Then the
following statements are equivalent:

(1) #2: E—F is a completion, i.e. every morphism { from E into a convenient
vector space G extends uniquely to a morphism #: F>G;

(2) every element of E’ has an extension belonging to F’;

(3) #: E—F is an embedding for the locally convex topologies.

Proof. (1=3) We first show that s is a Pre-embedding. So let BSE with
m(B)SF bounded. Then #(B)=¢(x (B)) is bounded for /cE’, thus B is
bounded in E.

Consider on #(E) the trace of the locally convex topology on F. Then the
locally convex topology on E is the topology induced by the map #: into the
bornologification of # (E ). So it remains to show that »2(E) is bornological. For
this it is enough to show that all bornological linear maps into any Banach space
are continuous, cf. [ Jarchow, 1981, p. 272]1. So let g: »(E)—G be such a map.
Then g < » is bornological, and so it extends to a morphism (g° )" on F. Thus
g=(gem )~|m(E) is continuous with respect to the trace topology.

(3=2) This is a direct consequence of the Hahn—Banach theorem.

(2=1) This follows from the linear extension lemma (2.6.6). 0

2.6.8 Corollary, Let ».: E-F be an injective Pre-morphism into a convenient
vector space F. If every £ € E' extends to F (i.e. m™*: F'>E' is surjective) then a
completion of E is given by s: E—m(E), where s (E) denotes the M-closure of
the image » (E) in F.

Remark. Using this corollary one shows easily that the completion of a
separated preconvenient vector space E can be obtained by taking its M-closure
in the bidual E” which will be introduced later.




3 MULTILINEAR MAPS
AND CATEGORICAL
PROPERTIES

After having demonstrated in the previous chapter that convenient vector
spaces have good internal properties which guarantee that derivatives and
integrals exist and are unique, we show in this chapter that at the same time they
form a category with excellent properties. As for analogous constructions of
topological spaces, initial and final structures can be used to show the existence
and give explicit descriptions of all categorical limits and colimits. The general
procedure is described in section 3.1. The most important special cases, namely
subspaces, quotients, products, direct sums and inductive limits, are discussed in
sections 3.2 to 3.5, and it is shown that in these cases the general constructions
often can be simplified.

Function spaces of linear and multilinear maps are clearly of importance since
for a differentiable map the (higher) derivative at a point will be a (multi-)linear
map. Section 3.6 starts with the linear case. For convenient vector spaces the
linear maps from E to F which satisfy the equivalent conditions of being
continuous, bornological or differentiable, i.e. being morphisms, form in a
natural way a convenient vector space denoted by L(E, F).

In section 3.7 multilinear morphisms are introduced and characterized in
various ways. The function spaces formed by them are discussed and it is shown
that they can be identified in the usual way with iterated function spaces of linear
morphisms.

In section 3.8 it is proved that for any convenient vector spaces E, and E,
there exists a tensor product, i.e. a convenient vector space E; ® E, with the
property that the bilinear morphisms from E; x E, to any third space F are in
one-to-one correspondence with the morphisms from E, ® E, to F.

Of great importance for many results is the fact that a version of the
Banach-Steinhaus theorem, also called the linear uniform boundedness
theorem, holds. It states that a subset of the space L(E, F) is bounded on
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bounded subsets of E provided it is bounded on points of E. It allows to obtain
related results for spaces of non-linear functions: a so-called bornological
uniform boundedness principle in the same section, a multilinear version in
section 3.7 and differentiable ones in Chapter 4.

In the last section the duality functor which associates to a convenient vector
space the space E' = L(E, R) is studied. It is proved that any E can be naturally
embedded into its bidual E”. Furthermore the duals of products and direct sums
are determined.

3.1 [Initial and final structures, categorical completeness

Since we not only want to prove the existence but also give explicit descriptions
of categorical limits and colimits of convenient vector spaces, we first study some
of the ambient categories.

3.1.1 Lemma. For the following categories initial and final structures exist with
respect to the forgetful functor to the category ¥S of vector spaces:

(i) the category DVS of dualized vector spaces;
(ii) the category LCS of locally convex spaces,
(iii) the category CBS of convex bornological spaces.

They will be called initial and final dualized vector space structures in case (i),
initial and final locally convex structures in case (ii) and initial and final convex
bornological structures in case (iii) without explicit mention of the forgetful functor
to V8.

Progf. The verifications being trivial, we only describe for the three cases under
(a) the initial structure for a given family of linear maps #;: E — E; and under
(b) the final structure for a given family of linear maps »;: E; - E, where j varies
in an arbitrary index set J, E€|VS| and E; is an object in the corresponding
category stated in the lemma.

(i) (a) Take as E’ the linear subspace of the algebraic dual of E generated by
Ujesmf(E).

(b) Take E':= {£:E — R linear;/ o ;€ E; for all je J}.

(ii) (a) Put on E the initial topology, which has as sub-basis the sets »; '(0))
for jeJ and O, running through a sub-basis of the topology of E;.

(b) Put on E the locally convex topology having as basis for the 0-neighbor-
hoods the collection of absolutely convex absorbent subsets U for which
mj '(U) is a O-neighborhood in E; for all jeJ; cf. [Jarchow, 1981, p. 108].

(ii) (2) Put on E the initial bornology {B < E;s,(B) < E; bounded for all
jeJ}; cf. [Hogbe-Nlend, 1977, p. 29].

(b) Put on E the convex vector bornology % generated by the sets s,(B;) for
j€J and B, running through a basis of the bornology of E;. The bornology #
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has as basis the absolutely convex hulls of finite unions of these and the finite

sets; cf. [Hogbe-Nlend, 1977, p. 32] and (2.1.4). |

3.1.2 Theorem.

(i) Initial structures with respect to the forgetful functor Pre — VS exist. They
will be called initial preconvenient structures and have, for given linear maps
mi:E— E;, jeld, E€|VS| and E;e|Pre|, the following descriptions:

— the dual of E is obtained by applying the retraction functor do:
DVS —Pre, cf. (24.1), to E equipped with the initial dualized vector
space structure;

— the locally convex topology of E is obtained by bornologifying the
initial locally convex strycture, ie. applying the functor
yB: LCS —bLCS;

— the bornology of E is the initial (convex vector) bornology; cf. (3.1.1);

— the {™-structure of E is the initial £®-structure,

— the Lip*-structure of E is the initial Lif*-structure.

(i) Final structures with respect to the forgetful functor Pre—VS exist.
They will be called fingl preconvenient structures and have, for given linear
maps m;. E;—E, jeJ, Ec|VS|, E;e|Pre|, the following descriptions:

— the dual of E is the final dualized vector space structure;

— the locally convex topology of E is the final locally convex topology;

— the bornology of E is obtained by topologifying the final convex vector
bornology, i.e. applying the functor By.CBS —tCBS;

— the £®-structure of E is the one generated by those linear functions
£: E—R for which £ o m; is an £*-morphism for all je J;

— the Zipt-structure of E is the one generated by those linear functions
¢:E—R for which £ o m; is a Lefi*~function for all je J.

Proof. For the first three structures the result follows from (3.1.1) by using
the special case (8.7.5) of the categorical proposition (8.7.4) and (2.4.3). For the
£2- or Zipt-structure one verifies directly that the described structures
suffice. O

Remark. It will be shown in sections 3.2-3.5 that there are important special
cases where certain of the above descriptions become much simpler in the sense
that applying a retraction functor like da, yB or By becomes superfluous.

3.1.3 Corollary. The category Pre of preconvenient vector spaces is complete
and cocomplete. The forgetful functor to the category VS of vector spaces has a left
and a right adjoint, hence commutes with limits and colimits. Limits (colimits) in
Pre are obtained by forming them in VS and putting the initial (final) pre-
convenient structure on them.

Proof. The categorical proposition (8.7.3) applies directly.
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3.1.4 Theorem, The category Con of convenient vector spaces is complete and
cocomplete. Limits are obtained by forming them in Pre. Colimits are obtained by
applying the completion functor @ (cf. (2.6.5)) to the colimit formed in Pre.

Proof. Since the retraction functor @: Pre—Conis left adjoint to the inclusion
functor 1: Con—Pre, the categorical proposition (8.5.3) applies. O

Remark, Again we refer to sections 3.2-3.5 for some special cases where
colimits taken in Pre are already separated and sometimes even complete, 50
that the application of @ is superfluous.

3.2 Subspaces and quotients

We saw in (3.1.2) that initial and final Pre-structures do exist; this is not the case
for Con-structures, even for families consisting of a single map only. The
following proposition (of which only the second part will be used) describes the
initial Con-morphisms:

3.2,1 Proposition, Let f: E—F be g linear map from a vector space E into a
convenient vector space F. Then the initial Con-structure on E induced by f exists
(and a basis of its bornology is given by the absolutely convex bounded sets B for
which F g, is complete) iff f is injective and the ultrabornologification of the trace
topology of the locally convex topology of F on the image f(E) is Mackey complete.
If in particular the image of f is M-closed then this ultrabornologification is
Mackey complete and the initial Pre-structure equals the initial Con-structure.

Proof. We first recall that the ultrabornologification of a locally convex space
G has as 0O-neighborhood basis those absolutely convex sets that absorb the
bounded absolutely convex sets B for which G is a Banach space.

(<) Supply E with the initial topology induced by the locally convex top-
ology of F and take its ultrabornologification. This makes E convenient since
ultrabornological implies bornological, separation is trivial and Mackey com-
pleteness is assumed. That the mentioned sets form a basis of the bornology of E
is immediate by the description of the ultrabornologification.

Let G be a convenient vector space and g: G—E a linear map for which f= g is
a morphism. Then g: G—E is continuous with respect to the locally convex
topology of G and the considered initial topology on E. By applying the
ultrabornologification functor and using that the locally convex topology of
every convenient vector space G is ultrabornological (i.e. invariant under
ultrabornologification) one deduces that g: G—E is a morphism.

(=) Suppose f(x)=0. Let G be a Banach space and ¢:G—R a linear
functional that is not continuous. Then y+#(y)- x definies a linear map g: G- E
such that fg is a morphism (since fo g = 0). By the assumed initiality g: G—E
has to be a morphism. Let £ €E’ be arbitrary. Then (¢, - g)(y) = £(p): £1.(x)
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defines a morphism on G. Thus #,(x) has to be zero, otherwise # would be a
morphism on G. Since E is assumed to be separated, x has to be 0. This proves
the injectivity of f. :

The ultrabornologification of the trace topology of f(E) can be described as
colimit in LCS of the Banach spaces Fz with bounded B < f(E). Let g5 be the
composite of the inverse of f: E—f(E) with the inclusion of Fy into f(E). Then g,
is linear and fegg is the inclusion and thus a morphism. By the initiality
assumption g has to be a morphism and by the universal property of the colimit
the inverse of the restriction of f to the ultrabornologification of f(E) into E has
to be a homeomorphism. Thus f(E) is convenient since it is isomorphic as locally
convex space to E.

That M-closedness suffices was proved in (2.6.4). il

3.2.2 Remark. Any Con-morphism that is an initial Pre-morphism is also an
initial Con-morphism. However an initial Con-morphism is in many cases not
an initial Pre-morphism. For an example see (3.4.3) together with (3.4.4).

For an initial Pre-structure (but not in general for an initial Con-structure)
one has, as shown in (3.1.2), that the bornology is the initial bornology, the £*-
structure is the initial #/*-structure, and the Zz*-structure is the initial Zi4*-
structure.

But the locally convex topology is only in special cases the initial locally
convex structure. A sufficient condition is the following:

The inclusion of a Pre-subspace of F is also initial for the locally convex
topologies if it is of finite codimension in F, or of at most countable
codimension provided F is convenient.

That subspaces of finite codimensicn of bornological locally convex spaces are
bornological can be found in [Jarchow, 1981, p. 281]. Subspaces of countablie
codimension of ultrabornological locally convex spaces are bornological by
[Valdivia, 1971]. For subspaces of arbitrary codimension this is in general false,
cf. (7.4.2). O

Now we turn towards final morphisms.

323 Lemma. Let(;): E; - E be a final family of CBS-morphisms. If every E; is
complete and E is separated then E is complete too.

Proof. Let B < E be bounded. By (3.1.1) there are finitely many bounded sets
B, < E;,..., B, < E; and a finite set B, = E with B being contained in the
absolutely convex hull of the union of m; (B,), ..., m; (B,); By. Since each
E;, is complete we may choose absolutely convex bounded sets K; < E;, con-
taining B; and such that (E; ), is a Banach space. Since B, is finite the space Ey,
is finite dimensional and hence a Banach space, where K, denotes the absolutely
convex hull of B,. The map s, + -+, +id defined on the product
I} ((E;)g,nEg, is a quotient map onto the normed space Eg, where
Ki=um; (K{)+ -+, (K,)+ Ko, hence Ey is a Banach space which certainly
contains B. O

3.3 Products 65

3.2.4 Propaosition, Letf: E—F be a linear map from a convenient vector space E
into a vector space F. Then the final Con-structure on F induced by f exists (and
equals the final Pre-structure) iff the kernel of f is clpsed in the locally convex
topology and the final locally convex topology on F is Mackey complete. If in
particular the final convex bornological structure on F is separated and topological
then these conditions are satisfied and the bornology of the final Con-structure on
E is the final convex bornological structure.

Proof. (=) Every final Con-morphism has to be a final Pre-morphism and
hence to be final for the locally convex topologies. But a final topology is
separated only if the kernel is closed; cf. [Jarchow, 1981, p. 76].

{<=) The locally convex topology of the final Pre-structure is the final locally
convex structure, thus the assumptions imply that it is convenient and hence the
final Con-structure.

In a case where the final convex bornological structure is topological and
separated, it defines a separated preconvenient vector space which is complete
since final convex bornological structures inherit completeness by the previous
lemma. £l

3.2.5 Remark. In (3.1.2) we showed that for the final Pre-structure the locally
convex topology is the final locally convex topology. This is not the case for the
bornology, the ¢*-structure and the Zs#"-structure. An example for the born-
ology and hence /*-structure can be found in [Jarchow, 1981, p. 233]. An
example for the %™ -structure will be provided in (7.3.7). In (7.3.3) and (7.3.4)
final Pre-morphisms will be described explicitly.

3.3 Products

3.3.1 Proposition. Let E; for jeJ be preconvenient (resp. convenient) vector
spaces. The categorical product E = T1;_, E;in Pre (resp. in Con) has as underlying
vector space the product of the underlying vector spaces.

—The bornology of E is the product bornology, i.e. B < E is bounded iff pr;(B) is
bounded in E; for all je J.

—The dual of E is obtained by applying the retraction functor da, cf. (2.4.1), to the
product formed in DVS (having as dual the direct sum of the duals, cf. (3.1.1)).
(In most cases it is not necessary to apply éa, cf. (3.9.5)).

—-The locally convex topology is obtained by bornologification (applying yp) of the
product of the locally canvex topologies (Again in most cases it is not necessary
to apply yp, cf. (3.3.5)).

—The bounded sequences (£%-morphisms) are those c:N—E for which the co-
ordinates pr;oc:N—E; are bounded sequences of E; for all je J.

—The Lif-curves c: R—E are those whose coordinates pr;o c: R—E; are Lip'
curves of E; for all jeJ.
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Proof. This is an immediate consequence of the general result in (3.1.3) and

(3.1.4). 0

Remark. If F; = F for all jeJ we also write F/ for II,_,F;.

We did not describe the Mackey convergence for general limits. Let us
describe it now for finite products.

3.3.2 Proposition. For a finite product E of (pre-)convenient vector spaces E;
(i=1,...,m)the Mackey convergence on E is the product convergence structure

of those of the factors, i.e. for a filter 3 on E =11,_, ,E, one has %JTP iff
pfj(ff)T prip)forj=1...m
J

Proof. Using the translation invariance one reduces the proof to the case
p = 0. Suppose first that pr(# )T 0 for j=1...m. Then there exist
Jj

bounded sets B; = E; such that pr;(3) < U-B; and we thus obtain 5 <
pri(#)x ... xpr(#)<UB,x ...x UB,<UB,x ... xB,}), and since

By x ... xB,, is bounded in E the assertion %’TO follows. We remark that

the first inequality fails for infinite products. Conversely, M—E—»O implies

prj(ﬁ’f’)TO because pr; is continuous with respect to the Mackey
J

convergence structures. O

3.3.3 Remark, The following example shows that (3.3.2) in fact fails already for
infinite denumerable products. Choose E = RV, ie. the product of countably
many factors R. Take as directed set J:= {k+ 1/m; k, me N} with its natural
order inherited from R and define a net x: J—E as follows:

0 f
pr(x(t)):= {m R

For every ne N the net pr,ox: J-R is trivially M-convergent to zero, but x is
not M-converging to 0 in RM, In fact, otherwise there would exist reals s, with
s,— o for t— o0 and such that {s,x(t); t € J } would be bounded. This is obviously
impossible, because for every toeJ even {x(t);teJ, t > f,} is unbounded.

t>n
t=k+m l<n

3.3.4 Remark. Even for a product of two convenient vector spaces the Mackey
closure topology is often strictly finer than the product of the Mackey closure
topologies of the factors. According to the characterization of multilinear
morphisms in (3.7.1) it is enough to find two bornological locally convex spaces
E and F that are complete and a bilinear function E x F—R which is born-
ological but not continuous. Take as F any non-normable Fréchet space (as e.g.
RN) and as E its dual with the strong topology; cf. [ Jarchow, 1981, p. 154]. Then
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the evaluation map E x F—R is bilinear and bornological. But for a non-
normable locally convex space F there does not even exist a topology with point
absorbing 0-neighborhoods on F’ making the evaluation map continuous. To
see this, suppose there exists such a topology. Then take a 0-neighborhood U in
F’ and a 0-neighborhood ¥V in F with ev(U x ¥) = [ —1, 1]. The 0-neighbor-
hood ¥ is bounded, since (cf. (i) in (2.1.21)) for every £ € F’ one has £ € K-U for
some K >0 and hence /(W)= K- U(V)= K[—1, 11=[—-K,K]; this is a
contradiction to the non-normability of F, cf. [Jarchow, 1981, p. 116].

An important special case where the product of the M-closure topologies is
the M-closure topology of the product is the following: E and F convenient with
E finite dimensional.

It is enough to show this for E =R since any finite-dimensional E is
isomorphic to some R™ So let (t, x)eU with U M-open in Rx F. Take a
compact interval I containing ¢ such that Ix{x} = U. Let V= {x'eF;
(¢,x')eU for all ¥ el}. It remains to show that V is M-open in F. Otherwise

; : . M :
there is a sequence x,¢ V in F with x,——x_ e V. Thus there are ¢, with

(t,, x,)¢U. Since I is compact we may assume that r,—t,€l, and hence
(to» X, )€ U. This is a contradiction to the assumption that U is M-open.

3.3.5 Theorem. Ifthe cardinality of the index set J is non-measurable (i.e. J does
not admit a non-trivial additive {0, 1}-measure defined on all subsets of J; cf.
[Jarchow, 1981, p. 282]) then the locally convex topology of a product T1;_; E; of
(pre-)convenient vector spaces is the product topology of the locally convex
topologies of the factors.

Proof. The topologies of the factors are bornological. Hence by the
Mackey-Ulam theorem [ Jarchow, 1981, p. 282] so is the product topology.
Thus the bornologification according to the general description in (3.3.1) is not
necessary. ]

Remark. If in some model of set theory a measurable cardinal exists, then the
smallest such cardinal has to be strongly inaccessible [ Jarchow, 1981, p. 282].
Hence one can restrict set theory in such a way that all cardinals are non-
measurable.

3.3.6 Corollary. For a product Il ; E; of (pre-)convenient vector spaces with an
index set of non-measurable cardinality the dual (I1;. ;E;Y is the direct sum of the
duals.

Proof. One only has to combine the preceding result with the fact that the dual
formed by the continuous linear functionals on any product of locally convex
spaces is the direct sum of the duals of the factors; cf. [ Jarchow, 1981, p. 165] for
the separated case.
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3.4 Coproducts or direct sums

3.4.1 Proposition. Let E; for jeJ be convenient (preconvenient) vector spaces.
The categorical coproduct E =1 ;_; E; in Con (in Pre) has as underlying vector
space the direct sum (i.e. the coproduct in ¥S) of the underlying vector spaces
[Jarchow, 1981, p. 17]. The dual of E is the product of the duals E;. The locally
convex topology of E is the final one induced by the canonical injections in;: E;— E
(also called the locally convex sum topology; see [Jarchow, 1981, p. 111]). The
bounded sets of E are those sets which are contained in sums of finitely many
bounded sets B; < E;. The {-structure of E has as structure curves the sequences
c:N—E'that are sums of a finite number of bounded sequences c;:N—E;. The
Lip*-structure of E has as structure curves those maps c:R— E which are locally
representable as a finite sum of Lip*-curves ¢;: R—E;.

Proof. We first consider the case of preconvenient spaces E; and begin with the
description of the bornology of E. Using (2.1.4) it is easily verified that the finite
sums of sets of the form in;(B;) with B; < E; bounded form a basis of a convex
vector bornology (and it is of course the finest one for which all these sets in;(B;)
are bounded); i.e. it is the final convex bornological structure induced by the
maps in;: E;— E. Remains to verify that it is a topological bornology (otherwise
we would have to apply the topologification functor By according to (3.1.2)).
This is easy; one uses either (2.1.23), or the fact that it is the von Neumann
bornology of the locally convex sum topology. The statements concerning the
dual of E and the locally convex topoalogy of E follow directly from the general
results, cf (3.1.2) and (3.1.1); those concerning the ¢*-structure and the

Figk-structure follow from the given description of the bornology, combined -

with (1.3.22) in the case of Z#*-curves, cf. (4.1.12).

For the case of convenient vector spaces E; it remains to show that the
described coproduct E in Pre is already separated and complete and hence is the
coproduct in Con. Separation is obvious: the only bounded subspace of E is the
0-subspace. Completeness follows from lemma (3.2.3) applied to the family
in;: E; - 1, E;. |

Remark. If F; = F for all jeJ then we also write FV" for II;_,F;.

3.4.2 Proposition. Let E; (jeJ) be preconvenient vector spaces, &; < Ej linear
subspaces that generate the bornology of E; (ie. B < E; is bounded iff £(B) is
bounded for all £ € &;). Then I1;.;¥; generates the bornology of 1;., E;.

Proof. Trivially B < I1E; bounded implies #(B) < R bounded for all £eI1.#;.
We have to show the converse. So let B < I1E; be unbounded. Then by (3.4.1)
either B meets some E; in an unbounded set and one trivially obtains an £ € [1%;
with #(B) unbounded; or there exist j,eJ (ne N), all different, for which points
b"eB with j,th coordinate b} # 0 exist. Since every be B has only a finite
number of non-zero coordinates we can choose the j, and b" such that,
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in addition, b7, =0 for m < n. One chooses £, € ¥}, inductively such that
14, (bj)l =1 and £, (B}) = k-sign (Z&24¢;, (b5)). In TL¥; we consider the
element ¢ having as j,th coordinate ¢ , the others being 0. For x e LIE; one has
£(x) = Z,£;,(x;,), the sum being actually finite. For x:=b", the terms of this sum
with k > n are zero (by the choice of the indices j,); the nth term has absolute
value #; the sum of the preceding terms has the same signature as the nth term.
Therefore |£(b")| > n proving that #(B) is unbounded. O

We continue this section by comparing products and coproducts. The
inclusion of a coproduct into the corresponding product is of course always a
Pre-morphism. But even for convenient vector spaces it forms only in very
special cases a Pre-subspace. However, the coproduct of convenient vector
spaces is always a Con-subspace of the corresponding product.

3.4.3 Proposition. Let E; (jeJ) be preconvenient vector spaces. If only finitely
many factors E; are non-zero then the inclusion 1:1; ;E; - 11, ;E; is a Pre-
isomorphism and in this case we will also write ®; ;E; for the product and the
coproduct. Otherwise the Pre-morphism 1 is neither initial nor surjective.

Proof. Using the given descriptions of the bornologies on products and
coproducts one easily verifies all the statements. il

3.4.4 Proposition. Let E;(jeJ) be convenient vector spaces. Then the inclusion
e E; > ;e E; is an initial Con-morphism; i.e. 11E; has the coarsest con-
venient vector space structure for which the projections pri:llE; — E; are
morphisms.

Proof. For this we have to show that for an absolutely convex set B < 1IE;,
that generates a Banach space and is bounded in IIE;, only finitely many
projections pr;(B) are unequal to {0}; ie. B is bounded in LIE;. Suppose
indirectly that pr;(B) # {0} for infinitely many j, i.c. there exist b’ € B with b} # 0.
Using that only finitely many coordinates of b/ are non-zero we can choose a
sequence b"e B and distinct j,eJ with b}, # 0 and b} = 0 for k > n. Next we
want to modify this sequence to obtain a sequence x"€B and £,€(E; ) with
4(pr; (x) = 0; (ie. 1 for k=n and O for k #n). We prove the existence
of x" and ¢, by induction. For n =1 let x':=b' and ¢ be chosen such that
¢,(b},) = 1. Suppose we already have constructed x',...,x" ' and 4, ...,
£,_, satisfying the above equations. Define x™= ¢ x'+ -+, ' x""!
+t-b" with appropriately chosen t;e R. To ensure that x"e B we impose the
condition |t;|+ - +|t,_.|+|t| = 1. As additional equations we have to
satisfy 0 =4(x%) =t 4(x})+ - +to_i b (D) +e40%) for k=1...
n— 1. Since by induction hypothesis 4, (x7.) = of for k,m < n, the kth equation
reduces to t, = —t-4,(b},). One uses this equation to define #,, and then has
only to choose t according to |t,|+ - +|t,_1|+t]=1; ie. Th=1+
Y i <nlfe(B})|. Finally as 4, one can use any ¢4,€(E;) with £,(x} )= 1. Now
consider the series £27¥x* It is a Cauchy sequence in the Banach space
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generated by B, hence converges to some x € ITE; . On the other hand for t_h;c Jith
coordinate of x one obtains 4,(x;) = 4(pr; (x)) = ZZ"‘f,,(prjk(x")) =2"%#0
This is a contradiction to xe LIE;. O

3.4.5 Proposition. On any vector space E there exists a finest, convenient vector
space structure (called the discrete Con-structure) and it is such that the dual is the
algebraic dual E* of E. One thus gets a functor : VS - Con which is left adjoint to
the forgetful functor. It preserves the underlying vector spaces and the underlying
maps.

Proof. 1f J is a basis of E, then according to (3.4.1) the underlying vector space
of R¥ gets identified with E and its dual with E¥. This means that yE is a
dualized vector space isomorphic to RY? and hence a convenient vector space.
The remaining statements follow from (8.4.3). O

3.4.6 Carollary

(i) The forgetful functor Con — VS commutes with limits.
(ii) The left adjoint functor  identifies VS with a full coreflective subcategory
of Con.
(iii) A convenient vector space belongs to this subcategory iff it is isomorphic to
a coproduct of the form RY for some set J.

Proof. (i) and (i) are immediate, cf. (8.5.1) and (8.4.4). For (iii) one uses that
every vector space has a basis, or equivalently, is a coproduct in VS of
summands equal to R, and that Y preserves colimits according to (8.5.1). O

3.5 Inductive limits

In section 3.1 we proved that an inductive limit in Con is obtained by forming
the limit in Pre and then applying the completion functor @ to it. We come now
to the question in which situations the last step can be omitted.

3.5.1 Proposition, Let E; (jeN) be a sequence of convenient vector spaces such
that E; is a Pre-subspace of E;. , and closed for the locally convex topology. Then
the inductive limit E=\J;E; formed in Pre is convenient and hence the inductive
limit in Con. The bounded sets in the inductive limit are those that are contained
and bounded in some E;. And Lif*-curves into the limit are locally Zip“-curves
into some E;.

Proof. 1In[Jarchow, 1981, pp. 83] it is shown that the inductive limit formed in
LCS is separated and that it is regular, ie. every bounded set is contained and
bounded in some E; or, equivalently, that the bornology is the final bornology.
Thus completeness follows from (3.2.3). O
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Remark. Important cases of this situation are countable direct sums I, E,.
In this situation the finite subsums define such a sequence of increasing sub-
spaces and the corresponding inductive limit is the countable coproduct.
Another application is given by the spaces of test functions used to define
distributions. Here the space of smooth functions with compact support on a
finite-dimensional separable smooth manifold X is the inductive limit of the
Fréchet spaces of smooth functions with support contained in some K,, where
the K,’s are assumed to form an increasing sequence of compact sets covering X.

If the connecting maps in an inductive sequence of convenient vector spaces
E, are no longer closed embeddings, then the inductive limit in Pre need not be
separated or M-complete. A special situation when this is nevertheless the case is
described in the following:

3.5.2 Proposition. Let E;— E;., (jeN) be morphisms between Fréchet spaces.
Then the inductive limit formed in Pre is convenient (and hence equals the inductive
limit formed in Con) iff the limit is separated and its von Neumann bornology is the
final bornology.

Proof. (<) Completeness follows from (3.2.3).

(=) Obviously it has to be separated and M-complete. A result of [ Floret,
1973] shows that completeness is equivalent to the assumption on the von
Neumann bornology. D

3.5.3 Remark. An easy (categorical) consideration shows that for every in-
ductive limit in;: E;— E (je J) in Pre the map L;_;E; > E, (x;) — 3 jin; (x;) is a
quotient map in Pre.

3.6 [Function spaces of linear maps

We shall show that for any convenient vector spaces E and F the function space
L(E,F) of linear morphisms E—F has a natural convenient vector space
structure and that the uniform boundedness principle holds for the corre-
sponding bornology of L(E, F).

3.6.1 Proposition
(i) One has a functor (%:(£<)° x Pre — Pre, lifting the functor
£2L°YP x £ > £%, as follows: the vector space operations on the £*-
space £* (X, E) are defined pointwise, cf. (1.2.8), and on morphisms one has
£°(f, g):hogehof.
(i) The functor (™:(£®)° x Pre =~Pre restricts to a functor
£ (£°) x Con — Com; i.e. £°(X, E) is convenient for convenient E.

Proof. (i) Since the preconvenient vector spaces can be identified with the
linearly generated £*-vector spaces (cf (i) in (2.4.4)), we can reformulate pro-
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position (1.2.10) as follows: for any ¢ *-space X and any preconvenient vector
space E the function space /*(X,E) is also a preconvenient vector space.
Furthermore by (1.2.9) its #*-structure and therefore its preconvenient vector
space structure is the initial one induced by the maps £%(c,£) = ¢, -c*:
{2(X,E)—=¢™ for /e E' and cef™(N, X). Functoriality follows trivially from
cartesian closedness of /%, cf. (1.2.8), and from the fact that £ (f,g) is linear
provided g is linear.

(ii) £°(X,E) is separated, since the linear functionals 7 cev, are obviously
point separating morphisms on ¢*(X, E).

Completeness can be proved along the following pattern: take a Mackey—
Cauchy sequence (g,) in /*(X,E). Then the values g,(x) = ev,(g,) form a
Mackey—Cauchy sequence in E for any xe X. Thus the functions g, converge
pointwise (Mackey) to some function g. And one then shows that g is an
£™-morphism and is the Mackey limit of the given sequence.

A more efficient proof is based on the classical result that £* with its usual
norm is a Banach space. Thus the preconvenient vector space £ = £*(N, R) is
convenient since its bornology is the von Neumann bornology of the Banach
space topology; cf. (1.2.12). As mentioned above /% (X, E) embeds by means of
the maps £,=c* into the product of factors /* taken over all (¢,c)e
E x £*(N, X). Since the product of convenient vector spaces is again convenient
it is by the closed embedding lemma (2.6.4) enough to show that the image is M-
closed in the product. This is trivial since it is formed by the solutions of the
equations x9 = x¥ 9 forallfe E, c,eef/*(N, X)and n, me N with c¢(n) = e(m),
and hence is the intersection of the kernels of the morphisms ev,opry,
— V9 PLg -

3.6.2 Propesition. One has a functor L:Pre®® x Pre— Pre, lifting the hom-
Sunctor, as follows: L(E, F) is the Pre-subspace of ¢{*(E, F) formed by the linear
morphisms, and L(f, g):h—gahef.

Proof. One only has to show that for two linear morphisms f: E, —» E; and
g:F — F, one has a linear morphism L(f,g): L(E,,F,) — L(E,, F,) defined by
hv> g =hof. Clearly L(f, g) has values in L(E,, F,) and is linear. It is a morphism
since it is the restriction of the morphism £%(f,¢g) and since the inclusion of
L(E,,F,) into £*(E,, F,) is an initial /*-morphism. O

3.6.3 Proposition. The functor L:Pre® x Pre — Pre restricts to a functor
L: Pre® x Con — Con and hence to a functor L: Con®® x Con — Con.

Proof. We show that for a convenient vector space F also L(E,F) is con-
venient. Since L(E, F) is defined as Pre-subspace of the convenient vector space
£*(E, F) it is by the closed embedding lemma (2.6.4) enough to show that it is
M-closed. Again, this is trivial to verify using that this subspace is formed by the
solutions of the equations f(x + ¢-y) = f(x) + t-f(y) with x, yc E and t e R (in fact
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the equations with t = 1 suffice), hénce is the intersection of the kernels of the
morphisms ev, + €V, —eV, ., I

We state now a generalization of the Banach-Steinhaus theorem which will
play an important role also for the differentiation theory.

3.6.4 Theorem, (Linear Uniform Boundedness Principle.) Let E be a convenient
and F a preconvenient vector space. Then for a subset B < L(E, F) the following
statements are equivalent;

(1) B is bounded, i.e. B(A) is bounded for A = E bounded,

(2) B is equicontinuous with respect to the locally convex topologies, i.e. for
every O-neighborhood V in F there is a 0-neighborhood U in E such that
Bye V;

(3) B is pointwise bounded, i.e. ev (B) is bounded for all xe E.

Proof. (1=2) Let ¥ be an absolutely convex O-neighborhood in F. Then
U:=,epg ' (F)is absolutely convex in E. We show that U is bornivorous and
hence the 0-neighborhood we search for. Let A be bounded in E; then B(4) is
bounded in F by (1.2.13) and hence gets absorbed by ¥, i.e. B(4) < K-V for some
K>0.Thus K-U=Ng YUK-¥)2 Ng '(g(4)) = A, ie. U absorbs A.

(2=3) Suppose B is unbounded at some point xeE. Then some 0-
neighborhood ¥ in F does not absorb B(x) and hence we can choose points
g,€ B with g,(x)¢n- V. By equicontinuity there exists a 0-neighborhood U in E
with B(U) < V. It follows that (1/n)x ¢ U in contradiction with the fact that U is
point absorbing,

(3=1) By composing with elements of F' one immediately reduces the
general case to the case F = R. It is enough to prove that B(4) is bounded for 4
belonging to a basis of the bornology of E and thus we may assume that 4 is
absolutely convex and E, a Banach space (cf. (3) in (2.6.2)). For B(4) only the
restrictions g|g , of the elements ge B play a role and these form a family of
continuous linear operators on the Banach space E ,. By the classical Banach—
Steinhaus theorem [ Jarchow, 1981, p. 2207 we conclude that they are uniformly
bounded on the unit ball of E, which contains 4; hence B(4) is bounded. [

3.6.5 Theorem. Let E be a convenient and F a preconvenient vector space. Then
the (pre)convenient structure of L(E, F) is the initial one induced by the evaluation
maps eV, L(E,F}—F for xeE. In particular this implies that a curve
g:R — L(E, F) or more generally amap g: X — L(E, F) for any Zif*-space X is a
Lip*-map iff all its composites ev,.>g: X — F with xc E are Lifi*-maps.

Proof. Thisis a direct consequence of (3.6.4) using the description of initial Pre-
structures in (3.1.2). O

3.6.6 Proposition. (Bornological Uniform Boundedness Principle.) Let X be an
£*-space and E a convenient vector space. The structure of (X, E) introduced in
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(3.6.1) is the coarsest convenient vector space structure making all evaluations ev,
(xe X) morphisms. In categorical language this means that ev,:{ “(X,E)—E
(x€ X) is an initial source with respect to the forgetful functor Con — VS.

Proof. Let F be a convenient vector space and »:: F — #*(X, E) a linear map
such that ev, o is a morphism (i.e. ev, o we€ L(F, E)) for all xe X. We have to
show that » is a morphism, i.e. that 2 is bornological. Let 4 = X be bounded.
Put, for xe X, #e(x)= eV, cme L(F,E) (ie. m(x)(y) = =(y)(x)). So we have a
map #:X — L(F,E). For yeF one has ev,(#(4)) = 5(A)(y) = »(y)(4) and
since #(y)e /™ (X, E) we deduce that ev,(#(4)) € F is bounded. By the lincar
uniform boundedness principle (3.6.4) this implies that s(B)(A) = #(A)(B)
c E is bounded for any bounded B < F. Since 4 was an arbitrary bounded
subset of X the image »(B) < £°(X, E) is bounded for all bounded B. 0

Remark. The name of the theorem is justified, since it shows that for an
absolutely convex subset B < £°(X, E) one has: B pointwise bounded and the
normed space £®(X, E); complete implies that B is uniformly bounded on
bounded subsets of X, i.e. B(4) is bounded for every bounded 4 = X.

We conclude this section with another description of the structure of £ (X, E)
and thereby of L(E, F).

3.6.7 Lemma. Let X be any bornological space, and BE the bornological space
associated to a locally convex space E (cf. (i) in (2.1.10)). Then the bornology of the
vector space Born(X, BE) is the von Neumann bornology of the topology of
uniform convergence in E on bounded subsets of X.

Proof. Recall that a subset B of Born(X, BE) is bounded iff B(A4) is bounded in
BE for all bounded A = X. By definition of the bornology of BE this is the case iff
B(A) gets absorbed by every (absolutely convex) 0-neighborhood U of E; ie. B
gets absorbed by the sets {g;g(4) < U} with 4 bounded in X and U an
absolutely convex 0-neighborhood in E. But these subsets define a basis of the
topology of uniform convergence, cf. [ Jarchow, 1981, p. 44]. O

3.6.8 Corollary. Let X be an £ -space and E a (pre)convenient vector space.
Then the bornology of £* (X, E) is the von Neumann bornology of the topology of
uniform convergence on bounded sets.

It is an immediate consequence of (3.6.8) that the considered topology of
uniform convergence is the locally convex topology of the preconvenient vector
space £ (X, E) provided it is bornological. In general this is not the case. The
following proposition gives conditions on X and E under which this holds.

3.6.9 Proposition. If an £*-space X has a countable basis for its bornology and
the preconvenient vector space E has a countable basis for the 0-neighborhoods of
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its locally convex topology, then the topology of uniform convergence on the
bounded sets is semimetrizable and is the locally convex topology of £*(X, E).

Proof. Let %, denote a countable basis of the bornology of X and %, a
countable basis of O-neighborhoods of E. Then the sets {gef*(X,E);
g(B) < U} (for Be %, and U e %,) form a countable basis of O-neighborhoods of
the topology of uniform convergence, which therefore is semi-metrizable
[Jarchow, 1981, p. 40] and thus bornological [ Jarchow, 1981, p. 273]. &

Remark, A locally convex space E has a countable basis of O-neighborhoods iff
there exists a countable family %, of seminorms generating the topology. The
locally convex topology of £ (X, E) is then generated by the countable family of
seminorms ¢, p(g):= sup{p(g(x)); x € B}, wher¢ Be %, and pe Z,.

3.7 Function spaces of multilinear maps

We first characterize those multilinear maps which generalize linear morphisms
between preconvenient vector spaces, and which will be called multilinear
morphisms, cf. also (3.7.5).

3.7.1 Theorem. (Characterizations of Multilinear Morphisms.)
Let 2 E\nn. .. nE, — F be an m-linear map between preconvenient vector spaces
and ke N, . Then the following statements are equivalent:

(1) 2 is bornological,

(2) 2 is an £=-morphism;

(3) a2 is bounded on sequences M-converging to 0;

(4) s is continuous with respect to M-convergence;

(5) s is continuous with respect to the M-closure topologies;
(6) s is a Lip*-morphism.

Proof. Trivial are (1 =2=-3) and (4=5=13).

(3=1) Suppose » is unbounded on some bounded set B. Then there exists a
0O-neighborhood U and b, € B with (1/k) » ((1/k)-b,) = (1/k)"* ! s(b,) ¢ U. Since
(1/k)b, is M-converging to 0 this is a contradiction to (3).

{1=>4) Let us show continuity at O first: a O-converging filter 3¢ on
En...nkE, is finer than some filter UB, x ... x UB,, with B; bounded
in E;. S8ince wsm(UB;x ... xUB,)=U(B x ... xB,) and since
(B, x ... x B,) is by assumption bounded, »(#) is O-converging.

Now the continuity at an arbitrary point (4., . . ., 4,). Using multilinearity
one develops #»((UB, +a,)x ... x (UB, + a,)). One of the resulting terms is
#(ay, . .. ,0a,). The others contain at least one UB;; that they are M-
convergent to 0 can be seen by applying the above argument concerning
continuity at 0 to the multilinear map obtained by keeping in #: those variables
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a, fixed that appear in the given term. Thus »((UB; +a,)x ... x(UB, + a,,)) is
M-convergent to »(dy, . . . , dp)

(1=>6) Let ¢;R—E; be Zs*-curves and £e€F. One has to show that
hi=fomolcy, ..., ) Ro>RIs ﬂ/zk One has 0’'h = £ ad’(smafcy, .. . ’f’"))‘
Using (1.3.30) (ie. 6'(moalcy, ..., cm)) is @ hnear.combination of »»20(()“'(?1,
..., &i¢,) where Zj; = j) and (1.3.22) one finds: 6/h: R> — R is bornological
for j<k+2. The assertion now follows from (1.3.22) and (1.3.24).

(6 = 3) Suppose  is unbounded on a sequence x that is M-convergent to 0.
Passing to a subsequence we may assume, using the special curve lemma (2.3.4),
that there exists a smooth curve ¢ such that ¢(1/2") = x,,. Then mocis Zig* and
hence according to (1.3.14) bounded on [0,1] and one reaches a contra-
diction. il

3.7.2 Definition. Let E, and F be preconvenient vector spaces. With
L(E,, ... ,E,; F)wedenote the Pre-subspace of £ (E, 11 . . . nk,, F)formed by
the multilinear morphisms En . . . nE, — F described in (3.7.1).

3.7.3 Proposition. For preconvenient vector spaces E; and F one has naturql
isomorphisms: L(E,, ..., E;F)= L(E,, ... ,E,‘;L(EHI,‘. e EnF). If Fis
assumed to be convenient then L(E,, . . ., En; F) is convenient as well.

Proof. Since the category of ¢™-spaces is cartesian closed‘ one has
£°(E,n... 0k, F)= {°(En. .. NE, (B ... nkE,, F)) "I_‘l.ns isomor-
phism restricts, of course, to the Pre-subspaces formed by the multilinear maps.

The second statement is obtained inductively by means of the stated iso-
morphism, using that it holds for m = 1 by (3.6.3). [

3.7.4 Theorem. (Multilinear Uniform Boundedness Principle.) Let E; be con-
venient vector spaces and F a preconvenient vector space. Then for a subset
B< L(E,,...,E,;F) the following statements are equivalent:

(1) B is bounded, i.e. B(A) is bounded for all bounded A < E 11 . . .NE,;
(2) B(4; X ...x A,) is bounded for all bounded A; < E;;
(3) B(xy, . . .,X,,) is bounded for all x;€E,.

Proof. (1+>2) is deduced easily, using that the products 4, x...x 4, of
bounded sets 4, form a basis for the bornology of E;n1. . .nE,,.

(2=3) is trivial

(3=2) We proceed by induction. For m = 1 this is (3.6.4). Suppose now
B< L(E,,...,E,.;F) is pointwise bounded. Set g"(xy,.. - 2 X ) (Xt 1)
=g(Xy, ...y Xmsq) Then BY (xy, ... ,X,) S L(Ep+y, F)is pointw1§e bounded.
Thus by (3.6.4) B¥ (x,, . . ., X) is bounded in L(E,,+ ;, F). By induction hypoth-
esis this implies that BY (4, X ... X A,) S L(Ey. 4, F) is bounded for 4; € E;
bounded, i.e. B(A; X...X Ayyq) = BY(4; X...X Ap)(Ap+,) is bounded in F
for all bounded sets 4,1 of Eqiq- O
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We can now, for the case of convenient vector spaces, add to the characteriz-
ations of multilinear morphisms given in (3.7.1) a further one:

3.7.5 Corollary. Let »:En...nE, — F be a multilinear map, E,, ..., E,
being convenient vector spaces. If s is partially bornological (i.e. partially a Pre-
morphism), then s is bornological.

Proof. One uses induction on m. For m=1 nothing has to be proved. For
m > 1 the assertion is by (3.7.3) equivalent with »":E, > L(E,, ..., E,;F)
being well defined and bornological. Since # is partially bornological in the last

m— 1 variables, » ¥ has by induction hypothesis values in L(E,, .. .,E,;F). In
order to show that » " (4) is bounded for any bounded A < E; one applies the
previous theorem with B = s " (A4). ]

3.8 The tensor product

3.8.1 Proposition. The category Pre of preconvenient vector spaces is symmetric
monoidal closed, i.e. there exist functors L: Pre®® x Pre—Pre and ®: Pre x Pre—
Pre with natural isomorphisms LEGL(EGE)=L(E,®E,;E,);
E,QE,=E,QFE;; E,QE,QE )= (E1 R E,®E,; E®QR=E.

Proof. The functor L was already defined in (3.6.2). The tensor product E; ®E,
has as underlying vector space the algebraic tensor product of the underlying
vector spaces and as £*-structure the one genetated by the following set of
functions: #o:={h:E,®E,—R; h is linecar and hob:EnE,—»R is an £*-
morphism}, where b: E nE,—>E,; ®E, denotes the canonical bilinear map. With
this linearly generated £*-structure, E; ® E, becomes an object of Pre, cf. (ii) in
(2.4.4), b an Z*-morphism, and by construction we have #,<(E,®E,). In
order to show that in fact #,=(E,®E,) we first remark that for arbitrary
bounded sequences s;:N—E,; and s,: N—-E, the sequence s:N—E;®E, de-
fined by s():=b(s,(n),s,(n)) is an £*-morphism. This is verified by composing
with every he #,. If »: E; ® E;— R is linear and #:° s ¢ for all £*-morphisms
s:N—E,®E,, then in particular »2b-(s,,s,)e£™ for any s,, s, as before. This
implies that sz 0b is an £*-morphism and hence € %,

Let now g:E \nE,—E; be any element of L(E,,E,; E;). By the universal
property of the algebraic tensor product there exists a unique linear map
g:E,®E,—E; such that g=g°b. For the proof that § is an £*-morphism
we have to show that £<ge(E,®E,)=%, for all ¢{cE, This holds
since fogob=~cog is an {™-morphism. So we get a natural bijection
L(E,®E,; Ey)=IL(E,,E;; Es). That this is an isomorphism follows using car-
tesian closedness of £°. The first of the claimed isomorphisms now follows
since L(E{,E,; E;)=L(E,; L(E,; E;)) by (3.7.3). The others are trivial. Fung-
toriality of ® is a consequence of the universal property; ¢f. (8.4.3). O
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382 Lemma, Let ay,...,a, be linearly independent points of a separated
preconvenient vector space E. Then there exists an {€E with £(a,)=1 and
tay)= - =£{a,)=0. :

Proof. Since E is assumed to be separated the lemma certainly holds for n= |8
Assume now it is valid for n—1, and let a,, . . . , a, be linearly independent. By
the induction hypothesis there exists an ¢, € E' with #(a,) =1 and £,(a;)= . ..

=¢(a,-,)=0. Since a,, . . ., 4,_y,8,—£1(a,)" a, are linearly independent, the
induction hypothesis also implies the existence of an £, € E’ with OHlay)= ...

=£y(a,-,)=0 and 4(a,—%(a,) a)=1. We form £:=s-£;+1-£,, with 5,teR
chosen in such a way that £(a,):=s+t-6(a;)=1 and £(a,)=5"£,(a,) +1" £5(a5)
=0. This is possible since the determinant of this linear system equals 1 by the
choice of 4. O

3.8.3 Proposition. For separated preconvenient vector spaces E and F also
E ®F is separated.

Proof. Let 0#ze EQF. One can write z in the form of z=b(x,,y,)+ ...
+b(x,,y,) with x,,...,x,€E linearly independent and y,, ..., y.€F; as
before b: EnF—E®F denotes the canonical bilinear map. Since z#0 we may
assume x, #0 and y, #0. We choose he F’ with h(y,)=1, and according to the
lemma above, £€E' with £(x;)=1 and £(x,)= ... =£(x,)=0. Then the map
w2 EnF—R defined by »(x,y):=£(x)  h(y) is a bilinear £/*-morphism and thus
factors as me=smob, where m:EQF-R is a linear ¢*-morphism, ie.
#me(EQF). This gives sm(z)=n»dx,y,)+ . .. +ox,,v,)=£(x) By,)=1. O

Since for separated E and F both L(E,F) and E®F are separated one
concludes that by restricting the functors L and ® of proposition (3.8.1) the
category sPre of separated preconvenient vector spaces is symmetric monoidal
closed as well.

3.8.4 Theorem. The category Con of convenient vector spaces is sym-
metric monoidal closed; ie. there exist functors L:Con®® x Con—Con and
& : Con x Con—Con with natural isomorphismj ~JL(E 1;L(~E2;E3))
~L(E,®E,;E,), E,®E,~E,®E,; E,®E,®E,)=(E,®E,)®E;; EQRxE.

Proof. As shown in (3.6.3) the functor L used in (3.8.1) restricts to convenient
vector spaces. However, for convenient vector spaces E and F the space EQF
introduced in (3.8.1) is in general not complete. So we define by means of
the completion functor @ (2.6.5) the functor =@ ®; ie. E®F is the com-
pletion of the separated preconvenient vector space EQF. We further define
b:EnF—E®F as the composite of b: ENF—~E®F and the canonical em-
bedding EQ F—E®F. Thus b is bilinear and bornological, and one easily
verifies that it has the desired universal property: for any bilinear bornological
map »: EnF—G into a convenient vector space G there exists a unique linear
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morphism 5z EQF—G with s=4b. The rest follows from (3.8.1) and the
universal property (2.6.5) of the completion functor @. O

Let us now give a consequence of the categorical situation established in this
section:

3.8.5 Proposition, For preconvenient vector spaces one has the following
Pre-isomorphisms:

() L(E;ITjc; B)=11;. , L(E;E);
() L(U;e EjF)= e, L(E;;F).

Proof. (i) The functor L(E, _): Pre—Pre has a left adjoint (namely (_)®E),
hence commutes with categorical limits and thus in particular with products; cf.
(8.5.1).

(i)) The existence of natural isomorphisms L(E;L(Es;F))=L(E,;L(E;F))
can be expressed by saying that the functor L(_;F): Pre°®— Pre has a left adjoint
(namely L{_;F): Pre—Pre°?), hence commutes with categorical limits. The limits
in Pre®? are the colimits in Pre. In particular, L(_; F) carries coproducts in Pre to
products in Pre. O

3.9 The duality functor

39.1 Definition. The functor L(_, R): Pre®®— Pre is called the duality functor of
the category of preconvenient vector spaces. Since for any preconvenient vector
space E the space L(E,R) is always convenient this functor actually has values in
Con. From now on E’ will denote the convenient vector space L(E,R), i.e. the
dual of E together with its natural structure as convenient vector space. By
restriction one gets the duality functor L(_;R): Con°®—Con.

3.9.2 Proposition. For the dual E' of a convenient vector space E the linear
uniform boundedness principle of (3.6.4) holds and the preconvenient structure of E'
is the initial one induced by the point evaluations ev,: E'—R for xcE.

Proof. This is (3.6.4) and (3.6.5) for F=R. O

39.3 Proposition, For any preconvenient vector space E the canonical map
1z E-E" vinto its bidual is an initial morphism of Pre; it is injective iff E is
separated. Moreover 13 is even an initial morphism of LCS.

Proof. The morphism 1; is obtained by symmetric monoidal closedness as
follows: to the morphism id: E'— E’ corresponds a bilinear morphism EME—R,
which corresponds to a bilinear morphism EnE’—R and this corresponds to the
morphism 15: E—E".
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A trivial calculation shows that 1;: E—E” composed with the embedding
E"—>I1gR given by £ € (E'Y—(£(f)); - is exactly the initial morphism defined in
(2.5.5). Thus 1;: E-E” is initial too by (i) in (8.7.2). It is trivial to verify the
statement on injectivity.

Now let us show the initiality for the locally convex topologies. Consider a
closed absolutely convex O-neighborhood U of E. Then U°={/eE’; £(U)
<[—1,1]} is equicontinuous and therefore bounded in E'. By the bipolar
theorem [Jarchow, 1981, p. 149] U is equal to {x€E; |/(x)| <1 for all £e U°}
which is the trace of (U°)° on E. Since (U%)° is the polar of a bounded set it is a 0-
neighborhood in (E’Y. This shows that 15: E— E” is an embedding for the locally
convex topologies. O

3.9.4 Proposition. For preconvenient vector spaces E; one has a canonical Con-
isomorphism; 11, ; E; =(II,_,E,).

Proof. This is (ii) in (3.8.5) for F:=R. O

3.9.5 Propesition. For preconvenient vector spaces E; one has a canonical
injective and initial Pre-morphism (of convenient vector spaces). II; ,E;—
(HjeJEj)l'

For index sets J of non-measurable cardinality it is an isomorphism.

Proof. The morphism is obtained by the universal property of the coproduct
LI ;. ; E; using the morphism (pr;)*: E;—(I1;; E,Y. Injectivity is trivial. Initiality of
this morphism, denoted by 4, can be seen as follows: let B < I1E; be unbounded.
Using (3.4.2) with &#;:=E;<(Ej) and (3.9.2) one deduces that there exists an
xellE; such that x(B) is unbounded. Since x(B)=»{B)(x)=ev,(»(B)) this
proves that »(B)<(I1E;) is unbounded.

If J has non-measurable cardinality then the embedding is a surjection by
(3.3.6) and thus it is an isomorphism. O

4 CALCULUS IN
CONVENIENT
VECTOR SPACES

Besides calculus function spaces are the major theme of this chapter. The
differentiability classes which are considered yield function spaces which are
convenient vector spaces provided the range itself is a convenient vector space
or more generally a vector bundle.

In classical approaches k-fold differentiability is defined recursively. Our
definition is, however, non-recursive in so far as it is based on the behavior of the
map along curves. Thus it is natural to start with curvyes in section 4.1. We define
Fifi*-curves as those curves ¢: R—E into a convenient vector space E for which
all composites £°c: R—R with functionals ¢ of the dual E’ are k-times differ-
entiable with a locally Lipschitzian derivative of order k. As in the finite-
dimensional case they are also characterized by means of their difference
quotients. The result that these curves are Mackey-Riemann integrable consti-
tutes a useful tool in differentiation theory. A mean value theorem is established.
It estimates the increment of a %#'-curve by means of its derivative in terms of
a convex set.

The purpose of section 4.2 is to show that the #4"-curves of a convenient
vector space form again a convenient vector space, and to give various de-
scriptions of its structure. These spaces are used later for the description of
general function spaces. The section ends with the so-called general curve lemma
which describes how certain sequences of pieces of smooth curves can be joined
by a single smooth curve within a finite parameter interval. It is one of the main
tools used for the study of differentiable maps.

In section 4.3 we consider % 4"-maps. These are the maps for which all
composites with Z#*-curves are #iz*-curves. We show that %4#“-maps have
derivatives up to order k, establish the chain rule and the symmetry of the higher
derivatives, and prove that a map is %" if and only if it is %’ and its
derivative of order j is #i#* 7 for some j<k. In order to determine %4"-ness of
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a map whose derivatives can be guessed by looking at the composites with the
elements of a certain point separating subset & of the dual of the range we
introduce the notion of &-differentiability. Its usefulness is due to the fact that
one does not have to know all elements of the dual. In particular for function
spaces one obtains such sets & by means of the point evaluations. On the other
hand, it is interesting to know that #/4*-ness implies rather strong differen-
tiability properties. Together with a Lipschitz condition on the derivatives either
k-fold &#-differentiability as well as k-fold strong differentiability is equivalent
with Zis“ness.

Section 4.4 shows that for very general domains, namely Zi4"-spaces (in
particular arbitrary subsets of convenient vector spaces and arbitrary classical
differentiable manifolds) the Z/4"-functions with values in a convenient vector
space form a convenient vector space as well. Based on the respective results for
curve spaces the function space structure is described and compared with
classical ones in case of manifolds modelled on convenient vector spaces. The so-
called differentiable uniform boundedness principle gives an intrinsic descrip-
tion of the function space structure as the coarsest convenient vector space
structure making the point evaluations morphisms. Several natural maps be-
tween function spaces such as evaluation and composition are proved to be
Zif*. Some considerations on polynomial maps between convenient vector
spaces open the way for the study of Taylor polynomials. It is shown that Zz*-
maps admit Taylor expansions of order j for j<k and that these give a direct
sum decomposition of the respective function spaces.

In section 4.5 we study the relation between differentiability and partial
differentiability of a map on a finite product of convenient vector spaces. It is
also proved that for a Zi4*-map f: EnR—F the function g(x):= ]'(1, f(x,t)dt has as
derivative the function g'(x)= {8, f(x,1)dt.

The vector bundles which are considered in section 4.6 have convenient vector
spaces as fibres, a Z/#*-map as projection, and triviality is only assumed along
Zip*~curves of the base space.

Spaces of sections of vector bundles appear naturally if one wants to show, as
it is done in section 4.7, that certain function spaces of maps between manifolds
are manifolds modelled on convenient vector spaces. For any classical smooth
manifolds X and Y, where X is supposed to be compact, the following function
spaces are manifolds modelled on convenient vector spaces which are
even nuclear Fréchet spaces: The space Diff(X) of all smooth diffeomorphisms
of X, the space Emb(X,Y) of all smooth embeddings of X into Y, the space
Submf(X,Y) of all submanifolds of ¥ which are diffeomorphic to X. The main
result of section 4.7 states that the canonical map Emb(X,Y)—Submf(X,Y)
constitutes a smooth principal fibre bundle of Fréchet manifolds with structure
group Diff(X).

There exist many examples showing that an inverse or implicit function
theorem in the classical formulation fails even for smooth maps between nuclear
Fréchet spaces. However, the results given in section 4.8 show that the respective
theorems do not go wrong with respect to the differentiability class of the inverse
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or implicit functions one is looking for. One can therefore obtain inverse and
implicit function theorems for %4*-maps by adding tameness conditions, cf.
[Hamilton, 1982].

4.1 Differentiable curves

Any subset U of a convenient vector space E has a natural Zz4“-structure,
namely the initial one induced by the inclusion U < E. According to the
description of initial .4-structures the #/4*-curves of U are those Zi4"-curves of
E having their image in U, or equivalently those curves ¢ into U for which the
composites ¢ ¢ ¢ are k-times Lipschitz differentiable for all # € E’. For two subsets
U c E and W = F of convenient vector spaces a map f: U— W is called a Zi4*-
map iff it is a Zi4*-morphism. This is precisely the case when iof:U—F is a
Zig*-morphism (1 being the inclusion W < F), or equivalently if £ o f° ¢ is k-times
Lipschitz differentiable for every /e F’' and every Zig*-curve c:R—E with
c(RyesU.

Since we want to get derivatives of Z4*-maps for k>1, we will restrict to
special subsets U as domains; one might require U to be open for the locally
convex topology of E, but the weaker condition of U being open in the Mackey-
closure topology turns out to be adequate, and in order to get shorter formul-
ations we adopt:

4.1.1 Convention. By f:E2 U—F we will always mean that E and F are
convenient vector spaces, U is M-open in E and fis a function from U to F.

We first consider the integration of Z#-curves.

4.1,2 Definition. Lot g,beR with a<b.

A marked partition P=(tg, ..., t; T1s..-,Ta) Of [a,b] consists of real
numbers t; with a=t,< ... <t;_;<t;< ... <t,=b and real numbers
ety ;]

The mesh u(P) of a (marked) partition is defined by u(P):=max {t;—t;_,;
j=1...n}

The set 2 of marked partitions of [a, b] is directed by P > Q iff u(P)<u(Q).

Let c: [a,b]—E be a curve into a preconvenient vector space.

The Riemann sum R, (P) of ¢ with respect to a marked partition P is defined as
R.(P):=Y_ c(m)(tj—1t;-1)-

If the net P+ R.(P) converges Mackey, then its limit will be called the
Mackey—Riemann integral of ¢ and denoted by [.c or [.c(f)dt and c is called
Mackey—Riemann integrable.

{2 is defined to be 0 and if a>b then [’ c is defined as — [} c.

4.1.3 Lemma. Let c:R—E be a Lipi-curve of a preconvenient vector space E,
[a,b] = R a bounded interval. Then the net formed by the Riemann sums of c|i, y is
a Mackey—Cauchy net in E.
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Proof. Since ¢ is a Zip-curve there exists for each /e E an M,eR with
[(£=c)(S)—(£oc)B)| <Mss—t] for all s,tela,b]. Let Pi=(o,...,;
Ty, ..., 7,) and Q:==(Sg,. .- » S O1s.- ., 0,) be two marked partitions of
[a,b]. Denote by a=ry< ... <r,=b the ordered points of the set {tos - sty
Sos - - + » Sm}. Decomposing the terms of the Riemann sums for those intervals
which are subdivided we get:

Rc(P)=Z(rk_rk—1)c(Ti(k)) and RC(Q)=Z(rk—rk—1)c(aj(k))

where |74 — Tyl < p(P)+u(Q). Thus (¢ © ) (Tiay) — (£ 2 Q) (Tl < M (u(P)+
(@) and |/(R(P)—£(RAQ)| <(b—a) M,|p(P)+u(Q)]. Setting tp o=
1/(u(P)+ u(Q)) gives: {tp o(R.(P)—R(Q)); P,Q€Z} is bounded in E, and this
yields the Mackey—Cauchy condition, cf. (2.2.13). O

4.1.4 Proposition. Let c:R—E be a Lif*-curve into a convenient vector space
with ke Ny, . Then:

(i) For all a,beR the Mackey—Riemann integral ch exists.
(ii) For any linear morphism »: E—F into a convenient vector space one has

ﬁ (-m i3 C) = m(ﬁ C).

Proof. (i) follows immediately from (4.1.3).

(i) One uses that for any marked partition P of [a,b] one trivially has
R,...(P)=#(R.(P)), and that » is continuous with respect to the Mackey
convergence structure. O

4.15 Lemma. Let U< R? be open, with Rx[0,1] < U, and f: U—F be a Lis°-
map into a convenient vector space. Then the map tl—»j'(l)f(t, s)ds is ZLif° from
R to F.

Proof. Let c:R—F be defined by c(t):= [ f(t,s)ds. We have to show that 6'c¢ is
bornological.
For this we first consider the case F=R. Then

5lc(t11t2)=<'f1f(t1,S)dS—J‘l f(tz,S)ds)-t 1 =Jlf(t1:s)—f(t2,s) ds
0 0 1 0

—t2 tl_tz

1
=J 8, flty,t2;5)ds.
0

Since f is Zi4° it is locally Lipschitz by (1.4.2). Hence 6, f is bornological by
(1.3.20), i.e. for every bounded B < R the set &, f(B*'? x [0,1]) is bounded. Thus
{§58.f(t1,t2; $)ds; (t;,1,) e B$??} is bounded, ie. §'c is bornological.

Now the general case. The curve ¢ is Lg® iff £ec={= Io [l s)ds
=[5>, s)ds (cf. (ii) in (4.1.4)) is Z4°. This holds by the special case
applied to the function ¢ f. O
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4.1.6 Lemma. Let U< E be M-open. The subspace topology on U of the
Mackey-closure topology of E is the final one induced by the %ij*-curves into U.

Proof. Since the inclusion : U—E is by definition a %/#*-map it is continuous
with respect to the mentioned topologies.

Conversely let W< U be open in U with respect to the Zis*-curves in U. It is
enough to show that W is open with respect to the Z#*-curves in E. So let
c:R—E be a Zeft-curve and ¢(f)e W < U for some t € R. Since U < E is M-open,
we conclude that an £>0 exists with [t—e, t+¢&] =c~}(U). Take a smooth
function : R—[t—e, t+¢] with h(s)=t+s for 2|s|<é& Then cch:R—E is a
LigF-curve into U with (coh)(0)e W and hence there exists a >0 with
[—8,6] =(c=h)~*(W). We may assume that 26 <e, hence c(t+s)=(c>h)(s)e W
for |s| < 8. This shows that ¢~ (W) is open, i.e. W is open in E with respect to the
Mackey-closure topology. O

4.1.7 Corollary. Let fE2U—F be a L -map. Then f is continuous with
respect to the Mackey-closure topologies.

We next give a lemma on extensions of maps which will be used in order to
extend difference quotients of differentiable curves.

4.1.8 Lemma, (% 4"-Extension Lemma.)) Let E and F be convenient vector
spaces, U € E be M-open; D a dense subset of U (with respect to the Mackey
closure topology), and f: D—F a map such that for each {€F' the function
{of:D->R has a Lip*-extension f: U—R. Then f has a unique Lif*-extension

f U-F.

Proof. Let v F—II;.R be the canonical map, which is an embedding by the
special embedding lemma (2.5.5). The map g: U— Tl R characterized by
preog=fy for all ZeF' is a %gmap and satisfies g|,=1°f Therefore

g(D) € u(F), and since Fis* -maps are continuous for the Mackey closure topo-
logies one obtains g(U) = g(D) = g(D) ci(F ) But z(F )=1(F) since F is complete,
cf. (8) of (2.6.2). Hence g factors over 1; let us put g=1° f for somef U—F. Since 1
is initial fis a Fig*-map, and it satisfies f |p=f by construction. This proves the
existence. Uniqueness is trivial since #4*-maps are continuous, cf. (4.1.7), and D
is dense in U with respect to the Mackey closure topology. ™

4.1.9 Definition, Let U = R be open, ¢: U—E be a curve into a preconvenient
vector space, and ¥ < E' point separating.

(i) ¢ is called #-differentiable at t iff Lim,,, (c(t+35)—c(t))/s exists with
respect ta the weak topology o(E, %), i.c. the initial topology on E induced by
the family . Since the value of this limit (not the existence) is independent of the
family .% it is simply denoted by ¢'(t) and called the derivative of ¢ at t.

If ¢ is &-differentiable at every point of U, then ¢ is called #-differentiable and
¢ is called the derivative of ¢ (E’-differentiability coincides with weak differen-
tiability as defined in (2.5.1)).
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(i) ¢ is called strongly differentiable iff M-lim, ., ,»:(c(r)—c(s)})/(r —s) exists
uniformly for ¢ in compact subsets of U. This implies that ¢ is ¥ -differentiable
for any & and that this M-limit is equal to c"(¢).

(iii) ¢ is called (k+ 1)-times & -differentiable ((k+ 1)-times strongly dzﬁ‘eren-
tiable) iff it is #-differentiable (strongly differentiable) and ¢ is k-times &-
differentiable (k-times strongly differentiable). The derivative ¢** ) of order k+ 1
is defined as derivative of order k of ¢. Instead of k-times E’-differentiable we also
say k-times weakly differentiable.

Remark. Since the weak topology a(E, &) depends only on the linear subspace
of E' generated by &, the same holds for &-differentiability.

4.1.10 Lemma. Let c:R=2U—E be a curve into a preconvenient vector space,
and & < E' point separating. Then the following statements are equivalent:

(1) ¢ is k-times & -differentiable;
(2) There exist curves ¢ U—E (1 <j<k)suchthat { ° c is k-times differentiable
and (Cec)P=¢oc forall e and 1<j<k.

Under the equivalent conditions one has ¢/=c'? for all 1 <j<k.
Proof. The convergence of (c(t+s)—c(?))/s in the topology o(E, &) is equiv-
alent to the convergence of

; (c(t +s)—c(t)>=£(c(t+s))—f(c(t))

S N

and the limits coincide for all #e%. Using this the proposition follows by
induction on k. O

41,11 Lemma. Let ISR be an open interval, & < E' point separating and
c:I—E S-differentiable. If ¢’ =0 then c is constant.

Proof. Forany/e¥ onehas(f°c) =¢°c =0, hence £ cis constant and since
& is point separating c is constant. O

Remark. The previous lemma remains true if ¢ is o (E, &)-continuous and &-
differentiable at all t e I\ D for some countable set D. In fact, from (£ e ¢) () =0 for
teI\D and the continuity of £ec it still follows that £°c is constant, cf.
[Dieudonné, 1960, p. 156].

4.1.12 Theorem. Let keN and 0<j<k. For a curve c:R 2 U—E the following
statements are equivalent:

(1) cis a Lifi*-curve,

(2) &t U+ SE is bornological,

(3;) 8/c: US> SE has a Lip~-extension 6'c: U/t ' > E;

(4;) c is j-times strongly differentiable and ¢ is a Lif* ™ I-curve;
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(5;) c is j-times S~differentiable for some (all) point-separating & < E' and ¢
is a Lig* " I-curve.

Proof. Clearly 1=3,=4,=5,.

(1=>2) By composing with ¢ € E’ this is immediately deduced from (1=>3) of
(1.3.22).

(2=3;) Take £ € E'. Then 6(¢ ° ¢) is bornological, hence by (3=4;) of (1.3.22) a
c.%,z“ J extension to U/*! exists. Thus by (4.1.8) a Zes*~/ extensnon of 8Jc to
Uit exists.

(3;=>1) Let £ E'. Using that 6/(/°c) has a Z4" ™/ extension to U’*' we
conclude from (4;=1) of (1.3.22) that £oc is k-times Lipschitz differentiable.
Thus ¢ is Les".

Thus we have proved: (1<»2<3;).

(1+2+3,=>4,) For a compact A = U take another compact set K = U such
that the interior of K contains A. Since ¢ is Zi#* it is Zi4'; hence, by (2), -
B:=6%(K¢®) is bounded in E. Let now (¢,5) #(t,s) e K%, By (1.3.13) we have

dle(t,s)—dc(t,s)=5(t—1)8%c(t, t,s)+1 (s—5)6%c(t,s,5)
provided {t,s} #{t’,s’}. Hence

1

m (516(1', S)— 516(1’, S/))

lies in the absolutely convex hull of B, i.e. in a bounded subset of E. So we have
shown that the Mackey—Cauchy condition for the derivative is satisfied uni-
formly on A. Thus c is strongly differentiable and c¢'(s)=M-lim,_ o8 c(t+s, $)
=6'c(s,s). Hence ¢ is, by (3,), as restriction of a Zi#*~' map also
& (7/@" k.

(4,=>5,) This is trivial.

(5, =1) Since ¢" is at least Z24° we may form the Mackey-Riemann integral
e(t)=c(@+[,c" Let £ E; then £(e(t))=£(c(0))+ [, o c". Since £ o ¢ is at least
continuous one concludes that £ce is differentiable with derivative
(¢oe)’=£°c being (k—1)-times Lipschitz differentiable. Thus e is %#"* and it
remains to show that e is equal to c. Since e and ¢ are both &#-differentiable and
have the same derivative, the previous lemma implies that e—c is constant.
Therefore e=c, since ¢(0)=c(0).

Thus the proposition is proved for j=1 and for j=0.

(4;<>4;, ) is easily proved by induction using (1<>4,<>4,).

(§;45;41) is easily proved by induction using (1<>5,<=5,). |

4.1.13 Theorem. Let c:R 2 U—E be a curve into a convenient vector space and
let je N,. Then the following statements are equivalent:

(1) cis Zip™;
(2) &%c: U > E is bornological for all (infinitely many) ke N;
(3;) 8c:U” —E has a Lip™-extension dic: Ut - E;
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(4;) c is j-times strongly differentiable and ¢ is a Lifp™-curve; .
(5,) cis j-times ¥-differentiable for some (all) point-separating & < E’ and c?
is a Zip™-curve. '

Proof. This follows easily from (4.1.12). |

4.1.14 Proposition, For a %if°-curve c¢:R—E let {c denote the curve
(fom=[yec )

() If c is a Lip*-curve then [c is Lip** ! and c=(fc).

(i) If c is a Lip** 1-curve then ¢ is Zep* and c=c(0)+ [(c").

Proof. (i) Let£€E' . Then ¢ jc=j'({ = ¢). Since £ = ¢ is k-times locally Lipschitz
differentiable one concludes that f(/ o ¢) is differentiable with derivative £=c,
hence ¢ ¢ [c is L** ! with derivative equal to c.

(ii) By (1=>5,) of (4.1.12) we know that ¢ is Z%*. Thus by (i) fc exists and is
L+ and the derivative of ¢’ is ¢. By (4.1.11), c— f¢" is constant and at 0 its
value is obviously ¢(0)—0. ]

Next we give a proposition estimating the increment of a curve ¢ by means of
its derivative, the estimation being expressed in terms of a convex set. This
proposition generalizes the mean value theorem for curves in Banach spaces
where the estimations are expressed in terms of the norm; cf. [ Dieudonné, 1960,
p. 153].

4.1.15 Proposition. (General Mean Value Theorem.) Let c: R—E be a Lij'-
curve into a convenient vector space; A< E an M-closed convex set; and h: R—R
a monotonic differentiable function. If ¢ (t)eh ()A for all te[a,b] then
c(b)—c(a)e (h(b)—h(a))A.

Proof. We show first that certain Riemann sums of k" converge to h{b)— h(a).
For a fixed partition a=t,< ... <t,=b one chooses by the classical mean
value theorem t;€[t;_,,t;] with h(t;)—h(t;_)=(t;—t;-1)h'(z;). Then for the
marked partition P:=(to, . . ., ,; Ty, . . . , T,) one has, using that 4 is conyex
and K()=0: RC.{P)er((tj—tj_l)h'(rj)A)E(Zj(tj—tj_l)h'(rj))A=(h(b)—h(a))A.
Taking the M-limit of Riemann sums so chosen and using (ii) of (4.1.14) and the
M-closedness of 4 one obtains

b

c(b)—c(a):f ¢'=limp R, (P) e (h(b)—h(a)) A. 0

a

Remark. The previous proposition remains true if i is monotonic, con-
tinuous and for all te[a, b]\D differentiable at ¢ with derivative satisfying
c'(t)eh'(t) 4, where D is some countable set.

This can be proved by showing that certain Riemann sums of k" still converge
to h(b)— h(a) (One uses that inf {k'(1);te[a, b]\ D} <(h(b)—h(a))/(b—a)). Then
the rest follows easily using the product of a sequence in E which is Mackey
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convergent to c(b)—c(a) with a sequence of real numbers converging to
1/(h(b)— h(a)) is Mackey convergent to {c(b)— c(a))/(h{(b)— h(a)).

Furthermore one may weaken the differentiability properties of ¢ provided
one assumes A to be closed in a stronger sense. More precisely:

Assume that for some point separating . <E’ the curve ¢ is o(E, &)-
continuous and & -differentiable in all te[a, b]1\ D and satisfies c'(t)eh’(t)A
for a o(E, ¥)-closed convex set AE and a countable set D<[aq, b]. Then
c(b)—c(a)e(h(b)— h(a))A.

Using Hahn—Banach this can be easily reduced to the situation E=R; cf.
[Dieudonng, 1960, p. 153].

As will be proved later, many function spaces such as the space %#*(X, E) of
Fig*-maps from a #*-space X into a convenient vector space E are again
convenient vector spaces. For curves ¢: R— %4* (X, E) into these spaces it is
often easy to test whether ev,2c: R—E is smooth, where ev,: Zx* (X, E)->E
denotes the evaluation maps. So it is natural to ask under which conditions the
smoothness of these composites implies the smoothness of ¢. If the bornology of
the function space is the initial one induced by the evaluations (as for example
for the function space L(E, F), cf. (3.6.5)) then no additional condition is
necessary. In general this is, however, not the case. But often the evaluation
maps form a family of morphisms which has a certain property allowing useful
results to be given in the indicated direction. More generally one has in many
situations in a natural way a point separating family . of Con-morphisms
and a curve ¢: R—E for which one can guess the derivatives, ie. one finds
curves c*: R—E with the property that £ec is smooth with derivatives
(¢#c)®=¢>c*forall ke N and ¢ € &. Under some mild condition on the family
& it is then enough to assume that the c* are bornological in order to obtain
that ¢ is smooth and has c* as kth derivative.

We will start with discussing this property in the case where the point
separating family of Con-morphisms consists of real valued functionals only and
prove the respective criterion for smoothness (and %%°%ness) of a curve. In
(4.1.20) we will show that the case of general families can be reduced to this one.
We then give several examples; further ones will follow later, when the respective
function spaces are available.

At the first reading a shortcut can be made by skipping the rest of this section
together with (4.3.10), (5) of (4.3.30) and (4.4.15){4.4.35).

4.1.16 Lemma., Let E be a convenient vector space and & S E' a subset. Then
the following statements are equivalent:

(1) the bornology of E has a basis of a(E, & )-closed sets, i.e. for every bounded
BCE there exists a o(E, & )-closed bounded A< E with BS A;

2) the o(E, & )-closure of bounded sets is bounded,;

(3) Nesr, €~ (£(B)) is bounded for every bounded B E, where &, denotes the
vector space generated by ..
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Proof. (1=>2) trivial.
(2=3) Use that by the bipolar theorem [Jarchow, 1981, p.149]
Nees, £~ (£ (B)) is the a(E, ¥,)-closure of B if B is absolutely convex.

(3=1) Clearly N¢eg,t " (£ (B)) is a o(E, & )-closed subset containing B.
B

Remark, It is obvious that these equivalent conditions on & imply that &
separates points.

Now some applications of this condition on a subset &, first in order to
determine the #¢4°-curves and then the smooth curves.

41,17 Lemma. Let & < E' be such that the bornology of E has a basis of
a(E, & )-closed sets; let c: R2U—E be a Zi%-curve; and A be a bounded subset
of R with closure contained in U. If ¢ is F-differentigble at t for all te A then
{c'(t);te A} is bounded.

Proof. Let IS U be a compact set such that 4 is contained in the interior of I.
By assumption dc is bounded on [¢'’. So let B be a o(E, & )-closed subset
containing éc(I<'?). For all te A one has c¢’(t)=lim,,qdc(t,t+s)eB, hence
{c(t);te A} <= B is bounded. O

4.1.18 Proposition, Let E be a convenient vector space, ¥ SE’ a subset such
that the bornology of E has a basis of 6(E, ¥)-closed sets. Let c: R2U—E be a
& -differentiable curve. Then c is Z4° if and only if ¢ is bornological.

Proof. 1f ¢ is %4° then ¢ is bornological by lemma (4.1.17).

Conversely suppose ¢ is bornological. Let I < U be a compact set. Choose a
a(E, & )-closed absolutely convex bounded set B that contains c’(I). Let £ € &,
and t, se I, t#s. Then by the classical mean value theorem there exists anre[t, s]
dependent on £ such that £(5c(t, s)) = (¢ o ), s)=(£ e J ) =£ (¢ (r))e£(B). Since B
was chosen absolutely convex and o(E, ¥ )-closed one concludes
that éc(t, s)e B, ie. dc(I)SNsesrd £(B)=B is bounded, cf. (2=3) of
{4.1.16). O

4.1.19 Theorem. Let ¢:R2U—E be a curve into a convenient vector space E,
and let ¥ S E' be a subset such that the bornology of E has a basis of 6(E, & )-
closed sets. Then the following statements are equivalent:

(1) cis Lip™;
(2) c is k-times & -differentiable and ¢ is bornological for all ke N,.

Proof. (1=-2) trivial.

(2=1) By assumption c¢® is &-differentiable and its derivative c¢**V is
bornological. Hence it follows from (4.1.18) that ¢® is #,4°. Using now (5,=1)
of (4.1.12) one deduces that ¢ is Z¢4" for all k and hence Lég™ a
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The following proposition shows that the general situation mentioned before,
where one has a family f;: E—E; of linear morphisms, can be reduced to that of a
subset S <E’.

4.1.20 Proposition. Let f:E—E; (jeJ) be a family of Con-morphisms,
& =, fff(E}), c:R—>E a curve, B E bounded and absolutely convex, and
keNg -

@ T he curve c is k-times & -differentiable if and only if there exist curves
¢ (i<k+1) such that for all je J, f;oc is k-times weakly differentiable and
(fieoP=foc for all i<k+1.

(i) The set B is o(E, & )-closed if and only if it is closed for the initial locally
convex topology on E induced by the family f; (jeJ).

Proof. (i) c is k-times #-differentiable iff ¢’ (for i <k -+ 1) exist with (£;° f;c)®
={;ofioc' for all jeJ and all £;e E}. This is equivalent to f;oc being k-times
weakly differentiable and ;o (f;o ) =¢;°(f;o ).

(i) Since closed and weakly closed is equivalent for absolutely convex subsets
of a locally convex space, cf. [ Jarchow, 1981, p. 149] it is enough to show that on
E the weak topology associated to the initial locally convex topology induced by
f; (jeJ) is exactly the topology a(E, #). This follows since taking initial locally
convex topologies commutes with taking associated weak topologies, cf.
[ Jarchow, 1981, p. 167]. O

In order to apply the above results (4.1.19) and (4.1.18) we give some
4.1.21 Examples

(i) Let £: E~E; (jeJ) be a family of Con-morphisms which is an initial £™-
source. Then the bornology of E has a basis of sets being closed for the initial
locally convex topology. It is enough to show that M £~ ! ( £(B)) is bounded for
every closed absolutely convex bounded set. Since the bornology on E is by
assumption the initial one induced by the f it is enough to show that
MNS 1 (£(B)) is bounded. But this is trivial since it is contained in
£ M£(B)))=f£(B) and this is bounded as closure of a bounded set. For initial
£ ®-sources theorem (4.1.19) is of course not interesting, since in this situation the
boundedness assumption on the derivatives is not necessary.

(i) The bornology of £°(N, E) has a basis of subsets closed in the initial
locally convex topology induced by ev,: ¢ (N, E)=E (neN). A basis of the
bornology on £ (N, E) is given by the sets By:= {c;c(N)= B} (B< E bounded
and closed in the locally convex topology). It is enough to show that
By=N,enev, tev,(B,). Clearly ev,(B,)=B, so ce Nev, *ev,(B,) iff c(n)e B for
all n, i.e. ceB,.

(iii) Let ¢, be the closed subspace of £ * formed by the sequences converging
to 0. Then the bornology of ¢, has a basis of a(c, {ev,; neN})-closed sets. To
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prove this one only has to combine the initiality of the inclusion ¢, = £ * with (i)
for E=R.

(iv) Let X be an £ ®-space, E a convenient vector space, and & < E’ such that
the bornology of E has a basis of 6(E, & )-closed sets. Then the bornology on
£*(X, E) has a basis of (£ (X, E), {{cev,;£ €8S, xe X })-closed sets. To prove
this one only has to combine the initiality of c*:/%(X, E)=/"(N, E)
(ce£™ (N, X)) with example (ii).

(v) Let K be a compact Hausdorff space and D<= K a dense subset. Then the
bornology of the Banach space C(K) of continuous real valued functions
with the maximum norm has a basis of 6(C(K), {ev,; x € D} )-closed subsets. It is
enough to show that B=\,.pev; *(ev.(B)), where B denotes the closed unit
ball B={ fe C(K, R); |f(x)| <1 for all xe K}. It is obvious that ev (B)=[—1, 1].
Suppose there is an fe C(K, R) with f(x)e[—1, 1] for all xe D but f¢ B. Then
there is an x € K with | f(x)| > 1 and by continuity of f and denseness of D there is
a yeD with |f(y)| > 1. This is a contradiction.

(vi) The bornology of 1I,.,E; has a basis of 6 (IIE;, {£=pr;; jeJ, £€E]})
closed sets, where pr;: I1,_; E;— E; denotes the projection. This is obvious, since
a bounded B is contained in a finite subsum of the coproduct.

A general proposition that allows to obtain families & with the desired
condition is the following:

4.1.22 Proposition. Let & <E<S(E') be a linear subspace that separates points
of E'. Then the bornology of E’ has a basis of o(E', & )-closed sets.

Proof. Tt is enough to show that closed bounded subsets B of E’ are o(E', & )-
closed. By the linear uniform boundedness principle (3.6.4) the bounded subsets
of E’ are the equicontinuous ones. By the Alaoglu-Bourbaki theorem [ Jarchow,
1981, p. 157] these sets are relatively o(E’, E)-compact and their closures taken
in II;R are contained in E’. So the closed ones are ¢(E’, E)-compact and since
o(E', &) 1is a coarser Hausdorff topology they are also ¢(E’, & )-compact, hence
o(E’, ¥ )-closed. O

4.1.23 Coroliary. Let E be a reflexive convenient vector space, i.e. iy: E-E" is
bijective. Then the bornology of E has a basis of 6(E, & )-closed sets for every
point-separating set & < E'.

Example. Let £7 for 1<p<oo denote the classical Banach space of p-
summable sequences. The bornology of ¢? has a basis of o(¢?, {ev,;neN})-
closed sets. This follows since for p>1 the Banach space ¢7 is the dual of 74,
where g is given by (1/p)+(1/q)=1. The Banach space ¢! is the dual of the
Banach space ¢, of sequences converging to 0.

4.1,24 Proposition. Let E be a convenient vector space, & S E’ be a subset and
& be the closure of & with respect to the topology of uniform convergence on
bounded subsets of E (a 0-neighborhood basis of this topology is given by the polars
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B%:={/eE';/(BYy=[—1,1]} of all bounded B<E). If the bornology of E has a
basis of a(E, & }-closed sets then it has a basis of 6(E, & )-closed sets.

Proof. It is enough to show that for any bounded absolutely convex B< E one
has Nyt “HEB)) =Nzl ™ ((B)).

(2) is trivial, since ¥ < ..

(<) Admit that this is not true, then there exists an x € E with £(x) em for
all /e but £,(x) ¢ £,(B) for some £, .%. Now choose an absolutely convex 0-
neighborhood U in R with £o(x)+3U S R\/,(B). Then /o +{/cE'; £({x} UB)
< U} is a neighborhood of ¢, with respect to the topology of uniform conver-
gence on bounded sets. Since % is dense in % with respect to this topology there
has to exist an £, €& that is in this neighborhood. In order to reach a
contradiction we claim that £, (x)¢71(—B5. By construction (¢, —£,) (x}e U and
(£, —£o)(B)€ U and thus £, (x)efy(x)+ U and #,(B)={,(B)+ U =£,(B)+2U,
cf. [Jarchow, 1981, p.31]. The claim now follows using that £,(x})+ U and
£o(B)+2U are disjoint. 0

An application of this proposition will be given in (4.4.34).

4.2 Curve spaces

In the preceding section we considered Zi4"-curves of a convenient vector space
E. They obviously form a vector space Zi4*(R, E), and we will show now that
this space has in fact a natural convenient vector space structure. These curve
spaces will be used later in order to study more general function spaces.

We begin with the case k< co and make use of the following linear maps:

8% Lif*(R, E)—£ (R E) O<p<k+1)
DT Lif* (R, E)» Lp*°(R, E) (0<p<k)
ev,: Lif (R, E)~E (teR);

where §”¢ is the difference quotient of ¢ of order p; 27 c:=c® is the pth derivative
of ¢; and ev, is the evaluation at ¢.

42,1 Lemma. Let keNy; a;eR all different; and b,eR. For a subset of
LM (R, E) it is equivalent to be bounded under any of the following five families of
maps:

(1 6% ..., 8L,

(2) eV, €V, 2D, . . ., eV, 2 DE, 60 PF;
(3) Vo - - -, EVgy_,, €V, 0 DE, 81 0 T,
(4) €Vggs . . . 5 €V, LoD

(5) ev, ., €V

ap? * -
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Proof. The bornology of E is the initial one induced by the maps £e€ E’, and
that of /=(R”,E) is the initial one induced by the maps /,:¢%(R¢”, E)
—£°(R®, R) for £€ E’, cf. (1.1.8) or (1.2.9). Using this and furthermore that @,
&' and ey, commute with 7, one reduces the general case to the special case
E=R which we study in what follows. So let B< %4*(R, R) be an arbitrary
subset.

(1=2) Let 0<p<k; feB; beR. Choose I'=1b—1, b+ 1{. According to the
remark following (1.3.15), f®P(b) is in the closure of &7f(I<?’); therefore
(ev, 2 Z7)(B) s in the closure of the bounded set 6° B (I¢?”) and hence is bounded.
Finally, for any bounded open interval J, §*** B(J** 1) is bounded by some
value M; then by (1.3.18), 6' 2*B(J<!)is bounded by the same value M. So we
conclude that 6' 2*B is bounded in £ *(R¢*>, R).

(2=>3) Let I be a bounded interval containing the points ¢; and b;. From the
boundedness of (5'°2*)B(I<?’) and 2*B(b,) we deduce immediately that
2*B(I) and hence 2*B(b,) is bounded. Using that 2*B(I) is bounded one
further deduces that also 6 2*~*B(I¢*’) is bounded (by the same value, ac-
cording to the first mean value theorem (1.3.15) for k=j=1). Combining this
with the hypothesis that 2% !B(b,_,) is bounded one obtains as before:
2*~1B(I) is bounded. Repeating the same arguments gives: 2°B(I)=B(I) is
bounded. From this the boundedness of B(a;) follows.

(3=-4) Let I be a bounded interval containing the points g; and b,. From
2*(B) (b)) and (5> 2*)B(I‘’) both bounded one deduces that 2*B(I) is
bounded, and hence, by (1.3.15) for j=k, also 6*B(I<**). Using (1.3.2), i.. the
identity 6*f(ag, . . . , @) =k! Zﬁ;o B:-f(a;), one deduces, since the terms of the
sum for i<k are bounded for fe B, that also B(a,) is bounded.

(4=>5) follows immediately using (1.3.15) for j=k—1.

(5=1) Using again 6*f(ao, . . . , @)=k! Y 1= B;*f(a;) one first remarks that
5“Blay, . . ., a;) is bounded. Furthermore, for any bounded interval ISR,
S**1B(I%** 1) is bounded. So, using (1.3.14), 5*B(I®) is bounded, and this
shows that §* B=¢ (R, R) is bounded. Repeating the same argument one suc-
cessively obtains that 6B, ..., 8' B are all bounded. O

4.2.2 Definition. For keN, we will from now on denote with L4 (R, E)
the vector space formed by the Ziz'-curves of E together with the initial
preconvenient vector space structure induced by the maps &' Zis*(R, E)
—¢2(RD,E) (i=0, . .., k+1).

4.2.3 Proposition. The structure of the preconvenient vector space Lip*(R, E) is
the initial one induced by any of the five families of maps considered in (4.2.1).

Proof.. This is a direct consequence of (4.2.1). m|

4.2.4 Proposition. Let E be a convenient vector space and k € N. Differentiation
and integration yield morphisms of preconvenient vector spaces as follows:

() 2: Lip"(R, E)= Zif*~ (R, E), defined by D(c):=¢;

(i) [: Lip* ' (R, E)-> Lip"(R, E), defined by (fc) (0):=[yc.
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Proof. (i) is trivially verified if one uses the characterization of the structure of
Zip*~'(R, E) as being the initial one induced by the family (4) of (4.2.1), where of
course one has to replace k by k— 1. For the verification of (ii), the family (2)
of (4.2.1) is adequate. O

4.2.5 Proposition. Let E be a convenient vector space and ke N. One has a Pre-
isomorphism Zip“(R, EYy=En%i4* (R, E).

Proof. One considers the map (evy, 2): Lif*(R, E)—»En%i4* "' (R, E). It has
an inverse, by (4.1.14), namely (4, c)—a+ fc. Both are morphisms according to
the previous proposition (4.2.4). O

4.2.6 Proposition, For a convenient vector space E and ke N, the curve space
Zi#t"(R, E) is also convenient.

Proof. By the above proposition (4.2.5) it is enough to prove that Z4°(R, E)
is convenient. The map (evy,d'): Lp°(R, E)=»En/*(RV,E) is a Pre-
embedding. Hence Zix°(R, E) is isomorphic to its image. Since Ené®(R¢'?, E)
is complete by (ii) in (3.6.1) the image is also complete provided it is closed with
respect to the Mackey closure topology, see the closed embedding lemma (2.6.4).
We verify this by showing that this image is the intersection of the kernels of the
Pre-morphisms:

h, ;. En{°(RY, E)y—»E for (r, s, )eR¢*> where

hy s, (@ 9)=0—9)g(r, s)+(s—1)g (s, ) +(t—r)g(r, 1).

The verification that h, , ,(ev,, 6')=01is trivial. So let conversely &,  .(a, g)=0
for all (r, s, t)e R¢?’. The non-symmetric choice of k, , , allows to deduce that
g is symmetric: 0=0+0=h, , (a, g)+ b, (@, g)=(r—s)-(g(r, s)—g(s, 7)), hence
g(r, $)=g(s, ) for r #s. Define now ¢: R—E by ¢(0):=a and c(t):==a+tg(t, 0) for
t#0. One verifies that é'c=g and c(0)=a, ie. (a,g)=(evo, 6')(c) as to be
shown. O

We now consider the vector space Zi4 * (R, E) formed by the Zi4 ®-curves of
a convenient vector space E:

4.2.7 Proposition. Let keNy; a;eR all different; and b,eR. For a subset
B= %4#™(R, E) it is equivalent to be bounded under any of the following four
families of maps:

(1) ¢ Zip™(R, E)—¢ (RSP, E) for all ieNg;
() 1: Zip*(R, E)— Zi'(R, E) for infinitely many i
(3) evy,° 2" Lip™ (R, E)>E for 0<i<k and
9" Lip (R, E)=»¢*(R, E) for i>k;
(4) ev,,;: Lip™ (R, E)=E for 0<i<k and
8 Lif > (R, E)—¢ (R, E) for i>k.

Proof. Follows directly from (4.2.1) and the remark after (1.3.15). O
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4.2.8 Definition. %4> (R, E) will from now on denote the vector space formed
by the % -curves of E together with the initial preconvenient vector space
structure induced by the maps &': i ™ (R, E)—»{( > (R, E) (ie Ny).

4,29 Proposition. The structure of the preconvenient vector space Lin™(R, E)
is the initial one induced by any of the four families of maps considered in (4.2.7).

Proof. This is a direct consequence of (4.2.7). O

4.2.10 Proposition. For any convenient vector space E the curve space
Fie™ (R, E) is also convenient.

Proof. The maps of (2) in (4.2.7) vield a Pre-embedding i: %4~ (R, E)—
o n, ZiA*(R, E). Asin the proof of (4.2.6) it is enough to show that the image of
this morphism is equal to the intersection of the kernels of some morphisms. It is
trivial that the maps h: 1., LR, E)—» L4 (R, E) for ke N, defined by
h(cos - - - Yi=c¢py 1 — ¢, do the job. a

Remark. Zi4#*(R, E)=,%#"(R,E) is the projective limit of the spaces
Zi#*(R, E) in the category Pre. Hence the previous proposition can also be
deduced from (4.2.6) using that Con is reflective in Pre, cf. (2.6.5).

The following proposition is a special case of the differentiable uniform
boundedness principle (4.4.7).

4.2.11 Proposition. Let F be a convenient vector space. The structure of
Fip™(R, F) introduced in (4.2.2) respectively (4.2.8) is the coarsest convenient
vector space structure making all evaluations ev, (t € R) morphisms.

Proof. Let E be a convenient vector space and »: E— %;4*(R, F) a linear map
such that ev, s e L(E, F) for all te R. We have to show that s is a morphism
which means that 6 ¢ »: E—¢*(R?, F) is an ¢*-morphism for i<k+2 or,
using (3.6.6), that ev,,, @ 0'em: E-F is an £ ®-morphism for i<k+2 and
{tos - . . »t;)€ R, But this obviously holds, since using (1.3.2) we can write
CVao. ..., )" &'em =Z§-=0 ﬁj' (Cth A 7}2). 0

We now consider some functoriality properties of the curve spaces
LR, E),

42,12 Lemma. Let F be a convenient vector space. For any Fif*-function
f:R—R the induced map f*: Lip*(R, F)— Lis*(R, F)is a morphism of convenient
vector spaces.

Proof. Since by (4.2.6) and (4.2.10) we know that Z#*(R, F) is convenient and
since f* is a linear map we can apply the preceding proposition (4.2.11)
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and hence have only to show that ev,=f* is a morphism. But this is trivial, since
ev,ef¥=ev . O

4.2.13 Lemma, For any linear morphism #:: E—F of convenient vector spaces
the induced map wm, : Lip*(R, E)— L (R, F) is also a morphism of convenient
vector spaces.

Proof. One either uses (4.2.11) and the commutative diagram

LR, E)——2— LiMR, F)

ev, ev,

E > F

or that the bornology of Z#*(R, F) is the initial one induced by the maps &'
(i<k+2) and the commuting diagram

Lip*(R, E)——— LR, F)

o“i 61’

£ (R, E)——* 5 ¢%(RD, F). O

In order to study Z#*-functions in section 4.3 we often have to construct
certain curves, and for that purpose the following lemma will be quite useful. We
start with a

4.2.14 Definition, A sequence n—x, in a convex bornological vector space E is
called fast falling iff for every real polynomial p the set {p(n)x,; ne N} is bounded
or equivalently iff {n*x,;ne N} is bounded for every ke N.

4.2.15 Proposition. (General Curve Lemma.) Let E be a preconvenient vector
space, n—c, € C*(R, E) a fast falling sequence of curves; €, =0 with Ze, < c0. Then
there exists a smooth curve ¢: R—E and a convergent sequence of reals t, such that
c(t+t,)=c,(t) for |t|<e, and c(limt,)=0 (so ¢ ‘joins’ all the pieces c,|i—.,, ¢
within a finite interval).

Proof. Let

2 Tut+7,
G (k_2+ 28,,) and t,,:=—~§i.
Then O=r < ... <1,<tps1< ... <rg=limr,<occ and r,4 —r,=2/n’
+2¢,. Using a fixed smooth function h: R—[0, 1] with h(r)=1 for t>0 and
h(t)=0 for t<—1 one constructs smooth functions h,: R—[0, 1] with the
properties h,(t)=0 for [t| > 1/n2 +¢,, h,(f)=1for |t|<e, and |h¥(t)| <(n?)'H, for
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all teR where Hy=max{|h?(@)|; te R} (e.g h,(t):=hn*(e,+1)) h(n*(,—1))). Now
define c(t)y=Y ,nh,(t—t)c,{t—1,). For every teR there is at most one
non-zero summand; hence ¢ is well-defined and c{t)=c,(t—t,) for
—g,<t—t,<e¢,. It remains to show that £oc is smooth for any feFE’
We have (£°¢) (1)=) ,nfi(t) for teR, where f(t+t,):=h,() (£ > c,) (). Since
each f, is smooth the assertion follows if we show that for any ke N the series
=£.5(t) converges uniformly in t. So we estimate:

1
sup {|£9(0)]; te R}:sup{m(k)(s_{_t")“ |S}Sn_2+8n}

kE kN . . 1
Siz‘b(i)nzzHi-sup{|(/ocn)(k—z)(s)|; |S|Sn_2+8"}’

hence

k

n?- Supﬂf.(.k)(t)k te R} s( Z (I;)HZHZHi) -sup {l(/ o c,,)”’(s)];

i=

|s|<1+max{e,;neN} and 0<j<k}.

The hypothesis that c, is fast falling implies that the right side of the above
inequality is bounded with respect to ne N. This shows that L£¥(z) converges
uniformly in ¢. |

If the curves are polynomials of bounded degree, the application of the
general curve lemma is simplified to a large extent by the following

4.2,16 Proposition. Let c,: R—E be polynomials of bounded degree. If for every
{€E' the sequence n—sup {|(£°c,)(®);|t|<1} is fast falling in R then the
sequence c, is fast falling in C*(R, E).

Proof. The bornology of C*(R, E) is the initial one induced by the maps
£.: C*(R, E)->C>(R, R), where £ varies in E". Thus we only have to show the
result for E=R. Let d be an upper bound of the degrees and let Poly? denote the
(d+ 1)-dimensional vector space of polynomials of degree at most d. Since
c—sup {|c(t)]; |t| <1} is a norm on Poly’, it defines a vector bornology that is
separated. Thus the inclusion Poly?—C*(R, R) is bornological. By assumption
c, is fast falling in Poly?; hence also in C*(R, R). O

Explicit constants for the boundedness of the inclusion Poly’—C™(R, R) are
given by [Rivlin, 1974, p. 93, p. 119]: For ke N, r >0, and polynomial ¢ of degree
at most d one has

max {|c®(t)]; |t| <r} <max {| TP@)I; [t| <r}-max {|c(1)]; [t]< 1},

where T, denotes the Tschebyschef polynomial of degree 4. The maximum on
the left side is a typical seminorm on C*(R, R).
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Now we take up the discussion of general Z¢4“-maps f: E2U—F. For this
notion we refer to the beginning of section 4.1.

431 Lemma. Letf: E2U—F be a map; and 0<k<j<oo. Then the following
statements are equivalent:

(1) foc: R—F is Lig" for all Lippl-curves c: R—U;
(2) foc: ¢ WU)—F is Lig" for all Lip'-curves c: R—E.

Proof. (1<=2) is obvious.

(1=2) By composing with £ € F’ one reduces the considerations to F=R. Let
¢: R—E be a Zig'-curve and t,e ¢~ }(U). Since U is open in the Mackey closure
topology which is the final one induced by the Z/4/-curves there exists a >0
such that [t,—20, to+28]<c™}(U). Choose a smooth h R—ty+[—26,26]
with h(t)=t for |t—t,|<8. Then cy=coh is %4’ and has its image in
c(to+[—26,20]) S c(c™(U)) = U, hence foc, is k-times Lipschitz differen-
tiable and equals fec on ty+[—3,5] showing that foc is k-times Lipschitz
differentiable around ¢, Since tyec™ }(U) was arbitrary one concludes that
foc is k-times Lipschitz differentiable. O

4.3.2 Proposition. (%4 -ness is a local concept). Let f: E2U—F be a map.
() Iff: U—F is Lip* and U, U open then f|y,: Uy —F is Lip~.
(i) If U=\ U, is an open covering and f |y, is Lep* for all ie I then f: U—>E
is glf//zk.

Proof. (i) is trivial since the inclusion U, —U is a Z¢4*-morphism.

(i) By composing with £ F’ we may again assume F=R. Let c: R-»U
be a Zig*-curve. Then by assumption and the previous lemma (4.3.1)
(foOe-rwy=flu,°c:c™H(U;)=R is k-times Lipschitz differentiable. Since the
¢~ YU, cover ¢~ Y(U), fec:c”Y(U)—F is k-times Lipschitz differentiable and
therefore fis Zi4* by the previous lemma (4.3.1). O

Of central importance is the following

4.3.3 Proposition. (Smooth curves suffice) Let f: ERU—F be a map and
keNg ... Iffocis Lig* for all smooth curves c then the same is true for all Lif*-
curves c.

Remark. Lemma (4.3.1) shows that it does not matter whether one admits
curves ¢: R—E or only curves ¢: R—U.

Proof. To simplify notation we prove this theorem for k—1 with0<k—1< 0.
By composing with £ € F’ the general situation can be immediately reduced to
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that with F =R, which we shall consider now. Let us assume indirectly that there
exists a % 4* ~*-curve e such that foe¢ %4*~*. Because of lemma (4.3.1) we can
assume that e has values in U. According to (1.3.22) there exists a ¢, € R such that
the difference quotient 5% f= ¢) is unbounded on every neighborhood of t,. By
means of translations we reduce the consideration to the case t, =0 and e(t,)=0.

Choose
n H n 1 1 %\k\
a"=(dg, . . . ,ak)eli—E,E:I

such that 15% f e)(a™)|=>n2*" and define e, to be the interpolation polynomial
with e, (a})=elah), . . ., efd})=ela}). Explicitly one has by (i) in (1.3.7):

1
e..(t):=e(a'é)+ﬂ(t—aa)51e(a'6,a'i)+ o

1
+F(t—a'(',)- co{t—=al_)oReldd, . . ., ab).

Let ¢, (t)=e,{t/2"). Thus, with «":=2"-a" one has

n2 kn

2kn

1
|8 f 2 e o) =551 8(f &)@ 2 - =n,
and we remark that |of|=2"|a?| < 1/2". Let us verify that {c,; ne N } is fast falling
in C*(R, E), using (4.2.16). So let £ € E’ and || < 1. Since e is a Zi#* ~'-curve and
|a?| <1 for all n and i there exists a K >0 such that | £ (6%e(a"))| <K for all neN
and 0<i<k. Using that |t —o?| <2 and that e(a})=a}-5"'e(a},0) we obtain:

(£oc)O)=(£oe)ag)+ . ..
1
+ Q=) QT (0@ - a);

I(Zec,)) <|ag| K+ lt—agl. . ~Jt—ag_4|K

- 1
[t—ap| K+ ... +W

1
12r

= 2 2

and this is fast falling in R for n—o0.

Applying now the general curve lemma (4.2.15) with ¢,:=1/2" we get a smooth
curve ¢ with c(t+t,)=c,(t) for |t|<e, Hence |6*(foc)(ah+t,, ... ap+t,)|=n
which shows that &% fec)(¥<*?) is unbounded for any neighborhood ¥ of
[:=lim,_ . t,. Since ¢(t,)=c,0)=e (0)=e(a})—e(0) we have that foc is not
k-times Lipschitz differentiable in a neighborhood of ¢, in ¢~ }(U). O

434 Corollary. Letf: E2U—F be amap and 0<j<k<oo. If fis a Lip*-map
then it is a Fif’-map.
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4.3.5 Theorem, Let E, F be convenient vector spaces; ke Ny ,; X be a Lip*-
space; and f: X x E—F be linear in the second factor E. Then the following
statements are equivalent:
(1) f: XuE—F is %", where X11E denotes the product of X with E considered
as Fip*-space;
(2) fis partially Lip¥, i.e. f(x,_) and f(_,y) are Léfi* for all xe X and yeE;
(3) for all xe X one has f ¥ (x)=f(x,_)e L{E,F) and f ¥: X—>L(E, F) is Li#".

Proof. (1=>2) is obvious, since the partial maps are obtained by composing f
with the smooth maps x+(x, y) and yr—(x,y).

(2=>3) f ¥ (x) € L(E, F) since it is linear and #¢4*. The map f ¥ is Zc4", since by
(3.6.5) it is enough to verify that all composites ev, =f ¥ are Zi4*, which holds by
assumption because ev,=f ¥ =f(_,y).

(3=1) Since ¥ is Fip* so is f¥m id: XnE—I(E, F)nE. Furthermore
ev: L(E, F\NE—F is bilinear and %:4* by (3.7.1), hence f=ev e (f ¥ 1 id) is Z4".

O

In order to obtain a recursive characterization of #¢4"-maps we begin with
k=0 and for this we need the following

4.3.6 Definition. (i) Let E be a convenient vector space. A subset K<E is
called bornologically compact or shortly b-compact iff there exists a bounded
absolutely convex BSE such that K is compact in the normed space Ejg, cf.
(2.1.15).

For U<E the family of b-compact sets contained in U is a basis for a
bornology. It will be called the b-compact bornology of U. (It is induced by the b-
compact bornology of E iff U is M-closed in E.) The b-compact bornology of E
is a convex vector bornology since the closed convex hull of a compact subset of
a Banach space is compact.

Let £ E2U—F be a map.

(i) fis called %z~ " iff f(K) is bounded for every b-compact set K< U or,
equivalently, iff fis bounded on M-convergent sequences in U having also their
limit point in U.

(iii) The directional difference quotient 3f: E*nR>*2Uyg—F of fis defined by
87 (x, y; . 8) = (fx +ty)—fx+sy)/(t—s) where  Ug={(x,y;1,5)e E*nR?*
x+tyel, x+syelU, t#s}.

Remark. The assumption that U is M-open in E implies that Uy is M-open in
E*nR2.

437 Lemma. (Characterization of %¢f~'-maps.) Let f: E2 U—F be a map and
keNg . Then the following statements are equivalent:

(1) fis a Lip~-map;

(2,) f=c is an £™-map for every FLifi*-curve c:R—-UCSE;

(3) fox is an £¥-map for every sequence x:N—U which is M-convergent to
some x,€U.
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Proof. (1=2,) s trivial, since ¢(K) is b-compact in U for every compact K< R
and any Z#%curve c.

(20=2,=2,,). Trivial since less and less composites have to be £®-curves.

(2,=-3) Suppose f(x,) is unbounded for some sequence (x,) converging
Mackey to x,, € U. Using the special curve lemma (2.3.4) we conclude that there
is a smooth curve ¢ passing in finite time through infinitely many x,. Thus we
have a contradiction to the assumption that foc is an £*-map.

(3=1) Let K=U be b-compact, i.e. compact in some Banach space Ej.
Suppose f(K) is unbounded. Then there exists an x:N—K with (f°x)(N)
unbounded. Since K is compact in the metrizable space E we may assume that
x converges in Eg to some x,, € K< U. Thus x is M-convergent to x.,, which
gives a contradiction to (3). O

4.3.8 Theorem. (Characterization of Li#%maps.) Let E and F be convenient
vector spaces, USE be M-open and f:U—F be a map. Then the following
statements are equivalent:

(1) fis Lis°

(2) £oflg,: Eg—R is locally Lipschitzian for every absolutely convex bounded
B<E and every £ F';

x -
(3) {H, x,yek, xaéy}; is bounded for all compact K = U N E with
B

B < E bounded and absolutely convex;

@ {r(fx)—f(»)reR, x,yeK, r(x—y)e B} is bounded for all bounded BS E
and b-compact K < U;

(85) Sf is bounded on Ky xK,x[—1,11* for all b-compact K, K, with
K, +[-L1]K, U, for 8f of. (4.3.6).

Proof. (1=2) Obviously £ of|g : E;—E—F—Ris Z4° hence by the character-
ization of Z4°-maps between normed spaces (1.4.2) one concludes that it is
locally Lipschitzian.

(2=>3) By composing with # € F’ we may assume that F=R. Let K€ Un E be
compact. Now (3) follows by applying (1.4.2) to the map f]g,.

(3=>4) By enlarging the bounded absolutely convex set B if necessary we may
assume that K is compact in Ep. For r(x—y)eB one has |r|-|x—y|lz=
Inx—ylp<1, ie. |r|2llx—yl5. Consequently {r(f(x)—f(3)); x, yeKk,
r(x—y)e B} is a subset of the absolutely convex hull of the bounded set

-1,
{ Ix—ylp 7 "”}'

(4=35) Let K,, K, be b-compact with K,+[—1, 1]K,<U. By setting
xX:=a+tv, y:=a+sv, ri=1/(t--s), one verifies that
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t —_ )
{f(a+ vz J;(‘“LSL); t,se[—1,1], t#s, aeKy, UEKz}

= {r(f(x)—f(Y)), r(x—y)EKz, xayEK}9

where K:=K, +[—1,1]-K,. The assertion now follows since with K, and K,
also K is b-compact.

(5=1) Let c: R»U be smooth. We have to show that foc is Z4° in a
neighborhood of any t,eR. Without loss of generality let t,=0. Since the
extension h:=6c: R*—E of the difference quotient is also smooth, cf. (2) in
(4.1.13), K,:=6¢([—1,1]%) and K;:=c([ —1,1]) are b-compact.

Now

t—s t—s

{f(C(t))—f(C(S))=f(C(S)+(t—S)h(t, DASCD i #S}

is a subset of the bounded set

{f(x+t’v) —flx+s)

t—s

,s'e[—1,1], ¢ #5, xeK,, ueKz},
as verified by setting x:=c(s), v:=h(t,s), t'=t—s and 5"=0. a

4.3.9 Definition. Let f: E2U—F be a map and & < F' be point separating.

(i) fis called %-differentiable at x in direction v iff the curve t—f(x +tv) is -
differentiable at 0. The derivative of this curve at 0 is called the differential of f at
x in direction v and is denoted by df(x,v); cf. (i) in (4.1.9).

fis called &-differentiable at x iff fis &-differentiable at x in direction v for all
vekE.

fis called -differentiable iff f is #-differentiable at x for all xe U. The map
df: U x E—F is then called the differential of f.

For curves this definition of &-differentiability is equivalent with that given in
4.1.9).

(i) fis called strongly differentiable iff for all b-compact K; =U and K,<E
the limit

flx+tv)—f(x +sv)

t—s

S @)=M-lim, ;0,4

exists uniformly for xeK, and veK,; and f'(x)eL(E,F) for all xeU
(The difference quotient makes sense since there exists an &>0 with
K, +[—¢¢6]-K,<U.) The map f: U—L(E, F) will be called the derivative of f.

For curves this definition of strong differentiability is equivalent with that
given in (4.1.9). The derivative ¢’ of ¢ defined in (4.1.9) corresponds to the
derivative ¢’ as defined now via the canonical isomorphism E=I(R,E),
ie. c(t)(s)=s-c().

The contrast between strong differentiability and &-differentiability consists
not only in a stronger form of convergence but also in the assumption that the
derivative at each point is a linear morphism. We shall show, however, in (4.3.12)
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that combined with the condition that the differentials, respectively the de-
rivatives, are #/#* -maps they both become equivalent.
We first give a generalization of (4.1.18).

4.3.10 Proposition, Let E and F be convenient vector spaces, ¥ S F' a subset
such that the bornology of F has a basis of o(F, & )-closed sets. Let f: E2 U —F be
a S-differentiable map. Then fis Lix° iff df is Lep™ 1.

Proof. (<) By (4.3.8) we have to show that

flx+tu) —flx +sv)

8,15 5=

18 bounded for x,r varying in b-compact subsets K,, K, satisfying K, +
[—1,1]K,cU and t, se[—1,1] with t#s. For £e.% we have by the classical
mean value theorem that 7 (8f(x,v; t,5))=£(df(x+rv,v)) for some re[—1,1].
Thus 3(x,v; t,8)e Nysc el £ (B); where B is the bounded image under df of
(K;+[—1,1]1K,) x K, (Use that a %%~ '-map is bounded on b-compact sets.)
By the condition on the bornology we conclude that this intersection is
bounded; cf. (4.1.16).

(=) Assume df is not bounded on some M-converging sequence (x,,0,).
Using homogeneity of df{x,_) one can assume that the v, converge Mackey
to 0. And by passing to a subsequence we may assume that the polynomials
t—x,+ tv, are fast falling. Hence by the general curve lemma (4.2.15) there exist
a smooth curve ¢ and a bounded sequence of reals t, such that for every n one
has c(t+t,)=x,+tv, for small . Hence df{x,,u,)=(fc)(t,) is unbounded,
which is a contradiction to the corresponding propositien (4.1.18) for curves.

O

Let us now generalize the result (4.1.5) on integrals with respect to a

parameter.

4.3.11 Proposition. Let f:ENR2U—F be a Zi4°-map. Then the domain of
definition W:={x€E; (x,t)e U for all te[0, 1]} of the map g:xr—»jéf(x, t)dt is
M-open in E and g:E2 W—F is Lit°.

Proof. We first show that W is M-open in E. Let ¢:R—E be a smooth curve
with e(0)e W, ie. {¢(0)} x [0, 1]< U. Since (s, t)—(c{s), t) is smooth there is a
neighborhood W, of {0} x [0, 1] in R? with (c(s), t)e U for all (s, t)e W,. Thus
there exists an £>0 with [ —¢, ¢] x [0, 1] < W, i.e. c(s)e W for |s| <&

Now let ¢:R—W be a smooth curve. Then fo:R*2Uq:={(s,t); (c(s),?)
e U} F defined by fo(s, t):=f(c(s). t) is a L4 -map; hence by (4.1.5) the map
go:R—F defined by go(s):={, fo (s, )dt =glc(s)) is Lis®, ie. g is Lin®. O

4.3.12 Proposition., Let f:E2U—F be a map and & = F' be point separating.
Then the following statements are equivalent:

(1) fis P-differentiable and df Fis°;
(2) fis strongly differentiable and [’ is Lis°
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(3) 8f:Ug—F has a Lif’-extension 9f: Us—F, where Us={(x,y; t,3)
e EnR?; x+tve U, x+sveU}; cf. (iii) in (4.3.6).

Proof. (1=3) Define

f(x, yi 1, 9) for t#s
df (x+ty, y) for t=s.

Then §f |y, =91 is L#°, since fis #4°. Furthermore U={(x,yt,5); x+ryeU
for all r in the interval from ¢ to s} is M-open and (x,yts)
—3f(x, y; t, )=y df(x+ty+rs—1)y, y)dr is Lis° on U by (4.3.11). Some
Ug=UguT, the map §fis %4° on Ug by (ii) of (4.3.2).

(3=2) We show first that the directional difference quotients are uniformly M-
convergent to the corresponding differential. So let K, cU, K,SE be b-
compact. Choose an ¢>0 such that K, +[ —e¢, ¢] K, € U. It is enough to prove
that

- { 1 (f(x + tv) —flx +sv)

8f(x, y; t, s):={

HER! t—s

is bounded, where df(x, v) is defined as 9f(x, v; 0, 0).

By assumption §f: Ugn (E, X Eg, X R?)>F is locally Lipschitzian, where B,
(resp. B,) is an absolutely convex bounded subset of E in which K (resp. K,) is
compact. Thus, with (¢, s)||, =\t|+1s|:

—dfix, u)); xeK,,vekK,, t,se[—¢,cel, t;és}

{(§f(x, y; t, )—9f(x, y; O, 0))ﬂ(—tlsT; (x, 1, t, )e K x K, x [ —¢, €], t;és}
is bounded. Since

Tx vt ) 8c w0 oL _[fxTt—fxtsy) 1

(Sf(xa »nit S) Sf(xs ¥; 0: O)I ”(t, S)” ) ( —s df(x, y))ltl n |S|

the claim is proved.

Let us show next that df{x,_) is linear. By composing f with £ e F’ we may
assume that F=R. Obviously df(x,_) is homogeneous (consider for AeR the
smooth curve t+—>x+tAp). To prove the additivity consider

Six+to+tw)—flx+tv) :f(x +tw+tw)—fx) fix+iw)—flx)
t t t

which converges to df(x, v+w)—dfix, v) for t—0.
By oroperty (3) we know that 3f is ##°. Thus

-ty tw)—f(x + t)
t
Hence dj, w)=df(x, v+ w)—df{x, v).

Since df{(x,_) is %%#° and linear it is in Z(E, F). Thus we have shown that fis
strongly differentiable and that, by (4.3.5) for k=0, the derivative f’ is Z%°.

=8 (x+tv, w; t, 0)>3f(x, w; 0, 0)=df (x, w).
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(1<=2) Strongly differentiable implies &-differentiable with the differential df
given by df{x, v)=f"(x)(v). Using (4.3.5) for k=0 it follows that df is Z4°. O

4.3.13 Definition. A map f: E2U—F is called Zi4-differentiable iff it satisfies
the equivalent conditions of (4.3.12).
This definition is consistent with (ii) of (1.3.19).

4.3.14 Lemma. (Special Chain Rule)) Let f. E2U—F be a Lip-differentiable
map; ¢: R—-U a ZLip*-curve. Then fo ¢ is Lig" and (foc)(s)=df (c(s), c(s)) for all
seR.

Proof. Since dfe(c,c’) is Z#° we only have to show that £ofoc is dif-
ferentiable with derivative £ o dfe(c, ¢)=d(£ o f)e(c, ¢) for all £ € F'. This is only
a statement about £ cf, so we may assume that F=R.

flet+s)—fte(s) _1. <f<c(s) Lo+ —el®) t) —f(c(s»)

t t t

converges to df{c(s),c(s)) as t—0 since on one hand (1/6)(f(x+dc(r)-t)
—f(x))—~df(x, dc(r)) as t—0 uniformly for r in any compact interval ( fis assumed
to be strongly differentiable)) where x:=c(s) and dc is the Za°-
extension of rr(c(s+r)—c(s))/r; and on the other hand df(x, dc(r))—
dfix, ¢ (s)) for r—0. [

In order to compare Zig-differentiability of a map between Banach spaces
with the standard concept of Fréchet-differentiability we recall the following
classical

4.3.15 Definition. A map f: E2U—F between Banach spaces is called Fréchet
differentiable (resp. strictly Frechet differentiable) iff it is continuous and for every
xe U there exists a (necessarily unique) linear map #,: E—F such that

ILAx + 1) —f (x) — W)l _
o]

0

l v—=0

16+ 0) =+ W)= (o= w)] 20).

(Jresp. limy, 0,04 % lo—w]|

The continuity of f implies that s, is continuous. Any Fréchet differentiable
map is obviously weakly differentiable and »,(v)=df(x, v). In classical ¢alculus
the derivative f” is defined by f'(x):= s,.

4.3.16 Proposition. Let f: E2U—F be g map between Banach spaces. Then the
Jollowing statements are equivalent:

(1) fis Zif-differentiable;

(2) fis strictly Frechet differentiable and ' is locally Lipschitzian,
(3) fis Frechet differentiable and f' is locally Lipschitzian.
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Proof. (1=>2) Since f is Zip-differentiable there exists by (4.3.12) a Zi4°-
extension Jf: Us—F of the directional difference quotient 3f. Thus for a given
peU there exist >0 and NeR such that |§f(x,y; t,s)—8f(x,V; ¢,5)]
S(x=x'l+ly=yl+le—t|+]s—s)N provided [x—pll<é, |x'—pll<3,
vl <6, 1y1<6, it|<6, |[t'|<9, |s|<d, |s'|<d. In particular for t#£0, s=—t,
x'=p,y' =y, t'=5=0 one has

Six+y)—flx—1ty)
2t
provided [x—p| <4, ||yl £6, 0#(t| <. We have to show that

Lfp+v)—flp+w)—df(p,v—w)|

lo—wll

—df(p, y)j <(Ix—pll+2|t) N

-0 for v, w—0, v#w.

Let {o|, |wll <6 and ||[v—w]| <2562 and set

o +v+w —s v—w __||v—w||
L suE I ST LE L

Then

vV—w
ty="5" Ix—pl<d, I y] <3, 02 <6,

Thus we obtain

AP +v)~flp+w)—df(p, v—w)ll _Iftx+ty)—flx—ty)—df(p, 2ey)|

llo—wll llo—wl

(2=-3) is trivial.

(3=2) Since fis Fréchet differentiable it is obviously weakly differentiable.
Since f' is assumed to be locally Lipschitzian it is Z¢4° by (1.4.2), and thus df is
Zif° by (4.3.5). Therefore f is Zsp-differentiable. O

We start now the investigation of differentiability properties of Zi4*-maps.
For a %4**'-map f the existence of the differential df is an immediate con-
sequence of (4.1.12). We want to prove that df is in fact %4* and shall deduce
this easily from (4.3.23), which says that for any %#**!'-map g:R>-R the
function d,g(_, 0): R—R is Z#* This is a trivial consequence of Boman’s
characterization of %#*-functions on R? [Boman, 1967]. We will, however,
prove (4.3.23) dirgctly by means of some lemmas on functions of two variables.
We thus not only obtain the desired generalization of Boman'’s result from finite-
dimensional vector spaces to arbitrary convenient vector spaces, but also a new
proof of Boman’s original result.

4.3.17 Notation. Let keN be fixed. Then ry,...,r, denote the unique
rational numbers satisfying the equations:
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ro+ri+ ra+ o+ 1,=0
ri+ 2r,4 - k=1
r +2%,+ +k2rfc=0

r1+2kr2+ SR +kkrk=0

(They exist since the determinant of Vandermonde is non-zero.)

43.18 Lemma. (Approximation of a Derivative.) For any fe Zip"(R, R) and any
A>0 there exists N such that |f(a)h=Y s i fla+ih)| <N -|h** t for all
a, he[—A4, A}

Proof. Consider f,:R—-R defined by fi(h):=f '(a)h—zll;or,- ‘fla+ih). Ac-
cording to the choice of the coefficients r; one has f,(0) =/, (0)="-=f ® 0)=0.

Since f® is Lipschitzian on [ —(k+ 1) 4, (k+ 1) 4] there exists an N, such that
If® (k)| <N, - |h| for all a, he[— A, A] which implies successively

oo e, 1 i,
fa = 1 2 3 v vy a - 1(k+1)!
for all a, he[ — A, A]. Hence N:=N/(k+1)! suffices. O

43,19 Lemma. For fe Zi'(R% R), 8,1 (_,0): R—R is bornological.

Proof. Suppose @, f(_, 0) is unbounded in every neighborhood of some point 4.
Without loss of generality a=0. Then there exist

11
“e| ~ 7

with |8, f(a,, 0)|>n2" For the curve c,: R->R? defined by

ca(t)= (a,,, t%)

one has - y
(= caY O =53 1021(as, )} 2 1.

Since the sequence (c,) is fast falling we can apply the general curve lemma
(4.2.15) with g, =1/2". It yields a smooth curve c: R—R? for which (fec) would
be unbounded on a bounded interval which is a contradiction with
fece & [le. O

4.3.20 Proposition, (Approximation of a Partial Derivative) Let keN
and 1g,...,1, as in (43.17). For any fe Zi#*(R%L, R) and any A>Q there
exists an NeR such that |0,f(a,0)h—Y5_or.fla, i) <N-|p*! for all
a,he[—A4,A4)
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Proof. By lemma (4.3.19) there certainly exists for any 6 >0 an N such that the
above inequality is fulfilled for |k|> . Proceed now indirectly. Then there exist

a,e[—A4, A] and
11
el 3o

with [0, /(. 0)- b, — Y ¢ o7 f (@, ih,)| =02 * D|k,[***, and by passing to a
subsequence we may assume that the g, converge to some point a, say a=0, and

that
e e
n 2,[’ 2" .

t— L
a"’2" ;s

Let f,:=f>¢, and v,:=2"h,. One obtains

Let ¢,: R—R? be the curve

1
lf;u(o) ‘U, Z?:o rifn(iun)l = an 62 (am 0) > 2nhn _Z;‘=o rif(ans lh,,) =

n2n1k+ 1)|hn|k+ 1 =W|Un|k+ ;

Since the sequence formed by the curves ¢, is fast falling we can apply once more
the general curve lemma (4.2.15) with ¢,:=1/2". It yields a smooth curve
¢: R—R? such that for g:=f<¢ one would have Ig'(t,,)v,,—ZLo rg(t,+iv,)| =
n|v,|**! and this is a contradiction with lemma (4.3.18) since ¢, and v, are
bounded. O

4321 Lemma. Let g:R—-R and consider G:R*—R defined by G(t, s):=g(t)s.
Then for any ae R and h#0 one has (k+1)6%, g(a; h)=0d%1 (G > c)(a; h), where
c:R—R? is defined by c(t):=(t—h, t—a).

Proof.
1 k+1
I Y o o h
. +15eq (Goc)a; h)
=k Y T (Goola+im T, s, . (h—rh) ™}
=k Y gla+G— Dh)(h—OWITL,, . (h—rk)™"
=K1Y gla+jm L, (jh—sh) ' =8 gla h)  (j=i—1, s=r—1). O

4.3.22 Lemma. For each ke N, there exists a constant C, with the property: for
any function G: R*—R with |G(t, s)| <N|s|**! for t, se[—(k+1), k+ 1] and any
curve c:R—R? of the form c(t)=(t—h, t—a) with a, he[—1, 1], h+#0 one has
|65 1 (G = c)(a; W< NC,.
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Proof. In fact,
h+a, ih)|

|lh|k+1

hence Cpi=(k+1)!Y ¥ L1 IT, ,,li~r] ™ suffices. O

Iék+1(GQC)((l h)|<(k+1)lzk+1 |G((l

ik+1 H,¢i|i-?’|_1,

4.3.23 Lemma. For keN and Ge % 4*(R?, R) one has
0,G(_, O)Eﬁﬁ//z"_l(R, R).

Proof. Let Gol(t,s):=Y 7, G(t,is) with r, defined as in (4.3.17) g(t):=
0,G(t, 0); Gy(t, s)=g(t)s; Galt, s):=G,(t, )—Go(t,s). Then G, is ZLis* and
0,Golt, 0)=0,Glt, 0).

Suppose g is not 4“~'. Then there exists an aeR such that 6, g is
unbounded in every neighborhood of (q,0). Without loss of generality
a=0. Choose a,, h, with |a,|<1/4" and 0<h,<1/4" such that }é* 1 9(a4; By)l
>n- 2n(k G 1).

Consider the curves e,:R—R? defined by e,(t):=(t—h,, t—a,) and c,:
R—R? defined by c,(t):=e,(t/2" +a,). Let v,:=2"h,.

Since the curves c, form a fast-falling sequence we can apply the general curve
lemma (4.2.15) with g,:=(k+ 1)/2" to obtain a smooth curve c¢: R—R? such that
clt+t,)=c,(t) for 0<e<(k+1)/2".

The set {|05) 1 (Gooo)(t,; v,)l; neN} is bounded since the ¢, and v, form
bounded sequences.

By (4.3.20) there exists an N such that |G,(t, s)|<N|s/*** for all
t,se[—(k+1), k+1]. Using (4.3.22) one abtains

|5k+ : (GZ % C)(tn’ Un)' = l6k+ ! (GZ g C,,)(O, Un)l

1 1
2n(k+ 1) Iék+ ! (GZ 9 en)(an’ hn)l Szn(k+ 1) NC

which is also bounded. Together this gives for G, =G, +G,:
OL Gy © O)(t,, v,) is bounded.
But using (4.3.21) one obtains a contradiction with this:
|06q * (G 1o O)(tws va)l =188q 1 (Gy ©€,)(0; )]
1 k+1
2u(k+ 1) |5k+ ! (Gl ¢ en)(an: hn)l 2n(k+ 1) |6eq g(a,,, h,,)l > n(k+ ].)

which is unbounded. U

Now we are able to prove that for a map between convenient vector spaces
Zifi*-ness can be characterized recursively.

4.3.24 Theorem, (Recursiveness of Lin*) Let E and F be convenient vector
spaces, US E be M-open, f:U—F be a map and keN,. Then the following
statements are equivalent:
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(1) fis Lipe*Y;
(2) fis Lip-differentiable and f' is Lep";
(3) fis ZLep-differentiable and df is Lif".

Proof. (1=-3) Let us first show that the differential df exists: Since for xe U and
ve E the map c:t+— x+tv is a Zig*-curve in E, the composite e:=f- ¢ is defined
and Ziz* in a neighbourhood of 0. So by (4.1.12)
fE+mw)—f(x)

t

e.(0)2= a

f(x+tv)=(weak-)lim
t=0 t—0
exists.

In order to show that df is Zi4*, let (¢, ¢,): R— UnE be any Zi4”-curve of
UnE; £eF'. Since g:R*—E defined by g(t, s):=c,(1)+sc,(t) is a Lp™-map,
£ofogis Lip* as composite of Lig*-maps. One has

(o dfs(er, )0 =2 <M-§i_{réf(cl(t)+Sczit))_f(cl(t)))
=1m(f°f°g)(t, s)—(£2f°g)(t, 0)

s—0 §

So by (4.3.23) the composite £ odfe(c,, c,) e Lig* ! as to be shown.

(3=1) Let c:R—U be a smooth curve. By the special chain rule (4.3.14) we
know that faoc is L' and (focy=dfe(c, ¢), which is by assumption Zis".
Hence foc is Lip** 1.

(2+=3) holds by (4.3.5). |

=0,(¢f~g)(t, 0).

4.3.25 Proposition. (Chain Rule.) Letf:E2U—W<F and g: F 2 W—G be two
Lipt-maps. Then gaf:E2U—>G is L' and (gof)Y (x)=g'(f(x)) o f'(x) for all
xeU.

Proof. Clearly gofis Zist. Since (gof ) (x)(v)=(g  ¢)(0) for c(f):=f(x + tv) the
formula follows directly from the special chain rule (4.3.14). O

4.3.26 Definition, Let f: E2U—F be a map.

(@) f is called (k+ 1)-times F-differentiable iff it is #-differentiable and
df (_,v): U—F is k-times Z-differentiable for all veE. The differential
d**1f: UnE**'—F of order k+1 is then defined by d“*!f (x;vo, ..., 1)
=d Tdf (L, vo)] (x5 01 - - -5 B,

This recursive definition starts with the convention that every function is
0-times #-differentiable and d°f:=f. We remark that 1-times &-differentiable is
the same as .#-differentiable (4.3.9) and d' f=df. The function f is called co-times
-differentiable iff f is k-times & -differentiable for all ke N.

(i) fis called (k+ 1)-times strongly differentiable iff it is strongly differentiable
and f:U—L(E, F) is k-times strongly differentiable. The derivative f**1:
U—-L(E,...,E;F) of order k+1 is then defined by f**Y(x)(vg,..., 1)
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=090y, . . ., 0)w,); ie. f** V(x) corresponds to [ £]®(x) via the can-
onical isomorphism L(E, ..., E, E; F) ~L(E, . . . , E; L(E; F)).

This recursive definition starts with the convention that every function fis 0-
times strongly differentiable and f®:=f. We remark that 1-times strongly
differentiable is the same as strongly differentiable (4.3:9) and fV'=f".

[fis called co-times strongly differentiable iff fis k-times strongly differentiable
for all keN.

(iii) fis called (k+ 1)-times %ip-differentiable iff it is Yipi-differentiable and
df(_,v): U—>Fis k-times Zs-differentiable for all ve E. This is exactly the case
if fis (k+1)-times strongly differentiable and f is %4° for all i=0 ... k+1.

Jis called 0-times Zs-differentiable iff f is Z:x°.

; f 'i\Js called co-times Zig-differentiable iff fis k-times .%/4-differentiable for all
eN.

This definition is consistent with (ii) of (1.3.19).

Now we can prove that a map between convenient vector spaces is Fepk iff it

is k-times Zis-differentiable, a result established by [Boman, 1967] for maps
R™-R.

4.3.27 Theorem. (%4*-maps as k-times differentiable maps.) Let E and F be
convenient vectdr spaces, USE be M-open, f:U—~F be a map, ¥ <F’ point
separating and ke No. Then the following statements are equivalent:

(1) fis Lip®,

(2) fis k-times &-differentiable and d’f: UnE/>F is Zip® for all j<k;

(3) fis k-times Zep-differentiable;

(4) f is k-times strongly differentiable and f9: U~L(E, ... ,E; F) is Fif* I
Jor all j<k.

Proof. We prove this by induction on k. For k=0 this is trivial. Now for (k + 1)

{(1=4) By (4.3.24), fis strongly differentiable and f" is Zi4*. Thus by induction
hypothesis f* is k-times strongly differentiable and [ '] is Lif* I for all
j=0... k. Hence fis (k+ 1)-times strongly differentiable, fis Liz*, f" is Lipr!
and fU is Lt ~U for 1 <j<k+1.

(4=>3) One uses that %4*~/ implies Z:4° by (4.3.4).

(3=>2) We show that d*f(x; vy, . . ., 0)=f®(x)(v, . . . , U ):

f(Hl)(x)(UOa Ces )=
=[Py, - . ., 6))(we)= (by induction hypothesis)
=@ L1100, ..., 0))e)= (ev, is a linear morphism)
=d*(f'O)wo))x; 044 . . ., 1) = (by (4.3.12))
=d*df(_, vo))(x; 0. - . ., )= (by definition)
=d**1f(x; 00, . . ., 1))

(2?1) By assumption f is S-differentiable and df(_, vy) is ketimes
F-differentiable with differential d/[df (C, vo)1(x; vy, - . ., V)=

(by definition)
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d*1f(x; vg, - . -, v;). By induction hypothesis df(_, v,) is " Since df exist
and is %4° one concludes that df (x, _) is linear by (4.3.12). Thus dfis Z4*, by
(4.3.5), and hence fis L4 ! by (4.3.24). 0

Remark. In (2) it is not enough to assume that the highest derivative d*f is
Zi#°. In fact, consider a linear non-bornological map f. Then df (x, v)=f(v) and
d*f(x; v, w)=0. Thus d*fis smooth but f is not Zs".

4.3.28 Corollary. Let f: E2U—F be a Zp*-map. Then d*f(x;vy, ..., 1)
=f®0x)vy, .. ., v) is symmetric in vy, ..., U.

Proof. By composing with /€ F' we may assume that F=R. Consider the
smooth map h:(ty, ..., )X +ty0,+ -+ +60. Then gi=~,afoh is Lip*
Since d*f(X; V,1ys - - > Vo)) =@ty - - - Oopyg) (O, . .., 0), the result follows
from the classical theorem according to which G,y . .. Oygy9 =0y . . . Gig for
any k-times continuously differentiable function g: R*—>R. |

Having shown that the derivative of order k of a map f: E2U—F is a map
f®:U—L(E, ..., E; F) whose values are symmetric it is natural to ask which
maps g: U-L(E, . . ., E; F) appear as derivatives. We give a first characteriz-
ation for k=1 here. Under additional differentiability conditions on g we will
again take up this question in (4.5.5).

43.29 Lemma. Let g: U—F be a %is°-map where U<E is a convex subset
containing 0. Then there exists a Yip'-map f:U—F (which is given by
@)= g(tx)(x)dt) with f =g if and only if [ g(t(x+v))(x + v)dt — [ g(tx) (x)dt
= {4 g(x+tu)(v)dt for all x, x+veU.

Proof. If g=f" for some %s'-map f the equation obviously holds, since
[(l)f'(y +tw)(w)dt=g{y+w)—g(y) for every y, y+we U.

Assume, conversely, that the equation holds. Then fis weakly differentiable
with differential df (x, v)=g(x)(v) since

5 N—f(x) 1(' 4
s HM=~ J g(x + tsv)(sv)dt = j g(x + tsv)(v)dt
s s Jo 0
is by (4.1.5) Z4°, hence converges to g(x)(v). Using that g is £i4° we have: fis
Ligp' and f'=g. O

4.3.30 Propasition. ( .%#*-maps as co-times differentiable maps.) Let E and F
be convenient vector spaces, U= E be M-open, f: U—F be a map, and let ¥ < F'
be such that the bornology of F has a basis of o(F, & )-closed sets. Then the
following statements are equivalent:

(1) fis Lip™;
(2) fis oo-times S -differentiable and d'f: UnE/—>F is Li4° for all j;
(3) fis co-times Zip-differentiable;
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(4) fis co-times strongly differentiable and f: U L(E, . . . , E; F)is L™ for
all j.
(5) fis co-times F-differentiable and d’f: UnE’ — F is %ip " ! for all j.

Proof. The equivalences (1<>2<>3<>4) follow immediately from (4.3.27) with-
out using the assumption on the bornology of F.

(3=5) is trivial.

(5=1) By (4.3.10) f is Zip°.

We next show that fis #x'. By assumption f and df (_, v) are &-differen-
tiable for any veE. It is enough to show that df is Z4° since this implies
by (4.3.27) that f is Zi4'. Applying the case k=0 to df(_,v) we conclude
that df (_, v) is Z%°. We next show that df(_, v) is linear. Only the additivity
df (x, v+ w)=df (x, v)+df (x, w) is not trivial. For this we consider

1

—df (x+tv, w)= J‘ df (x+tv +sow, w)—df (x+tv, w)do

0

fx+to+sw)—f(x +tv)
N

1 f1
=sf J d? f(x+tv+satw, w, ow)drdoe.
0 Jo

This M-converges uniformly to 0 for s—0 and tre[—1, 1]. Now divide the
equation f(x+ sv+sw)—f(x)=(f(x +sv+sw)—f(x +sv))+{ f (x +sv)—f(x)) by
s and take the limit for s—0. This gives df(x, v+w)=df(x, v)+df(x, w). By
assumption df(x, _) is 4~ and hence even Z#°, using for example (4.3.10).
Now (4.3.5) implies that dfis Ziz°. ,

Finally we prove by induction that fis £z for all ke N. Since fis L4 ' one
has df(x, v)=f"(x)(v) and by assumption ev,of’=df(_, v) satisfies (5). Thus
by induction hypothesis ev,of’ is 4" and using the corollary (3.6.5) of the
linear uniform boundedness principle we conclude that f' is Zg*. Thus f
is ga'//’kk'"l. N}

Remark. For a comparison of #7#* with more classically considered differen-
tiability concepts (cf. [Keller, 1974]) and, in particular, for such maps between
Fréchet spaces see [Kriegl, 1983].

4.4 Function spaces and exponential laws

We shall first describe explicitly how the function space Z/#"(X, E) can be
equipped with a convenient vector space structure, X being an arbitrary %e4"-
space and E a convenient vector space. In particular X can be any subset of a
convenient vector space, or any classical differentiable manifold whose coordi-
nate transformations are k-times Lipschitz differentiable. We then show that this
structure is natural by verifying that it satisfies a universal property by which it
is characterized. We shall also compare these function spaces with classical ones.
Finally we will examine the differentiability of natural maps between function

L
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spaces. Since function spaces are often written in exponential form, some of these
results are also called exponential laws, cf. (8.6.4).

44,1 Definition. Let keN, ., X a L4 -space and E a convenient vector
space. By Zi4*(X, E) we denote from now on the vector space formed by the
Zig*-maps X —E together with the initial Pre-structure induced by the linear
maps c*: Zip*(X, E)» L4 (R, E) for ce C, where C is the set Ziz“(R, X) of
structure curves of X.

Remark, We already saw in (4.2.6) and (4.2.10) that Z:#*(R, E) is a convenient
vector space. For X =R the structure described above in (4.4.1) coincides with
the one of (4.2.2) and of (4.2.8) since for a Z/#*-function /: R—R the map
f*: ZitMR, E)» %#"(R, E) is a morphism of convenient vector space; cf.
4.2.12).

4.4.2 Theorem. For keN, ., any ZLif*-space X and any convenient vector
space E, the function space Li4"(X, E) is also a convenient vector space.

Proof. Letwm: %ifp"(X, E)- 11 Zif*(R, E) be the Pre-morphism characterized
by pr.em=c* for ce C, where C denotes again the set of %4 -curves R—X.
This morphism #: is trivially injective; and by the definition of the structure
of Zi#*(X, E) it is also initial. Hence #¢4"(X, E) is isomorphic to its image
under #, and by the closed embedding lemma (2.6.4) it is enough to show that
this image is M-closed in Tl Zi44R, E), since we know by (4.2.6) and (4.2.10)
and (3.3.1) that this product is complete. But the M-closedness follows because
the image can be described by the equations ev,, o pr,, =€V, ° pr,, for t;,t,eR
and ¢,, ¢, € C satisfying ¢, (t,)=c,(t,), hence is an intersection of kernels of Pre-
morphisms. O

An alternate more direct but less elegant proof of the completeness of
Zi#"(X, E) can be given along the following lines: If (g,) is 2 Mackey-Cauchy
sequence in Zi4*(X, E), then (g,(x)) is a Mackey—Cauchy sequence in E (since
ev,: Zis(X, E)— E is a Pre-morphism) and hence g(x):=M-lim, ., ,, g,(x) exists.
One then verifies that ge Zi#*(X, E) and g=M-lim, _, , g,.

4.4.3 Proposition, One has, for ke N, ., a functor Lip*: ( Lif*)*® x Con—
Con for which Zi#*(X, E) is the function space defined in (4.4.1) and ZLip"(g, )

:=g* 0 My

Proof. Obviously g* is linear. That it is bornological follows from (4.2.12)
since c*: ZipM(X, E)—» Lt (R, E) (ce Zif"(R, X)) is an initial source and
c*og¥*=(goc)*.

That the same holds for s, is shown similarly, using (4.2.13) instead of
4.2.12). O
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4.4.4 Proposition. LetkeN, ,,X bea Zip"-space, E a convenient vector space
whoig Pre-structure is the initial one induced by ¥ < E'. Then the Pre-structure of
Zefi*(X, E) is the initial one induced by any of the following families:

(1) ¢*: Lig"(X, E)» Lip MR, E)  (ce Lk (R, X)),
Q) {4 LA (X, E)> LipHX, R) (£eS);
() Ziple, £): Lip*(X, E)» Lip" R, R) (ce LipM(R, X), LeF).

Proof. (1) is the definiton of the structure of %X, E).
(2) We show this first for the case X =R. One has a commutative diagram:

. £
Zif*(R, E) : L (R, R)

F -

¢*(R4?, E) s £ (R4, R)

Usmg now that the family 6/(j=0, ..., k+1) is initial by definition and the
_famlly formed by the £, in the lower row of the diagram for £ € & is initial by (ii)
in (1.2.9) one concludes that the family formed by the ¢ « in the upper row of the
diagram is initial by (8.7.2). The general case follows now from (1).

(3) is a combination of (1) and (2), since Fig*(c,/)=c* aly. - O

4.4.5 I’fmposﬁtion, Let keNg ;X be a Lif*-space, E a preconvenient and F a
gonuemen.t vector space. The map fi—f where f(y)(x):=f(x)(y) constitutes an
isomorphism of convenient vector spaces: %if*(X, L(E, F))~ L(E, ZipM (X, F)).

Proof. By psing evaluations at points of X and E, which are linear morphisms
on the function spaces #¢#*(X, F) and L(E, F), one concludes that for a map of

one of tbe two iterated function spaces the associated map has values in the
appropriate function space.

We next show that fi—f defines a bijection in case where X =R:
FRSL(E, F)is %k
<> 0/f: R%>> L(E, F) is bornological for all j<k+2;
< 0’f(KY?)S L(E, F) is bounded for j<k+2 and all compact K <R;
< (07of)(B)(KY?)=8/f(K¥?)(B)<F is bounded for j<k+2, com]pa::t KcR
and all bounded BSE; L
< f(B)= Zi#(R, F) is bounded for all bounded B<E;
< f: E- Zi"(R, F) is bornological.

That‘ f—1 is even a bornological isomorphism follows by the same argument
applied to a set of maps instead of a single map f.

Now the result for a general ##*-space X follows from that for X =R by
using the finality of the family of structure curves c: R—X, the initiality of
c*: LipH (X, F)> Lif*(R, F), ie. (i) in (4.4.4), and the equation (foe) =c*of

|
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Using the previous proposition the point (1) of (4.4.4) can be generalized as
follows: ]

4.4.6 Proposition. Let E be a convenient vector space, and g;: X;,»X (jeJ)
be a final family of Lig*-maps whose images cover X. Then
(g,)%: LipMX, E)> Lif(X;,E) (jeJ)isa Pre-initial source.

Proof. Let F be an arbitrary preconvenient vector space and g: F— LipMX,E)a
linear map for which all composites (g;)* = g are Zip*. We have to show that g is
a morphism. Since every xe X can be written as g;(x;) for some jeJ and some
x;€X; we conclude that (ev,»g)(»)=g(»(x)=g(»g;(x;))=((g)* > 9)¥)x;)
=(evy, 2 {g,)* = g)(¥) and hence (ev, - g) is a linear morphism. Thus we get a map
§: X—L(F, E), x —(ev,og). We want to show that it is Zifk. Since the family
g;: X;— X is final it is enough to show that j=g;: X;— L(F, E)is Fipi¥, but this is
clear by (4.4.5) since it equals ((g;)* =)™ x— (e, ((g;)* ° D)=V, 29 Thus
the associated map g: F— %4*(X, E) is a linear morphism by (4.4.5). O

4.4.7 Theorem. (Differentiable Uniform Boundedness Principle.) Let keNg
X be a Zip*-space; and E a convenient vector space. T he structure of Lif*(X, E)
introduced in (4.4.1) is the coarsest convenient vector space structure making all
evaluations ev, (xeX) morphisms. In categorical language this means:
ev,: Lig*(X, E)—~E (x€ X ) is an initial source with respect to the forgetful functor
Con—VS.

Proof. This follows immediately from the special case X =R treated in
(4.2.11) using the definition (4.4.1) of the structure of Fif*(X, F) and the identity
ev, o ¥ =eVyy). a

4.4.8 Corollary. Let E;, F be convenient vector spaces. Then L(E,, . . ., En; F )
is a Pre-subspace of %if*(Es11 ... nE,,F).

Remark. The much weaker result that it is also a Con-subspace is a trivial
consequence, cf. (3.2.2).

Proof. That the inclusion L(Ei,..., E,; F)» %#*(En...nE,,F) is
a morphism is an immediate consequence of (4.4.7). Initiality follows
since the inclusion composed with the map 6&° %#*(En...nE,,F)
—>¢*E,n...nE,, F) is the inclusion of L(E;,...,E,;F) in
¢*(E,n ...nkE,, F) which is by definition initial. O

4.4.9 Proposition. Let E and F be convenient vector spaces and U < E M-open.
Then the following maps are Con-morphism:

(i) d: L (U, F)» ZLif*(UNE, F)
7 7

(i) (L): LA (U, F)~> Ligh(U, L(E, F))
(iii) §: L LU, F)—» Lip(Us, F)
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Proof. (i) Since by the differentiable uniform bounded principle (4.4.7) the
Con-structure of Z#*(UnkE, F) is the initial one induced by the evalu-
ations ev, ,,: L (UnE, F)>F (xeU,veE) it is enough to show that
f=df (x, v), Lt "YU, F)>F is a Con-morphism for all (x,v)e U x E. This
map can be factorized as

evoo Pack: Lipt YU, F)—» L \(R, F)» Lif*(R, F)—F,

where ¢: R—U is any smooth curve which equals t+»x +tv locally around 0.
Now (i) follows, since ¢* is a Con-morphism by (4.4.4) and ev,= 2 is a Con-
morphism by (4.2.3). -
(i) holds provided ev, o (_): L4*(U, F)—L(E, F) is a Con-morphism for all
xeU. It is a Con-morphism provided ev,-ev, =(_)' is one for all ve E. And this
now follows from (i) since f'(x)(v) = df(x, v) implies ev,<ev, o (_) =€Vy, yod.
(i) Recall that Usn{(x, y; ¢, s);t #s}=Usand §f (x, y; t, 8)=98f (x, y; t, s) for
t#sand 8f(x, y; t, )=d f(x+ty, y). Since the Con-structure on L4 (Us, F) is
the initial one induced by the evaluation maps ev,, ,., , it is enough to show
that the composites ev, ., 53 are morphisms. In case ¢ = s this follows from (i)
and for t#s this is true since 8f(x, y;t, s)=(f(x+ty)—f(x+sy))/(t—s) and
€V, 1, and ev, ., are morphisms. ]

4.4.10 Proposition. Let E, F be convenient vector spaces and U < E be M-open.
Then the maps fr—>fV: Lig"(U, F)— %ip* (U, L(E, . . ., E; F)) are Con-mor-
phisms for 0<j<k.

Proof. We show this by induction on j. For j=0 it is trivial since f©=f. For
j=1 it follows from (4.4.9).

If j>1, then f—f“Y is the compositt of the maps
. Y . (-1 P
Lig (U F) s g, e, ) D70 2 iU L, B L(E, FY) =

Lif* U, L(E, . .., E,E; F)), hence by the case (j=1) and the induction
hypathesis it is a morphism. 4

4.4.11 Corollary. Let keN,, ., E and F be two convenient vector spaces and
U< E be M-open. Ti hen the Pre-structure of %ipM(U, F) is the initial one induced
by the family fr>f? (j=0 ... k), Lip"U, F)y»>SL4°(U, L(E, . . ., E; F)).

Proof. It is enough to show that the Pre-structure of %#*U, F) is the initial
one induced by the two maps fi=f', L4"(U, F)»%ip* YU, L(E, F)) and
the inclusion into Z#°(U,F). For a ce %#*(R,U) the map c*:
Lip"(U,F) > LR, F) composed with the isomorphism (evo, 2):
Lip* (R, F)->Fn %4* (R, F) can be written by (4.3.14) as composite

Lo, Fy 2, 0w, Fyn Zipt-\(U, L(E; F)) Dot

idni(c, ¢')*
—_—

—Fn %/~ Y(UnE, F) FuZi* (R, F).
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The map (.)": Zip* (U, L(E, F))» %i4* '(UnE, F) is a morphism by
(4.4.7). Since the Pre-structure of Zi4*(U, F) is the initial one induced by the
family c* (ce Z#*(R,U)) it is also the initial one induced by the map

LU, F) YO g0, Fyn £z~ 1(U, L(E; F)). Thus the proof is com-

pleted in case k < co. The structure of %% >(U, F) is the initial one induced by
the inclusions into Zi4*(U, F) for all keN and so the statement for k= a0
follows immediately. O

4.4.12 Propaosition, Let X be a smooth space and E a convenient vector space.
Then %:4*(X, E) considered as smooth vector space, cf. (3) of (2.4.4), is identical
with C® (X, E) considered in (1.4.4), whose smooth structure is the one according to
cartesian closedness of the category C* of smooth spaces.

Proof. The underlying vector spaces being the same we only have to compare
the smooth structures. By (1.4.4) that of C*(X, E) is the initial one induced
by the maps C*(c, £): C*(X, E)»C*(R, R) for ce C*(R, X) and £€E’. The
Pre-structure and hence by (3.1.2) also the smooth structure of Zi4 (X, E) 1s
(using (44.1) and (1.2.9)) the initial one induced by the maps
Lip™(c,t ). Lt (X, E)> %5 ™ (R, R) for the same ¢ and #. Hence it is enough
to show that C*(R, R) and Z4*(R, R) have the same smooth structure. By
(1.4.3) the one of C™(R, R) is generated by (i.e. is the initial one induced by) all
functions of the form y o 8*: C*(R, R)> R with §*: C*(R, R)—=¢=(R¢, R) for
0<k<oo and ¥:Z*(R%*, R)—R linear and bornological. The Pre-structure
and hence by (3.1.2) also the smooth structure of Z74*(R, R) is by definition the
initial one induced by the maps é*: %% (R, R)—¢ *(R¢?, R) and hence also
induced by the maps y = 6*: %t *(R, R)—R, with k and ¥ as before. O

4.4.13 Corollary. Let X and Y be smooth spaces, E a conuvenient pector space.
The map fr—f" constitutes an isomorphism of conuenient vector spaces:

Lip (XY, EY= Zip ™ (X, Lipe*(Y, E)).
Proof. One uses cartesian closedness of C*, cf. (1.4.3), and the remark (8.6.4).

(]

We now determine the differentiability class of maps between function spaces
and begin with the evaluation map:

4.4.14 Lemma, Let X be a Lip*-space, E a convenient vector space.
Then the evaluation map ev: Lip*(X, EYnX »E is Lif*.

Proof. Since this map is linear in the first factor and the partial maps ev(f, -)=f
and ev(_, x)=ev, are %" the assertion follows using (4.3.5). O
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4.4.15 Proposition. Let X be a %ip*-space; E and F convenient vector spaces;
and fe Lifp**™(E, F). Then f,: Lip"X, E)y»Lip*(X. F) is Lip™ 1.

Proof. First we prove the statement by induction on n, for the case X =R:

We begin with n=0 and recall that a map is called %% ' iff it transforms
smooth curves into ¢ “-curves. We have the following implications, where we
shortly write ‘is £ ** for ‘is an ¢ *-map”

c:R->Lip*(R, E) is a smooth curve;
= 0'c: RV ZpMR, E) is £ for all i;
= (81646)" =(87),96'c: R¥> ¢ (R, E) is £* for all i and all j<k+2;
= 61048 RONIRP S E is £ for all i, j with i+j<k+2;
= & ROR-E is Zep*;
= foé: RUR-F is Fip*:
= ((67)y2f52¢) " =84 (foé): RuRP = F is £ for all j with j<k+2;
= (0)), o fpoc: R PR F)is £ for all j<k+2;
= feoC: R LipMR, F)is £ *.

Let now n>0. We take as % the set {/cev,;/eF’, seR}, where
ev.: L (R, F)—F is the evaluation at s. The set . is a point separating subset
of Z#*(R, F). We want to prove that fy is & -differentiable and that its
derivative is the map (df),: L#*(R, EnE)—%4"(R, F) composed with the
natural isomorphism Z#*(R, E)1 %4*(R, E)~ %#*(R, EnE). This follows by
calculating d(ev, = f, ). With c(t):==g+th we have:

d(evyofy)lg, By =(evyefy = ) (0) =t111513; %(f (gls)+th(s)—f(g(s))) = df (g(s), h(s))

=ev,(df= (g, W) =ev,((df ), (g, h))=(ev,=(df),)(g, h)-

Since df: ENE—F is %%**"~! the induction hypothesis implies that (df), is
4"~ 2. So by (4.3.24) it follows that f, is Les" .

Let now X be arbitrary. By definition (4.4.1) it is enough to show that
c*of,: LipM(X, E)»ZLip* (R, F)is Zip" for all Lpt-curves c: R— X. Using the
commutative diagram:

SipHX,E) Lo 2ivX, F)
c* o

LR E) I 2R E)

one reduces this immediately to the case X =R. O

Remark. To obtain the conclusion of the proposition above it is not enough to
have merely fe %" *"~Y(E, F).

We first give an example in case n=1:
Let f: R—R be a map that is %" but not L#**'. We claim that f,: C*(R, R)
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> LR,R) is  not Ll Otherwise 3*"lof,ec:R-C*(R,R)
> LR, R) £ (RETDR) 18 Lip® where c:R—C®(R,R) denotes
the curve ti—>(sr>t+s). Thus §(8**'of ec) RIVo/FRETDIR) is /7.
An easy calculation shows that 8(**'f =c) (0,d;t,t+d, ..., t+(k+1)d)
=§Tf(t, t+d, ..., t+(k+2)d)=065"1(t,d) which is not locally bounded,
since fis not L 1.

In order to obtain an example for arbitrary n, take as f'a function R— R whose
nth derivative is 4" but not Z4***. For = {ev,; te R} the map, is n-times
-differentiable and the differential d”(f,) of order n equals (d"f),=(f%),,
hence is not #:4°. Thus f,: ZLip*(R, R)— ZLip*(R, R) is not Lis".

4.4.16 Corollary., Let X be a %ip*-space and E and F be convenient vector
spaces. Then the composition map comp: Lip*t" Y E, F)n%#"(X, E)—~
ﬂ',-‘a"(X, F)is Zep".

Proof. The composition map comp is linear in the second variable,
comp( f, _)=f, is Fz" and comp(_, g)=g* is smooth. Thus by (4.3.5) the map
comp is Lip". O

Now we want to prove a Taylor formula for Zs*-functions f, cf. [Kock,
1984]. Such a formula involves terms of the form f‘/(x)(v, . . . , v), which can be
calculated as follows.

4417 Lemma. Let f'E2U—F be a Yif*-map, xeU and veE. Then
FO), . . ., 0)=(fo)®(Q), where the curve ¢ is defined locally around O by
c(t)y:=x+to.

Proof. By (i) in (4.3.9) df(x + tv, v) was defined as the derivative (f° ¢)(t). Thus
the lemma is true for k<1. The general statement follows now by induction
using the recursive definition (ii) of (4.3.26) and the special chain rule:

FEDEKe, s =L TG, - @=L AP0 =[evyef s I0)
=[(f> 19O =(f 2 (0). O

4.418 Proposition. (Taylor Expansion) Let f:E2U—F be a Lt '-map;
xeU and veE with x+[0, 1Juo € U. Then one has the following expansion of f.

1

flx+v)= i il—'f“)(x)(v, - u)+%J‘ (1— )+ D(x +sv)(o, . . ., v)ds.
i=0 ¢ %

0

Proof. We consider the #¢#** !-curve c: t+—f (x+tv). By (ii) in (4.1.14) we have
c(1)=c(0)+j(1) c(s)ds. By k-fold partial integration one obtains

k1 1
ol)= .20 T c™(0) +% f (1 —s)ec®* Y(s)ds.
o il ' o




122 4 Calculus in Convenient Vector Spaces

The previous lemma (4.4.17), i.e. ¢(s)=f(x+sv)(v, . . ., v), yields the desired
result. |

Since the derivatives f)(0) are symmetric and multilinear, cf. (4.3:28), they can
be regained from their restriction to the diagonal and hence from the Taylor
polynomial using the following lemma.

4.4.19 Lemma, (Polarization Formula.) Let #:Ex ... x E—F be a symmetric
k-linear map between vector spaces and A: E=E x ... x E the diagonal map, i.e.
A(x):=(x, . . ., x). Then one has for any x;€E:

k
klawlxy, ..., x)= Z (—]l)k_j Z (moA)(xil+ . +xi,~)'
= i

i< .. .<ij

Proof. We compute 6g(0, 1; . . .; 0, 1) in two ways, where g: R*— F is defined
by glty, . . ., t)=(meoA)(t,x,+ - . . +1,x,)and k is the multi-index (1, . . ., 1).
First we use the defining formula (1.3.4) for 5*g. Since for the respective
coefficients f;, one has B40,1)=—1 and B,(0,1)=1 one obtains exactly
the right-hand side of the stated equation. For the second computation we
use that by the multilinearity of s one has g(t,..., )
=Zil ,,,,, bogiirrr, wtiy - -« L%y, . .., X)), and 6 of the term with index
(i - .., B)is0if(iy, . . ., §;)is not a permutation of (1, . . . , k), since this term is
then independent of some variable ¢;. The remaining terms are, by symmetry of
a, all equal to t; ...ty (X, ..., X;) and using (v} of (1.3.5) one finds that
6g(0, 1; . . .; 0, 1) has the constant value kl-s(x,, . . ., x;). O

4.420 Definition. For ke N, a map f: E—F between vector spaces is called k-
homogeneous if f(tv)=t* f(v) for all teR and veE.

Remark, In a case where f is a Z4* "' -map between convenient vector spaces
it is enough for k-homogeneity to assume that f(tv)=t* f(v) for all t>0and ve E.
In fact, taking the kth derivative of this equation and then the limit for t—0 gives
by (4.4.17) f®O0)(v, . . ., v)=k!f{(v). Since the k-linear map f ©(0) restricted to the
diagonal is obviously k-homogeneous, the same is true for f.

4.421 Lemma. Let f:E—F be Zip'. Then the following statements are equiv-
alent:

(1) fis (k+ 1)-homogeneous;
(2) f(0)=0 and ' is k-homogeneous.

Proof. (1=2) We differentiate the equation t** ! f(x)=f(¢x) in direction of v and
obtain by (4.4.17) £ 1 (x)(0)=f"(tx)(tv) = t-f "(tx)(v).

(2=1) By (44.18) we have f(0x)=f(0) + [o/ (st2)(ex)ds =0-+ fg /" (sx)(x)ds
=t f(x). a
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4.4.22 Proposition, (Characterization of Homogeneous Maps.) Let f:E—F be a
map between convenient vector spaces, jeNy, keNg . and j<k. Then the
following statements are equivalent:

(1) f is Lep* and j-homogeneous;

(2y) fis Left 1, fUT V=0 and fO0)=0 for all i<j;

(3) f=moA for some symmetric j-linear me(E, . . ., E; F); where
Ax)=(x, ..., x)

@4 fis L and df (v, v)=jf(v) (Euler’s equation) for all veE.

Proof. (1,=-1,) is trivial.

(1,=2,,) Since fis j-homogeneous we conclude from (4.4.21) that f@ is (j—i)-
homogeneous for all i <j, i.e. f@(tx)= /" 'f (x). By substituting t =0 we conclude
that f®(0)=0 for i<j and f is constant and hence %%%, and fU*V=0.

(2e=2;=>2)) is trivial.

(2;=3) By (4.4.18) we have

i 1
f(U)=Z1 %,f(i)(o)(v, N ,U)+J (1—S)jf(j+”(SU)(U)dS:JtI,“f”’(O)(U, ceey U
i=14: 0 :
and f(9(0) is j-linear and symmetric by (4.3.28).

(B=1,) ft)=amltv, . . ., t)=tm(v, . . ., Y)=1"f(v), where s is a j-linear
symmetric function with f=a:0 A.

(1,=4,) We differentiate the equation f(tv)=¢'-f(v) with respect to ¢ at t=1
and obtain: df(v, v)=f"()(®)=j- 1" f(w)=j f(v).

(4,=1,) For fixed v we consider the curve ¢(t)=t"f(tv) for t>0. We want to
show that ¢ is constant. So we take the derivative é(t) =t /f'(to)(v)—j-t /= *f(tv)
=t~I71(j - f(tv)—j - f(tv))=0 (by Eulers equation). Thus ¢ /f(iv)=c(t)=¢(1)
=f(v), but this is enough for j-homogeneity. O

4.4.23 Definition. For jeN, and convenient vector spaces E and F we denote
with Homog;(E, F) the vector space of all j-homogeneous maps from E to F
which satisfy the equivalent conditions of (4.4.22).

4.4.24 Propesition. Let jeNg, keN,  withj<k; and let E and F be convenient
vector spaces. The initial Pre-structures on Homog;(E, F) induced by the follow-
ing maps coincide:

(1) the inclusion map Homog;(E, F)— ZLif"E, F);
(2) the map evyefY: Homog;(E, F)->L(E, . . . ,E; F).

For both maps there exist natural left inverse morphisms.

Proof. By (i) in (44.9) we know that fio(l/ji)fY, LpME, F)—
Lif*~HE, L(E, . . ., E; F)) is a morphism. Composing with the morphisms ev,
and A* gives a map which restricted to Homog;(E, F) is the identity. This shows
the existence of the claimed left inverse morphisms and that the initial structures
induced by the maps in (1,) and (2) coincide. O
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4.4.25 Definition. For jeN, and convenient vector spaces E and F we will
from now on denote with Homog;(E, F) the preconvenient vector space whose
structure is described in the previous proposition. This makes Homog(E, F)

into a convenient vector space since the initial embeddings of (4.4.24) have left
inverse morphisms.

4.4.26 Proposition. (Characterization of Polynomial Maps.) Let jeN,, ke No. s
J<k;let f:E—F be a map between convenient vector spaces, and ¥ < F’ be point
separating. Then the following statements are equivalent:

(L) fis Lip* and for every f€% and veE the real Sunction t—£(f(tv)) is
polynomial of degree at most j.

(2) fis Lep** ! and fUTV=(;

(3 fis Lifi* and for one (or equivalently every) x and every v one has f| (x+u)

J 1 .
=¥ P00, .. .4
i=o

4 f= i fi for some f,eHomog;(E, F);
i=0

Proof. (L,;=2,) By (4.4.17) fOx)(v, . . ., v)=c™(0) for the curve ¢ defined by
cft):=f(x+tv) which composed with an £eF’ is polynomial of at most degree j.
Thus f9(tx)(v, . . . , v} is independent of ¢ and substituting =0 and t=1 gives
that it is independent of x. Using the polarization formula (4.4.19) we conclude
that fU*(_)(v,, . . ., v) is constant and hence fis %%™ and fU*D =0,

(2,=>3,) follows immediately for arbitrary xeE from the Taylor expansion
(4.4.18).

(3x=4) If (3,) holds for x=0, this is obvious, since f®0) is i-linear and
symmetric by (4.3.28). If x is arbitrary then g(v):=f(x +v) satisfies (3,) hence (4),
ie. f(x+u)=Zf= 0 9i{v, . . ., v). So the claim follows by substituting w:=x+uv

and developing g;(w—x, ..., w—x) into a finite sum of terms g;(w, . .., w,
—X, ..., —x), which are homogeneous in w.
(4=1,) is trivial since t+—£(f,(tv)) is i-homogeneous. O

4.4.27 Definition. ForjeN, a map f: E—F between convenient vector spaces is
called polynomial of at most degree j if it satisfies the equivalent conditions of the
previous proposition (4.4.26). With Poly;(E, F) we denote the vector space of all
polynomials from E to F of at most degree j.

4.4.28 Proposition. Let jeN,, keN, ., j<k; let E and F be convenient vector
spaces and U < E be M-open with OeU. Then the initial Pre-structures on
Poly;(E, F) induced by the following maps coincide:

(1,) the inclusion map Poly,(E, F)— Li#U, F);
(2) the map Poly;(E, F)»®{-, Homog,(E, F), fim((1/i)fP(0))i_,.

———
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The first map admits as left inverse the morphism T- J which q;sociates to a map
fe LU, F) its Taylor polynomial T'f: v, (l/i!){"’(O)(u, ..., ). The
second map is even a bijection with left inverse (f)I_,—Y;_,fi-

Proof. The map Zi#*(U, F)»®]-, Homogy(E, F), f&»((l/i!)f"’(O)){=0 com-
posed with 2: ®i_, Homog;(E, F)—Poly;(E, F) < Zp" (E, F ) ylglds thc': Tay}or
expansion 77. Restricted to Poly;(E, F) the Taylor expansion is the 1detnF1Fy.
Thus we have proved that the claimed maps are left inverse and that the initial
structures induced by the maps in (1,) and (2) coincide. O

4.4.29 Proposition. (Characterization of Flat Maps) Let jeNg ., let
f:E2U—F be a Lif/-map between convenient vector spaces with 0 U, and let
& < F' be point separating. Then the following statements are equivalent:

(1) f0)=0 for all 0<i<j+1;

(2) For all $Lip-curves c: R—U with ¢(0)=0 the derivatives of order less than
j+ 1 of the composites f- ¢ vanish at 0,

(3) For all veE and { €% the derivatives of order less than j+1 of the real
function t £(f(tv)) vanish at 0.

Proof. (1=-2) this follows by applying the chain rule (4.3.14) inductively.
(2=-3) is trivial. . ‘
(3=1) is trivial by the polarization formula (4.4.19) since #( f° D0) (v, ..., 1)

=c(0) by (4.4.17), where c(t):=¢ (f(t)). O

4.430 Definition. For je N, a L#'-map 1 E =2 U—F is called j-flat (at 0) if
the equivalent conditions of the previous proposition are satisfied. The vector
space of all j-flat Zi4*-maps (for ke N, ., j<k) with the initial Pre-stlructur.e
induced from the inclusion in Z¢4*(U, F) will be denoted by iz ¥ (U, F). It is
in fact a convenient vector space by the closed embedding lemma (2.6.4), since it
is given by the equations f(0)=0 (i <j+1).

4.431 Theorem. Let E and F be convenient vector spaces, U S E be M-open
with 0e U; je Ng, ke Ng ., j<k. Then one has the decomposition

Zip"U, F)=Poly,(E, F) ® Zi}t}. (U, F)
given by f=T'f +(f— T’f) where T/f is the Taylor polynomial of order j of f.
Proof. Since 7V is a left inverse to the inclusion map Poly;(E, F)»%ip*(U, F)

by (4.4.28) and the kernel of 77 is Zip ’; 1a{U, F) by (4.4.29) the stated decompo-
sition follows. O

4.4.32 Remark. We shall see in (7.1.3) that the analogous result for j= oo fails
to be true: i.e. Fip 2 p.(E, F) is not a direct summand of %% *(E, F ), not even
for E=F=R.
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Now we take up the discussion about point separating families of linear
functionals initiated in section 4.1:

4.4.33 Proposition. Let X be a Lis*-space and F a convenient vector space.
Then the bornology of Zi#(X, F) has a basis of o(Lip*(X, F), {£aev,; x€X,
¢ € F'})-closed sets, where ev,: Lip"(X, F)—F denotes the evaluation map.

Proof. Since c*: Zip*(X, F)— LipMR, F) (ce Zig"(R, X) is an initial family of
Pre-morphisms, and since {ev,oc*; ce Z#R, X), teR}={ev,; xe X}, it is
enough to show the statement for X = R. In this case the difference quotients &;
LR, F)=£® (R, F) (0<j<k+2) form an initial family of Pre-morphisms
and the sets {ev,; 1€ R} and {ev,-8’; xe R, 0<j<k+2} generate the same
linear subspace of L (Z4*(R, F), F) the result follows from the corresponding
one in (iv) of (4.1.21) for £°(X, F). O

The above proposition can be improved by taking only the evaluations ev,
with x in some dense subset:

4.4.34 Corollary. Let X be a %ip*-space and D = X a subset of X which is dense
for the final topology induced by the FLigi*-curves into X; let F be a convenient
vector space. Then the bornology on Zif“(X, F) has a basis of o(LipMX, F),
{¢eev,; £ €F', xe D})-closed sets.

Proof. Because of (4.1.24) and (4.4.33) it is enough to prove that {ev,; xe D} is
dense in {ev,; xe X} with respect to the topology of uniform convergence on
bounded subsets of L4 X, F). In (4.4.14) we proved that ev: Zi4(X, F)nX —F
is Z4* Hence the associated map 1 X->L(%#4X, F), F) is %" and
in particular continuous for the final topologies induced by the Z#*-curves.
Thus for the closures in these topologies one has the inclusions:
iD={ev,; xe D} 2D)=1X ={ev,; xeX}. Since the Mackey-closure topology
on L(Z#(X; F), F), i.e. the final topology induced by the Zi4*-curves, is finer
than the topology of uniform convergence on bounded sets, cf. (3.6.8), the result
follows. 0

In order to show that this result is interesting even in the special case where
X=F=R and k=00 we give an

4.4.35 Example. Suppose bornological curves ¢*: R— Z4™(R, R) are given for
all keN,,. If ev, < c® is smooth with derivatives (ev, o c®)® =ev, o c* for all k and all
seD for some dense set D =R, then c® is smooth and c* is its kth derivative (one
combines (4.1.19) and (4.4.34)).

Another formulation of the same result is the following: let f: R*—R be a
function. Suppose that for some dense set D = R the first partial derivatives
& f(, s) exist for all keN,, teR and seD; that furthermore for all teR the
function & f(t, ) has a smooth extension; and that &% f is bornological for all
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i, keN,. Then f: RZ—R is smooth (put c*:=(d% f)" to reduce this to the result
above).

In particular (for D = R) any function f: R*— R for which all partial derivatives
35 % f exist and are locally bounded is smooth.

We shall show that quite often the locally convex topology of our convenient
function spaces coincides with some classical function space topology. For this
we shall first describe their bornology as the von Neumann bornology of a
locally convex topology . Then Z is the locally convex topology of the
convenient vector space exactly if it is bornological, and this is in particular the
case if 7 admits a countable basis for the 0-neighborhoods.

We will use the following kind of difference quotients, cf. (3) in (4.3.8):

4.4.36 Definition. Forf: E = U—F and B < E absolutely convex and bounded,
8%f: U§Y>—F is defined by

a2

where Ug=UNnEp.
We consider first the Z/4°-function spaces.

4437 Lemma. Let E and F be convenient vector spaces, U an M-open subset of
E, A a basis of the b-compact bornology of U formed by b-compact sets and 7 a
basis of the bornology of E formed by absolutely convex sets. Then a set
A < LU, F) is bounded iff the sets A(K) and 63A(K<??) are bounded in F for
every Ke A" and Be# with K < Eg compact..

Proof. (<) Let ¢ R—>U be Z#° and I = R be a compact interval. Then we
choose an absolutely convex bounded set B which contains ¢(I) and §'c(I¢*?).
Since c:I->U NEg SEjy isa Zi4°-curve of the normed space E, we can choose a
Kea” which contains c(I). Finally we enlarge B such that it is an element of #
and K is compact in Ep By assumption the sets A(K) and 55A4(K¢'?) are
bounded. Writing

B0+ ), 9= te), ey 10—l

t—

in case c(t)#c(s) one deduces that &(foc)(I<?*) and (f-c)(I) are bounded for
fe A. Thus c*(A) = L4 (R, F) is bounded. Since ¢ was an arbitrary Z4°-curve
in U we conclude that 4 = Z#°(U, F) is bounded.

(=) Admit first that A(K) is unbounded for some K € . Since every sequence
in K has an M-converging subsequence, one concludes, using the special curve
lemma (2.3.4), that A(c(])) is unbounded for some smooth curve ¢: R—U and
some compact interval I = R. Since c¢*(4) is bounded in Z4%(R, F) and therefore
in Z (R, F) this is‘a contradiction.

Admit now that 3A4(K<'?) is unbounded for some Ke" and Be#Z with
K < Eg compact. Then there exists a functional £ € F’ and sequences q,, b,e K
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and f,eA such that |£(8}f,(a,, b,))|=n""1. By going if necessary to sub-
sequences and using that we already showed that A(K) is bounded we may

assume that g, and b, converge in Ez to a common limit, say 0, and that this -

convergence is so fast that n*"||a,| s and n*"||b,| 5 remain bounded. Let now
2d,:=|la,~b,|z'n" and consider the line p,; R—Ej characterized by p,(—d,)
=a, and p,(d,)=b,. Since the sequence p, is obviously fast falling in C*(R, Ep)
we can apply the general curve lemma (4.2.15) to obtain a smooth curve
¢: R—Ep joining the pieces p,|;_q4, 4, and one has c{t,)=a, and c(s,)=b, for
some Z, and s, in a bounded interval and satisfying ¢,—s,=2d,. Since

£(flet ) —£ (S c(s, =
(fulet))) = ¢ (flels ) —14(5Y S (a,, bn))l'“a" bn”BZnn+1.l=
t,—S, t,—3, n"
the set { «f, ac; ne N} is not bounded in Zi4°(R, R), hence 4 is not bounded in
f('/éo(U, F). d

In view of the last lemma it is natural to try to characterize those convenient
vector spaces for which a given M-open subset has a countable basis of the b-
compact bornology. We start by considering convenient vector spaces that have

a countable basis of the compact bornology associated to the locally convex
topology.

4.4.38 Proposition. For any convenient vector space E the following statements
are equivalent:

(1) The compact bornology of the locally convex topology of E has a countable
basis;

(2) The bornology of E has a countable basis and the locally convex topology of
E is Montel,

(3) E is the dual of a Fréchet Montel space (for which one can choose E').

Proof. (1=2) Let {K,; neN} be a countable basis of the bornology generated
by the compact subsets of E.

It is enough to show that every bounded B < E is contained in K, for some #,
since this implies that E is Montel and {K,; ne N} is a basis of the bornology of
E. Admit that B & K, for every ne N. Then B & n- K, for every , since n- K, is
compact and is thus contained in some K,,. Choose b, € B with b,¢n- K,. Since
(1/n)b, converges (Mackey) to 0, the set K:= {0} U {(1/j)b;; je N} is compact and
thus contained in some K,. In particular (1/n)b, € K,,, which is a contradiction.

~ (2=3) Since the bornology of E has a countable basis we conclude that the

locally convex topology on F:=E’ is the strong topology and is metrizable. The
locally convex topology of F is even Montel, since every bounded subset of E’ is
equicontinuous, hence by the Alaoglu-Bourbaki theorem [Jarchow, 1981,
p- 157] relatively compact in the topology of uniform convergence on precom-
pact subsets. But this is the strong topology, since E is Montel.

It remains to show that F'~ E. It is enough to show that z E—~E” = F' is onto.
So let xeF’'=E". Then xe U° for some 0-neighborhood U in F (xe F’ implies
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that x ! ([—1, 1]) is the desired O-neighborhood in F). By the definition of the
strong topology there has to exist an absolutely convex bounded B < E with
B° = U. Thus x is contained in the bipolar of B with respect to (F’, F). Since B is
relatively compact in E, the image by 1 of its closure is compact in E” and thus
contains the bipolar of B. Hence x € 1(E).

(2<=3) Let F be a Fréchet Montel space. The bornology of E:= F’ is formed by
the equicontinuous subsets, hence has a countable basis {U°; U e %}, where % is
a countable 0-neighborhood basis of the locally convex topology of F and uU°
denotes the polar {£ € F’; |£(x)| <1 for all xe U} of U. By the Alaoglu-Bourbaki
theorem [ Jarchow, 1981, p. 157] these sets U° are compact in the topology of
uniform convergence on precompact subsets of F. Since F is Montel this
topology is the strong topology on E and it remains to show that it is the locally
convex topology of E. For this it is enough to show that it is bornological. Since
F as locally convex space is semi-reflexive [ Jarchow, 1981, p. 230], the strong
topology on E is barrelled [Jarchow, 1981, p. 227] and since E is metrizable it
thus is bornological [Jarchow, 1981, p. 280].

(2=1) since for Montel spaces the bornology and the compact bornology
coincide by definition. O

Now we are able to characterize the convenient vector spaces for which an M-
open subset has a countable basis of the b-compact bornology.

4.4.39 Proposition, Let E be a convenient vector space and U # & an M-open
subset of E. Then the following statements are equivalent:

(1) The b-compact bornology of U has a countable basis;

(2) The b-compact bornology of E has a countable basis;

(3) The bornology of E has a countable basis and every bounded subset is
contained in a b-compact subset;

(4) E is the dual of a Fréchet Schwartz space ( for which one can choose E’).

Proof. (1=>2) We may assume that one has a countable basis {K,; ne N} of the
b-compact bornology of U with K, = K, for all n and that Oe U. We show
that {nK,; ne N} is a basis of the b-compact bornology of E. So let K< E be
bornologically compact. Then it gets absorbed by U, ie. K<n- U for some
ne N, otherwise k,e K exist with k,¢n- U, but (1/n)k, converges Mackey to 0,
contradiction. Since (1/m)K is bornologically compact there exists an me N with
(1/mK < K,,. For the maximum N of n and m we obtain

1 1
NK c nK cK,.<SKy,
ie. KEN-Ky.
(2=3) Similarly to the proof of (2=>3) of the previous proposition (4.4.38) one
shows that every bounded B is contained in K, for some ne N. Moreover, K, is

by definition compact in Eg for some bounded B, which itself has to be




130 4 Calculus in Convenient Vector Spaces

contained in K, for some me N. Thus the inclusion Ez— Eg_is continuous and
K, is compact in Eg .

(3=>4) By the previous proposition (4.4.38) F:=E'is a Fréchet Montel space
and E~ F'. It remains to show that the locally convex topology of F is Schwartz,
i.e. for every absolutely convex 0-neighborhood U of F there is another one W
containing U and such that the image of U is precompact in the normed space
Fapry=Fyw/{x;ll x| w =0}, or equivalently [Jarchow, 1981, p. 201] such that U°is
compact in (F')yo. Since F' = E and the sets U° form a basis of the bornology of
E this amounts exactly to saying that every bounded set is contained in a
bornologically compact set.

(1<=4) Let F be a Fréchet Schwartz space, 4:={U,; neN} be a countable 0-
neighborhood basis of the locally convex topology of F and E:=F". The family
{UO; Ue%} forms a countable basis of the bornology of E and, since F
is Schwartz, we may assume that K,:=(U,)° is compact in E,, =Eg,_, - Let
I_ll:=1_lIx, be the norm on E, and W, the open unit ball of E,. For every
meN the family {(1/m)W,, +x; xeK,} forms an open covering of the
compact set K, < E, ., hence there exists a finite set D,, ,<K, such that
{(U/m)W,,,+x; xeD,,,} still covers K, We claim that {(1/m) K, +X;
m,neN, xeD,, ., (1/mK, ., +x U} is a subbasis of the b-compact bornology
of U. In order to show this let K < U be a b-compact set, i.e. K < K, for some
neN. Then {(1I/m)W,. +x; neN, xeD, ,, (I/mK,,+x<& U} is an open
covering of K in E,, ;and hence has a finite subcovering, i.e. K is contained in a
finite union of sets (1/m)K, ., +x = U. In fact, for any ye K there exists anmeN
with {x;[|y — x|+, <2/m} = U. By the definition of D, , there exists an x& Don
with ye(1/m)U,, +x, ie [[x—yl+1<1/m. Let ze((1/mK,+, +x). Since
K,o1<{z lzl,+1<1} one concludes that [z—x[,+;< 1/m and hence
12— Vls1 < Nz2—=%]ws 1+ X —Yllass <2-(1/m), which shows that ze U. ]

4.4.40 Corollary, Let E and F be convenient vector spaces, U an M-open subset
of E, A a basis of the b-compact bornology of U formed by b-compact sets and 8 a
basis of the bornology of E formed by absolutely convex sets. Then we have:

(i) The bornology of %i4°(U, F) is the von Neumann bornology of the topology
of uniform convergence (in the locally convex topology of F) of fon K and
8Lfon KV for Keot', Be B and K < Eg compact.

A O-neighborhood basis of this topology is given by the sets
{(fe LU, F); f(K) < V and 5} f(K<*?) = V} with Ke A, Be B, K < Eg
compact and Ve ¥y for some O-neighborhood basis ¥ of the locally
convex topology of E.

(ii) The locally convex topology of %é#*(U, F) is the topology described in (i) if
the b-compact bornology of U has a countable basis and F is metrizable.

Proof. (i) We have to show that 4 = Zi#°(U, F)is bounded iff it gets absorbed
by the sets {fe Lix(U, F), f(K) < V} and {fe Z#°(U, F); SLAK) < V) with
Ked', Be# and K < E, compact. By lemma (4.4.37), 4 is bounded iff each of
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the sets A(K) and 63A(K<?) is bounded and hence absorbed by v, ie. is
contained in N - ¥ for some N e N. This is exactly the case when A is contained in
N-{fe LU, F);, f(K) = ¥} and in N - {fe ZLiz(U, F); LK) e VY.

(ii) Let o be a countable basis of the b-compact bornology of U. Then by
(4.4.39) there is a countable basis 2 of the bornology of E (formed by absolutely
convex sets). Since F is metrizable its locally convex topology has a countable O-
neighborhood basis #. Hence the topology on Z4°(U, F) which was described
in (i) has a countable 0-neighborhood basis and thus is bornological. Since by (i)
its von Neumann bornology is the bornology of Lit%(U, F), the assertion
follows. O

We next consider the spaces Zi4(U, F) with ke N .

4.4.41 Corollary. The locally convex topology of Lif(U, F) is the bornologifi-
cation of the topology of uniform convergence (in the locally convex topology of
LE, ..., EF)of fO on K for i<k+1 and (in case where k<o) of 6 f® on
K< with compact K < Eg. Thus the locally convex topology of Lif*(U, F) is
metrizable if the b-compact bornology of U has a countable basis and F is
metrizable.

Proof. One uses (4.4.11), ie. the initiality of the family of maps fo>f*,
LipH U, F)» Lip(U, LE, . . ., B F)) for j<k-+1. It remains to show that the
condition on 85 is implied by that on f9* . First remark that it is enough to
show uniform boundedness of K<?> for those K having the additional property
that {tx+(1—1)y; x,yeK,t€[0, 1]} is a subset of U, since these K form a
subbasis of the b-compact bornology of U. In fact if K < Eg is an arbitrary b-
compact subset of U then we consider the continuous map (¢, Xy, Xz)+>(£x; +
(1—1)x,), [0, IInEgnEg—E which maps [0, 1] x {x} x {x} to x for all xeK.
Thus there exists a neighborhood U, of x in Eg such that [0, 1]x U, x U, is
mapped into U. These sets U, (x€K) form a covering of K with M-open subsets,
hence admit a finite subcovering. A closed refinement of this finite subcovering
then consists of b-compact sets with the desired additional property.
Now let K < Ej5 be such a set and let g:i=f". Then

gx)—g») _[* y—x
1 gL Sy f e d
5Bg(x, y) ”x_‘y”B Jvo g(x+t(y x)) (HY—XHB) t

and since the maps ¢ are by assumption bounded on the b-compact set
{tx+(1—1)y; te[0, 1], x, y e K} and since (y—x)/|ly—xll5 i bounded, the differ-
ence quotient d 3g is uniformly bounded on Kb,

In order to obtain the metrizability by applying (4.4.40) we only need to know
that L(E, F) is metrizable if F is metrizable and E has a countable basis of the b-
compact bornology. But also this follows from (4.4.40) since L(E, F) is a Pre-
subspace of Zi#°(E, F). O

Next we want to apply the previous corollary in order to identify the topology
of Zi#X, F) for a manifold X with the classically considered topology. For
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this we iptroduce manifolds modelled on convenient vector spaces; see also -
[Wegenkittl, 1987] where with the aid of jets various topologies on spaces of

smooth maps between such manifolds are discussed.

4.4.42 Dgﬁnfltiom. A chart for a set X is an injective map w: U— X, where U is
M-open in some convenient vector space.

A 2«/2, -atlas on a set X is a family .o of charts such that the images of all
charts. in Ls:_zllcover X f.und for any two charts y,: U;—X and u,: U,— X in .o the
domain u; “(uy(U,)) is M-open and uj s u;: uy (uy(U,))—u; Yu(U,)) S U, is
a Fif*-map. r

]TWO Fifi*-atlases on a set X are called #i#*-equivalent if the union is a %4
atlas.

A _%.'./zhmanifold (modelled on convenient vector spaces)is a set X together with
an equivalence class of %;4*-atlases on X, or, equivalently, with a maximal
Feipi*-atlas.

ékmap /1 X—>X, between two #4*-manifolds X, and X, is called of class
Zu4* if for any chart uy of X, and u, of X, the domain uy '(f ~(u,(U,))} is M-
(;)ink and the composite u; *ofouy: ug '(f ~ Hun(U ) —=uy Y fluy(U,)) S U, is

Ayl

On every Ziy*-manifold we will consider the final Lipt-structure induced by
the family of charts of the maximal Zigi*-atlas (or, equivalently, of an equivalent
Lip*-atlas). '

Op every iz*-space X, and in particular on every Fepk-manifold, we will
consider the final topology generated by the Lipk-curves of X.

Remkarlk. If X is a 4" -manifold, the structure-functions of the considered
Lepe'-structure on X are precisely the maps f: X —-R which composed with
charts of X are Zi#*, i.e. are exactly the functions of class Liz*. However, there
may be more #;4*-curves for the %;4*-structures on such manifolds than ::urves

s . 6 . .
of class Z*. The following proposition gives equivalent conditions when this
does not occur.

4.4.43 ]P'm]positiqn. Let X be a Lip*-manifold modelled on convenient vector
spaces with (maximal) %/4*-atlas /. Then the following statements are equivalent:

(1) The str.ucture curves of the natural Fif*-structure of X are precisely the
curves in X of class Lip¥; -

(2) The Lit*-maps from any Lip*-manifold into X are precisely the maps of
class Lipk, v
(3) The image of each chart is open;

(4) Tzli/zfopvlog}> of X is the classical one, i.e. the final one induced b y the charts
of .

Proof.  (1=>4) Since by assumption (1) the Zipk-structure curves factor locally
over the charts, the final topology induced by the ZLip*-curves and the one
induced by the charts coincide.
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(4=>3) For any chart u: U— X we have to show that the image u(U) is open, i.e.
the inverse image of u(U) under any other chart v: ¥—X is M-open. This is
obvious, since by definition of an atlas v~ '(w(U)) is M-open in V.

(3=2) Let Y be another #¢4*-manifold and let g: Y—X be a LipF-map. We
have to show that g is of class Z#*. So let w: U—X and v: ¥— Y be charts. We
first show that v~ Xg ™ }(w(U))) is M-open in ¥. Obviously g is continuous with
respect to the final topologies generated by the Fip*-structure-curves and by
assumption w(l/) is open in X. Thus g~ Yw(U)) is open in Y, so
¢~ Yo~ g~ Yu(U)))) is open in R for every Zi4*-curve c: R—V, since vecis a
Ziz*-curve in Y. This shows at the same time that u~ logovecisa Zigt-curve,
ie. utagovis Lk and thus g is of class Ziy".

(2=1) is obvious by taking as second manifold R. E

Now let us show that in all interesting cases the equivalent conditions of the
previous proposition are satisfied.

4.4.44 Proposition, Let X be a Fif*-manifold modelled on convenient vector
spaces such that the topology of X is regular and the M-closure topology of each of
the modelling vector spaces is the initial one induced by its Fipit~functions. Then X
satisfies the equivalent conditions of (4.4.43).

Remarks. (i) For a Banach space the topology is the initial one induced by its
smooth functions if and only if there exists a smooth non-zero function with
bounded support [Bonic, Frampton, 1966].

(i) Examples of Fréchet spaces which'carry the initial topology induced by
the smooth functions are: all nuclear ones [Michor, 1983], all function spaces
C*(Z, E) with Z a finite-dimensional separable manifold and E a Fréchet space
satisfying the condition; and in particular C*(Z, R") with Z as before.

(i) If the M-closure topology of a convenient vector space coincides with the
locally convex topology then it also coincides with the initial topology induced
by the Zi#°-functions, cf. (6.4.4).

Proof. We will verify condition (3) of (4.4.43). So let u:U—X be a chart and
consider a Z/#*-structure-curve c:R—X. We have to show that ¢~ Yu(U)) is
open in R. So let toec™ *(u(U)). Since the topology of X was assumed to be
regular we can choose an open neighborhood ¥ of x4:=c(ty) such that its
closure is contained in #(U). By assumption on the topology of the modelling
vector space E2 U there exists a %4"-function h: E->R with h(u~ Yx0))>0 and
h<0 outside of u~(¥). By composing with an appropriately chosen smooth
function R—>R we obtain a Zi#*-function h,:E—R satisfying h;=1 on a
neighborhood of ™ !(x) and h,; =0 outside u~ (V). Now we define the global
function f: X >R by f(x):= h,(u™'(x)) for xeu(U) and f(x):=0 for x¢ V. It is
well-defined and of class Zi4* since composed with the chart u it is just h; and
composed with another chart u,:U;—X it is locally either 0 or the ZLop*-
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composite hy »u~ ' oy,. Thus foc has to be Zig* and hence {te R; f(c(t))>0} is
an open neighborhood of t, contained in ¢~ (V)<= c™ Hu(U)). 0

4.4.45 Proposition. Let X be a ZLip*-manifold with countable atlas modelled on
duals of Frechet—Schwartz spaces and let F be metrizable. Then the locally convex
topology of Li#*(X, F) is metrizable.

Proof. This follows from (4.4.41) by applying (4.4.6). O

Remark. Tt also follows from (4.4.41) that for finite-dimensional smooth mani-
folds X the locally convex topology of C*(X, F) is the classical ‘C*-compact-
open’ topology, which is roughly speaking the topology of uniform convergence
on compact sets of all the derivatives separately, cf. [Hirsch, 1976, p. 34].

4.5 Partial differentiability

4.5.1 Proposition. Let keN, .; X be a Zip*-space; Y a {®-space; and E a
convenient vector space. The map fr—f, where f(y)(x):=f(x)(y) constitutes an
isomorphism of convenient vector spaces

LipX, £2(Y, E))=£2(Y, Lif(X, E)).

Proof. Let fe LifMX, £2(Y, E)). Then for ye Y one has f(y)= ev, o f showing
that f(y) is a Z4"-map and one thus obtains a map f: Y— Z#(X; E).
Conversely, let g e £*(Y, Zi#"(X, E)). Then for x e X one has j=ev, o g show-
ing that g(x) is an #*-map and one thus obtains a map §: X -/*(Y, E).
Now we show that the correspondence is a bijection: Let f be a map from X to
the space of mappings from Y to E and g:= f the corresponding map from ¥ to
the space of mappings from X to E.

g: Y- %X, E) is an £ -morphism;

< goe:N->ZX, E) is £* for every £®-map e:N— Y,

= c*ogoe:N-> LR, E) is £ for all e and all Z#*-curves c: R—X;

< [Oe*ofec)]” =8 oc*¥agoe:N£2(RP, E)is £ for all i<k+2 and all ¢
and ¢;

<> le*ofoc) RP—£2(N,E) is £* for all i<k+2, ¢ and e (according to
(1.2.8));

< e*ofoc: R—¢(N, E) is Lip* for all ¢ and e

< foc:R—-£%(Y, E) is Lig* for all ¢;

= f: X (Y, E) is Ligh.

Let @: LifM(X, (Y, E)—£2(Y, 44X, E)) be the map defined by f+—fand
Y £2(Y, LipM(X, E))- Lif(X, (Y, E)) the map defined by g —4. Let us show
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that ¢ is a morphism: Since £°(Y, E) is a convenient vector space by (ii) in
(3.6.1) so is LigMX, £*(Y, Z)) by (4.4.2); and since ¢ is linear it is by the
bornological uniform boundedness principle (3.6.6) enough to show that
ev, o @p: LipMX, (Y, E))— LM X, E) is a morphism. This holds according to
the differentiable uniform boundedness principle (4.4.7) provided that
ev oev, o : LifX, £*(Y, E))—E is a morphism. This is true since ev,oev e ¢
=EevV,0eV,.

The proof that y is a morphism is analogous. O

4.5.2 Proposition. Let k, je N, ,; X be a Lif*-space, Y a Zipi-space; and E a
convenient vector space. Then the map f —f constitutes an isomorphism between
convenient vector spaces:

Lt (X, Lip(Y, E) = Lip)(Y, Lii(X, E)).

Proof. Let fe Zif"(X, £Lip’(¥, E)). Since f(y)=ev, « fone has f(y)e Li# (X, E)
and thus obtains a map f: Y- Z44(X, E).
Let us show that fis Zis':

f: X > Lip(Y, E) is Lip;
= e*of: X > Zif)(R, E) is Lip* for all Lep'-curves e: R Y,
= §loe*of: X >/"(RP, E) is Lo for all e and all i<j+2;
= §i(foe)=[dce*of] R Lig4X, E) is £% for all i<j+2 and all ¢;
= foe:R—Li#¥X, E) is Lip for all ¢
= f1 Y- L4MX, E) is Lop’.

Next we show that ¢: ZipX, Lip!(Y, E)- Lip!(Y, Lif(X, E)) defined by
f—f is a morphism: using the differentiable uniform boundedness principle
(4.4.7) twice it is enough to show that ev,cev,=ev, o ev, o ¢ is a morphism for all
ye Y and xe X. This is trivially the case.

The converse direction follows from symmetry. O

Remark, Onemay call /: X x Y—E a %" -mapiff ¥ € Lip* (X, Lip'( Y, E)).
This notion, however, depends on the factorization of the domain in a product
as shown by the following

Example, Let /:R?>—R be defined by f(t,s)=|t| +|s|. Then f is Zx°%°, since
f(t:r S) _f‘(tla S)

t—t

|l —|¢']
t—t

16, f(t, 25 s)| =

<1

and by symmetry |3, f(£; s, 8')| < | and finally

v S = [, ft, )+ f(t,§)
0.0, f(t.1;5,8)= 06— =

0.

On the other hand, f« 4 is not 4% %, if A is the linear isomorphism given by the
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1 . .
matrix ( ) 1) This follows since for 0<h <1 the difference quotient

(f2 A)(0,0)=(f> A)O, h) —(f= A)(h, 0)+(f< A)(h, 1)
hZ

_f(0,0)—f(h, h)—f(h, — )+ f(2h,0) _ -2
- h? T h

8103 f(0, b; 0, h)=

is unbounded.

4.53 Definition. Let & <F’ be point separating. A map f:11;.;E;2U—F is
called partially &-differentiable iff for all j € J and all xeI1;E; the map fo o hl is
S-differentiable, where hi: E,—IL;. ;E, is defined by (pr; oh! )( ) pr;(x) for j#i,
zeE;and pr;o b =idg,. The partlal differentials d,f: UnE;— F are then defined

as d, f(x, v):==d(fohy )(pr (x), ).
fis recursively called (k + 1)-times partially &-differentiable iff f is partially .-
differentiable and all the partial differentials d;f (jeJ) are k-times partially
-differentiable. For j,,...,jxr1€J the partial differentials d
d; f: Ung;n...nk;

Jre+1

o R djlf(x-vjl, P dij[ e djlf(_, PO » 1;)](x, Uiy

A map f:II; ;E;2U—F is called partially strongly differentiable iff for
all je J and all er E; the map foh/ is strongly differentiable, where hi is
defined as above. The pamal derivatives 0;: U~ L(E;, F) are then deﬁned as
8; £() ()= (f= hiY (pry(x))(v).

Jr+1

—F of order k+1 are then defined recursively as

Remark. If f:I1; ;E;2U—F is a &- differentiable map then f is obviously
partially - dlﬁerentlable and d,f=df-(idynin;), where in;E;—Il;E;
— I, ;E,; denotes the natural m]ectlon

If f is strongly differentiable then f is obviously partially strongly differen-
tiable and @; f=(in;)* f".

4.5.4 Theorem. Let f:EnNR2U—F be a %¢4*-map. Then the domain of definition

{xeE;(x,t)eU for all te[0,1]} of the map x+—>g(x):= fof(x,0)dt is M-open,

g is also Lp* and for k>0 one has dg(x, v)= jod fx, t; v)dt, or equivalently
g(x)= {48, f(x, dt.

Proof. In (43.11) it was shown that the domain of definition of g,
W= {xeE;{x}x[0,1]1cU} is M-open in E and that the proposition holds
for k=0. So let k>0 and suppose the ]proposmon holds for k— 1. It is enough to
show that g is $4,z-d1ﬂerent1able and dg(x, y)= jod f(x, t; y)dt, since by induc-
tion hypothesis this function is Zz#* . In order to see thls we use that fis Zis'

and thus the directional difference quotient has a %4° extension 8f: Ug—F.
Recall that Uz < (EnR)*nR?, cf. (3) in (4.3.12). For (x, y,t, s)€Ws one has, cf. (iii)
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in (4.3.6),
8g(x, y, t,5)=

dr

glx+ey)—glx+sy) [ flx+ey,)—flx+sy,7)
t—s = ls t—s

1 =
= f 91 (x,r; v,0; 1, s)dr.
0

Using (4.3.11) we conclude that 8g has %#° extension to Wj
given by 8g(x, v, t, )= jé\()f(x, r v, 0;t, t)dr=§édlf(x+ty,r+0; y, Q)dr
—jod fGx+ty,r;pdr. Thus g is Zie-differentiable by (4.3.12), and
dg(x, y)=99g(x, y, 0, 0)= {1 d, f(x, r; y)dr.

As a consequence we can characterize those maps which are derivatives: for
every Zip'-map g:U—L(E, . . ., E; F) whose values are k-linear and symmetric
and for which the values of the derivative ¢ :U—-L(E, LE,...,E; F))
~I(E, ..., E; F) are also symmetric there exists a Zi4**!-map f:U—F with
derivatlve of order k equal to g. In fact this can be easily deduced by induction
from the following special case:

4.5.5 Proposition, Letg:U—L(E,F)bea Lipt-map, where U S E is convex, M-
open and contains 0. Then there exists a Zip*-map - U—F with g=f" if and only
if ¢ (x)(v)(w)=g'(x)(w)(v) for all xe U, v, we E.

Proof.  If g=f" for some f the conditions just express the symmetry of the
second derivative of f.

Conversely, let this symmetry condition be satisfied and define f by f(x):=
fogtx)(x)de. By (4.5.4) f is Z4' and one has

[ )= L (g'(tx)(t0)(x) + g(tx)(w))de = f (£ g’ () (x)(0) +gEx)@))dt
0

= < L (t g (x)(x)+ g(tx))dt> (0).

With c(t)=t-g(tx) one has therefore f ’(x)=j'(1)(t-g’(tx)(x)+ g(tx))dt=§(1,c'(t)dlt
=¢(1)—¢(0) = g(x) which shows at the same time that f is Zi4?. O

Remark. For a Poincaré lemma on differential forms in this setting see [Kriegl,
1983].

4.5.6 Corollary. Let f: ESU—F be a map. Then the following statements are
equivalent:

(1) fis Lot

(2) the directional difference quotient 8f: Uy—F has a Lip-extention 8f:Us>F.

Proof. (2=1) By (4.3.12) f is Zip-differentiable and df(x, v)=3f(x, v, 0, 0).
Hence df is Z4* and using (4.3.24) one concludes that f is Zia** 1.
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(1=2) By (43.12) ZLipP-extension 8f:Ug—F of the ,%,a““-map 9f:Uq SF
exists. It is given by 9f(x,v,t,s):= fodf(x+tu+r(t—s)v, v)dr in some neigh-

borhood of Ug\Uj, thus is Z#* on this neighborhood too by 4.5.4). 0.

4.5.7 Proposition. Let ¥ SF' be point separating and f: IMj-,E;2U—>F be a
partially &-differentiable map. If all partial derivatives d;f:UnE;—F(jeJ) are
g&’k then fis gﬂ‘“l

Proof. By (4.3.24) it is enough to show that f is S-differentiable and
df(x;ve, ..., vm)=z;”=1djf(x,uj) forall xeU and v=(vy, . . ., v,)€I;E;. For
t#0 one has

S+ ) —f(x) _

t
»oflx+tvy, ..., 050, L) —fx+tvy, ..o 0-0,0...,0)

= 2 t

m 1
= ZJ d,f(x+t(y, ..., vj_y, 505, 0. .., 0} v)ds.
i=1Jo

Using (4.5.4) one concludes that the right side defines a Zip*-map and thus
(f(x+tv)— f(x))/t is M-convergent to

Z J‘ d,f(x+0(vy, ..., 0-y,50,0...,0)0)ds= _Zldjﬂx’”i) for t—0.
=1 JE
O

458 Theorem. Let & < F' be point separating and f-117— E;2 U—F be a map.
Then the following statements are equivalent:

(1) fis Lip;
(2) f is k times partlally S-differentiable and the partial derivatives
djk. d; f Ul'IEj1 .0E; »F of order k are Zit®  for all
AT jke {1 . }

Proof. We show this by induction on k. For k=0 it is trivial and for k=1t is
contained in (4.5.7). So let now k> 1. Then by (4.5.7) f is Ziz* iff f is partially &-
differentiable and d; is L~ for all je{l,...,m}. This is by induction
hypothesis (applied to all the d;f) equnva]lent with f being k-times partially #-
differentiable and d;, . .. d;, f bemg Lif. O

4.6 Spaces of sections of vector bundles

In this section we want to prove that for quite general vector bundles the space
of sections has a natural convenient vector space structure. These vector bundles
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can be considered as families of convenient vector spaces parametrized in a
Lipk-way by a Lig*-space, triviality being assumed along Liff-curves of the
base space.

4,6.1 Remark, We shall use induced bundles and the Whitney sum of a bundle
with itself. Since these are obtained as pullbacks we first describe explicitly
pullbacks of Ziz*-maps, cf. (8.3.5).

The pullback of two given Zig“-maps X Szl vis given by the
subspace P:= {(x, y)e XnY; f(x)=g(y)} of XnY and the restrictions to P of the
two projections X <> Xny -2 ¥

Given two Z4“-maps X «—— h g o, . —— Y satisfying fof, =gog,, the associ-

ated Z#"*-map Z,—P shall be denoted by (f;,g,), since (f;,g:)(2)=(fi(2),
g1(@)eP=XnY for all ze Z,.

If it is clear what the maps f and g are, then we write X n Y for P; and if we
consider for a fixed given g: Y—Z the pullback for various maps f:X—Z then
we use the traditional notation f*(Y):= P and f *(g):= pr,|p.

We remark that g surjective implies f*(g) surjective, and the fibre of
f*g):f*(Y)— X over a point x€ X (i.e. the inverse image) is equal to the product
of {x} with the fibre of g: Y—Z over f(x).

For vector bundles n: E— X the scalar multiplication is given fibre-wise but
can be considered as a map RnE—E. In contrast the fibre-wise defined addition
can be considered as a global map only on the Whitney sum, i.e. the pullback
El}'(IE of the projection n with itself. Using the following lemma addition can be

avoided in the definition of a %/#*-vector-bundle provided k> 0.

4,62 Lemma. A convenient vector space is completely determined by its under-
lying set, its scalar multiplication and its Lif*-structure for some ke N .

Proof. Let E; and E, be two convenient vector spaces having the same
underlying set E, the same %;#*-structure and the same scalar multiplication.
Then E, and E, certainly have the same zero-vector O obtained by 0-x for an
arbitrary x. By symmetry it is enough to show that idg: E, —E, is linear. Since
id: E,~E, is %4, the derivative id’(0): E; —E, is linear; so we only have to
prove that id’(0)=id. This is easy: id’(0)(v)=lim,_ o tv/t =u0. O

Remark. This lemma fails for k=0 as the following example shows. Consider
f:R?2>R? defined by f(0):=0 and f(x):= (|| x||1/lIx|| o)x for x #0. As one verifies
easily f is a %4°map and preserves the scalar multiplication. But
S, D)=02/1)(1,1)=(2,2)#(1,0)+(0, 1)=£(1,0)+ £(0, 1).

Using (4.6.2) we can shortly say that a set with given scalar multiplication and
given F4*-structure (for some ke N, ) is a convenient vector space if there exists
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some addition yielding a convenient vector space as characterized in (3) of
(2.4.4).

4.6.3 Definition. A L4 -vector-bundle n (for k>1) is formed by two Fis*-
morphisms n: E— X and p: RnE— E, written u:(t, v)+—t- v, subject to the follow-
ing conditions:

(i) The scalar multiplication u preserves the fibres, i.e. n(t - v)=rn(v);
(ii) Foreach xe X the fibre E.:= n~ (x) with the restriction of ¢ to RnE,—E,
and the %4 -structure inherited from E is a convenient vector space;
(iii) Triviality holds along each Zi4*-curve c:R—X.

In case k=0 one has to add a given family of maps a,: E,nE,—E, (x€ X) such
that all fibres E, are convenient vector spaces with a, as addition.

One calls X the base and E the total space of the bundle.

The meaning of (iii) is the following: for every Zis*-curve c:R—X one
considers the pullback c*(r): c¥(E)—R of ¢ and n whose fibre over ¢t is (¢*(E)),
={t}nE,,~E,. Then there should exist a %j*difftomorphism
1.: c*(E)—>RnE,, which preserves the fibres (ie. pr; o1.=c*(n)) and the scalar
multiplication (i.e. for all (t, v) € c*(n) one has: pry(i.(t, s v))=s " (pr,(i{t, v)))). By
lemma (4.6.2) this implies that 1, induces for each t € R a Con-isomorphism E,
to E,q) The maps 1, are called trivializations of n along c.

We remark furthermore that (ii) implies that = is onto.

4.64 Proposition. (Induced bundles.) Let n: E~X be a Lifi*-vector-bundle and
f:Y-X a Zf* map. Then the pullback f*(n): f*(E)—Y yields a Lif-vector-
bundle, the so-called induced bundle.

Proof. The fibre of f*E at y is {y}nE,,. Thus one has fibre-wise a natural
scalar multiplication on f*(z). The universal property of the pullback shows
that it is in fact ##*. Then the fibres {y}nE,, =E, are convenient vector
spaces. And triviality along any curve ¢: R— Y holds since c*( f*(n))=(f= c)¥(n),
which is isomorphic to a trivial bundle because f= ¢ is a Z4*-curve into the base
of m. |

Remark, In particular one concludes that c*(n): c*(E)—R is a Zig*-vector-
bundle for every Zis*-curve c:R—X into the base of a L4 -vector-bundle
mE—-X.

We now define vector bundle morphisms and triviality for vector-bundles. In
particular the maps 1.:c*(E)>RnE,q, used in the definition of F/4*-vector-
bundle are such vector bundle isomorphisms and the c¢*(n): c¥(e)—R are trivial
vector bundles.

4.6,5 Definition, (i) Let n;:E;~X; (i=1,2) be two Zis*-vector-bundles. A
Zipk-map f: E,—E, is called a vector bundle morphism iff the following diagram

4.6 Spaces of sections of vector bundles 141
commutes:

RnE,———E,

M1
l idnf J.f

RnE, E,

p2

(i) A Fip'-vector-bundle n: E— X is called (globally) trivial iff there exists a
vector-bundle isomorphism onto a bundle pr,: XnE,—X where E, is some
convenient vector space, and the scalar multiplication is fibre-wise given by that
of E, (it is an easy exercise that pr,: XnE,—X thus becomes a Z4*-vector-
bundle).

Remarks. (i) Every vector-bundle morphism f:E,—E, induces a map
fo: X{— X, between the bases, determined by the condition f « m, =n, o« f. Using
the zero-section 0y of my, cf. (4.6.9), one hasf, =, f=0, and thus f, is a Li4*-
map.

(ii) Every classical smooth vector bundle is a smooth vector bundle in the
sense of (4.6.3), since local triviality implies triviality along smooth curves.

The following characterization of #4*-maps into the total space of a Zi4*-
vector-bundle will be very useful.

4.6.6 Proposition. Let n: E—»X be Lép*-vector-bundle and f: Y—E a map. Then
the following statements are equivalent:,

(1) fis Lig"

(2) 7o f: Y= X is Lig* and for every Lif*-curve ¢:R— Y and trivialization 1, .,
of n along mfc the map pryeotye.a(id, foc): R—(nfc)* E-ROEy o)
—PE(,,fc)(o) is g{f/zk.

Proof. (=>)1f fis Lép* then obviously n« fis Lia* and pr, a1, ,(id, fo c) as well.
(«=) Let c:R—Y be a Zig*-curve. Then by assumption e:=mofoc is a Lig"
curve in X and thus foc=pr,o1; *o(id, pryot,c(id, foc)) is Lept. O

4.6.7 Lemma. Let m:E—>X be a Lip*-vector-bundle. Then the fibre-wise
determined addition E,iE,—E, gives a Lip*-morphism o: EI}E —E.

Proof. Let (c1,¢,):R~EnE be a Zipt-curve, ie. c;; R—E (i=1,2) is Z4* and

mao¢,=noc,=¢. Using the previous proposition (4.6.6) and the identity
moaa(cy,c)=c one concludes that it is enough to show that
pryet.e(id, xefcy, cy)): R— E,q, is Li4"; but this is obviously the sum of the two
Zift-curves pryai.o(id, ¢;): R—E, (j=1,2). O

4.6.8 Definition. Let m:E—X be a Lip'-vector-bundle. The space I'(x)
of Fig*-sections of the vector-bundle = is defined as I'(n):= {s € LipM(X, E);
nes=id}.
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Remark, Let n:E—X be a #is*-vector-bundle and f: Y- X be a %4 -map.
Then the set {se LY, E);noa=f} of sections along f is in natural bijection
to T%(f*(n)) via the map 4+(id, 4).

469 Lemma, Let n:E—X be a Lip*-vector-bundle. Then the space I'(m) of
Lipt-sections of m is a vector space with the pointwise operations.

Proof. That the vector operations are defined pointwise means that I'(x) is
considered as subspace of the vector space I, . xE,. We have to show that it is a
linear subspace.

Let s be a section of 7 and ¢ € R; then the map x —¢- o(x) is 4", since it is the
composite u(t, _)o 4, and is trivially a section.

Let ,, 4, be two sections; then the map x 4, (x)+ 4,(x) is Li4*, since it is the
composite ao(g,, 4,), and is trivially a section.

The zero-section x —0, is in [*(x), since a section 4 of n is Ziz* by (4.6.6) iff for
every Ziff-curve c:R—X the map pryo1,.<(id, soc): R—Eq, is Zig*. For the
zero-section this composite is the zero-map. O

4.6.10 Lemma. Let n:E—X be a Lip*-vector-bundle. Then any Lip*-map
f: Y= X induces a linear map f*:T¥m)—T¥ f*¥(n)) by setting f*(s):=(id, sf),
ie. f¥(a)(»)=(p, a(S(M)).

Proof. Since feid=mn<(s=f) one concludes by the universal property of a
pullback that f*(s) is a Zi4*-map: Y—f*(E). It is obviously a section. Finally
the map f* is linear, since the vector operations of the spaces of sections are
defined pointwise and the fibres of f*(E) are mapped isomorphically onto the
fibres of E. O

4.6.11 Lemma. Letn;: E;—X(i=1, 2) be two Lip*-vector-bundles over the same
base. Then any vector-bundle morphism #:E,—E, induces a linear map
oy T n,)—» T n,) by setting e (a)i=moa.

Proof. This is trivially verified. O

4.612 Lemma, Let n:XnE—X be a trivial Lip*-vector-bundle. Then the map
(4, f), ZifMX, E)~T¥r) is an isomorphism of vector spaces.

Proof. The inverse map is given by 4 +—pr, o . That both are well defined and
linear is trivial. o

4.6.13 Definition. Let n: E—X be a Zi4*-vector-bundle. Then I'¥(x) shall from
now on denote the space of Zix*-sections of 7 together with the initial Pre-
structure induced by the linear maps (pry), (1), o c*: T(m)—=T"(c*(n))
-THROE,q)—»> L R, E, o) with ce L4 R, X).
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4.6.14 Lemma. Let n: E—X be a Lip*-vector-bundle. Then the Pre-structure of
I'(n) does not depend on the choice of the vector-bundle isomorphisms 1.

Proof. Given two trivializations ii:¢*(E)>RnE,, (i=1, 2) one has 2 =sm-1;,
where #:RUE, o~ RNE,q, is the Ziz*-diffeomorphism (:2)=(z})"'. From this
the result follows. O

4.6.15 Theorem. Let n:E—X be a %if*-vector-bundle. Then T'¥(r) is a conven-
ient vector space.

Proof. Since the maps c*:T(n)—>I(c*(n)) separate points and for trivial bun-
dles the spaces of sections are separated, the preconvenient vector space I'(n) is
separated. In order to prove that it is complete it is enough to show that the
image in [, Z4"(R, E, o)) is M-closed. This follows since an element (4,), of this
product belongs to the image iff it satisfies the equations pr,(i.,) ™ '(t1, o,(t1))
=pr,(1,,) " (L2, 9,,(ty) for all Zigt-curves ¢, ¢ R—X and reals ¢, ¢, with
cy(t)=calty)- 0

4,6.16 Proposition, (Uniform Boundedness Principle for Bundle Sections.) Let
n:E—~X be a Zif"-vector-bundle. Then the structure of T%(m) is the coarsest
convenient vector space structure making all evaluations ev,:THn)—E, (xeX)
morphisms. In categorical language this means that {ev;x € X } is an initial source
in Con.

Proof. This follows directly from the corresponding result (4.4.7) on
3’,,',/1,"([}@, Ec(O))‘ O

4.6.17 Proposition. Let n:E—X be a ZLip*-vector-bundle, and f: Y—>X be a
ZLifi*-map. Then the induced map f*: T n)—-T*(f*(n)) is a Con-morphism.

Proof. Using (4.6.16) this follows from the equation ev, o f* =ev . O

4.6.18 Proposition. Let n;:E;— X (i=1, 2) be two Zip*-vector-bundles over the
same base and let #::E,— E, be a vector-bundle morphism. Then the induced map
my THm )T ¥n,) is a Con-morphism.

Proof. Using (4.6.16) this follows from the equation ev,om, =m oev,. []

4.6.19 Proposition. Let n: XnE—X be a trivial Lif*-vector-bundle. Then the
bijection of (4.6.12) T¥(n)— Zip"(X, E) is a Con-isomorphism.

Proof. This. follows since (pry), = c*: ITn)—T*c*m)— Lis" (R, E), for
ce Zif*R, X), is by definition an initial source and corresponds to the maps
c*: ZipM(X, E)-» Ziz*(R, E) which form an initial source too. Thus the bijection
is an initial morphism, hence an isomorphism. O
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4.6.20 Proposition. Let n:E—X be a %ip*-vector-bundle. Then ev:THmnX —E
is a Lip*-morphism.

Proof. Consider first the case where n:RnE—R is a trivial bundle. Using
(4.6.19) one shows that ev:I'(m)nR—E is up to an isomorphism the .%%*-map
ev: Zit*(R, E)ynR—E. Now the general case. Let (e, ¢):R—-T*mnX be a Lip*-
curve. Then eveo(e,c)=pryoevo(c*ne, id), where the evaluation map on
the right side is ev:I™™c*(r))nR—c*(E). Since c*(n) is trivial the assertion
follows. O

In case k= oo we have also on %4*(X, E) a ™ -structure and then get the
following simple description of the structure of I"*(x).

4.6.21 Proposition. Let n:E—X be a Lipi™-vector-bundle. Then the smooth
structure of T ®(w) is the initial one induced by the inclusion I'*(n) = %4*(X, E).

Proof. The inclusion is a morphism by cartesian closedness, cf. (4.4.13), since
it is the map associated to the smooth map ev:I'*(z)nX —E. We further have
to show that a curve c:R—T"*(n) is smooth provided ¢*: RnX — E is smooth. By
(4.6.13) we have to consider for any smooth curve e: R—X the composite
(Pra)y o (1) @ €* o c: R-T*(m)» T *(e¥(n)) » T *(RNE, 0, = R)» C*(R, E,,). This
curve is smooth because it is via cartesian closedness associated to the smooth
map ROR—E,q,, (t, ) —»pry(tlc* (¢, e(s)))). O

4.6,22 Proposition. Let n:E—X and n;: E;—X(jeJ) be Lip*-vector-bundles.
Suppose the Lipi*-structure of E is the initial one induced by Lip*-vector-bundle
morphisms #;: ESE; (jeJ). Then the Pre-structure of T'(n) is the initial one
induced by the family (), THm)—T¥x;) (jeJ).

Proof. This is obvious, since the structure of I'¥(r) is the initial one induced
by the maps (pr;=1.), = c* and the structure of E,q, is induced by the maps
wic(0): Ec0) = (E j)eqoy O]

4.6.23 Proposition. Let m:E—~X be a ZLif*-vector-bundle and let f;: X, —X
(jed) be a family of Lip*-maps, such that for every Zi*-curve c: R—X there
exists a neighborhood U of 0 in R, a jeJ and a E&}fzk—curue ¢;:U—X, such that
fijoc;=cly. Then the Pre-structure of T*(n) is the initial one induced by the maps
1 THm) = TH(f $m) (e J).

}_’roof. Clearly the structure of I'(r) is the initial one induced by the maps
(incly)* o c*:T¥m) > T¥c*(n))—T*((cly)*(n)). But this map equals cf o f ¥, which is
a morphism. O

4.6:24 Proposition. Let X be a Lindelof smooth manifold modelled on duals of
Fréchet Schwartz spaces and let m:E—X be a Lép*-vector-bundle that is locally
trivial and has Freéchet spaces as fibres. Then I'(r) is a Frechet space.
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Proof. We recall that a topological space is called Lindeldf iff for every open
covering there exists a countable subcovering. Since the structure of I"*(n) is
induced by the maps I'*(r|y), where U run through a countable cover of open
sets on which = is trivial, cf. (4.6.23), and since I"*(n,) is isomorphic to
C*(U, Ey) for some Fréchet space Ey, cf. (4.6.19), the assertion follows from
(4.4.45). U

4.7 Certain function spaces are manifolds

In this section we will prove as main result that for finite-dimensional smooth
manifolds X and Y, where X is supposed to be compact, the space Emb(X, ¥) of
embeddings of X in Y is a smooth principal fibre bundle over the space
Submf(X, ¥) of submanifolds of Y that are diffeomorphic to X, with the group
Diff(X) of diffeomorphisms of X as typical fibre; cf. [Binz, Fischer, 1981].

In more detail this means: Emb(X, ¥), Diff(X) and Submf(X, Y) are smooth
manifolds modelled on convenient vector spaces; the group Diff(X) acts
smoothly on Emb(X,Y) by composition; and the map Emb(X,Y)—
Submf(X, ¥) defined by g+g(X) is a final smooth map, whose fibres are the
orbits of Diff(X).

We already know that Diff(X) is a smooth group whose structure is the initial
one induced by the inclusion in C*(X,X), cf. (1.4.8) and (4.7.4). Similarly
Emb(X, ¥) will be considered with the smooth structure inherited by the
inclusion in C*(X, Y). Thus we begin the investigation with C*(X, ¥).

471 Lemma. Let X and Y be finite-dimensional smooth manifolds, K< X
compact, W< Y open, and goe C*(X, Y) with go(K)< W. Then there exists a
smooth function f:C*(X,Y)>R with f(go)=1 and such that f(g)#0 implies
gK)ysw.

Proof. We begin with the special case where X =I'=1-2,2[, K:=[—1,1],
Y:=R, Wi={teR;t>0} and go=1. Let hy:R—>R be a smooth function with
ho(t)=>t] for all t and ho(0)=4%, and let h,:R*—>R be a smooth function with
hy(1,%) =1 and such that h,(t, s) #0 implies that ¢ >4 and s>4. Then |g(s)— g(0)|
=|ji)g'(t)dt|slj‘z,lg'(t)ldﬂslf;ho(g'(t))dtlsjl_lho(g'(t))dt for s with |s|<1. Let
f:C*(X, R)—R be the smooth map defined by f(g):= h,(g(0), 1 — j"l_ holg(6)de).
Then f(go)=hi(1,1—2he(0)=1; and f(g)=hy(g(0), 1— hoog")#0 implies
g(0)>1and [1_ Lholg (1)dt <3, hencelg(s) —g(0)| <4 and thus g(s)>0for se K;ie.
g(K)=W.

Now we show by induction that there are maps f,,:C*(I™,R)—=R having
the desired property for K:=[—1,1]", W and g, as above. For m=1
we have described such a map, namely f;:=f. Assume we have f,,.. Then
let f,., be the map obtained by composing C*(I"*',R)x
C2(I™, C®(I, R)), (f1)y:C™(I™ C*(1, R))—>C*(I", R) and f,,:C*(I", R)-R, ie.
s (@) =f{fiog"¥). A trivial calculation shows that f, . has all the desired
properties.
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Next we consider a general X and K, but ¥, W, g, still as above. For every
point xeK let u :I"—U, be a diffeomorphism from the cube I™ onto a

neighborhood U, of x with 4, (0)=x. Then the open subsets V, of U, that-

correspond to the cube ]— 1, 1[™ form a covering of K. Let {V;;i=1...n} bea
finite subcovering and u; be the associated diffeomorphisms. Then
(u)*:C*(X,R)»C2(I™ R) is smooth, (u,)¥(1)=1 and (1))*(g)(z)>0 for all i and
all ze[ —1, 11" only if g(x)e W for x e K. Choose a smooth map h:R"—> R with
h(1, ..., 1)=1 and h(x)>0 only if all coordinates of x are larger than 0. Then
Sf=ho(f,o(u)*, ..., fuo(u,)*) is the desired map.

Next we consider general X, K, Y and W but g, such that the closure g(X) is
contained in W. Choose a smooth function h: Y—R with k|, x)=1 and h(y)#0
only for yeW. Then h,:C*(X,Y)-»C®(X,R) is smooth, h,(go)=1 and
h,(g)(x)>0 for all xe K implies g(K)< W. Thus the composite of h, with f as
obtained in the previous case has all claimed properties.

Finally we come to the general case. Let W, & Y be open with W; 2¢,(K) and
the closure W, = W. The open submanifold X, :=gq {(W) of X contains K, and
the restriction map inci*: C*(X, Y)—»C><(X,, Y) is smooth. By the previous case
applied to X, K, ¥, W and the map incl*(g,) we obtain a function f. Then the
composition f ~incl* has all the required properties. O

We shall study the following subspaces of C*(X, Y).
4.7.2 Definition

Ounto(X, Y) denotes the space of surjective smooth maps from X to ¥. Imm(X, ¥)
denotes the space of smooth immersions from X to Y. Emb(X, Y) denotes the
space of smooth embeddings from X to Y.

Each of these spaces is considered with its initial smooth structure induced by
the inclusion in C*(X, Y). Submf{X, Y) denotes the space of those submanifolds
of Y that are diffeomorphic to X together with the final smooth structure
induced by the map Emb(X, Y)—Submf(X, Y), g+—g(X).

We recall that a smooth map g: X — Y is called an immersion iff for all xe X
the tangent map T.g: T,X—T,, Y is injective. A smooth embedding is an
injective smooth immersion (since X is compact the usual additional condition
that it is a homeomorphism onto its image is automatically satisfied). Warning:
Although the embeddings as defined here in a classical way are C*-embeddings
in the sense of (8.8.1), an example of [ Joris, 19827 shows that the converse fails.

4.7.3 Proposition. Let X be a compact and Y any finite-dimensional smooth
manifold. Then one has:

() Imm(X, Y) is open in C*'X, Y).
(ii) Emb(X, Y) is open in C*(X, Y).
(iii) Diff (X) is open in C*(X, X).

(iv) Onto (X, Y) is closed in C*(X, Y).

(v) Diff (X) is closed in Tmm(X, X).
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Proof. (i) Let c:R—C®(X, Y) be 2 smooth curve with ¢(0)e Imm(X, ¥). Con-
sider the smooth map g:RnX —»RnX defined by g(z, x):= (¢, c(£)(x)). The matrix
representation of the tangent map T}, , g has the form

id 0 )
<* Txc(t)

Thus T}, g is injective for all x. Hence there exists a neighborhood U of {0} x X
such that T,, g is injective for all (¢, x)e U. Since X is compact we may assume
that U=]—¢, e[ x X. From the injectivity of T, ,,g we conclude, using again the
matrix representation, that T,c(f) is injective for all |t|<e and all xe X, ie.
c(f)eImm(X, Y) for all |¢|<e. |

(ii) Let c:R—C>(X, Y) be a smooth curye with ¢(0)e Emb(X, ¥). Using that
Imm(X, Y)is open in C*(X, ¥) we know that ¢(t)e Imm(X, Y) for all sufficiently
small t. Since Emb(X, Y) consists of the injective immersions, we only have to
show that c(z) is injective for all sufficiently small . We prove this indirectly.
Assume that there are t,—0, and x,, y,€ X with x, # y, and c(t,)(x,)=c(t,)(y»)-
Since X is compact we may assume that x,—x and y,—y. Continuity of ¢*
implies ¢(0)(x) = c(0)(y), hence by injectivity of ¢(0) one has x = y. The associated
map g:RnX —»RnX defined in (i) is certainly injective on some neighborhood
1—é& [ xU, of (0, x). For n large enough one has x,, y,eU, and |t,| <e, hence
g(t,, X,)=({t,, c(t)6))=tn> c(t)(¥u))=9(t,, yn), in contradiction with the injec-
tivity of g on the considered neighborhood.

(iii) Let c:R—C*(X, X) be a smooth curve with ¢(0) e Diff(X). By multiplying
with ¢(0)~' we may assume c(0)=id and by (ii) we may assume that
c(t)e Emb(X, X) for all ¢ (sufficiently small). Since Diff(X) consists exactly of the
surjective embeddings we only have to show that c(t) is sutjective. So let x€ X be
arbitrary. The curve c(_)(x) connects x=c(0)(x) with c(t)(x)ec(t)(X). The set
c(t)(X) is compact and open in X (since c(t) is an immersion); hence it contains
with every point all points belonging to the same connectivity component,
which shows that x e c(t)(X).

(iv) Suppose goe C*(X, Y) is not surjective. Then there exists an y ¢ go(X).
Since {geC®(X,Y);g(X)=Y\{y}} is open by (4.7.1) and disjoint with
Onto(X, ¥), one concludes that C*(X, Y)\Onto(X, ¥) is open.

(v) Let c:R—Imm(X, X) be a smooth curve with h:= ¢(0)¢ Diff(X). Admit
there exists t,—0 with h,:= c(t,) € Diff (X). Since Diff(X) consists exactly of the
bijective immersions and since Onto(X, X) is closed in C*(X, X) we conclude
that h is not injective. So let ye X be such that h~'(y) is not a single point. Since
his an immersion we find for any x e A~ }(») a neighborhood U, on which A4 is an
embedding. Thus U, n h~(y)= {x}. Using compactness of &~ !(y) we conclude
that h~1(y) is finite and the sets U, can be chosen pairwise disjoint and
diffeomorphic via h to some neighborhood W of y. Let W, be a connected
neighborhood of y, such that the closure W, of W, is contained in W and
W, AWX\U Uy)= . Then he{g; g(h™'(y) € W, and g(X\U U= X\W, }.
Since this set is open by (4.7.1), we conclude that the diffeomorphisms h, are
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contained in it for n sufficiently large. Thus h,(h~*(y)) =W, and h,(\ UQQV?I,
ie. h"Yy)=h, \(W,)= U U,. This is a contradiction to the connectedness of
hn_ I(VVI) D

4.7.4 Theorem. If X is aq regular smooth manifold modelled on Banach spaces
which satisfy the equivalent conditions of (4.4.43), then the smooth structure of
Diff(X) according to (1.4.8) is the initial one induced by the inclusion map
i:Diff(X)—» C*(X, X); i.e. the inversion on Diff(X) is ¢ C*-map if Diff(X} is
considered as smooth subspace of C*(X, X).

Proof. We only have to show that if ¢c: R— Diff(X) is such that i e ¢ is a structure
curve of C*(X, X), then the curve jo ¢ is also a structure curve, with j being the
inversion map fi—f 1. By cartesian closedness of C* , (1.4.3) the map
[=(i*0)": RuX-X is C* and hence by the equivalent conditions of (4.4.43) is
of class C* in the Fréchet sense. Furthermore, g:=(j>¢)": RnX—X is the
unique solution of the implicit equation f(t, g(t, x))=x. Since f(t,_) is a diffeo-
morphism, the second partial derivative of f is an isomorphism, and we may
apply the implicit function theorem for the modelling Banach spaces to conclude
that g is smooth. By cartesian closedness g* =jo ¢ is smooth as well. O

4.7.5 Thearem. The group Diff(X) of diffeomorphisms of a compact smooth
manifold X is a smooth manifold modelled on convenient vector spaces, cf. (4.7.9).

Proof, The smooth structure of Diff(X) was discussed in (4.7.4) and it was
shown that Diff(X) is a smooth group, cf. (1.4.8). Since the multiplication is
smooth it is enough to find a smooth chart at idy. Consider an exponential map
exp: TX - X, cf. [Brocker, Janich, 1973, pp. 121]. Then (z, exp): TX - X1nX is a
diffeomorphism of a neighborhood U of the zero-section in TX onto a neighbor-
hood V of the diagonal in XnX. The map exp,:I'(m)—»C*(X, X) is obviously
smooth and bijective from U= {sel(n); s(X)=U} onto ¥ = {he Diff(X),
graph(h)< V'} with inverse map h—(x —(n, exp) " !(x, hx)), which is smooth as
well. So it remains to show that U~ and V"~ are open for the final topologies
induced by the smooth curves.

Let c:R—=T = C*®(X, TX) be a smooth curve with ¢(0)e U ~. Admit there exist
t,—0 with ¢(t,) ¢ U ™, i.e. there are x, € X with ¢*(t,, x,) ¢ U. X being compact we
may assume x,—x. Then c¢*(t,,x,)—c*(0,x)elU, in contradiction with
c(Q)yeU~.

Similarly, let ¢: R—Diff(X)<= C?(X, X) be a smooth curve with ¢(0)e ¥~ but
c(t,)¢ V 7, ie. there are x, € X with (x,, ¢*(t,, x,)) ¢ V. X being compact we may
assume x,—x. Then (x,,c"(t,,x,))—(x,c*(0, x))e¥V in contradiction with
c(0)eV-. O

4.7.6 Propesition, Let X be a compact and Y any finite-dimensional smooth
manifold. The space Emb(X, Y) of embeddings of X in Y is a smooth manifold
modelled on convenient vector spaces; cf. (4.7.9). The smooth group Diff(X) acts by
composition smoothly on Emb(X, Y).
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Proof. Let eeEmb(X, Y). Choose a tubular neighborhood of ¢, i.e. a vector
bundle p: E— X with a diffeomorphism u of E onto a neighborhood of ¢(X) such
that u=0,=e¢ (0, denotes the zero section of p), cf. [ Hirsch, 1976, p. 110]. Now
set U:= {ge Emb(X, ¥); g(X) = w(E) and p=u~' > geDiff(X)}.

In order to show that U is open in Emb(X, ¥) we first prove that
{gcEmb(X, Y);g(X)=u(E)} is open in Emb(X, ¥). Given a g€ C*(X, Y) with
9o(X) S u(E) we can choose an fe C*(X, R) with f1,,z=1 and supp( /)= u(E).
Then {g;( f° g)(x)>0 for all x} is an open neighborhood of g, in {g;g(X) =u(E)}.
From this and the fact that Diff(X) is open in C*(X, X) it follows that U is open.

U is diffeomorphic to T'(p)nDiff(X) by means of the map g+o(u l=g>=
(peu~teog)™ !, pauteg)el(pDiff(X) whose inverse is (s, h)oussohelU
cEmb(X, ¥).

We have thus shown via the previous theorem that Emb(X, ¥) admits a
smooth atlas with charts having values in convenient vector spaces.

Diff(X) acts smoothly on Emb(X, ¥) since the action is obtained by restric-
ting the composition map C*(X, Y)nC*(X, X)—»C>(X, ¥), cf. (1.4.6). ]

4.7.7 Proposition. Let X be a compact and Y any finite-dimensional smooth
manifold. The space Subm{(X, Y) of submanifolds of Y that are diffeomorphic to X
is a smooth manifold modelled on convenient vector spaces.

Proof. The structure of Submf(X, Y) is by definition the final one induced by
the map ¢:Emb(X, ¥)— Submf(X, ¥), g —g(X). We show first that the fibres of
the map, g are exactly the orbits under the action of Diff(X). In fact, if
g€ Emb(X, ¥) and he Diff(X), then q{g ° h)=q(g), i.e. g and g o h are in the same
fibre. Conversely, if g(g,)=qlg,) for two embeddings g, and g,, then g, and g,
are diffeomorphisms onto their image, hence h:i=g;'cg, eDiff(X) and
g, =4, 2h shows that g, and g, are in the same orbit.

We now show that g(U) is open in Submf(X, Y), U being the set defined in the
proof of (4.7.6). So let X, < ¥ be a submanifold that is contained in g(U). Using
the diffeomorphism U 2=T(p)nDiff(X) of the proof of (4.7.6) one obtains an
40€I'(p) and an h, e Diff(X) with X o =q(u 2 49 © hg) = q{u » ao). It is enough to find
a smooth function f:Emb(X, Y)— R that is constant on orbits, satisfies f{u 2 4)
=1, and is such that f(g)#0 only for ge U. In fact, such an f factor smoothly
over Submf(X, ¥), and the corresponding map f on Submf(X, ¥) has the
property that f(Xo)=f(u=40)=1 and f(X,)#0 only if X, eq(U). In order to
obtain such a function we choose open relatively compact neighborhoodsU; of
3o(X) in E,U, of X in TX, U, of Tsy(U,) in TE and we define U, =T'(p) by
Uyg={ael(p);s(X)=U,,Tu(U; )= U;}. By (4.7.1) there exists a smooth function

foT(p)» R with fy(s)=1 and fy(s)#0 only if seU, Now define
[iEmb(X, ¥)-R by

o fowTtege(peuTleg)TY) ifgeU
f(g)'_{ 0 ifg¢U

Obviously f(u e g9) = fo(dso)=1; f(g) #0 implies g e U; and f is constant on orbits.
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It remains to prove that fis smooth. It is enough to show that for any smooth
curve c:R—Emb(X, ¥) the composite f © ¢ is smooth in a neighborhood of zero.

We first consider the case where ¢(0)e U. Then c(t)e U for ¢ in a O-neighbor-
hood V, hence c(t)(X)=u(E) and thus trspou~toc(t) is a smooth curve
V—-Diff(X). Using that Diff(X) is a smooth group one concludes that also
tr>(pouteoc(r)) ! is smooth into Diff(X), and since Diff(X) acts smoothly on
Emb(X, Y) the curve t—s(t):=u"toc(t)e(pou!oc(t)) "t is smooth from Vinto
I'(p). Thus fec=f,2s is smooth on V.

We now consider the case where ¢(0)¢ U. We want to prove that then f{c(t))
=0 for sufficiently small t. If c(O)(X)Eu(U,), ie. there is an xeX with
c(0)(x) ¢ u(U, ), then c(t)e {g;g(x)e Y \u(U,)} and thus c(t)e U and f(c(t))=0 for
sufficiently small ¢. If c(0)(X) = w(U, ), then c(t) € {g; g{X) < w(E)} for ¢ sufficiently
small. Thus h:=peu~leoc is a smooth (locally defined curve) into C*(X, X).
Since ¢(0)¢ U one has that hy:=h(0)¢Diff(X). We want to show that
h(t)¢ Diff(X) for t sufficiently small. Suppose there are t,—»0 with
h,:= h(t,) e Diff(X). Let us show first that A, is an immersion: Admit T, ho(E,)=0
for some 0#&¢. €T, X. Let g,=u"lodt,)oh, teT(p). Then Ts,-Th, ¢,
=T(o,oh)(E)=Tu toc(t,)) E,»Tw toc(0) E,=0 for n—oo. Since
Th,,- £€,—Th-&,, the fibre multiplication Rn7X — TX is continuous, and U, is an
open neighborhood of X in TX, we may choose r,—»o with r,-Th, & eU,.
Then r, T, Th, &.=Ta, (r,-Th, &)eU,c U,. Since r,—o0 and
T4, Th, &, ~T(u *ec(0) ¢,#0 this is a contradiction with the (sequential)
compactness of U;.

Now we can use (v) of (4.7.3), namely that Diff(X) is closed in Imm(X, X). Thus
by is, as limit of the diffeomorphisms h,, also a diffeomorphism. This is a
contradiction, and hence f(c(t)) =0 locally.

Since we just proved that g(U) is open in Submf(X, Y) we may conclude that
the map U—T(p) defined by grou"teoge(pouteg)™ ! induces a diffeomor-
phism ¢(U)-T'(p) with inverse s+—q(ucs). Thus Submf(X, Y) is a smooth
manifold modelled on convenient vector spaces. O

4.7.8 Theorem. Let X be a compact and Y any finite-dimensional smooth
manifold. The map q:Emb(X, Y)-Submf(X, Y), gr—g(X) defines a smooth prin-
cipal fibre bundle with typical fibre Diff(X), i.e. there is an open covering of
Submf(X, Y) by sets W for which there exist diffeomorphisms
q~ (W)— WnDiff (X) which composed with pr,: WiDIiff (X)— W gives ql,-1w)-

Proof. That the map q defines a fibre bundle follows immediately from the
preceding proposition, where we proved that g(U) is open in Submf(X, ¥) and
qly:U—q(U) corresponds via the diffeomorphism U—T'(p)uDiff(X)
—g(U)nDiff(X) to the projection pry: q(U)NMDiff(X)—q(U).

It is a principal fibre bundle since Diff(X) acts on Emb(X, ¥) and the fibres
are exactly the orbits of this action. |
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4.7.9 Remark. All the manifolds of mappings that we considered in this
chapter are in fact modelled on nuclear Fréchet spaces since the models are
spaces of sections of finite-dimensional vector bundles. These spaces of sections
are Fréchet spaces by (4.6.24). That they are nuclear follows from the fact that
C*(U, R™) is nuclear if U< R" is open, cf. [Jarchow, 1981, p. 498].

4.8 Theorems on inverse and implicit functions

In this section the differentiability properties of inverse and implicit functions
are discussed. They depend on those of the inversion map #: —>#:~ 1, #: invertible
in I(E, E), which we study first.

4.8.1 Definition. For a convenient vector space E we denote by GI(E) the
subset of the convenient vector space L(E, E) formed by the Con-isomorphisms
together with the bornology and %4 -structures (ke N, ) induced by those of
L(E, E). With inv:GL(E)—GL(E) we denote the map »zr>m L.

If f:U—Vis a Zig*-diffeomorphism between M-open subsets U and ¥ of E
then differentiation of the equations fof "'=id and f~'°f=id shows that
S (x)e GL(E) for all xe U and that (f ~'):V—L(E, E) is the composite of the
maps VL5 UL GL(E)-™ GL(E) < L(E, E).

482 Lemma. Let c:R—-GL(E)S L(E,E) be %i#* and invec:R—L(E,E) be
bornological, then invec:R— I(E, E) is ZLip*.

Proof. Let us prove the statement first for k=0:

inv(c(t)::isnv(c(s)) — invi)e (C(t:::’(S)) oinv(c(s))
— — comp(inv(c(z)), @%‘S) inv(c(s))).

Using that comp is 3-linear and bornological and invec and (t,s)—
(c(t) —c(s))/(t — s) are bornological, we conclude that 3(inv » c) is bornological, i.e.
invecis ZLis°.

Let now k> 1. We first show that inv - ¢ is weakly differentiable: Consider for
fixed s the map ¢+ — comp(inv(c(t +s5)), dc(s, t + s) 2 inv(c(s))). Tt is Li4® since
both coordinates are so. Its value is (inv(c(t+s))—inv(c(s))/t for t#£0 and
—inv(c(s)) e ¢'(s}  inv{c(s)) for t=0. Hence

{1 (inv(c(t +5)) —inv(c(s))

; - +inv(e(s)) 2 ¢'(s) 2 inv(c(s))); 0#]t < 1}

is bounded and therefore (inv = c)(s) exists and equals -inv(c(s)) = ¢'(s) = inv(c(s)).
From (invec) = —compe(invec,c, invec) the statement follows now by
induction: The map comp is 3-linear and bornological and by induction
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hypothesis the first and the last coordinate is %4*~ !, as is the middle one, hence
the left side is %%* "' and consequently invoc is ﬂ,z.". O

In the next theorem we will need the following

4.8.3 Lemma. Let fe L(E, E) be such that there exists a unique g€ L(E, E) with
g2 f=id. Then fe GL(E).

Proof. Obviously it is enough to show that also fog=id. Since g = f=id one
has fege f=f Thus fog=id on f(E). And since linear morphisms are continu-
ous for the locally convex topology one even has fog=id on the closure f(E)
with respect to the locally convex topology. Thus it is enough to prove that f(E)
= E. Admit that there exists an x, € E\ f(E). By the Hahn-Banach theorem there
exists an /e E' with {|;5=0 and #(x,)#0. We put g,:=g+x,°¢, where
(xo ) (x):=£(x)x,. Then g,e(E,E) and g,°f=ge°f+x, (£ f)=id+0=id,
hence by the assumption that f has a unique left inverse we conclude that x, - £
=g, —g=0. This is a contradiction to £({xy ' £)(xc))=£(x,)* #0. O
Now we can apply this to prove an inverse function theorem:

4.8.4 Theorem. LetU and ¥ be M-open in a convenient vector space E, f:U—V
a bijective FLip* -map Iff =1 a %if%-map and f'(x) has a left inverse in L(E, E) for
all xeU then f =1 is a Léf*-map too, i.e. f is a Lip*-diffeomorphism.

Proof. For k=0 we have nothing to prove. 8o let k>1 and g:=f 1.

First we want to show that g is weakly differentiable and dg is uniquely
determined by dg(y, ) f(g(y))=id. So let ye ¥, we E, x:= g(y) and € L(E, E)
be an arbitrary left inverse of f'(x), i.e. » > f’(x)=id. We claim that g is weakly
differentiable at y in direction w and dg(y, w)=s(w). For this we have to
consider the %4%curve c: t—g(x +tw). Then

c(t)—<(0) — )= (oo f” (m<c(t) c(0)>_m(w)_ , < Fix )< ct)— c(o)> w)_

t

So it is enough to show that r{t):=f'(; )(C(t) c(O)) w converges weakly to 0

for t—0. One has

Ho)=1'(x) (C(t) C(O)> _ Xtitw—x 0 <c(t)—tc(0))  flee) —fe(0))

t t

5 f 1 (f/(x)—f(x + s(e(t) — c(0)))ds (C(t)_t_do))
0

Since the map (t,5)—x+s(c(t)—c(0)) is Z4° into E and (0, s) —»>x=c(0) we
conclude that g:(t,s) > f'(x)— f(x + s(c(t)— ¢(0))) is defined in a neighborhood
of {0} x [0,1] and is Z4° into L(E, E). Thus ¢ — | g(t, s)ds is defined and #;4°
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on a neighborhood of {0}. Hence [;g(z, s)ds is M-convergent to {;g(0,s)ds=0in
I{E,E) for t—0 and, in particular, it is uniformly M-convergent in E on the

bounded set
(r) — c(Q
{_*c(r) rc( );O;érel},

where I is some bounded open interval containing 0. From this we conclude that

He)= f 6 s)ds(——c(t) - do))

converges (Mackey, hence weakly) to 0 for t—0.

Since the differential df(y,_) is unique we conclude that the left inverse »: of
f(x) has to be unique and thus f'(x)e GL(E) by (4.8.3) and dg(y, )=[f"{(x)]" .

Using that g is %#/4° and that the weak differential dg exists we conclude from
(4.3.10) that dg:¥VnE—E is %z~ '. This implies that g':=(dg)¥:¥— L(E,E)
is Lp!

Finally we show by induction on k that g:V—L(E,E) is %" ':Let
us consider the factorization g'=inv=f’og and let c:R—¥ be a Q”{’k i
curve. Then by induction hypothesis e:=f"egec:R—>GL(E) is L4 -1 and
invee=goc:R>L(EE) is bornological Hence by (4.8.2) one conc]udes that
g ec=inveeis L1 ie. g is Ligt ™1, and thus g is Lig" |

Let us give as corollary an implicit function theorem:

4.8.5 Theorem. Let f:InU—E be %ip* (k>1), where U is M-open in E, and
I an open interval in R. If one has a L4°-curve c:I—U solving the equation
flt,c())=0, and such that 3, f(t,c(t))e GL(E) and t+—a, f(t,c(t))” ! is borno-
logical, then c is Lif.

Proof. Consider the %g*-map f= (pry, f):inU—InE. Then f’(t, x)(s,v)
=(s, @, f(t, X)s+ 0, f (t,x)v) and therefore f'(t,c(t)) e GL(RNE), the inverse map
being (s, v) (s, — 3, f(t. c(t) ™'+ 8, f(t, c(t) s+ D, f (¢, (1) " - v). Consequently
invefo(1, ,€) is bornological. Furthermore ¢:=(1g, c):I—Inl is %4° and
(f=&)) =flt, (1)) =(t, 0) is smooth. By the proof of the inverse functnon theorem
(4.8.4) we conclude that ¢ is %#" and hence ¢=pr, °¢ is also Zi4". O




5 DIFFERENTIABLE MAPS
AND CATEGORICAL
PROPERTIES

In section 5.1 it will be shown that there exist free convenient vector spaces over
Fipi*-spaces, ie. that the respective forgetful functor has a left adjoint. This
means that to every #;4"-space X one can associate a convenient vector space
AX together with a %4 -map 1,: X > AX such that for any convenient vector
space E the map (1,)*: L(AX, E)— Z#*(X, E)is a bijection. The space 1X can be
obtained as the Mackey closure of the linear subspace spanned by the image of
the canonical map X —» Ziz*(X, RY.

In the case where k=0 and X is a finite-dimensional smooth manifold we
prove that the linear subspace generated by {/rev,; xe X, e E'} is Mackey
dense in C*(X, E). From this we conclude that the free convenient vector space
over a manifold X is the space of distributions with compact support on X.

The existence of free convenient vector spaces over £*-spaces X is also
proved, and in this case an explicit description of 1X is given, namely as the
space of those functions f: X —R for which the support supp( f) is bounded and
Y. f(x)|< o, together with the bornology for which a set of functions fis
bounded iff U ;supp(f) is bounded and sup,y .| f(x)| < co. Since for any set X
with its coarse £ “-structure this construction gives the usual Banach space £'X
it is natural to write £ X instead of AX also for an arbitrary £*-space X. On the
product of /!X with /*X:=¢*(X, R) one can define a bilinear bornological
function (f,g)—),f(x)g(x) and show that it induces an isomorphism
(/'XY=¢"X. But already #'X can be identified with the dual of some con-
venient vector space ¢y X by a restriction of this bilinear function: one takes as
¢oX the subspace of #* X formed by those functions g: X —R for which supp(g)
is countable and for which for any &> 0 the set {xe X;|g(x)|>¢} has a finite
intersection with every bounded subset of X. In the case that X is any set with its
coarse £*-structure one gets the usual Banach space ¢ X associated to the set X.

In section 5.2 we consider convenient co-algebras. They are defined in a way
dual to convenient algebras. We show that in the cases .# =£* and .# = C* the
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functor 1: .# —Con constructed in section 5.1 lifts to a functor into the category
ConCoAlg of convenient co-algebras. The proof is based on the result that A
carries finite products to tensor products, and these are exactly the categorical
products in the category ConCoAlg. Furthermore, we construct a right adjoint
to A: .4 —>ConCoAlg. It is obtained by taking for a given convenient co-algebra
the subset of co-idempotent elements with its induced .#-structure. The duality
functor of Con lifts to a functor from ConCoA]lg to the category
ConAlg of convenient algebras and the isomorphism between the convenient
vector spaces (AX) and .#(X,R) becomes an isomorphism of algebras if
(X, R) is considered with the pointwise defined algebra operations. In case
M =¢* we show that the functor ¢! is even an embedding of £% into
ConCoAlg.

In section 5.3 we search for classes of convenient vector spaces that are still
closed under the important constructions developed so far but whose spaces all
have additional properties. For this we describe the smallest subclasses that are
closed under certain constructions (like function spaces and finite products) and
contain the finite-dimensional vector spaces. Then we give several examples
showing that most of the properties one might look for (like existence of
solutions of various types of equations) fail even for spaces in these smallest
classes.

In section 5.4 we consider the concept of reflexivity associated to the internal
duality functor described in section 3.9. We investigate its relationship to more
classical reflexivity concepts. It is shown that for a finite-dimensional smooth
manifold X the space of smooth functions C*(X, E) is reflexive if and only if E is
reflexive. This is also generalized to certain infinite-dimensional manifolds X.

5.1 Free convenient vector spaces

5.1.1 Theorem. For every Zif'-space X where ke N, . (resp. {®-space X)
there exists a convenient vector space AX and a Zif*-map (resp. {™-map)
i1x: X—AX with the universal property that every ¥if*-map (resp. £*-map)
g: X —E from X into a convenient vector space E factors as g =g ° 1y with a unique
linear Con-morphism g: AX — E. One calls 1X therefore the free convenient vector
space over X. It can be constructed as the M-closure of the linear subspace of
Lt (X, RY (resp. £2(X,R)) generated by the point evaluations ev,, with
ix(x)=ev, for xeX. Categorically this means: one has a functor
A: Lif*—Con (resp. A: £ —Con) which is left adjoint to the respective forgetful
Sunctor and 1 is the unit of the adjunction.

Proof. In order to treat both cases simultaneously we write .# for either Z/4*
or £*. We first describe a functor A;: . —sPre which is left adjoint to the
forgetful functor sPre—.#. For any .#-space X we consider the convenient
vector space .#(X,R) (for HM(X,R) see (3.6.1) if #=¢(* and (4.4.3) if
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M = FLif*). The canonical map 1y: X —.4(X, RY, defined by 1,(x)(g):=g(x) for
xe X and ge.#(X, R),is an .#-morphism as one easily verifies by using that the

#-structure of a dual of a convenient vector space is the initial one induced by

the evaluation maps, cf. (3.9.2). Moreover, the .#-structure of X is the initial one
induced by iy; in fact, if Z is any .#-space and f: Z—X a map such that
ixof: Z—.4#(X,R)Y is an .#-morphism, then so is ev eiyaf=gaf for all
g€ .4 (X, R), which implies that f: Z— X is an .#-morphism.

One now defines 4,.X to be the linear subspace of .# (X, R) generated by the
image 1x(X), together with the Pre-structure induced from .# (X, R). Then 4,X
is a separated preconvenient vector space and 1y induces an initial .#-morphism
Iy: X—2,X. We now verify that one has the universal property for A:
M —sPre being a left adjoint to the forgetful functor, namely: any
-4-morphism f: X — E into a separated preconvenient vector space E factors in a
unique way as f=foi, with some linear J4-morphism (ie.
sPre-morphism) f:A,X—E. Uniqueness is trivial since f(1,(x))=f(x),
{1x(x); x€ X} generates A, X and [ is linear. For the existence of f we use the
sPre-morphism i5: E-II5 R, characterized by prse1,=¢ for all /eE’, and
which is initial by the special embedding lemma (2.5.5). Let f,: .4 (X, RY »II; R
be the sPre-morphism characterized by prse fo=ev,., for all £eE". Then
Jocix=1gof as verified by composing with pr,. So fy(1x(X))<iz(E), and
since f, is linear and 4,X is the linear subspace generated by 14(X) one has
oA X)S15(E). Therefore fyl; y: 4, X—II5R factors as f0|lsx=onf where
f: A4, X —E is the desired sPre-morphism.

Since the completion functor @: sPre—Con is left adjoint to the inclusion
Con—sPre, cf. (2.6.5), the composite A:=@®e 1;: .4 —~Con is left adjoint to the
corresponding forgetful functor. In order to show that &(A,E) can be obtained
by taking the M-closure of 1, X in .# (X, RY, we verify that condition (2) of (2.6.7)
is satisfied. We show that every /e(i,X) extends even to a morphism
H(X,RY>R. So let /e(i,X). Then g:=F/<1ye.#(X,R), hence ev, €
(X, R)". Since ev,(ix(x))=1x(x)(g)=g(x)=7(1x(x)) one has eVl =1 1ix)
and hence ev,|,x=7|,x=7¢.

5.1.2 Corollary. For any %ip*-space (respectively £*-space) the map 15 X —AX
into the free convenient vector space is an initial %t -morphism (respectively
£®-morphism).

Proof. Again we treat both cases simultaneously. The structure of an .#-space
X is the initial one induced by the family of morphisms f: X -»R. Since all
these morphisms factor by the universal property over iy it follows that 1 is
initial. ]

5.1.3 Proposition. The bijection %i4“(X, E)—L(AX,E) (respectively ¢/*(X, E)—
L(AX, E)) obtained according to the adjunction of the preceding theorem (5.1.1) is a
Con-isomorphism.
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Proof. Again we treat both cases simultaneously, with .# =Lip* or M=(".
The map h: .#(X, E}-L(AX, E), whose action f+— f was described in the proof
of (5.1.1), is obviously linear. By (3.6.5) it is a Con-morphism provided
ev.oh: . #(X, E)—>E is so for all ze AX, or equivalently />ev,ch: #(X, E )»R
is so for all zeAX and /€E. According to the construction of f=h(f)
one has (feev,oh)(f)=z(f<f)=(zo£,)(f) and the result follows since
zeAX<c.M(X,R) and ¢: #(X, E)».#(X, R) is a Con-morphism.

The verification that the inverse map h~ ! is a Con-morphism is much simpler.
Again it is enough to show (cf. (3.6.6) and (4.4.7)) that ev,oh %
L(AX, E)-.d(X, E)—>E is a morphism for all xe X. This is obvious, because
h™'(g)=g°1x=1%(9) and hence ev,°h™'=ev, ), which is a morphism. O

5.1.4 Corollary. For any Zip*-space (respectively (*-space) X the function
space LipM(X, R) (resp. £*(X,R)) is up to an isomorphism the dual of the
convenient vector space 1X.

We have constructed the free convenient vector space AX over a Zi#*-space X
as the M-closure of the linear subspace generated by the point evaluations in
Zif*(X, RY. This is not very constructive, in particular since adding M-limits of
sequences (or even nets) of a subspace does not always give its M-closure. In the
case that X is a finite-dimensional smooth manifold we show, however, that not
only AX =C*(X, RY, but even that every element of 1X is the M-limit of a
sequence of linear combinations of point evaluations, and that C*(X, RY is the
space of distributions of compact suppart.

5.1.5 Proposition. Let E be a convenient vector space and X a finite-dimensional
smooth separable manifold. Then for every £ e C*(X, EY there exists a compact set
K <X such that £(f)=0 for all fe C*(X, E) with f|,=0.

Proof. Since X is separable its compact bornology has a countable basis of
compact sets {K,;neN}. Assume now that no compact set has the claimed
property. Then for every ne N there has to exist a function f,e C*(X, E) with

fulk, =0 but £(£,)#0. By multiplying f, with n/¢(f,) we may assume that

£(f,)=n. Since every compact subset of X is contained in some K, one has
that {f,;neN} is bounded in C*(X, E), but £({f,; neN}) is not; this con-
tradicts the assumption that / is a morphism. O

5.1.6 Remark. The proposition above remains true if X is a finite-dimensional
smooth paracompact manifold with non-measurably many components. In
order to show this generalization one uses that C*(X, E) is the product
;. ,C*(X;, E), where {X;; jeJ} is the partition in the non-measurably many
components and the fact that an ¢ belongs to the dual of such a product if it is a
finite sum of elements of the duals of the factors, cf. (3.9.5). Now the result follows
from (5.1.5) since the components of a paracompact manifold are paracompact
and hence separable.
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For such manifolds X the dual C*(X, RY is the space of distributions with
compact support. In fact, in case X is connected, C*(X, R} is the space of all

linear functionals which are continuous for the classically considered topology -

on C*(X, R) by corollary {4.4.41); and in case of an arbitrary X this result
follows using (3.9.5) and the isomorphism C*(X, R)~II;C*(X;, R), where the
X; denote the connected components of X.

5.1.7 Theorem. Let E be a convenient vector space and X a finite-dimensional
separable smooth manifold. Then the linear subspace generated by {£ oev,; x€ X,
{eE'} is M-dense in C*(X, E).

Proof. The proof is in several steps.
(Step 1) There exist g, e C*(R, R) with

( )c % g
SUPPIGn) & = =

such that for every feC*(R, E) the set {n-(f—> iczf(ts 1)gn )i neN} is
bounded in C*(R, E), where r, ,:=k/2" and g, ,(t):=g,(t—7, ).

We choose a smooth h: R—[0, 1] with supp(h)=[—1, 1] and Zkezh(t—k)= 1
for all teR and we define Q" C*(R, E)}=>C>*(R, E) by setting @"(f)(t):=
Y i f(k/mh(tn—k). Let K <R be compact. Then

1
a(Q ()= =Lu( f(k/m)—f () n- h(tn—k) e Bl(f; K+;SUPp(h))

for te K, where B,(f, K,) denotes the absolutely convex hull of the bounded set
S"f(K{™).

To get similar estimates for the derivatives we use convolution. Let #;: R—»R
be a smooth function with support in [—1,1] and [ghy(s)ds=1. Then for
teK one has (fh,)(t)= g f(t—9h,(s)dseBo(f, K+supp(h,))|lh,[l;, where
1 l;:={gl(s)|ds. For smooth functions f: R—R one has (fxh)"®=fxh"; one
immediately deduges that the same holds for smooth functions f: R—E and one
obtains (f* b)) —f(©)= [(f(t — )~ f(©)) h,(s)ds e diam(supp(hy))- [ By ||~
B.(f, K+supp(h,)) for teK, where diam(S):=sup{|s|;seS}. Using now
h(t):=n"h,(nt) we obtain for te K:

@7(f) % by — )P =(Q™(f) b —f 5 BOY )+ (f© % h, —fP) () =

(@™() 1)+ K@) + (/% h,—fO) D) e B{@™(f)—f, K +supp(h,)): [ K21 +

B, (f®, K +supp(h,))-diam(supp(h,))- || b, |, =

% 1 By(f, K +supp(h,) + L -supp(h)- | K |, + n B, (f¥, K +supp(h,)): || Al ;-

Let now m:=2" and P*(f):=Q™(f)*h,. Then

)= 270, ( LK+ )11 ) 1A,

1
+B,(f%, K+-[-1 1Dk,
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for teK and this is uniformly bounded for neN. With g,(t):=[rh(s2"—k)
h(t+k2™"—s)ds= [ph(s2h,(t—s)ds we obtain P"(f)(0)=(Q>(/)=h,)(@)=
Y (k27 [ph(s2" — k)h,(t —s)ds =), (k2™ ™g,(t —k2™"). Thus r, ,:==k2™" and
the g, have all the claimed properties.

(Step 2) For every meN and every feC*(R™ E) the set
m(f—Yrer.. werfCur. . x)9nk,. .. 1 );neN}isbounded in C*(R™ E),
where - o, =T, ey - -+ > T, ko) and [/ C TP A
In i (X1) - - - G, i Xm)-

We prove this statement by induction on m. For m=1 it was shown in step 1.
Now assume that it holds for m and C*(R, E) instead of E. Then by induction
hypothesis applied to ¥ e C*(R™, C*(R, E)) we conclude that

{n'(f_kasZ, v kmeZ f(rn;kl ..... km? —)gn;kl ,,,,, km);nEN}
is bounded in C*(R™*1, E). Thus it remains to show that

{"'Zk‘ ,,,,, lemTns ky\ ... ,km(f(rn;h ..... km? -)
_ka+1f(rn;k1 ..... ko rkm+1)gn,km+;); neN}

is bounded in C*(R™*!, E). Since the support of the g, ,, ..., is locally finite
only finitely many summands of the outer sum are non-zero on a given compact
set. Thus it is enough to consider each summand separately. By step 1 we know
that the linear operators hi— n(h—Z h(r, )9, ;) (neN) are pointwise bounded.
So they are bounded on bounded sets, by the linear uniform boundedness
principle (3.6.4). Hence

{n‘(f(rn;kl ..... km? —)_ka+1f(rn;k1 ..... km? rkm+1)gn,km+1);nEN}

is bounded in C*(R™*! E). Using that the multiplication RnE—E is a
morphism one concludes immediately that also the multiplication with a map
ge C*(X, R)is a morphism C*(X, E)-»C™*(X, E) for any smooth space X. Thus
the proof of step (2) is complete.

(Step 3) For every £ C*(X, EY there exist x, ,€X and ¢, ,€E such that
(Wt =Yt roevy, s neN} is bounded in C*(X, EY, where in the sum only
finitely many terms are non-zero. In particular the subspace generated by
fgoev, ({zeE’, xe X) is M-dense.

By (5.1.5) there exists a compact set K with f], =0 implying £(f)=0. One can
cover K by finitely many relatively compact U;=R™ (j=1...N). Let
{h;;j =0... N} be a partition of unity subordinated to {X\K, U,, ... ,Uy}.
Then £(f) =Zf= L £ (hyf) forevery f. By step 2 the set {n(h; f— 3 h; f(ry v, .. 1)
In ks, ... .k nEN} is bounded in C*(U,, E). Since supp(h;) is compact in U; this
is even bounded in C*(X, E) and for fixed n only finitely many r, ,, .. ko
belong to supp(h;). Thus the above sum is actually finite and the supports
of all functions in the bounded subset of C*(U;, E) are included in a
common compact subset. Applying ¢ to this subset yields that
{n(h; ) =Yl ... e 2V o) neN} is bounded in R, where
bnrro =L sy ... 1) ... k). To complete the proof one




160 5 Differentiable Maps and Categorical Properties

only has to take as x, , all ther, ,, ...,
and as £, , the corresponding functionals £, \,

x, for the finitely many charts U;=R™

,,,,, w.EE. |
5.1.8 Corollary. Let X be a finite-dimensional separable smooth manifold. Then
the free convenient vector space AX over X is equal to C¥(X,R).

Now we will give an explicit description of the free convenient vector space
AX over an arbitrary £ ®-space X. We shall show that every element of 1X is M-
limit of a sequence of linear combinations of point evaluations and we identify
AX with a space /!X of functions X —R. In general AX is strictly included in
£2(X, RY.

We use infinite sums of reals and start by recalling their definition and basic
properties.

5.1.9 Definition. For any set J we denote will 2,(J ) the set of all finite subsets
of J, directed by inclusion. And for a family ¢;(je J) of reals, Zje st; denotes the
limit of the net 2(J)—R defined by Jo+— ) ;e 5,1, for JoeZ,(J) (by definition
ZJ’ el = 0). .

Obviously any sum equals the sum of its non-zero terms.

5.1.10 Lemma.

() If ) jest; exists, then { je J; t;#0} is countable.
(i) If Y jes|t;| exists, then Y ;t; exists and | ) t;| <) |t;l.

Proof. (i) follows since for any ne N the set {jeJ;|t;|>1/n} has to be finite.
(ii) follows using the Cauchy condition and the triangle inequality. O

5.1.11 Definition, For an £*-space X we define:

(i) £*X denotes the space {f: X - R; suppf< X bounded and | ||, < oo} with
the bornology given by: B</'X is bounded iff U ;5 supp f< X is bounded and
{IfIl;:fe B} =R is bounded; where || f ;=) .. x|/(x)I.

One easily verifies that !X is a convex bornological space.

(i) £ X denotes the subspace {f: X—>R; supp f is finite} of /' X with the
induced bornology.

Obviously #! X is a linear subspace and hence also a convex bornological
space.

5.1.12 Proposition. For any £®-space X the map {_,_>: £'Xn{*(X, R)»R
defined by (f, )< £, 9>=2 rcx f(x) g(x) is a bornological bilinear function.

Proof. Let A be bounded in X and f: X >R be such that supp f€ 4. Let
g: X >R be bounded on 4 and | g| |l .:=supp{|g(x); xeA}. Then ) | f(x)g(x)} <
1111 gl4lle- From this inequality it follows that {_,_} is well-defined, cf.
(i) of (5.1.10). Tt is obviously bilinear and it is bornological by the same
inequality. O
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We will show that £'X is a convenient vector space and that the bilinear
function {_,_> of (5.1.12) induces an isomorphism £*(X, R)=(¢*X). Further-
more, !X will turn out to be itself the dual of some other convenient vector
space.

5.1.13 Definition. For any ¢*-space X we define:

(i) coX denotes the Pre-subspace {g: X —»R; supp g is countable and for every
¢>0 and A< X bounded the set {xe A;|g(x)|>¢} is finite} of £/*(X, R).
(ii) £ X denotes the Pre-subspace {g: X = R; supp g is finite} of (X, R).

5.1.14 Proposition, For every {*-space X the space ¢y X is a convenient vector
space.

Proof. Using the closed embedding lemma (2.6.4) it is enough to show that ¢, X
is M-closed in £7(X, R). So let g be the M-limit in #%(X, R) of a sequence
{(gs) EcoX. Since supp g<= U, . iy supp g, and each g, has countable support the
same is true for g. Assume that for some bounded 4 = X and some £>0 there
exist infinitely many xe 4 with |g(x)| = ¢. Since the functions g, converge to g
uniformly on A there exists an n such that |g(x) — g,(x)| <e&/2 for all xe A. Hence
1g.(x)| >¢/2 for infinitely many x € A, in contradiction to g,ec,X. O

5.1.15 Corollary. For every £®-space X the Con-structure of ¢, X is the initial
one induced by the family ev,: ¢, X =R (x € X). Furthermore, the bornology of co X
has a basis of 6(coX, {eV,; x€ X })-closed sets.

Proof. Both results follow from the corresponding ones of £*(X, R), i.e. (3.6.6)
and the example (iv) of (4.1.21), and the initiality of the inclusion of ¢, X in
£7(X, R). O

5.1.16 Proposition, Let {_,_)>: £ X1/ X —R be the restriction of the bilinear
map in (5.1.12). The induced map fi=<{ f, > is an isomorphism ' X =(£*X).

Proof. Proposition (5.1.12) implies that ¢: /' X —(£ > X) defined by f—~< f,_>
is a linear bornological map.

Now we construct its inverse 1. Let y,€/*X denote the characteristic
function of {x}. Let £ e (£ X); we define Y(£). X =R by ¥ £(x):=¢(y,). Suppose
B is a bounded subset of (£ X). We claim that then

(i) Uzepsupp Y £ <X is bounded;
(i) {d . exl¥f(x)l;£eB} <R is bounded.

Both statements are proved indirectly.

Assume first that (i) fails. Then by (1.2.5) there exist points x, €\ supp ¥ £
(keN), all different, and such that only the finite subsets of {x;;keN}
are bounded. One chooses ¢,€B such that t:=y{,(x,)#0 and puts
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Je=(k/t)xx,- Then {fi;keN}=/*X is bounded since on any bounded
subset of X this set of functions takes only finitely many values. Therefore

B{fi; keN} is bounded which is a contradiction because it contains for any .

keN the value

k k
/k(./;k)=afk(Xxk)=a (W) =k.

Suppose now that (ii) fails. Then one can choose for ke N elements 7, € B
with erxltll/k(x)l >k; and A,=X finite with erAkhpfk(xM >k. Define
Jdx)=sign(y £(x)) for xe A, and f(x)=0 for x¢ 4,. Then {f;; keN} /2 X is
bounded. Therefore B{f;; ke N} is bounded which is a contradiction because it
contains for any ke N the value

£l fi)= erAk (A0 2x) erAkﬁc(x)/k(Xx)=
Yoxea BN LX) =Y 4 W Ax)| > k.

(1) and (ii) together have two consequences: for any £e(£°X) one has Y/ e/ X,
ie. ¥ is a map (/XY —/'X; and this map is bornological.

It remains to verify that ¢ and ¥ are inverse to each other. That i o ¢ =id is
easily verified: Y(o(f))(x)=(of Yi,)={/, xx =f(x). Now the converse com-
position: let £e(£° XY and ge#> X. Since g is a finite sum Y g(x)x, one obtains

PW(ONG =D 9x)e(W (£)) ) =Y gt ()= g(x)¢ (1) =£(X g(x)x,) = /(g)

5.1.17 Corollary. For any £®-space X the space ¢'X is convenient.

5.1.18 Proposition. For any ¢™-space X the space c,X is the completion
O(lFPX)of £2X.

Proof. We first show that /2 X is M-dense in ¢y X.

Start with a gecyX for which there exists an ¢>0 such that | g(x)| > ¢ for all
xesupp g. Let ay, a,, ... be an enumeration of the countable support of g.
Define g,e£*X by g x):=g(x) for xe{a,, ..., a,} and g,(x):=0 otherwise.
Then B:={n(g—g,); ne N} is bounded in ¢, X. In fact, for any bounded 4= X,
the set {x € A; |g(x)|>¢} is finite and hence B(A) has only finitely many values.
Hence the g, are M-convergent to g.

Let now geco,X be arbitrary. Let 4,:={aeX;|g(a)|=>1/n}. We define
gulx):=g(x) for xe A, and g,(x):=0 otherwise. Then the functions g, are of the
special type discussed above, and thus are M-limits of elements in Z*X.
Furthermore, by construction B:= {n(g—g,); ne N} is bounded in ¢, X because
even B(X) is bounded (by 1).

Using (2.6.7) it is now enough to show that every £e(£/2X) extends to a
morphism ¢, X > R. By (5.1.16) ¢ is of the form < f, ) for some fe#'X, so by
(5.1.12) £ even extends to £°(X, R). O
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Remark. According to the proof every gec,X can be written as g=
M-lim,_, , (M-lim,_, . g, ), where g, , €/ X. However, this does not imply that
g is an M-limit of a sequence in /2 X as the example (6.3.1) will show.

58.1.19 Corollary, For every £®-space X the map {_, >:{*Xnc, X —R induces
an isomorphism {1 X =(coX).

5.1.20 Proposition, Let X be an £®-space. Then the Con-structure of £* X is the
initial one induced by the family ev,:{*X >R (xe X). F Furthermore the bornology
of £* X has a basis of a(£' X, {ev,; x€ X })-closed sets.

Proof- For the initiality consider a linear map m: E—~¢'X =(coX) that is
defined on a convenient vector space E, and such that ev cs e E' for all xe X.
Let #: £ X —E' be the linear map characterized by #(x,)=ev, ». For every
ve E the composite ev,o s extends to the morphism »:(v)e(coX). Thus we
obtain a map #: co X =TIz R defined by pr,e s = »(v) that is an extension of the
map ig.° 4, where 1 denotes the initial Pre-morphism E'—TIgR. Using the
M-denseness of /X in ¢, X and the initiality of 1z we obtain a morphism again
denoted #: co X —E'. The original map »: corresponds to #: via the bijection
L(E, (coX))= L(co X, E'), thus is a morphism.

That the bornology of #*X has a basis of o(£'X, {ev,; xe X })-closed sets
follows from (4.1.22), since the set {y,; x€ X }ScoX separates the points of
£1X =(coX). O

5.1.21 Proposition. For any /®-space X the space {'X is the completion
o(LiX)of £1X.

Proof. We first show that the M-adherence of !X in /'X is ¢ X. So let
fef'X\£1X, then the support of f is infinite countable. Let {a,; ne N} be an
enumeration of supp f. We define f,e£} X by f(x):=f(x) for xe{a,, ..., a,}
and f(x)=0 otherwise. Let t,,:=(Z,‘j°=,,+1 | fla)) ™. Since |f|,<oo one has
lim,_, ,t,= c0. An easy calculation shows that {t,(f—f,); ne N} is bounded in
£1X. Thus the f, are M-convergent to f.

Let us show next that every £ e(£2 X extends to an element of (£* X). Define
a map f(x):=£(x,). Then fe/*(X, R), since for every bounded B X the set
{xx; x€ B} is bounded in ¢} X. Using again the map {_,_>: ! Xn/®(X, R)-»R
of (5.1.12) we obtain an £:= {_, f) e (¢* X}’ which extends ¢. Thus it follows from
(2.6.7) that £ X is the completion of £} X. 0O

Remark. We have shown that every fe#! X is the M-limit of a sequence in £} X
which is in contrast to the analogous remark after (5.1.18).

5.1.22 Theorem. Let X be an £™-space and y: X —¢* X be the map associating
to xe X the characteristic function y, of {x}. Then y is an £*-map having the
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universal property that every {™-map g: X —E into a convenient vector space E
factors in a unique way as g=g o y with a Con-morphism . £ X > E.

Proof. We will show that the map y: X —¢' X is up to an isomorphism the map
1y: X—21X, which has the claimed universal property by (5.1.1). Let
@' X—{>(X,R) be the morphism defined by g—{g, > and let the

morphism : £%(X, R >¢'X be the composite £2(X, RY—s(co X} 2/1X,

where incl: co X —£%(X, R) denotes the inclusion and the isomorphism was
described in (5.1.19). One easily checks the identities @ y =1y, Yoix=y, Yo @
=id and, using the universal property of iy, one obtains that o y|,y is the
inclusion of AX in /*(X, RY. From this it follows that |,y is the desired
isomorphism.

A more direct proof is along the following lines: let us define § by
J(f):=3 xS (x)g(x). One easily shows that the series is M-convergent in E and
thus defines an element of E. It is also not difficult to show that g is linear and
bornological, and satisfies goy=g.

The uniqueness is a direct consequence of proposition (5.1.21) O

5.1.23 Corollary. Let g: XY be an £™-map. Then there exists a unique linear
morphism £(g): £ X —{*Y with the property that for any x€X one has
19 (Xx) = Xy~ The functor £1: £ — Con so obtained is isomorphic to the functor
A of (5.1.1). An explicit formula for £(g) is LY@ WY)=Y rcp 160 JX):

5.1,24 Corollary. For any £™-space X and convenient vector space E one has a
natural Con-isomorphism £*(X, E)=L({' X, E).

Proof. One either uses (5.1.3) and the isomorphism in (5.1.23); or one verifies
directly that the bijection described in (5.1.22) is a linear bornological
isomorphism. O

5.1.25 Corollary. The bilinear function £* Xu/* (X, R)—R of (5.1.12) induces a
Con-isomorphism £*(X, R)=(£1XY.

5.1.26 Proposition. Let X be a {®-space. Together with the point-wise multi-
plication the space £* X is a non-unitary convenient algebra, i.e. a convenient vector
space together with a commutative and associative multiplication which is a
bilinear morphism, cf. (3.7.1). Every morphism h: {*X - R, h#0, of non-unitary
convenient algebras is of the form h=ey, for a unique xe X.

Remark, /'X has a unit iff X is finite.
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Proof. That #* X is a convenient algebra is trivial to verify. Let now h: /!X >R
be a morphism of non-unitary convenient algebras. Then by (5.1.25) there
exists a ge/™(X,R) with h(f)=<f,g)> for all fe£'X. Assume that the
support of g is not single pointed. So let x, yesupp(g) be different. Then
0= h0)=h(),x,)=h())h(x,) = g(x)g(y) #0, contradiction. Hence g=t-y, and
thus h=t-ev, for some xe X and teR. Since t=h(x,)=h((x.)?)=h(x.))* =t
we conclude that te {0, 1}. Thus h#0 implies h=ev, for some x. O

5.1.27 Remarks

(i) Since the functor £* —Born has a left adjoint (cf. (1.2.4)) one also obtains
that the forgetful functor Con—/*—Born has a left adjoint.

(ii) The inclusion functor %% —Diff, where Diff denotes the category of
diffeological spaces of [Nel, 1986] has also a left adjoint (one takes the .Zr4™-
structure generated by the curves of the given diffeological structure). One
similarly obtains that the forgetful functor Con— Diff has a left adjoint.

(iii) If X is an ¢™-space whose structure is the coarse one (i.e. X itself is
bounded), then the convenient vector spaces ¢, X, £1 X, /*(X, R) are all Banach
spaces and coincide with the spaces usually associated to the set X, cf. [Jarchow,
1981, p. 120] and [Jarchow, 1981, p. 26].

(iv) Every space of the form #'X is up to an isomorphism the dual of a
convenient vector space, namely ¢, X. For any convenient vector space E, the
canonical embedding 1;: E—E" yields a retraction 1§: E” —»E' to1g: E'—E". For
X =N with the coarse bornology, co(N)=c, is an example of a convenient
vector space which is not isomorphic to a space of the form £ X, since cp=£"
and the inclusion ¢,—¢* admits no retraction, cf. [Jarchow, 1981, p. 207].

(v) For k>1 let ¢: Con— %4" be the forgetul functor and A its left adjoint
according to (5.1.1). For any convenient vector space E the identity map E—E
has a unique factorization 1p=¢15, where 1, is the (non-linear) #;4*-map
15 E->A@E and £ is a Con-morphism ¢: A¢ E— E. By differentiation we get, with
£1:=(5)(0), the equality 1;=¢/a¢,. We thus conclude that any convenient
vector space E is a direct factor of one which is free over %4~

5.2 Convenient co-algebras
5.2.1 Defimition. (i) A conuvenient algebra E is a convenient vector space (also
denoted E) together with a compatible algebra structure, or equivalently with

two Con-morphisms

WwERE—E (called multiplication)
e R-E (called unit)

such that with the isomorphisms mentioned in (3.8.4) one obtains the following
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commutative diagrams:

- u®id - ~ = -
EQE (ERE)®E~EREDE)
iu lid®ll

E L ERE

EQE~EQ®E E—R®E

| e
v
E = E EQE=EQE
In words, the multiplication has to be agsociative and commutative, and ¢ has to
be a unit with respect to p.

(i) The category ConAlg has as objects the convenient algebras and as
morphisms g: E — F between convenient algebras E and F the Con-morphisms
for which the following diagrams commute:

5 9&yg a id
E®E F®F R—R

T "

E—F E—F

u

(ili) A convenient co-algebra E is a convenient vector space (also denoted E)
together with a compatible co-algebra structure, i.e. two Con-morphisms

wE—>EX®E (called co-multiplication)
eE-R (called co-unit)
such that with the isomorphisms mentioned in (3.8.4) ane obtains the following
commutative diagrams:
p®id

EQE (ERE)RE=EXERE)

=
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In words, the co-multiplication has to be co-associative and co-commutative,
and ¢ has to be a co-unit with respect to u.

(iv) The category ConCoAlg has as objects the convenient co-algebras and as
morphisms g:E — F between convenient co-algebras E and F the Con-
morphisms for which the following diagrams commute:

i id
EQ®E FRF R———R

S

E————F E—F

In the following .# shall always denote either C* or £*. We want to show
that the functor A:.# — Con of (5.1.1) lifts to a functor also demoted by
A: 4 — ConCoAlg.

8§22 Lemma, Let X and Y be .4 -spaces, F a convenient vector space and
fAXnAY — F a bilinear morphism, cf. (3.7.1). If fe (1ix111y) =0 then f=0.

Proof. For any fixed ye ¥ the map f(_, 1y(y)): AX — F is a linear morphism
and f{_, 1y(3))°15x=0. Hence f(_,1,(y))=0 by the universal property of i:
X — 1X. Letnow X € A X be arbitrary. Then f(x, _): A¥ — F is a linear morphism
and f(x,_) =1, =0 by the first part of the proof. Hence f (%, _)=0 by the universal
property of 1y: Y — AY. Since xe 1X was arbitrary we conclude that f=0. [

523 Lemma., Let X and Y be .#-spaces. There exists a unique bilinear mor-
phism wey y: AXTAY — A(X11Y) that satisfies sy y© (1xTiy) =1xy.

Proof. By the previous lemma (5.2.2) uniqueness is clear. To show the existence
consider 1y ;XY - A(XnY) By the universal property of X—+1X the
associated .#-map X - .#(Y,A(XnY)) extends to a linear morphism
AX - #(Y,A(X1uY)). By the universal property of ¥ — 1Y we have an isomor-
phism #(Y, M(XnY))=L(AY,A(XnY)). Thus we obtain a linear morphism
AX —» L(AY, A(X1nY)) which corresponds by (3.7.3) to a bilinear bornological
map #ey y: AXTAY - (X1 Y). O

5.2.4 Propesition. Let X and Y be .#-spaces. Then sy y: AXTIAY —» A(X1Y)}as
defined in (5.2.3) has the universal property of the tensor product of A.X with 1Y, i.e.
AXnY)ZAX®AY.

Proof. Let f: AXnl Y — F be a bilinear bornological map into a convenient
vector space. Then fe(iym): Xn¥ - F is an .#-map and by the universal
property of XnY— A{XnY) there exists a unique linear morphism
fRMXnY)—F satisfying f oiguy=f°(ixmity). This map f~ satisfies also
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f "y y=f, since the composites of both sides with 1,11y coincide and thus
f sy y=f by lemma (5.2.2). Unlqueness is obvious, since any solution f~ of

[ o my y=f satisfies also f o1y p=f ¢ wey y o (ixMiy)=f°(1xM1y) and hence has -

to be unique by the universal property of 1y, y: XY - H(X1Y). |

Remark. This proposition is rather surprising, since the corresponding state-
ment: C*(Xn¥, R)~ C* (X, R)&® C*(¥, R) fails to be true in general, cf. (vi)
in (7.4.5).

Now we are able to show that AX is always a convenient co-algebra.

5.2.5 Proposition. The functor A:.d — Con lifts to a functor Ai:. M —
ConCoAlg. For any .#-space X the convenient co-algebra structure on AX is as

“4) 5 AXnX)=AX)RMX), where A
M)

follows: The co-multiplication is A X ———

denotes the diagonal map A: X — X1X, x+>(x,x). The co-unit is AX

A{*})= R, where {x} denotes a singleton with its unique .#-structure ((i) of
(1.1.6)) and where * denotes the constant map %: X — {#}, x+o*.

Proof. We show first that X is a convenient co-algebra. Co-associativity
follows from the commuting diagram:

Anid

XnXx XnXnX

A idimA

A
X— XnX.

Co-commutativity follows from the commuting diagram:

AnX ~ XnX
s
X = X, where the isomorphism is (x, y)—(y, x).

That A(#) is a co-unit follows from the commutative diagram:

X_ =, {+nX

lA ]*nid
XnX = XnoX.

In order to show that A lifts to a functor it is enough to verify that Afis a
convenient co-algebra morphism. This follows immediately from (fiif)eA=
Aofand xof=x. O
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Now we are going to construct an adjoint to A: .# — ConCoAlg. For this we
need the

5.2.6 Definition. Let E be a convenient co-algebra. An element xe E is called

co-idempotent if e(x)=1 and u(x)=x® x. The set of all co-idempotent elements
of E is denoted by I(E).

5.2.7 Propasition, For every convenient co-algebra E the map ev,:
ConCoAlg (R, E) = E yields a bijective map onto the subset I(E) of the co-
idempotent elements of E.

Proof. The inverse map is given by xi—(t+>tx). These two maps define
obviously a bijection between L(R, E)and E and it remains to show that x is co-
idempotent iff f,: t——1x is a co-algebra morphism: u(x)=x®x gets translated
into (u=f)(t)=tu(x)=t(x®@x)=(Ex@x)=(f; ®F) @) =(£. ® f) (u(t)). And
gx)=1 gets translated into {ef,)(t) =te(x)=t=¢(t).

5.2.8 Proposition, The map E—I(E) extends to a functor I: ConCoAlg — 4.

Proof. For a convenient co-algebra we put on I(E) the initial .#-struc-
ture induced by the inclusion I(E) — E. This extends clearly to a functor since

e(f(x))=f(e(x)) and u(f(x))=(f&f)(u(x)) for any convenient co-algebra
morphism. O

5.2.9 Theorem. Let .# be either C* or £®. The functor A: 4 —ConCoAlg
is left-adjoint to the functor I. ConCoAly — 4.

Proof. The unit of the adjunction is given by 1y: X — I(AX). That 1,: X — 1X
really factors over I(A1X) is obvious, since ge x=lye*¥=1:X—->R and
Loty =1xnx° A and hence e(ix(x))=1 and u(1yx (x)) =145 (x, X)=x R x.

The co-unit of the adjunction is given by the map #: A(I(E)) — E associated to
the inclusion {(E) — E using the universal property of I(E) — A(I(E)), ie. # is
determined by # e 1, =incl: J(E) - E. We have to show that this map # is a
convenient co-algebra morphism. Composed with ¢ it has to be the map
assaciated to the composition of ¢ with the inclusion I(E)— E. Since this
composite has by definition of (E) constant value 1, the composite ¢ 4 is the
co-unit of A(I(E)). Next consider the composite y=#. Composed with 1, it
yields pl; i, which coincides by the definition of 1(E) with the map x> x ®x, i.e.
with

®cA=@ o ((n21 g oiyg))°A=® 2 (yuy)e (g e A=
(n®n)> @ (II(E)HI'I(E)) cA=n®n)° Ugnie A= &n)= e 1y (E)y>

thus pen=(n&n)>p
Now let f: X — I(F) be a smooth map, F being a convenient co-algebra. Then
there exists a unique linear morphism f: 1X — F that satisfies f o1, =£. It can
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be factorized as f"=y°Af (Afoix=1;5f, hence noAfeiy =noiysof=f and
neif=f") and thus it is a convenient co-algebra morphism as composite of
convenient co-algebra morphisms. Its well defined restriction f110X)— I(F)
composed with 1, gives also f. Thus we verified the universal property of
X = I{AMX)). O

8.2.10 Corollary, The functor A: .4 — ConCoAlg preserves colimits.

5.2.11 Proposition. R~A({%}) is a convenient co-algebra with co-unit
id:R— R and co-multiplication R=R® R, t+—t-(1®1). Furthermore, .the
co-unit &: E — R of any convenient co-algebra is a convenient co-algebra morphism.

Proof. That the co-unit and the co-multiplication of A( {#}) correspond via the
isomorphism R = A({x}) to the mentioned maps is easily checked. The map
e:E — R preserves the co-unit since ideg=¢; and that it preserves the co-
multiplication y follows by composing the diagram which expresses that ¢ is a
co-unit with respect to u with the natural isomorphism ()= R & () O

§,2.12 Proposition. For any two convenient co-algebras E, and E, the tensor

y . ~ &e =
product E, & E, is a convenient co-algebra with co-unit E; ® E, 825 L RER

~R and  co-multiplication E,®E, 1Ok (E,®E,)®(E,®E,) =

(E, ® E;)® (E, ® E,). Furthermore, the co-multiplication y:E — E ® E of any
convenient co-algebra is a convenient co-algebra morphism.

Proof. That E, ® E, is a convenient co-algebra follows by forming the tensor
product of the corresponding diagrams which express that E; and E, are
convenient co-algebras.

That u:E - E® E preserves the co-unit follows from the diagram which
expresses that & is a co-unit with respect to u. That p preserves the co-
multiplication can be obtained using the co-associativity twice. O

§.2.13 Proposition. The functor (_)&® (_): Con x Con — Con lifts to a functor
(L) (L): ConCoAlg x ConCoAlg — ConCoAlg.

Proof. That this functor is well defined on objects is (5.2.12). So let f* E, —» E,
and ¢g:F, - F, be two convenient co-algebra morg]hisms. Since one has
f®g=(f&F,)=(E, ®g) it is enough to show that f& F is a convenient co-
algebra morphism. The Con-morphism f&® F:=f& id preserves the co-unit and
the co-multiplication since f does it. |

5.2.14 Theorem. A product in ConCoAlg of two arbitrary conuvenient co-
algebras E, and E, is given by E,®E, with the projections
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©ts E,®R=~E,and E,®E, LN &® E,~E,. The functor
A: M — ConCoAlg preserves also finite products, cf. (5.2.10).

E

El ®E2

Proof. By (5.2.13) we know that E; ® E, is a convenient co-algebra and the
described projections are convenient co-algebra morphisms. So it remains to
show the universal property. Let E be an arbitrary convenient co-algebra and
let f;E—E; (je{l,2}) be two convenient co-algebra morphisms. Define
FE-E ®E, by f=(fi®f,)c E—~>E®E > E, ®E,. By (52.12) and (5.2.13)
this yields a convenient co-algebra morphism. That its composites with the
projections give f; and f, follov!s since the (f;)* carries the co-unit ¢; to &, the co-
unit with respect to u: E - EQE.

It remains to show the uniqueness. So let f: E — E; ® E, be any convenient co-
algebra morphism with the property that its composites with the projections
give ~f1 and f,. Up to natural isomorphisms one has f=fo(E®e)spuz
(E,®E,)®¢e) (f®f) e p=((E, Re) R (e, ® ED)e(f®f)eu=(f; & 1) .

That 4 preserves finite products is just a reformulation of (5.2.4) since the co-
algebra structure on the tensor product is the unique one making the projections
onto the factors convenient co-algebra morphisms. O

5.2.15 Proposition. The duality functor (_): Con® — Con lifts to a faithful
Sunctor (_)': ConCoAlg®® — ConAlg.

For a given convenient co-algebra E with co-unit & and co-multiplication u the

dual E is a convenient algebra with unit ReR —— E' and multiplication

E’®E’—>(EC§)E)’—”: E', where the map E'QE - (EQE) is the one gs-

evIiev mult

sociated to (E'nE"Y(EnE) > (E'nE)n(E'nE) —5 RoR —— R.

Proof. The axioms for a convenient algebra are expressed by commutative
diagrams. For E’ these can be obtained by applying the duality functor to those
expressing that E is a convenient co-algebra and composing where necessary
with the natural transformation E'® E' - (E® E). The map E—E’ certainly
extends to a functor that is faithful since any morphism f:E — F is just the
restriction of f**: E” — F" via the initial morphisms i;: E — E” and 1;: F — F".

=

Remark. See (i) in (7.4.5) for an example where E’' ® E' —» (E® EY is not an
isomorphism.

5.2.16 Proposition, The functor .#(_,R): M — Con lifts to a functor
M (_, R): M°P — ConAlg such that for any 4 -space X the algebra operations on
M (X, R) are induced pointwise by those of R, i.e. ev.: # (X, R) - R is an algebra
morphism for all xe X.
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Proof. That the pointwise defined multiplication on #(X,R) is a
Con-morphism follows immediately since ev,: .4 (X, R) - R (x € X)is an initial
family. Furthermore, .# (f, R) is an algebra morphism since composed with ev,
it is the algebra morphism ev ). O

52,17 Corollary. The functors 4 (_, R): #°° — Condlg and (_)°Ai: 4°® —
ConCoAlg °® — ConAlg are naturally isomorphic.

Proof. In (5.1.3) it was proved that these two functors considered as
Con-valued functors are naturally isomorphic, the isomorphism (AX) —
A (X, R) being given by /- e1y. Thus it remains to show that this iso-
morphism is an algebra morphism, ie. eV, {irev,(fo1y) is an algebra
morphism for all xe X. This follows easily since i(x) is co-idempotent in A(X),
hence defines a co-algebra morphism R —» AX whose dual (AX) > R =R is
just evyy,. (I

52,18 Lemma. Any co-idempotent element ecAX is an algebra morphism
A(X, Ry - R

Proof. Being co-idempotent, e satisfies ¢(e)=1 and p(e)=e®e. When e is
considered as a functional on .# (X, R) this means the following: e(1)=1 and
e(x—h(x, x) )=e(x—e(h(x, _))). Choosing h(x, y)=f(x)g(y) one obtains
e(fg)=e(f)elg), ie. e:.# (X, R) - R has to be an algebra morphism. This can
also be seen by applying the duality functor (_): ConCoAlg (R,iX)—
ConAlg (.# (X, R), R) to the co-algebra morphism R — AX, t—te. i

§.2.19-Remark. For which .#-objects X does one have I(AX)=X? Equiv-
alently: when is every co-idempotent element of AX < .# (X, R) of the form ev,
for some xe X? According to the previous lemma this is true for those X for
which every convenient algebra morphism .# (X, R) = R is the evaluation at
some point of X. We will show in (5.2.22) that this holds for all X in case .# =£".
For the case .#=C> a large class of spaces for which even every algebra
morphism C*(X, R) - R is a point evaluation (often called Milnor’s exercise)
was given in [Kriegl, Michor, Schachermayer, 1985].

As in section 5.1 we are able to obtain more results in the case where . # =¢.
First we describe the map sy, y more explicitly. We recall that x—y,, X - £'X
is a description of the free convenient vector space over an £*-space X, cf.
(5.1.22).

5.2.20 Proposition, For any two ¢™-spaces X and Y the map sy y
£ Xnst Y—£H(XnY) is given by (f, g)—((x, y)—=f (x)g ().

Proof. The map ey, y was defined in (5.2.3) as the unique map » that satisfies
w02 (Ix My )= lyny - Thus se(xs, X)) = X, y)- EVEry f€ X can be written as the M-
convergent sum (i.e. as M-limit of the finite subsums) f= Zx f{(x)x,, see the proof
of (5.1.21); similarly for ge/'Y. So we obtain #(f, g)=ne (Y . f(X)1x> 2 ,d(M 1)
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=3 S (X g w1, Xy) =2 oS (X)G(N) X x.5)> using that s is a bilinear mor-
phism and hence has to commute with M-convergent sums. O

Next we describe explicitly the convenient co-algebra structure on ¢'X.

5.2.21 Proposition, The co-unit &:£'X — R of the co-algebra (X is given by
e(f)=2.xf(x). The co-multiplication p:/'(X)—£'X®4'X =M (XnX) is
given by p(f)(x, x):=f(x) and p(f)(x, y)=0 if x#y.

Proof. Recall that 1: X — A(X ) has only co-idempotent values. Thus e(y,)=1
and uly,)=1,® .. Using again that f= fo (x)yx, for all fe/*X one obtains
o N)=e0f (X)) =D/ R)elt) =2 f() and  p(f)=pQf(X)1:)=
S fOV() =D f ) Lx ® =2 S (X)X, - 0

Finally we show that /% can be identified with a full coreflective subcategory
of ConCoAlg.

§.2,22 Theorem. The functor £':{™ — ConCoAlg is full and faithful and has a
right adjoint.

Proof. Since X1 (A(X)) s initial we only have to show that it is bijective. It is
injective, since for any xe X one has y,e/* (X, R) and 1(y)(x.)=x.(»)=1 iff
y=x. Now we prove surjectivity. Let ee£'X be an arbitrary co-idempotent
element. Then &(e)=1, ie. ) e(x)=1; and ple)=e®e, ie. e(x)=e(x)e(x) and
0=-e(x)e(y) for x #y. Thus e(x)€ {0, 1} and for exactly one x one has e(x)=1, i.e.
e=Y,. O

Remark., The functor #! is not an equivalence of £* with ConCoAlg. In order
to see this, one can use that the dual of the algebra C is a convenient co-algebra
which is not isomorphic to some £1(X), since the only element of C’ that is co-
idempotent is the real-part functional Re(_).

5.3 Cartesian closed categories of convenient vector spaces
8.3.1 Definition. With Con™ we denote the category having as objects the
convenient vector spaces and as morphisms the smooth maps, i.e. the -

maps.

5.3.2 Propesition. The category Con™ is cartesian closed. Products are formed
as in Con.

Proof. Recall that the smooth structure of a product of convenient vector
spaces E; has as structure curves those curves ¢:R — Il , E; for which all
projections pr;ec:R — E; are smooth. Thus a map f: E — [, E; is smooth iff
pr;of: E - E; is smooth for every je J. This shows that the product is formed as




174 § Differentiable Maps and Categorical Properties

in Con. Since for convenient vector spaces E and F the space C*(E, F) is a
convenient vector space, the functor C* (_, _) which makes C* cartesian closed
lifts to a functor making Con® cartesian closed. O

The reason for being interested in cartesian closed subcategories of
Con™ is the following. We have discussed so far a rather maximal setting for
differential calculus in vector spaces. For more restricted questions it could be of
interest to use certain subclasses formed by convenient vector spaces having
additional properties like, for example, nuclearity (implying the approximation
property), or some stronger form of completeness, or even reflexivity. In order to
be able to work inside a subcategory one should, of course, be assured that the
important constructions developed so far (like the internal hom-functor) re-
strict to this subcategory. We shall discuss now the problems that arise in this
connection.

Let us begin with a categorical lemma characterizing reasonable cartesian
closed subcategories:

533 Lemma. Let .o/ be anon-void, full, replete (cf. (8.1.1)) subcategory of Con™.
Then «f is cartesian closed iff it is closed under the functors 1 and C*(_, ) and
contains {0}.

Proof. (=) The space {0} must belong to .o/, since cartesian closedness re-
quires a terminal object. The case where all objects in .o/ are isomorphic to {0} is
trivial. So now let 4, be a non-terminal object of /. We will twice use the
following fact: if there exists a smooth map ¢:E;—E, such that ¢,:
C™(Ao, E;)>C*(Ay, E,) is a bijection, then ¢ : E; — E, is a diffeomorphism. In
order to see this, let xeA4,, x#0. Then the subspace generated by x is
complemented and isomorphic to R (the linear functionals separate points).
Using that ¢, commutes with f* for any morphism f, one concludes that
¢, C*(R, E;)»C>*(R, E,) is a bijection as well, and thus @:E,—E, is a
diffeomorphism.

Let us denote by EnF with pr,: EnF—E and pr,: ENF—F (resp. Eng F with
py: EnyF—E and p,: Eny, F—F) the product of E and F in Con™ (resp. in & ).

First we want to show that E,nnE, €|« | for all E, €|« |. Using repleteness it is
enough to show that E,nE, =~ E,n, E,. By the universal property of EnF there
exists a unique morphism ¢:Eny F—EnF satisfying pr;° ¢ =p; for je{1,2}.
And by the universal property of the product in & (resp. in Con™)
((pl):';.: (Pz)*) C'DO(A09 EHKrJF)_"Cw(AmE)X Cm(AOaF) (resp- ((Pr1)*a (prz)*)3
C*(A,, EnF)—C®(Ay, E)x C*(4y,F)) is a bijection. Since (Pr;)y ° @y
=({pr;)° @), =(p;), one concludes that ¢, : C*(4o, Eng F)—>C*(4,, EnF)isa
bijection; so the claim follows from the fact stated above.

Since EnyF and EnF have just been proved to be isomorphic and the
product is determined only up to isomorphisms we may assume that ¢:
EnF—En,, F is the identity map. Let [E, _] denote the adjoint functor to (U)nkE:
o —of and let ¢: [E, FInE— F denote the counit of adjunction. By the universal
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property of ev: C*(E, F Y, E—F there exists a morphism zn: [E, F]->C®(E, F)
such that eve(znE)=e. By a similar argument as for the product we conclude
that ¢,: C¥(A4,, [E, F1)»C>®(4,, C*(E, F)) is a bijection and hence ¢ is a
difftomorphism. Using repleteness we conclude that C*(E, F)e|.«/ |.

(«=) is trivial. W)

In order to determine what additional properties can possibly hold for all
objects of some non-trivial, full, replete, cartesian closed subcategory of Con®
we show that there is a smallest one and give a description of it.

8.3.4 Corollary. The smallest cartesian closed, full, replete subcategory of Con®
that contains R is formed by those objects which are isomorphic to spaces obtained
from {0} by finitely many successive applications of the functors (_)n(_) and
Ce(_,R).

Proof. Since any cartesian closed, replete, full subcategory has to be closed
under these functors and has to contain a terminal object, the objects so
described have to be contained in any category of that type. Since the full
subcategory formed by these objects is replete and closed under _n_, it is,
by (5.3.3), enough to prove that it is closed under C*(_, _). So let £ and F be
objects obtained in the described way. Using the equations C*(E, F nF,)=
C*(E, F,)uC>(E, F,) and C*(E, C*(F, R))=C*(EnF,, R) one obtains by
induction on the length of the expression for F that C*(E, F) can be represented
in the same way. O

Most of the interesting additional properties for convenient vector spaces are
inherited by subspaces or by quotients, hence in particular by complemented
subspaces. Thus it is natural to consider the smallest non-trivial cartesian closed,
full, replete subcategory of Con® that is also closed with respect to complemen-
ted subspaces:

5.3.5 Proposition. The smallest cartesian closed, full, replete subcategory of
Con™ that contains R and is also closed under complemented subspaces is formed
by those spaces which are isomorphic to complemented subspaces of spaces
obtained from {0} by finitely many successive applications of C*(_, R). This
category is in addition closed under L(_, _) and C*(X,_) for every separated
separable finite-dimensional smooth manifold X.

Proof. Again these spaces have to be contained in every category of the
described type. Let conversely <7, be defined inductively by «,:={{0}, R} and
o, ,1:={E;E is isomorphic to a complemented subspace of a space C*(E,, R)
with E, e o7, }. The class of objects described above is exactly the union of all <7,.
So it remains to show that this union gives a cartesian closed full subcategory.
For this it is enough to verify that it is closed under the functors (_)m(_) and
C=(_, _). We use the symbol § for complemented subspace.

Since {0} e ##, and ExC*({0}, E) we obtain for all ne N, that o/, <., ,.




176 5 Differentiable Maps and Categorical Properties

We prove now by induction on # that any finite product I1E; of N spaces
E;e.«/, belongs to <7, , ;.

(n=0) Then IIE; § RY § RN and RN § C*(R, R). The last inclusion is given by
(x,,)»—»Z,,EMx,, “h((-)—n), where h: R—[0, 1] is a smooth function with support
in [—1, 1] and with h(0)=1. A left inverse to the inclusion is given by
fH(f(n))nEN'

(n>0) Then E;§5C*(F;, R) with F;e.s,_,. Hence NE;§TIC*(F;, R) 5
C*(I1F;, RY) 5 C*(ILF;, C*(R, R))~C*(Ru(ILF,), R), and Rr( I1;F;)e <, by
induction hypothesis.

Let now Ee o/, and Fe o/, .. i.e. F§C%(F, R) with some F, €.s/,. Then
C*(E,F)§C”™(E,C™(F,,R)~C™(EnF,,R), and E,nF,es,,,, Iie.
C*(E, F)esd,, ,.

: In order to show closedness under L(_, _) one uses that L(E,, . .., E,; F)is
isomorphic to L(E,; L(....; L(E,; F)...)) and L(E, F) is a complemented
subspace of C*(E, F), a retraction being given by fi—f'(0).

For the closedness under C*(X, _) one uses that any separable manifold X
embeds into some R™ and has a tubular neighborhood in this R™. One then
obtains an embedding of C*(X, F)into C*(R™, F) by taking a smooth function
h:R™—R with support in the tubular neighborhood and equal to 1 on X and
defining a linear morphism C* (X, F)—C*(R™, F) by f—(fo p)- h, where p is the
projection of the tubular neighborhood onto X. A left inverse is given by fiof| oy

O

We will show now that several properties one might hope for cannot hold for
all objects of a cartesian closed full replete subcategory of Con® by verifying that
they already fail for one of the spaces C*(R, R), C*(C*(R, R), R),
C*(C*(C*(R, R), R), R).

5.3.6 Examples concerning the convenient vector space E:=C*(R, R). E is
isomorphic to s¥ [Mitiagin, 19611, where s denotes the Fréchet space of fast
falling sequences, cf. [ Jarchow, 1981, p. 28].

E is a universal nuclear Fréchet space, cf. [Jarchow, 1981, p. 502], i.e. every
nuclear Fréchet space can be realized as subspace of E. Since the complemented
subspace s is not strongly nuclear [ Jarchow, 1981, p. 506] the same is true for E.

Let us show that already E has bad behavior with respect to linear differential
equations, i.e. equations of form ¢'= s c, ¢(0)=c,, where »:E—E is a linear
morphism and c,€E and a solution is a weakly differentiable (hence smooth)
curve c: R—E. It is enough to find some complemented subspace E, with bad
behavior with respect to linear differential equations, since the solutions of the
differential equation on Ex E,nE, that is given by the operator »:10 and initial
condition 0 (x,, y,) are the curves ¢t —(c(t), y,), Where c is a solution of the
differential equation on E, given by » and initial condition 0 x,.

() An example where no solution exists: we consider on the complemented
subpace s of E the linear operator m:(x;, x5, ... )—(0, 12x,,...,n%x,, ... ).
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Suppose a solution ¢ of ¢’ = = ¢ with ¢(0):==(1,0,...,0, ... ) would exist; then
c(t)=(1,1t, 22, ..., nl £ ...), but this curve does not have values in s.

(ii) An examplie where solutions exist but are not unique: we consider the
complemented subspace RN of E and the linear differential equation given by

m(Xy, Xgy ... )=(X, X3,...) and ¢o:=(0, 0,...). Then ¢ is a solution iff
¢,=c¢,+,. hence the solutions are (c;, ¢y, cy,...), where ¢, is infinitely
flat at 0.

(iii) An example where a unique but non-analytic solution exists: consider
»: E—E defined by »(f):=f". Then one verifies that the unique solution c is
given by c(t)(s):=co(t + ). Pointwise the Taylor series of ¢ at 0 is

(O] » gi) .
(ZC 0 )tk>(s’=zc TR

Choose a ¢, such that

(0
{cok—f)t" ke NO}
is unbounded for any ¢ #0. Then the Taylor series of ¢ at 0 does not converge in
E for any t #0, since composed with ev, it does not converge.

It is well known that the inverse mapping theorem is wrong for E. The
standard example is the smooth map exp, : E—E. The derivative is (exp, ) (g)(h)
=h-(exp=g), hence (exp, ) (g)e GL(E) for all geE. Let h:R—R be a smooth
function with compact support and h(t)=1 for ¢ close to 0. Define c(t)(s):=h(ts).
Then ¢ is a smooth curve through the constant function 1=exp,(0). But
c(t)¢exp,(E) for all t#0, since Oec(t)(R). Hence exp, is not even locally
surjective with respect to the Mackey-closure topology.

The following example showing that local injectivity may also not be satisfied
arose in a discussion with Peter Michor. Let E:=(R?*)V and f: E—E be defined
by f((xn Yu)u):=(h(X,, ¥u))n, Where h:R?—R? is defined by h(x, y):=(e*cosy,
¢* sin y). Obviously the derivative of h is invertible for all (x, y)e R* and thus
f'{x)e GL(E) for xeE. But f((x,, Yu))=f((x,, ¥.).) provided y,—y,€2nZ.
Infinitely many points with this property are contained in any non-void open
subset of E.

In order to show that the group GL(E) of automorphisms is not open with
respect to the M-closure topology in L(E, E), we consider the smooth curve
¢:R—L(E, E) defined by c(t) (f):=f+1tf . One has ¢(0)=id € GL(E), but

c(t) (sv—»k-exp(—i))=<sn—»k-exp<—;)+t'k~<—%>-exp< —;)) =0 for £#£0,

hence c(t) is not injective and thus not contained in GL(E) for t #0.

The theorem of Borel (cf. (7.1.2)) does not generalize to functions f: E—R; i.e.
given symmetric maps f,€ L(E, . . ., E; R) there need not be a smooth function
f: E-R with derivatives f ™(0)=f, for all ne N. This was shown in [Colombeau,
1979] for RN and extends immediately to E.
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The inversion map inv: GL(E)—GL(E) is not continuous (for the final top-
ology induced by the smooth curves): we show this first for the complemented
subspace s of E. Define ¢c:R—>GL(s) by c(t){(x):=0c;—h()xq,...,
X,—h,(t)x,, . . . ) where h,(t):=(1 —27")h(tn) for some smooth function k with
compact support and h(f)=1for |¢| < 1. Suppose ev, o inv e ¢: R—sis continuous.
Using x:=(1, 3,..., (3)...) yields (invec)(1/n)(x)=(c(1/n)) (x)
=(...,2"x,,...) which does not converge to x=(invec)(0)(x). (Use: 1—
h,(1/m)=1—(1—(3)")h(1)=(3)"). Now let E, be a complement to s, ie. E=
S@E,, and consider the smooth curve &:t—(c(t)®id)e GL(s)® GL(E,)<
GL(E). Then (&(t))"'=(c(r)) ", id) and hence t+ (&(¢)) ! is not continuous.

8.3.7 The convenient vector space E:=C®(C®(R, R), R). Since RV is a com-
plemented subspace of C™(R,R), the dual [RNY=RM™ s a
complemented subspace of C*(R, R) which is complemented in E. Since the
locally convex topology of R™™ is not Baire ([ Jarchow, 1981, p.97]) and the
theorem of Borel is wrong for curves ¢: R—R™) (no smooth curve ¢ can have, for
all n, ¢™(0) equal to the nth unit vector), both statements also hold for E.
Furthermore, one has the following chain of complemented subspaces

[R(N)(_B RM é (R(N))N =L(RN, R)NZL([RN, RN)% C“’(RN, Rm)é
C*(RN, C*(R, R))=C*RYDR, R)§ C*(C*(R, R), R)=E.

The M-closure topology of the first space is no topological vector space
topology, cf. (i) of (6.2.8), and hence the same is true for E.

5.3.8 The convenient vector space E:=C?(C*(C*(R, R), R), R). Since the non-
nuclear Fréchet space C*(C*(R, R, R) (cf. [Meise, 1980]) is a complemented
subspace of E, also E has to be non-nuclear. Furthermore, one has the following
chain of complemented subspaces:

(RN)(N)@(R(N))N é (RN)(N)@((RN)(N))N;((RN)(N))N=L(R’ (RN)(N))N
=L([R‘N), (RN)‘N))=L(R(N), ((R(N))N)I)gL((R(N))N’ (R(N))’)
§ C2((RMN, C*(R, R))
2 CP((RVPNOR, Ry= C=((RM)N, R)
SC(C*(C*(R, R), R), R)=E;
for the last § compare with the proof of (5.3.5). The first space is not B,-
complete [ Jarchow, 1981, p. 333] and hence the same is true for E.

It would be of great interest to know whether the spaces R’ and R for J
with cardinality 2% are complemented subspaces of some iteration of C*(_, R),
because they fail to have several important topological properties (e.g. both
spaces are not webbed [ Jarchow, 1981, p. 98] and the second is not Schwartz
[ Jarchow, 1981, p. 202]).
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After having shown that objects which fail to have certain nice properties can
be found in every non-trivial cartesian closed subcategory of Con®, we shall
now prove that stronger completeness properties hold for all objects of certain
subcategories.

5.3.9 Proposition. The full subcategory of Con®™ having as objects all convenient
vector spaces that are complemented subspaces of their biduals is cartesian closed.
It is also closed under complemented subspaces and under C* (X, _) for any smooth
space X.

Proof. We use (5.3.3). Closedness under products follows from the isomor-
phism (EnF)’ =~ E"nF". It remains to show closedness under C*(X,_). Suppose
the embedding 1 of E in E” admits a retraction p: E”—E. We have to show that
1= (x, 5y: C2(X, E)=»C®(X, E)’ admits a retraction. A direct calculation shows
that p, - ¢ suffices, where ¢:C*(X, E)'=C*(X, E") is the map associated to
C*(X, EY'nXnE'—R given by (£, x, y')—=£{g—¥'(g(x))). (]

Remark. An example of a convenient vector space that is not complemented in
its bidual is the Banach space ¢, cf. (iv) in (5.1.27).

5.3.10 Proposition. The full subcategory of Con™ whose objects are isomorphic
to duals of convenient vector spaces is cartesian closed.

Proof. Follows immediately from the isomorphisms E'nF =(EunfFy,
CX,E )= L(AX,E)=(AX ® EY, where AX denotes the free convenient vector
space over the smooth space X. O

If one tries to restrict the convenient vector spaces by a stronger completeness
condition the difficulties that show up are usually due to the non-invariance of
such conditions under bornologification.

54 Reflexivity

For any separated preconvenient vector space E the canonical map 1;: E->E" is
a Pre-embedding, cf. (3.9.3). If 1; is an isomorphism then E is convenient, but the
converse fails in general, i.e. not all convenient vector spaces are reflexive. Since
we want to compare this natural reflexivity notion with more classical ones of
the theory of locally convex spaces we shall use throughout this section the
characterization of preconvenient vector spaces by their locally convex topol-
ogy, i.e. we identify them with the bornological locally convex spaces; cf. (2.4.3)
or (2.4.4).
We shall make use of the following duality functors:
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5.4.1 Definition.

(i) (L) :bLCS*®*-bLCS. _
This is up to the isomorphism bLCS=Pre the duality functor considered in
(3.9.1).

(ii) (_)": LCS*—CBS.

To a locally convex space E one associates the vector space of all continuous
linear functionals together with the so-called equicontinuous bornology, for
which a basis is obtained by the polars U%:={/€E?; £/(U)=[—1, 1]} with U
running through a basis of the 0-neighborhoods of E.

(ii1) (_):CBS°*—-LCS.

To a convex bornological space E one associates the vector space of all
bornological linear functionals together with the topology of uniform con-
vergence on bounded sets, for which a basis for the 0-neighborhoods is obtained
by the polars B®:={/eE";/(B)<[—1, 1]} with B running through a basis of
the bornology of E.

(iv) (_): LCS*—LCS.

To a locally convex space E one associates the so-called strong dual, i.e. the
vector space of all continuous linear functionals with the strong topology, i.e. the
topology of uniform convergence on bounded sets.

All four functors are defined as usual on morphisms: to a morphism
. E;—E, one associates the map »#*: /¢ o 2 between the duals. The verifi-
cations that one thus gets contravariant functors as stated are trivial.

The next lemma will be useful to compare these duality functors.

5.4.2 Lemma. The following diagram commutes:

t

cBs* ' Lics

Pl

LCS°? — CBS

And a subset B< B(E*)=(yE)" is bounded iff B(A)<R is bounded for all bounded
AcCE.

Proof. For the commutativity of the diagram we have to show that
B(E")=(yE)" for every convex bornological space E. Since any linear function
¢:E—R is bornological iff /:yE—R is continuous, cf. (2.1.10), the underlying
vector spaces are the same. To finish the proof of the lemma we only have to
show that the following three conditions for any subset B< E* are equivalent:

(i) BS(yE)® is equicontinuous;
(i) B(4)=R is bounded for every bounded A< E;
(i) B B(E") is bounded, i.e. is absorbed by any 0-neighborhood of E'.
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(i=1i) By assumption there exists a 0-neighborhood U of yE with B U°. If
A< E is bounded there exists an N >0 with AN - U, i.e. (1/N)A< U. Hence for
£eB and xe A one has |£(x)|=N-|£(x/N)|<N, and this shows that B(4) is
absolutely bounded by N.

(ii=>1ii) One has to show that Bis absorbed by every 0-neighborhood of some
basis of E'. So let A< E be bounded and choose an N >0 with B(4)<[—N, N].
Then BS N - A4°, i.e. B gets absorbed by A°.

(iii=>i) Theset U:={xeE; B(x)=<[—1, 1]} is obviously absolutely convex. It
is bornivorous and thus a 0-neighborhood of yE, since for any bounded ACE,
the 0-neighborhood A° of E* absorbs B, i.e. B& N - A° for some N >0, and thus
A< N-U. Using B U® property (i) follows. O

§5.4.3 Lemma. For any bornological locally convex space E one has:

(iy E°=(BE);
(i) E'=PB(E")=B(E);
(i) E'=7(E")=yB(E°);
(iv) E'=E, (see below for the definition of Ey).

Proof. We first remark that the underlying vector space is the same for all the
duals considered above and that by definition (2.1.12) one has E=y8E.

(i) For any locally convex space E, the strong dual E® is an LCS-subspace of
(BEY according to the definition.

(ii) One has, using lemma (5.4.2) and (i): E® =(yBE)® = B((BE)") = BF°. A subset
B of the space B((BE)) is by (5.4.2) bounded iff B(4) =R is bounded for all
bounded 4 < BE. By (1.2.13) and since E' is by definition (3.6.2) a Pre-subspace
of #*(E,R) this is equivalent to B bounded in E'. So the convex bornological
vector spaces in (ii) are all identical.

(iii) Applying y to the equation (ii) and using that E’ is bornological, i.e.
yBE'=F’, one obtains (iii).

(iv) By definition the polars U° of the O-neighborhoods U of E form a basis of
the bornology of E®=B(E®). Therefore by (2.1.19) E'=yB(E?) is the inductive
limit of the normed spaces (E')yo. This means that E’ is the y-dual E, in the
terminology of [ Jarchow, 1981, p. 200, 280].

With the duality functors of (5.4.1) one can form several biduals for a given
(bornological) locally convex space E such as E”, E* and E™. This leads to
various reflexivity notions. The first one is the natural one for convenient vector
spaces; the second is the usual one for locally convex spaces; for the third see
[Hogbe-Nlend, 1977, p. 89]. In each case one has a natural linear map 1, of E in
the bidual defined by 1x(x):=ev,, i.e. 15(x)(£)=7£(x).

5.4.4 Definition

(i) A preconvenient vector space E is called reflexive iff the canonical map
1g: E-E" is a Pre-isomorphism.
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(i) A locally convex space E is called LCS-reflexive iff the canonical map
1g: E—E® is an LCS-isomorphism; cf. [ Jarchow, 1981, p. 227].

(iii) A locally convex space E is called completely reflexive iff the canonical
map 1;: E—E" is an LCS-isomorphism; cf. [Hogbe-Nlend, 1977, p. 891.

(iv) A locally convex space E is called n-reflexive iff the canonical map
1g: E—(E}), is an LCS-isomorphism; cf. [Jarchow, 1981, p. 280].

The following proposition shows that quite often the surjectivity of the
natural map 1; is sufficient in order to obtain the corresponding reflexivity of E.

5.4.5 Proposition

() A separated preconvenient vector space E is reflexive iff 1,2 E—E" is
surjective.
(i) A separated locally convex space E is completely reflexive iff 15: E—E" is
surjective.
(iii) A separated bornological locally convex space is LCS-reflexive iff
1g: E=E® is surjective.

Proof. (1) holds, since 1;: E-E” is always a Pre-embedding by (3.9.3).

(ii) It is enough to show that iz: E—E™ is always an LCS-embedding, i.e. that
the topology of E is the trace topology of E™.

Let first U be a closed absolutely convex 0-neighborhood of E. Then
B:=U° < E’ is bounded and therefore U°° = B° is a 0-neighborhood in E. By
the bipolar theorem [Jarchow, 1981, p. 149] U=1;*(U°), hence U is a
0-neighborhood in the trace of the locally convex tapology of EM.

Conversely let U < E be a 0-neighborhood in the trace topology of E”, i.e.
there exists a bounded B < E? with U 215 Y(B°). Furthermore, there has to
exist a O-neighborhood V in E with B€ V% Now Vi (V) ci; * BY) < U,
hence U is a 0-neighborhood in E.

(iti) Again we have to show that iz: E— E* is an LCS-embedding provided E
is bornological. This holds since E bornological implies E quasi-barrelled
([Jarchow, 1981, p. 222]) and E quasi-barrelled is equivalent with E— E* being
an LCS-embedding [ Jarchow, 1981, p. 273]. A direct verification is as follows.
By (i) of (5.4.3) E* is an LCS-subspace of (S(E®)) and by (ii) of (5.4.3) (B(E*))
=E". So the topology on E* is the initial one induced by the inclusion into E*
and E—E* is an embedding since E—E™ is one, as just proved in (ii).

Now we are able to compare all the considered reflexivity concepts:

5.4.6 Theorem. For any convenient vector space E the following statements are
equivalent:

(1) E is reflexive;

(2) As locally convex space E is n-reflexive;
(3) As locally convex space E is completely reflexive;
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(4) As locally convex space E is LCS-reflexive and the strong dual E° is
bornological;

(5) The Schwartzification (or the nuclearification) of the locally convex space E
is a complete locally convex space.

Proof. Using (5.4.5) we prove the following implications:

{1 <2) according to (iv) of (5.4.3).

(1< 3) since by (54.2) and (iii) of (54.3) one has yB(E™)=y((E)")=
WE)=E".

(4=1) Using twice F'=yBF* of (ili) in (5.4.3), as well as the hypothesis
Ef=yBE° one obtains E'=E°® and E"=yBE™.

(1=4) We first claim that E° is bornological. Let ¢: BE*=E’—R be a
bornological linear functional, hence by the supposed reflexivity £ =ev, for some
xe E. Thus the topology of E° is coarser than the Mackey topology of E*
determined by E. The explicit description of the Mackey topology [ Jarchow,
1981, p. 155] shows that the converse inequality holds. Hence E* has the Mackey
topology and since the evaluations at points of E are continuous the claim
follows from (2.1.22).

By the argument used in (4 = 1) one obtains E”"=yBE® and this yields the
surjectivity of E—E*.

(2<>5) For this we refer to [Jarchow, 1981, p. 280] and [Hogbe-Nlend,
Moscatelli, 1981, p. 89]. [

5.4.7 Corollary

(i) A Fréchet space is reflexive iff it is LCS-reflexive.
(ii) A convenient vector space E with a countable basis of its bornology is
reflexive iff it is LCS-reflexive.
(iii) The locally convex topology of every reflexive convenient vector space is
complete.

Proof. For (i) and (i) see [Jarchow, 1981, p. 280] and for (iii) use that the
canonical mapping E—E" is an LCS-isomorphism and the fact that F' is
complete for any convex bornological space F. O

Let us next consider the hereditary properties.

5.4.8 Proposition. A Con-subspace of a reflexive convenient vector space which
is as locally convex space a closed LCS-subspace is also reflexive.

Proof. Let 1z E—~F be the inclusion of such a Con-subspace of a reflexive
convenient vector space. Let £€ E”. Then 1¥¥(/)e F”, hence by the reflexivity
of F there exists a ye F with 1z(y)=1**(¢), i.e. such that for all y, e F' one has
Y =10 (p1) = o1¥)(y)=£(*(y1))=¢(y, 2 1). Let us show that yeE. As-
sume y¢ E, then by the Hahn—Banach theorem (E is closed in F) there exists a
y, € F with y,(y)=1 and y,(E)=0. Thus 1 =y, (y)=£¢(y, °1)=,(0)=0, which is
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a contradiction. It remains to show that i(y)=¢. So let x,e€E. By the
Hahn-Banach theorem (E is a LCS-subspace of F) there exists a y, € F' with

yiot=x; and thus 15(y)(x;)=x,(N=(y; o YW=y (W=L(p, e )=C(x,). O

549 Corallary. A convenient vector space E is reflexive iff E' is reflexive and the
locally convex topology of E is complete.

Proof. (=) The completeness of E was shown in (iii) of (5.4.7) and the
reflexivity of E' follows immediately by applying (_) to E =~ E".
(<=) Since E’ is reflexive so is E”. Furthermore, E»E” is an LCS-embedding

(3.9.3) and E is as complete locally convex space closed. Hence E is reflexive
by (5.4.8). d

54.10 Corellary. A complemented subspace of a reflexive convenient vector
space is reflexive.

Proof. Since the embedding has a bornological and hence continuous inverse,
it is a closed embedding with respect to the locally convex topologies. Now
apply (5.4.8). O

Remark. Not every Con-quotient of a reflexive convenient vector space is
reflexive, as the example of a non-reflexive quotient of a Fréchet Montel space
shows, see [ Jarchow, 1981, p. 233].

Reflexivity is inherited by products and coproducts provided the index set is
of non-measurable cardinality:

3.4.11 Proposition, Let E; # {0} (jeJ) be a family of convenient vector spaces
with index set J of non-measurable cardinality.

(i) The coproduct 11;, E; is reflexive iff all E; are reflexive.
(ii) The product T, , E; is reflexive iff all E; are reflexive.

Proof.  One has only to use the isomorphisms of (3.9.4) and (3.9.5). |

We will now prove that the reflexivity of E implies the reflexivity of C*(M, E)
for any finite-dimensional smooth manifold M. We first analyze the reflexivity of
spaces of type C*(X, E).

5.4.12 Proposition. Let X # ¢J be a smooth space and E a convenient vector
space. Then C*(X,E) is reflexive iff E is reflexive and the linear subspace of
C*(X,E) generated by {{oev,; xeX, £eE'} is dense in the locally convex
topology.

Proof. Reflexivity of C*(X, E) implies reflexivity of E by (5.4.10) since E is
isomorphic to the complemented subspace formed by the constant functions. So
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it remains to prove that for a reflexive E the reflexivity of C*(X, E) is equivalent
to the stated density condition. We use the factorization of the isomorphism
(1g), expressed by the commutative diagram

C*(X,E)—— C*(X,E)’

\\ (), /

Cm(X, Eu)

Here ¢ denotes the linear morphism used in (5.3.9) and defined by ¢(£)(x){(y,)
={(y,vev,) for £eC*X,E), xeX and y,eE. Since (15), is bijective,
1=1c= . 5. C™(X, E)»C>*(X, E)" is surjective iff ¢ is injective. The surjectivity
of 10y, ) is €quivalent to the reflexivity of C*(X, E) and injectivity of ¢ means
{0} =ker(p)={¢;£(y, »ev,)=0}, which is by the Hahn-Banach theorem equiy-
alent to the given density condition. O

5.4.13 Theorem. Let X # (J be a finite-dimensional separable smooth manifold.
Then C*(X, E) is reflexive iff E is reflexive.

Proof. This follows immediately from (5.4.12), since according to (5.1.7) the
density condition is satisfied. |

Remark. Since (5.1.7) is true for finite-dimensional paracompact smooth mani-
folds having only non-measurably many components, the theorem (5.4.13) is
also true for such manifolds.

Now we consider C*(X, R) for general smooth spaces X.

5.4.14 Proposition. Let X be a smooth space. Then C®(X,R) is reflexive iff
X->C*X,RY is universal for smoath maps in convenient vector spaces whose
locally convex topology is complete; i.e. for every such smooth map f: X = E there
exists a unique linear morphism from C*(X,R) into E which composed with the
above map X -C*(X,RY is f.

Proof. (<) The universal property for E=R gives a bijection C*(X,R)—
C*(X,R)” which has to be equal to icwugy, 5. p

(=) Let a smooth f: X—E be given. Define f: C*(X,RY=E" by f(£)(y,)
=£(y,of). By (54.12) the subspace generated by {ev,;xeX} is dense in
C*(X, R). Hence the image of f is contained in 1;(E); and since E is complete and
1; is an embedding with respect to the locally convex topologies, f factors as
f=1zof and fis the desired morphism into E. Its uniqueness is trivial. O

5.4.15 Theorem. Let U be an M-open subset of the dual of a Frechet Schwartz
space E, ¢f. (4.4.39), and F a Fréchet Montel space. Then C*(U, F) is a Freéchet
Montel space.
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Proof. Let Co(U, F) denote the space of smooth functions from U to F, with
the tapology of uniform convergence on b-compact subsets contained in UnE*
of each derivative. For a compact space K let us denote by C(K, F) the space of
continuous functions with the topology of uniform convergence. The Arzela—
Ascoli theorem [Engelking, 1968, p. 333] states that a subset B< C(K,F)
is relatively compact iff B is equicontinuous and pointwise relatively compact.

We claim that C% (U, F) is semi-Montel, i.e. every bounded subset is relatively
compact. In order to see this, we use that the topology is the initial one induced
by the mappings (1x)*°d* C%(U, F)— C*(UnkE* F)— C(K, F), where ke N,
and K = UnE*is b-compact and 1, denotes the inclusion of K into Un E*. So we
have to show that for a bounded B = CZ(U, F) the image under these maps in
C(K, F) is relatively compact. Since d*: C2(U, F)—»CZ(Un E¥, F) is bornological
it is enough to show this for the map (1x)* with k=0. Since ev,: C3(U, F)—F is
bornological, the set B|;:=(1;)*(B) is pointwise bounded in F and since F is
Montel it is relatively compact. So by the Ascoli-Arzela theorem it remains to
show that B|y is equicontinuous. Since {f": U—L(E, F); fe B} is bounded, the
image by f” of the b-compact set {x +1(y —x); x, ye K, t€ [0, 1]} is bounded and
hence also {jéf’(x+ t(y—x))dt; x, ye K, fe B} is bounded in L(E, F) and thus
equicontinuous in L(E, F). Since f(y)—f(x)=j(1)f’(x+t(y——x))(y—x)dt, d.
{4.1.14), this means that for every O-neighborhood U of F there exists a 0-
neighborhood ¥ in E with f(y)—f(x)e V for x, ye K and x—ye U. So we have
shown that CZ(U, F) is semi-Montel.

Using (4.4.41) and (4.4.39) the locally convex space associated to C*(U, F) is
the Fréchet space CZ(U, F). It is Montel since by definition this means borno-
logical and semi-Montel. U

5.4.16 Corollary. Let E be a Frechet Schwartz space, U an M-open subset of E/,
F a Fréchet Montel space. Then C*(U, F) is a reflexive convenient vector space.

Proof. We only have to use that every Montel space is a LCS-reflexive, cf.
[Jarchow, 1981, p. 230], and that for Fréchet spaces LCS-reflexivity is equi-
valent to reflexivity by (i) of (5.4.7). O

Remark. It has been shown by [Colombeau, Meise, 1981] that C%(U, F) is
Schwartz, provided U < E, is open, where E is a Schwartz convex bornological
space and F is a Schwartz locally convex space; hence, in particular, when E and
F are Fréchet Schwartz spaces and E,;=E'. Thus under these assumptions
C*(U, F) is even a Fréchet Schwartz space.

In order to investigate further the general case C*(X,E) we will use the
following

54.17 Lemma. Let X # ¥ be a smooth space and E+ {0} a convenient vector
space. Then C*(X,E) is reflexive iff E, C*(X,R) and L(C™(X,RY, E) are all
reflexive.
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Proof. Since E and C*(X, R) are complemented subspaces of C*(X, E) they are
reflexive. Then C*(X,E) = C*(X,E") =~ L(E', C*(X,R)) =@ L(E', C*(X, R)") =
L(C*™(X,RY,E") = L(C™(X, RY, E). a

We will combine this lemma with the following result concerning the re-
flexivity of a linear function space.

5.4.18 Proposition. Let E and F be convenient vector spaces. Then L(E,F) is
reflexive iff F is reflexive and E® F' < L(E, F) is dense in the locally convex
topology.

Proof. The proof is similar to that of (5.4.12). One uses that (if),: L(E, F)—
L(E, F") can be factorized as ¢ 1z, r), Where ¢ is defined by the same formula as
in (5.4.12). |

Now one easily obtains the following general reflexivity criterion for function
spaces:

5.4.19 Proposition. Let X # & be a smooth space and E+#{0} a convenient
vector space. Then C*(X,E) is reflexive iff E and C*(X,R) are reflexive and
C*(X,R)® E' = C*(X, EY is dense in the locally convex topology.

Proof. By (5.4.17) we know that C®(X,E) is reflexive iff E, C*(X,R) and
L(C*(X,RY, E) are reflexive. And L(C™(X,R),E) is by (5.4.18) reflexive iff
C*(X,R)’ ® E' is dense in C*(X, EY. O

Remark., One difficulty in proving more general statements about C*(X, F)1is
due to the fact that the (bornological) locally convex topology on this space
cannot be explicitly described in general.

Example. The locally convex topology of C3 (R, R™) is not bornological.

In order to see this we consider the linear functional /:CZ (R, R‘™)—R
defined by £(f):=3, .y (Pri°f)*(0). For any bounded subset B< C*(R, R™))
there exists an NeN such that B< C*(R, RY). Hence on such a set B the
functional £ is a finite sum of derivatives at 0 composed with projections pr,, and
thus £ is a morphism. But £ cannot be continuous with respect to the topology of
C2 (R, R™M), because otherwise there would exist an N €N and a 0-neighbor-
hood U = R™ such that f ®(t)eU for k< N and |t| <N would imply |£(f)I< 1.
This is impossible, since among all functions f satisfying f ®'(t)e U for k<N and
|t|< N there are such with only the projection fy:=pryf unequal to 0 and the
Nth derivative of fy at 0 larger than 1.




6 THE MACKEY CLOSURE
TOPOLOGY

In this chapter we investigate several questions related to the Mackey closure
topology.

In section 6.1 we study relations with a few other natural topologies which lie
between the locally convex and the Mackey closure topology of a convenient
vector space, such as for example, the Kelleyfication of the locally convex
topology. Conditions are given under which some of these topologies coincide.
Particular interest is laid on the case where the locally convex topology is the
final one induced by the smooth curves, i.e. the case where all these topologies
coincide.

Section 6.2 mainly deals with the question whether the Mackey closure
topology is a vector space topology, i.e. such that the vector space operations are
continuous with respect to the product topology. It is shown that this in fact fails
for large classes of convenient vector spaces, even for all non-trivial
strict inductive limits of Banach spaces. We also show that for products of
sufficiently many factors R the Mackey closure topology is not even completely
regular.

A subset is closed for the Mackey closure topology iff it is closed under
Mackey convergent sequences. However, as shown by examples given in section
6.3, taking the Mackey adherence, i.e. adding to a subset all limits of Mackey
convergent sequences lying in the subset, does not always give the Mackey
closure of the subset (i.e. the closure with respect to the Mackey closure
topology).

For convex functions continuity with respect to the locally convex topology,
continuity with respect to the Mackey closure topology, the Lipschitz property
(&% and boundedness on the M-convergent sequences (%% ') are all
equivalent, as shown in section 6.4. Convex %'~ (resp. Zi4*-) functions are
characterized by properties of their first (resp. second) derivative.
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6.1 Comparison with other topologies

We first specify those refinements of the locally convex topology which will be
compared with each other and with the Mackey closure topology.

6.1.1 Definition. Let E be a preconvenient vector space. If the topology under
consideration on E is not explicitly mentioned, then all topological notions
(such as continuous, convergent, closure, etc.) are meant with respect to the
locally convex topology in this section.

(i) We denote with 1, E the Kelleyfication of the locally convex topology of E,
i.e. the vector space E together with the final topology induced by the inclusions
of the subsets being compact for the locally convex topology.

(ii) We denote with 7 E the vector space E with the final topology induced by
the curves being continuous for the locally convex topology, or equivalently the
sequences N —E converging in the locally convex topology. The equivalence
holds since the infinite polygon, through a converging sequence, can be con-
tinuously parametrized by a compact interval.

(i) We recall that by 7y E we denote the vector space E with its M-closure
topology, i.e. the final topology induced by the smooth curves.

Using that smooth curves are continuous and that converging sequences
N,—E have compact images, the following identities are continuous:
yE-1,E-r E—E.

If the locally convex topology of E coincides with the topology of 7y E, resp.
1,E, resp. 7, E then we call E smoothly generated, resp. sequentially generated,
resp. compactly generated.

6.1.2 Examplee. On E=R’ all these refinements are different, ie.
T E # 1, E#1, E#E, provided the cardinality of the index set J is at least that of
the continuum.

Proof. Itis enough to show this for J equipotent to the continuum, since R’* is
a direct summand in R”: for J, = J,.

(tyE#1,E) We may take as index set J the set ¢, of all real sequences
converging to 0. Define a sequence (x") in E by (x");:=j,. Since every je J is a 0-
sequence we conclude that the x" converge to 0 in the locally convex topology of
the product, hence also in 7,E. Assume now that the x"” converge towards 0 in
v E. Then by (2.3.10) some subsequence converges Mackey to 0. Thus there
exists an unbounded sequence of reals 4, with {A"x,;ne N} bounded. Let j be a
0-sequence with {j,A,;ne N} unbounded (e.g. (j,)”2:=1+max{|A}; k<n}).
Then the jth coordinate j,A, of A,x" is not bounded with respect to n,
contradiction.

(t,E#7,E) Consider in E the subset 4:={xe{0,1}’; x;=1 for at most
countably many jeJ}. It is clearly closed with respect to the converging
sequences, hence closed in 7, E. But it is not closed in 7, E since it is dense in the
compact set {0, 1}7.
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(tx E#E) Consider in E the subsets A4,:={x¢€ E; |x;| <n for at most n many
jeJ}. Each A, is closed in E since its complement is the union of the open sets
{xe€E; |x;|<n for all jeJ,}, where J, runs through all subsets of J with n+1
elements. We show that the union 4A:=\),.yA4, is closed in 7, E. So let K be a
compact subset of E; then K < ITpr;(K) and each pr;(K) is compact, hence
bounded in R. Since the family {jeJ; pr{K)=[—n,n]} (neN) covers J there
has to exist an NeN and infinitely many jeJ with pry(K)=[—N,N]. Thus
KnA,= foralln>N. And hence AnK =, 4,n K is closed. Nevertheless
A is not closed in E, since 0 is in 4 but not in A. O

Let us now describe several important situations where at least some of these
topologies coincide. For the proof we will need the following

6.1.3 Lemma. [Averbukh, Smolyanov, 1968.] For any separated locally convex
space E the following statements are equivalent:

(1) The sequential closure of any subset is formed by all limits of sequences in the
subset.

(2) For any given double sequence (x,, ;) in E with x, ; convergent to some x, for
n— o and k fixed and x, convergent to some x, there are strictly increasing
sequences i—n(i) and i— k(i) with x,,; y; — X for i — 0.

Proof. (1=2) Take an a, € E different from k- (x, , —x) and from k- (x, —x) for
all k and n. Define A:={a, ;'=x, ,—(1/k) ag;n,keN, n>k}. Then x is in the
sequential closure of 4, since x,, ,—(1/k)-a, converges to x, —(1/k)-a, as n—» o
and x, —(1/k) a, converges to x —0=x as k—co. Hence by (1) there has to exist
a sequence I (n{i), k(i)) with a,;, ;) convergent to x. By passing to a subse-
quence we may suppose that i— k(i) and i+—n(i)— k(i) is monotone increasing.
Assume that i+ k(i) is bounded, hence finally constant. Then a subsequence of
Xy, — (1/k(i)) - ag is converging to x, —(1/k)- ao # x if i n(i) is unbounded and
to x, ,—(1/k)- ay #x if i n(i) is bounded, which both yield a contradiction.

Thus i— k(i) can be chosen strictly increasing and thus also i n(i)
=(n(i)— k(i) + k(i) is strictly increasing.

(1<=2) is obvious. O

6.14 Theorem. For any convenient vector space E the following implications
hold:

(i) tyE=E provided the closure of subsets in E is formed by all limits of

sequences in the subset; hence in particular if E is metrizable.

(i)) Ty E=E provided E is the dual of a Fréchet Schwartz space; cf. (4.4.39).

(iii) TyE=1,E provided E is the strict inductive limit of a sequence of Frechet
spaces.

(iv) tmE=1,E provided E satisfies the M-convergence condition, i.e. every
sequence converging in the locally convex topology is M-convergent.

(v) 1,E=E provided E is the dual of a Frechet Montel space; cf. (4.4.38).
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Proof. (i) Using the above lemma one obtains that the closure and the
sequential closure coincide, hence t,E = E. It remains to show that 1. E -7 E is
continuous. So suppose a sequence converging to x is given and let (x,) be an
arbitrary subsequence. Then x,, ,:=k(x,—x)—k-0=0 for n— oo, and hence by
lemma (6.1.3) there are subsequences k(i), n(i) with k(i) (x, ;) — x)—0,ie/i>x,
is M-convergent to x. Thus the original sequence converges in Ty E by (2.3.10).
For metrizable spaces see also (2.4.5).

(iii) Let E be the strict inductive limit of the Fréchet spaces E,. By [Jarchow,
1981, p. 84] every E, carries the trace topology of E, hence is closed in E and
every bounded subset of E is contained in some E,. Thus every compact subset
of E is contained as a compact subset in some E,. Since E, is a Fréchet space
such a subset is even b-compact and hence compact in 7y E. Thus the identity
1. E—1yE is continuous.

(iv) is valid, since the M-closure topology is the final one induced by the M-
converging sequences.

(v} Let E be the dual of any Fréchet Montel space F. Recall that the locally
convex topology on the dual of a reflexive space is the strong topology, cf. (5.4.6).

Fréchet Montel spaces have a reflexive dual by (3) in (4.4.38), hence are
reflexive themselves by (5.4.9).

First we show that t,E=1,E. Let K< E=F’ be compact for the locally
convex topology. Then K is bounded, hence equicontinuous by the linear
uniform boundedness principle (3.6.4), and since F is separable by [Jarchow,
1981, p. 2317 K is metrizable in the weak topology o(E, F) [Jarchow, 1981, p.
157]. Since K is compact the weak topology and the locally convex topology of
E coincide on K, thus the topology on K is the initial one induced by the
converging sequences. Hence the identity 7, E—1,E is continuous and therefore
1, E =1, E. It remains to show 7, E =E. Since F is reflexive E is the strong dual of
F, cf. (5.4.6), and since F is Montel the locally convex topology of the strong dual
coincides with the topology of uniform convergence on precompact subsets of F.
Since F is metrizable this topology coincides with the so-called equicontinuous
weak*-topology, cf. [Jarchow, 1981, p. 182], which is the final topology induced
by the inclusions of the equicontinuous subsets. These subsets are by the
Alaoglu-Bourbaki theorem [Jarchow, 1981, p. 157] relatively compact in the
topology of uniform convergence on precompact subsets. Thus the locally
convex topology of E is compactly generated.

(ii) By (v) and since Fréchet Schwartz spaces are Montel (cf. [ Jarchow, 1981,
p. 202] or [Horvath, 1966, p. 277]) we have 1, E = E and it remains to show that
twE=1,E. So let (x,) be a sequence converging to 0 in E. Then {x,;neN} is
relatively compact and by (4.4.39) this set is relatively compact in some Banach
space Ey. Hence at least a subsequence has to be convergent in Ey. Clearly its
Mackey limit has to be 0. This shows that (x,) is convergent to 0 in 7y E and
hence 7y E=1,E. One can even show that E satisfies the Mackey convergence
condition, cf. [Jarchow, 1981, p. 266]. O

We give now a non-metrizable example to which (i) applies.
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6.1.5 Example. Let E denote the subspace of R’ of all sequences with
countable support. Then the closure of subsets of E is given by all limits of
sequences in the subset but for non-countable J the space E is not metrizable.
This was proved in [Balanzat, 1960].

Remark. The conditions (i) and (ii) in (6.1.4) are rather disjoint since every
locally convex space that has a countable basis of its von Neumann bornology
and for which the sequential adherence of subsets is sequentially closed is
normable as the following proposition shows:

6.1.6 Proposition. Let E be a non-normable locally convex space that has a
countable basis of its bornology. Then there exists a subset of E whose sequential
adherence is not sequentially closed.

Proof.  Let {B,;keN,} be an increasing basis of the von Neumann bornology
with B, = {0}. Since E is non-normable we may assume that B, does not absorb
By, for all k. Now choose b, ,e(1/n) B, , with b, ¢ B,. We consider the
subset A:.=f by, 0—byiin, k=1}. For fixed k the sequence b, ;, converges by
construction (in Eg, , ) to 0 for n—c0. Thus b, ,—0 is the limit of the sequence
by,o—bn,i for n—>oo and b, , converges to 0 for k—o0. Consequently O is
contained in the sequential closure of A. It remains to show that 0 is not
- contained in the sequential adherence of 4. Suppose b1y, 0= bugiy,(iy» CONVerges
to 0. Thus it has to be bounded and so there must be an Ne N with
B, — {.bk(i),o — b i€N} S By Hence bugiy, ity = bigi.0 — (Prcip, 0 = bngiy.kqiy)
€ By, i.e. k(i)<N. By passing to a subsequence we may assume that k(i)zl& for
some k and all i and thus b, ,—b, —0, ic. buiiy k= by 0. Admit nfi) is
unbounded. Then a subsequence of b, converges to 0¥bk 0 which is a
contradiction. So we may assume that n(i)=n for some »n and all i. But then
b, ¢ B, and hence cannot be equal to b, o€ B;. O

6.2 Continuity of the addition and regularity

In this section we describe classes of spaces where 7y E # E or where 7 E is not
even a topological vector space. Finally we give an example where the
Mackey-closure topology is not completely regular.

We begin with the relationship between the Mackey closure topology and the
locally convex topology on preconvenient vector spaces.

6.2.1 Lemma. [ Kriegl, 1982] Let E be a preconvenient vector space, U < E an
absolutely convex subset. Then U is a 0-neighborhood Jor the locally convex
topology of E iff U is a O-neighborhood for the Mackey closure topology.

Proof. (=) Since the Mackey convergent sequences are convergent in the
locally convex topology it follows that the Mackey closure topology is finer than
the locally convex topology, cf. (6.1.1).
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(«<) Let U be an absolutely convex 0-neighborhood with respect to the
Mackey closure topology. By (2.1.12) it is enough to show that U is bornivorous,
ie. absorbs bounded subsets. Assume that some bounded B does not get
absorbed by U. Then for every ne N there exists a b,e B with b,¢nU. Since
(1/n)b, is Mackey convergent to 0, we conclude that (1/n)b,e U for sufficiently
large n. This yields a contradiction. O

6.2.2 Corollary. For any preconvenient vector space the finest locally convex
topology that is coarser than the Mackey closure topology is the (bornological)
locally convex topology of that preconvenient vector space. And a convex subset is
open in the locally convex topology iff it is open in the M-closure topology.

6.2.3 Proposition. Let E and F be convenient vector spaces. If there exists a
bilinear morphism a: EnF—R that is not continuous with respect to the locally
convex topologies, then ty(ETF) is not a topological vector space.

Proof. Suppose that addition ty(EnF)x 1y(EnF)—-ty(EnF) is continuous
with respect to the product topology. Using the. continuous inclusions ty E—
ty(ETF) and 1y F > 1y( ENF) we can write » as composite of continuous maps
as follows:

1 E X ty F>ty(ENF) x ty( ENF)—— ty(ENF)—"R

Thus for every >0 there are 0-neighborhoods U and ¥ with respect to the
Mackey closure topology such that s»(Ux¥)=]—ee[. Then also
wm~ YUY x{¥y)=]—s¢, e[, where {_) denotes the absolutely convex hull. By
(6.2.1) one concludes that » is continuous with respect to the locally convex
topology; contradiction. |

6.24 Corollary. Let E be a convenient vector space whose locally convex
topology is not normable. Then ty(ENE’) is not a topological vector space.

Proof. By (6.2.3) it is enough to show that ev: EnE’'>R is not continuous; this
was done in (3.3.4). [

In order to get a large variety of spaces where the Mackey closure topology is
not a topological vector space topology the next three technical lemmas will be
useful.

6.2.5 Lemma. Let E be a preconvenient vector space. Suppose a double sequence
b, . in E exists which satisfies the following two conditions:

(b') For every sequence ki n(k) the sequence ki— b, has no accumulation
point in Ty E.
(b"") For all k the sequence n—b, , converges to 0 in 1y E.
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Suppose furthermore that a double sequence c, , in E exists that satisfies the
Jollowing two conditions:

(c') For every 0-neighborhood U in tyE there exists a ko such that c, e U for
all k>k, and all n.
(c"'y For all k the sequence n— c, , has no accumulation point in tyE.

Then 1ty E is not a topological vector space.

Proof. Here convergence is meant always with respect to 7y E. We may without
loss of generality assume that c, , #0 for all n, k, since by (c”) we may delete all
those c, , which are equal to 0. Then we consider A:={b, , +¢&, C, ;8 keN},
where the ¢, e {—1, 1} are chosen in such a way that 0¢ 4.

We first show that A is closed in 1y E: Let by ;) a1y % Cugiy.xn—X and assume
that (k(7)) is unbounded. By passing if necessary to a subsequence we may even
assume that i k(i) is strictly increasing. Then ¢, ;=0 by (¢), hence by
(2.3.12) b,,3), 1y x which is a contradiction to (b'). Thus (k(i)) is bounded and we
may assume constant. Now suppose that (n(i)) is unbounded. Then b,;, ,—0 by
(b") and hence &, ;) ;) —x and for a subsequence where ¢ is constant one has
€.k~ 1 X, which is a contradiction to (¢”). Thus n(i) is bounded as well and we
may assume constant. Hence x=»5, ,+¢, ¢, , € A.

Assume now that the addition 1y E X 1y E—1yE is continuous. Then there has
to exist an open and symmetric 0-neighborhood U in 1y E with U+ U S E\ A.
For K sufficiently large and n arbitrary one has ¢, g€ U by (¢). For such a fixed
K and N sufficiently large by xe U by (b'). Thus by x+cy ¢ A, which is a
contradiction. O

Let us now show that many spaces have a double sequence c, ; as in the above
lemma.

6.2.6 Lemma. Let E be an infinite-dimensional convenient vector space whose
locally convex topology is metrizable. Then a double sequence c, ; subject to the
conditions (c') and (¢") of (6.2.5) exists.

Proof. If E is normable we choose a sequence c, on the unit ball without
accumulation point and define ¢, ,:=(1/k)c,.

If E is not normable we take a countable increasing family of non-equivalent
seminorms p, generating the locally convex topology, and we chose ¢, , with
Pulcn,i)=1/k and pyy (¢, ) >n. u

Next we show that many spaces have a double sequence b, , as in lemma
(6.2.5).

6.2.7 Lemma. Let E be a non-normable convenient vector space having a
countable basis of its bornology. Then a double sequence b, , subject to the
conditions (b') and (b") of (6.2.5) exists.
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Proof. Let B, (neN) be absolutely convex sets forming an increasing basis of
the bornology. Since E is not normable the sets B, can be chosen such that B,
does not absorb B, ;. Now choose b, ,€(1/n) B, with b, ; ¢ B,. |

Using these lemmas one obtains the

6.2.8 Proposition, For the following convenient vector spaces the Mackey
closure topology is not a vector space topology:

(i) Every convenient vector space that contains as M-closed subspaces an
infinite-dimensional Fréchet space and a non-normable space with count-
able basis of its bornology.

(ii) Every strict inductive limit of a strictly increasing sequence of infinite-
dimensional Frechet spaces.

(iii) Every product for which at least 2%° many factors are non-zero.
(iv) Every coproduct for which at least 2¥° many summands are non-zero.

Proof. (i) follows directly from the last three lemmas.

(i) Let E be the strict inductive limit of the spaces E, (n€ N). Then E contains
the infinite-dimensional Fréchet space E, as subspace. The subspace generated
by points x,€ E, . \E, (neN) is isomorphic to R™, hence its bornology has a
countable basis. Thus by (i) we are done.

(i) Such a product E contains the Fréchet space RN as complemented
subspace. We want to show that R™ is also a subspace of E. For this we may
assume that the index set J is RN and all factors are equal to R. Now consider the
linear subspace E, of the product that is generated by the sequence x"e E=R",
where (x");:=j(n) for every jeJ=RM. The linear map R™E, < E that maps
the nth unit vector to x" is injective, since for a given finite linear combination
Y t,x"=0 the jth coordinate for j(n):=sign(t,) equals Y It,l. It is a morphism
since R™ carries the finest structure. So it remains to show that it is a Pre-
embedding. We have to show that any bounded B<E, is contained in a
subspace generated by finitely many x". Otherwise there would exist a strictly
increasing sequence (i) and b*=Y <, txx"e B with tf, # 0. Define an index j
recursively by j(m)=n|tk| " -sign(},  tnim) i n=m and j(n):=0
if n % n, for all k. Then the absolute value of the jth coordinate of b* evaluates as
follows:

BN =13 < LR TN =1 i, 1 (M) + 15, ()| =
13 < EET) 12, ) =125, ()| =

Hence the jth coordinates of {b*;ke N} are unbounded with respect to ke N
and thus B is unbounded.

(iv) We cannot apply lemma (6.2.5) since every double sequence has
countable support and hence is contained in the dual R of a Fréchet Schwartz
space R4 for some countable subset 4 < J. It is enough to show (iv) for R
where J=Nuc,. Let A:={j,(e,+¢;); neN, jecy, j, #0 for all n}, where ¢, and ¢;
denote the unit vectors in the corresponding summand. The set 4 is M-closed,
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since its intersection with finite subsums is finite. Admit there exists a symmetric
M-open 0-neighborhood U with U+ U < E\ 4. Then for every n there exists a
Jn#0 with j,e,e U and we may assume that n—j, converges to 0 and hence
defines an element je c,. Furthermore, there has to be an NeN with jve;e U,
thus jy(ey+e;)€(U + U)n A4, in contradiction to U+ U < E\ A. |

Remark, A nice and simple example where one either uses (i) or (ii) is
R™ @ R™. The locally convex topology on both factors coincides with their
Mackey-closure topology (the first being a Fréchet (Schwartz) space, cf. (i) of
(6.1.4), the second as dual of the first, cf. (i) of (6.1.4); but the Mackey closure
topology on their product is not even a vector space topology.

Although the Mackey closure topology on a convenient vector space is
always functionally separated, hence Hausdorff, it is not always completely
regular as the following example shows.

6.2.9 Theorem, The Mackey closure topology of R” is not completely regular if
the cardinality of J is at least 2%,

Proof. Tt is enough to show this for an index set J of cardinality 2™, since the
corresponding product is a complemented subspace in every product with larger
index set. We prove the theorem by showing that every function f: R*— R which
is continuous for the Mackey-closure topology is also continuous with respect
to the locally convex topology. Hence the completely regular topology
associated to the Mackey-closure topology is the locally convex topology of E.
That these two topologies are different was shown in (6.1.2). We use the
following theorem of [Mazur, 1952]: Let E,:={xeR’; supp(x) is countable}
and f: E,—R be sequentially continuous. Then there is some countable subset
A < J such that f(x)=f{x ), where in this proof x , is defined as x 4( j):=x(j) for
Jj€A and x,(j)=0 for j¢ A. Every sequence which is converging in the locally
convex topology of E, is contained in a metrizable complemented subspace R4
for some countable 4 and therefore is even M-convergent. Thus this theorem of
Mazur remains true if f'is assumed to be continuous for the M-closure topology.
This generalization follows also from the fact that 1y Eo = E,, cf. (6.1.5). Now let
f: R?'>R be continuous for the Mackey closure topology. Then f|; :E,—R is
continuous for the Mackey closure topology and hence there exists a countable
set Ao < J such that f(x)=f(x ,, ) for any x € E,. We want to show that the same
is true for arbitrary x € R”. In order to show this we consider for x € R’ the map
@,:27 >R defined by @ (A):=1(x,)—f(Xn4,) for any 4 < J, ie. A€2’. For
countable A4 one has x e E,, hence ¢,(4)=0. Furthermore, @, is sequentially
continuous where one considers on 27 the product topology of the discrete
factors 2. In order to see this consider a converging sequence of subsets 4,— A4,
Le. for every jeJ one has for the characteristic functions 14, (J)=x4(j) for n
sufficiently large. Then {n(x, —x,);neN } is bounded in R’ since for fixed je J
the jth coordinate equals 0 for n sufficiently large. Thus x 4, converges Mackey
to x4 and since f is continuous for the Mackey closure topology ¢.(4,)—= ¢ .(4).

Now we can apply another theorem of [Mazur, 1952]: Any function f:27 >R
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that is sequentially continuous and is zero on all countable subsets of J ig
identically 0 provided the cardinality of J is smaller than the first inaccessible
cardinal. Thus we conclude that 0= ¢, (J)=1f(x)—f(x,,) for all xe R’. Hence f
factors over the metrizable space R and is therefore continuous for the locally
convex topology. L]

6.3 The Mackey closure of subsets

In (5.1.18) we proved that the completion of the subspace £ (X) of £*(X,R)
formed by the functions with finite support is ¢(X). This was done by showing
that the two-fold Mackey adherence of /7 (X) in £* (X, R) gives ¢y(X). Now we
give an example where the Mackey adherence of £°(X) is not all of ¢y(X).

6.3.1 Example. The Mackey adherence does not yield the Mackey-closure
(quoted in (2.2.23) and in (5.1.18)).

Consider X :=N x N with all the sets {(n, k); n < u(k)} (for u: N — N) as basis
of a bornology.

First we show that this bornology is an £ “-structure: Consider fZ: X -N S R
defined by f?(n, p):==n and f"(n, k)=0 for k+#p. The function f* is bornological
since {n; n< u(p)} is finite. Let now B = X be such that f?(B) is bounded for all p.
Define p(k):=max f*(B). Then B < {(n, k); n<pu(k)}, since (n, k)€ B implies that
n=1"(n,k)<max f*(B)= (k)

We show next that the function f: X —R defined by f{(n, k):=1/k belongs to
¢oX. Since any bounded B < X is contained in {(n, k); n< u(k)} for some u: N—=N
we obtain

{(n, k)e B; f(n, k)z%} o {(n, k), n < u(k), %Z%}= {(n,ky;n< u(k), p=k}

< {(n.kyn<max {u(j); j<p}, k<p},

and this set is finite.

Now assume that fis the M-limit of some sequence ( f;) of functions with finite
support, i.e. {4;(f—f;); je N} is bounded for some sequence (4;) converging to
. Choose j, with A, >k* and j, <j,+,, and define p(k):=1+max {#; f; (n.k)
#0}. Since B:={(n,k); n<u(k)} is bounded the image {1;(f—f;)(n, k); (n,k)
€B, j,n,k eN} has to be bounded. But

L=k n<pll)} 2 {2;(f—£;) (0. k) n< k), f;(n, k) =0} =
{Aj %;ns;t(k),fj(n, k)=0} 2 {Ajk%: n=pu(k), ;. (n, k)=0}=

1 ) 1
{/’{jk E’f;k(u(k)* k)ZO}Z{ljk 'E, ke N}

Since this set is unbounded one has a contradiction.
This example can be used to give another important
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6.3.2 Example. An M-dense embedding into a convenient vector space need
not be the completion (quoted in (2.6.5)).

Let F be a preconvenient vector space whose M-adherence in its completion E
is not all of E, cf. (6.3.1). Choose a y € E that is not contained in the M-adherence
of F and let F; be the subspace of E generated by F U {y}. We claim that F, < E
cannot be the completion although F, is Mackey dense in the convenient vector
space E. In order to see this we consider the linear map #: F, »R characterized
by £(F)=0 and #(y)=1. Clearly ¢ is well defined.

£: F;—R is bornological: For any bounded B < F, there exists an N such that
B S F+[—N,N]y. Otherwise b,=x,+t,y€B exist with t,—c0. This would
imply that b,=t,((x,/t,)+ y) and thus —(x,/t,) would converge Mackey to y;
contradiction.

Now assume that a bornological extension Z to E exists. Then F < ker (7) and
ker(Z) is M-closed, which is a contradiction to the Mackey denseness of F in E.
So F; < E does not have the universal property of a completion.

Another consequence is that the trace topology on F, inherited from the
locally convex topology of E cannot be bornological, since by the Hahn-Banach
theorem continuous linear functionals can be extended.

Furthermore, the extension of the inclusion 1 F @ R = F, »E to the com-
pletion is given by (x,))e E® R~ F® RxF,—»x+tyeE and has as kernel
the linear subspace generated by (y, —1). Hence the extension of a Pre-
embedding to the completions need not be an embedding anymore, in particular
the inclusion functor does not preserve injectivity of morphisms.

By the closed embedding lemma (2.6.4) the trace of the Mackey closure
topology on any M-closed subspace is the Mackey closure topology of this
subspace. Now we give an example which shows that M-closedness of the
subspace is essential for this result.

6.3.3 Example. Trace of Mackey closure topology is not Mackey closure
topology (quoted in (2.6.4)).
Consider E=RNnR®™),

. 1 1
A:__'{ank:: (HX(I """ "}’EX{"))’ n,kEN}QE.

Lf_:t F be the linear subspace of E generated by A. We show that the closure of 4
with respect to the M-closure topology of F is strictly smaller than that with
respect to the trace topology of the M-closure topology of E.

A is closed in the M-closure topology of F: Assume that a sequence (a, ;) is
M-converging to (x, y). Then the second component of Gy, ,; has to be bounded.
Thus j~ n; has to be bounded and may be assumed to have constant value Ry,
If j+— k; were unbounded, then

1
(x,y)=(;— XN,()),

which is not an element of F. Thus j k; has to be bounded too and may be
assumed to have constant value k.. Thus (x,y)=a,, ;. €4.
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Ais not closed in the trace topology since (0, 0) is contained in the closure of 4
with respect to the M-closure topology of E: For k— o0 and fixed n the sequence
a, i is M-converging to ((1/n) x,,, 0) and (1/n) x,, is M-converging to 0 for n—cc.

6.3.4 Let Q be the first uncountable ordinal, E a preconvenient vector space
and A< E. For every ordinal a one can define the ath Mackey adherence
M-adh® (4) of a set A by M-adh %(4):= U, M- -adh?(A) if « is a limit ordinal and
M-adh* (4) is the Mackey adherence of M adh #(A4) if a is the successor ordinal
of B, ie. a=p+1. It can be shown [Kriegl, unpublished] that there exists a
preconvenient vector space E for which the ath Mackey adherence in its
completion is not the completion for all a<Q. The Qth Mackey adherence
always coincides with the Mackey closure, hence it has to be the completion.

6.4 Convex functions

We consider first the purely algebraic question of characterizing convex fun-
ctions.

6.4.1 Proposition. Let E be a vector space, f: E-R a map, and n>2. Then the
following statements are equivalent:

(1) fis convex, i.e. the function t+ f(x+tv) is convex for all x,ve E;

(2) f(Zr;x,)<Zr f(x;) for all reals vy, . .., 1, satisfying r;>0 and Zr;=1;
(3) The set Up={(x,t)e ExR; f(x)<t} is convex;

(4) The set A;:={(x,0)e ExR; f(x)<t} is convex.

Proof. (1<>2)is trivial.

(2=13) Let (x;t;)eU,, ie. f(x;)<t;, and r;>0 with Zr;=1. Let finally
(x,0):=Zr(x;,t;). Then f(x)=f(Zrx)<Zr f(x;)<Zr;t;=t, ie. (x,t)e U,. Thus
U, is convex.

(3=4) Let (x;,t;)e A;; ;>0 and Zr;=1; £>0 be arbitrary. Then (x;,1,+ &)
e U;. Hence by assumption (0, &)+ 2r,; (xi, t)=2ri(x;,t;+e)e U, < 4,. Since ¢
was arbitrary we conclude that Zr,(x;,t;)e d,, i.e. A, is convex.

(4=2) Let x;eE and r,;>0 with Zr,=1. Then (x;,f(x;))e A, hence by
assumption (Zr;x;, Zr; f(x;))€ A, ie. f(Zr;x,) <Zr; f(x,). |

Next we give a characterization of continuity of convex functions which will
be applied using the Mackey-closure topology or the locally convex topology.

6.4.2 Proposition. Let E be a vector space with a topology such that for all x, € E
the map x> xo— x is continuous from E to E, and f. E-R be a convex function.
Then the following statements are equivalent:

(1) f: E-R is continuous;
(2) The set U= {(x,t)e ExR; f(x)<t} is open in Ex R;
(3) The set {xeE; f(x)<t} is open in E for all te R.
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Proof. (1=>2) Since f: E—R is continuous, so is fxid: Ex R—>R x R. Thus
U,:=(fxid)~"U,) is open as inverse image of the open set U,:= {{t.s); t<s}.

(2=>13) is obvious, since {x; f(x)<t}:=incl, 'U,, where incl, denotes the
continuous map incl,: E—E x R defined by x— (x, £).

(3 = 1) One has to show that f ~}(U) is open for all U in a basis of the topology
on R. Such a basis is given by all open intervals U:=]s,t[. For such U one has
FH ) ={x; f(x)<t)n {x; f(x)>s}. The first set is open by assumption and the
second set Vi={x; f(x)>s} is open, since it is equal to U, _,(2x—{yeE;
f(»<2f(x)—s}). Using x=2x—x shows that ¥ is contained in this union.
Conversely let z be an element of the union, ie. z=2x—y with f(x)>s and
J(»)<2f(x)—s. By convexity of f the equation x=(y+2)/2 yields 2f(x)< f (¥)
+£(2); hence f(z) > 2f(x) —f ()= 2/(x) — s + s —f(3) >f () + s—f(y) =5, thus z V.

O

Now the announced characterization:

6.43 Theorem. Let E be a convenient vector space, - E—R a convex function.
Then the following statements are equivalent:

(1) fis L,

(2) fis continuous for the locally convex topology;

(3) fis continuous for the Mackey closure topology;

(4) fis continuous for the Mackey convergence;

(5) fis Lip™ 1, ie. is bounded on M-convergent sequences.

Proof. (1=3)Is obvious, since the Mackey closure topology is the final one
induced by the smooth (or Z4°) curves.

(3<>2) This follows from (6.4.2), since for convex sets (like {x; f(x)<r}) it is
equivalent to be open in the Mackey closure topology or open in the locally
convex topology by (6.2.2).

(3 <>4) is true for any function f: E-R. In fact, the Mackey closure topology
is the topologification 7 of the Mackey convergence structure, and since tR=R
the equivalence follows from the adjunction (2.2.6).

(3=5) Is obvious, since the Mackey converging sequences are relatively
compact in the Mackey-closure topology (they converge in this topology).

(5=-1) Let us first consider this statement for E=R. For ke N one has

i { ‘f(t) /()
t—s
since the convexity of f implies

J(2k)~f(k) SO=16) (=20 —f(—Fk)
%k—k = t—s — —2k—(—k

“

. max {|f(r)l;|r| <2k},

lels sl <k, t#S}S

and thus
SO—fs)

t—s

1 v 2
SE'maX{If(Zk)—f(k)L|f(*2k)—f(—k)|}S%max{lf(r)l; |r| <2k},
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Now the general case. For any smooth ¢: R— E we have to show that fo ¢ is
locally Lipschitz. Let again ke N. By the 1-dimensional situation applied to the

map
fs,,:er<c(s)+T @)
we have
.f(C(t)Z:];(C(S)) _ | St —tSl;fS,,(O) ‘S%max ———
=%max{ f<c(s)+rW) ; ‘rlszk} for all |t—s|<k.
The map

(&5, T)HC(S)+rE(?:_C(S)

has a smooth extension to R3, cf. (4.1.13). The image of [ — 2k, 2k]* under this
extension is bornalogically compact, i.e. compact in some Banach space Eg.
Thus every sequence in this image has a Mackey converging subsequence and
consequently fis bounded on this image. This shows that the difference quotient

Je)=fle(®)

t—s

is bounded for |t|, |s| <k/2 and t+#s. Since k was arbitrary the proof that fec is
Lipschitz is complete. O

We now consider the special case of seminorms.

6.4.4 Corollary, For any seminorin p on a convenient vector space E the follo-
wing statements are equivalent:

(1) pis Lip%

(2) p is continuous for the locally convex topology;
(3) p is continuous for the Mackey closure topology;
(4) p is continuous for the Mackey convergence;

(5) pis Lip™

(6) p is bornological.

Proof. (1+2<3+4<5) follows from the theorem (6.4.3) since any semi-
norm is convex.

(6 =5) is trivial.

(5= 6) We show that this holds for any positively homogeneous function p.
Assume (5) is true but not (6). Then there is a bounded set B such that p(B) is
unbounded. Choose b, € B with |p(b,)| >n?. Then {p(b,/n); ne N} is unbounded
but (b,/n) is obviously a Mackey 0-sequence. O
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In the following proposition we characterize those maps which appear as
derivative of a convex Zs'-function. For normed spaces this can be found in
[Shigeta, 1986].

To formulate the result we need the

6.4.5 Definition, Let f: E= U—E' be given.

[ is called monotonic iff (f(x)—f()))(x—y)=0 for all x,yeU.

fis called cyclically monotonic iff for any x4,%;, ..., x,=Xo€U one has
Y () (=%, 1) 20,

A linear map f E—E' is called positive iff it is monotonic.

Obviously every cyclically monotonic function is monotonic; and a linear
map f: E—~E' is positive iff f(x)(x)=>0 for all xeE.

6.4.6 Proposition. Let U < E be a convex M-open subset of a convenient vector
space E and g: U—E' a Li4%-map. Then the following statements are equivalent:

(1) g is cyclically monotonic;
(2) A convex Lip'-function f: U—-R exists with g=f".

Proof. (2=-1)Let xe U and ve E with x+ve U. Using convexity of f we obtain
for t>0:

o+ —fx) fL—Ox+tx+o))—f(x) (11 fx)+1f(x+0)—f(x)

t t = t
=flx+v)—f(x).

Thus f'(x)(v)<f(x+v)—f(x). Replacing v by —v we obtain g(x)(w)=1"(x)(v)
=>f(x)—f(x—v). Thus for any finite cyclic sequence xg, X, . .., X,=x,€ U one
has 37, g0x;) (x;—x;- )=, (f(x)—f(x;-1))=0, ie. g is cyclically mono-
tonic.

(1 =2) We may assume that Oe U. We will show that f defined by f(x):=
j(l) g(tx)(x)dt for xe U is the desired convex function.

By lemma (4.329) one has that f is %' and f'=g provided
{59t +0)(x +o)dt— [ gtx)(x)dt = [y g(x+tw)(v)dt  for all xeU and
x+uveU. In order to verify this equation we partition each side of the triangle
formed by 0, x and x +v into n equidistant parts. Applying cyclic monotonicity
of g to the 3n points

i i
O0=xp,..., xi:=ﬁx, i X, =X=X+0g, ..., x+ui:=x+Hu,...,x+v,,

=Xyt Vpy e ooy XyF Voo, Xg+0=0

g(v (Z)+'=i g(x+v,-)( > Z glx; +u)( +v)

one obtains

||M=

i
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and for the reverse ordering

:Z:g(vj)< )+ Z g(x+v;) ( ) Z g(x; +v)< )

Since these Riemann-sums converge (Mackey) to the corresponding integrals by
(4.1.4) the equation is proved.

Remains to show that fis convex, i.e. that the Zi4'-function t—f(x +tv) is
convex for all xeU, veE. By the classic calculus for real functions this is
equivalent with ¢+ f'(x+tv)(v) being monotonic, i.e. g{x+ tv) (v)=>g(x +sv){v)
for all t>s. This follows from the cyclic monotonicity applied to x+tv
and x+ sv.

Convex functions which are even %4* can be further characterized by the

6.4.7 Proposition. Let U < E be a convex M-open subset of a convenient vector
space E and f:U—R a Zip*-map. Then the following statements are equivalent:

(1) fis convex;

(2) [ is cyclically monotonic;

(3) f"(x) is cyclically monotonic for all xe U,
(4) f"(x) is positive for all xe U.

Proof. (1+2) by (6.4.6).
(2=3) Let x¢,X1,-..,X,=Xo€U be arbitrary. For ¢t sufficiently small
x+tx;e U and by the cyclic monotonicity of g:=f" we have

.Zl (g(x +1x;)—g(x)) (£0x;—x;- 1)) = ,Zl g(x+x;) (¢0c;— x;- 1)) =0.
J= i=
Dividing by t>>0 we obtain

Z": glx+ix;)—g(x)

(x— ) 1)>0
i=1 t

and hence }7_, g'(x)(x;)(x;—%;-1) 20, ie. f"(x)=g'(x) is cyclically mone-
tonic.

(3 = 4) since f"(x): E—F’ is linear.

(4=1) f is convex iff the F#>-map c: t—f(x+1v) is convex for all xeU,
veE. By the classical calculus for real functions this is equivalent with
[+ )@ () =c"(0)=0, ie. with f”(y) being positive for all ye U. O




7 PERMANENCE
PROPERTIES AND
COUNTER-EXAMPLES

In this chapter we study the permanence properties of most of the treated
important functors with respect to limits, colimits, initial and final morphisms.
Further results on final morphisms will be given as well as some additional
counter-examples.

In section 7.1 we consider the subspace F formed by the infinitely flat
functions of the (nuclear) Fréchet space E:=C*(R, R). We construct a smooth
function on F that has no smooth extension to E and a smooth curve R— F’ that
has not even locally a smooth lifting along E'—F’. These results are based on
Borel’s theorem which tells us that RM is isomorphic to the quotient E/F and the
fact that this quotient map E—R" has no continuous right inverse. Also a result
of [Seeley, 1964] is used which says that, in contrast to F, the subspace
{feC*(R, R);, f(1)=0 for t<0} of E is complemented. Besides other con-
sequences we show that C™ is not locally cartesian closed.

In section 7.2 we determine which among the functors like L, £, Zi4t, ®, @,
A and 5 preserve limits or colimits and we give counter-examples for those
preservation properties that do not hold.

Final morphisms in Pre, Con and .# for any .# are characterized in section
7.3. Those of the functors that preserve final or initial morphisms are determined
and counter-examples are given for the permanence properties that are not
valid.

In section 7.4 we collect various counter-examples whose existence were
mentioned throughout the other chapters. We will furthermore show that
several naturally constructed function spaces and tensor products are not
isomorphic in general, although one has morphisms which are isomorphisms in
case of finite-dimensional spaces.
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7.1 Extension and lifting properties

If ¢ E-F is a quotient map of convenient vector spaces one might expect that
for every smooth curve ¢c: R—F there exists (at least locally) a smooth lifting, i.e.
a smooth curve ¢:R—E with go¢é=c. And if x F>E is an embedding of a
convenient subspace one might expect that for every smooth function f: F-»R
there exists a smooth extension to E. In this section we give examples showing
that both properties fail. As convenient vector spaces we choose spaces of
smooth real functions and their duals. We start with some lemmas.

7.1.1 Lemma. Letu F—E be the inclusion of a Con-subspace, and suppose that
the locally convex topology of F is the trace topology of that of E. Then 1*: E'—F'
is a surjective final. CBS-morphism and hence a Con-quotient map.

Proof. Any ¢ €eF'is continuous with respect to the locally convex topology of
E, hence by the Hahn-Banach theorem [Jarchow, 1981, p. 127] has a con-
tinuous linear extension #: E—R. This shows that 1* is surjective. We next show
that the bornology of F’ is the final convex vector bornology induced by i*:
E'—>F, ie. equals #:={1*(B); B< E' bounded}, cf. (3.1.1). Since * is a Con-
morphism, A € # implies A = F’ bounded. Conversely, let now 4 = F’ be boun-
ded. By (ii) in (5.4.3) there exists a O-neighborhood ¥V in the locally convex
topology of F with 4 < ¥°, the polar of V. By the hypothesis on the locally
convex topologies, ¥ contains WnF for some absolutely convex O-neigh-
borhood W in the locally convex topology of E. Since the polar W° of W is
bounded in E' and 4 = V° = (W~ F)?, the assertion 4 e # follows if we show
that (W F)° = %(W°). So let £e(WnF)° ie. £:F-R linear and |£(x)| <1 for
all xe Wn F. Consider the Minkowski seminorm p: E— R associated to W, i.e.
p(y):=inf{t>0; yetW}. Then one has |¢/(x)|<p(x) for all xeF. By the
Hahn-Banach theorem [ Jarchow, 1981, p. 126] or { Horvath, 1966, p. 176] there
exists a linear extension Z: E—R with |#(y)|<p(y) for all ye Y. Then fe W°,
since ye W=p(y)<1=|2(y)| <1, and thus £=1%({)e1*(W°).

So we have proved that *: E'—F"’ is final for the bornologies. According to
(3.2.4) the lemma follows. O

7.1.2 Proposition. (Borel’s Theorem.) Let E:=C*(R,R) and F:={f€E; f in-
finitely flat at zero}, 1: F—E the inclusion, and q: E—R" defined by c— (c™(0)),.
Then q is a Con-quotient-map with kernel F and v*: E'— F' is also a Con-quotient-
map.

Proof. By (4.2.9) q is a Con-morphism. The kernel F of g is a Con-subspace of E
and 1* is a quotient by (7.1.1); in fact, the condition on the locally convex
topology of F is satisfiéd since that of E and hence its trace on F are metrizable,
thus bornological, cf. (iv) of (2.1.20). It remains to show that g is a Con-quotient.
So let B = R™ be bounded. We use an he C*(R, R) with compact support and
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h(t)=t for t in a O-neighborhood of R. Set

=2 () 1)
nl

,u,,:=2‘sup{1+ ;xeB,jgn,teR}<oo.

We show that for every x € B the function f,: R—R defined by
2 X [ R(tpa) \'
L@=Z—(JL)

n=0 n! Hn

is smooth. The summands are smooth and for each ¢ only finitely many
summands are non-zero. The jth derivative at ¢t of the nth summand is
(xu/BY) () ™" (") (tp,) with absolute value less than 4 ui™"*! which is less
than 2/7" for n>j. Thus all derivatives of the series converge uniformly and
hence f, is smooth with | f(?|<4%7_ ui™"*1+1. Using that h(f)=t for small ¢
one obtains that fY(0)=x;, ie. q(f.)=x. Furthermore A:={f;xeB}<
C*(R, R) is bounded with g(4)=B. ]

7.1.3 Corollary Let . F—E and q E—RN be as in the previous proposition
(7.1.2). For every Con-morphism s:RY—E the composite q0o factors over
pry:RV->RY for some NeN, and there exists no Con-morphism p:E—F
with pe1=id;.

Proof. Let o RN>E be an arbitrary Con-morphism. The set U={geE;
|g()| <1 for |t|< 1} is a O-neighborhood in the locally convex topology of E. So
there has to exist an N €N such that (V) < U with V:={xe R¥]x,| <(1/N) for
all n< N}. We show that - factors over R". So let xeRM with x,=0 for all
n<N.Thenk-xeVforall keN, hence k- s(x)e U, ie. |s(x)(#)|<1/kforall [¢t|<1
and ke N. Hence 4(x)(t)=0 for |¢{/<1 and therefore g(s(x))=0.

Suppose now that there exists a Con-morphism p:E—F with poi=idg.
Define s(q(x)):=x—1px. This definition makes sense, since g is surjective and
q(x)=q(x’) implies x—x'e F and thus x—x"=p(x—x'). Moreover s is a Con-
morphism, since q is a final Con-morphism; and (g © v)(g(x))=q(x) — q({ p(x)))
=g(x)—0. O

7.1.4 Proposition. The subspace { fe C*(R,R); f(1)=0 for t<0} of C*(R, R) is
a direct summand.

Proof. [Secley, 1964] We claim that the following map is a Con-morphism
being left inverse to the inclusion: 4(g)(1):=g(t)— Y, . n a h(—12%) g(—129) for
t>0 and 4(g) (1) =0 for t <0. Where h: R—R is a smooth function with compact
support satisfying h(t)=1 for te[—1,1] and (a;) is a solution of the infinite
system of linear equations Y ,.ya,(—2)"=1 (neN) (the series is assumed to
converge absolutely). The existence of such a solution is shown in [Seeley, 1964]
by taking the limit of solutions of the finite subsystems. Let us first show that
4(g) is smooth. For ¢t>0 the series is locally around ¢ finite, since —#2* lies
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outside the support of & for k sufficiently large. Its derivative (ag)™(t) is g™(t)
—Yien W(=29"Y o BI(—12")g" P (—12") and this converges for t—0 to-
wards g"(0)—Y, na(—2"g™(0)=0. Thus 4(g) is infinitely flat at 0 and
is smooth on R. It remains to show that g+ s(g) is a Con-morphism. Since
the Con-structure of C*(R,R) is the initial one induced by the evaluations
ev, by (4.2.11), it is enough to show that g+ (sg)(t) is 2 morphism. For t <0 this
map is 0 and hence a morphism. For ¢>0 it is a finite linear combination of
evaluations and thus a morphism. O

7.1.5 Proposition. Let E=C*(R,R) and F:={feE;f is infinitely flat at 0},
v*: E'>F' the Con-quotient map of (7.1.2). The curve c: R—F' defined by c(t):=ev,
Jfor t =0 and c(t)=0 for t <Q is smooth but on no neighborhood of 0 there exists a
smooth lifting.

Proof. Let us first verify that ¢ is smooth. Since by (3.6.5) the smooth structure
of F is the initial one induced by the evaluation maps, it is enough to show that
eveec:R—R is smooth for all feF. Since (ev ec)(t)=f(t) for t>0 and
(evy2c)(t)=0 for t <0 this obviously holds.

Assume that there exists a smooth lifting of ¢, i.e. a smooth ¢:R—E’ with
1*oe=c. By exchanging the variables, ¢ corresponds to a morphism &: F—E
and e corresponds to a morphism é: E—E with &-1=¢. The curve ¢ was chosen
in such a way that & f)(t)=f(¢t) for t>0 and & f)(t)=0 for ¢ <0.

We show now that such an extension ¢ of ¢ cannot exist. In (7.1.4) we have
shown the existence of a retraction s to the embedding of the subspace
F,={feF; f(1)=0 for t<0} of E. For fe F one has 4(&(f))=4((f))=2&(f)
since ¢(E)= F,. Now let W: E—E, W(f)(t):=f(—t) be the reflection at 0. Then
Y(F)eF and f=¢(f)+WEM(f))) for feF. We claim that pi=sé+
Wogs0ég0oW: E—Fis aretraction to the inclusion, and this is a contradiction with
(7.1.3). In fact p(f)=(go &) f)+(Foagecéo¥)f)=&f)+W(E(¥(f))) =S for all
feF. So we have proved that ¢ has no global smooth lifting.

Assume now that c|;_, . has a smooth lifting eo: ] —¢, e[~ E'. Trivially c|g\ (o
has a smooth lifting ¢, defined by the same formula as c. Take now a smooth
partition {fy,f;} of the unity subordinated to the open covering {]—e, e[,
R\{0}} of R, ie. fo+f;=1 with supp(fy)<=]1—e [ and O¢supp(f;). Then
Joeo+fie, gives a global smooth lifting of ¢, in contradiction with the
preceding considerations. ]

7.1.6 Corollary, The category of smooth spaces is not locally cartesian closed.

Proof. If C* were locally cartesian closed, then pullbacks would commute
with coequalizers, cf. (8.6.5). This is not the case as the following example shows:
Consider p,: E,—»F,, where E;:=(E)®, F =(F)® p;=Ig1* with 11 F>
E the inclusion considered in (7.1.2).

We show that p, is a cokernel by verifying that it is surjective and final with
respect to Born—Set, cf. (7.3.4). Surjectivity is trivial. For the finality consider a
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bounded BSE,, ie. BEII, pB, with B, F bounded. Using the finality of
r*: E'—F' (cf. (7.1.1)), we obtain a bounded A, E’ with 1*(4,)=2B,. The se
A=1l,.gA, is bounded in £, and p,(4)2B. :

The smooth curve ¢,: R—F, defined by pr,<c,:s—c(t+s) has nowhere
a local smooth lifting and we now consider in C* the pullback
pi=(c,)*(p,): Rug E{—R of p, along ¢,.

We claim that for every function f: R—R the composite f= p is smooth. For
this it is enough to show that pec is constant for every smooth curve
c: R—dom(p). Assume that p « ¢ is not constant. Then at some point (p < ¢) is not
zero, hence p o ¢ is a local diffeomorphism. But then pryace(pac)™* would be a
local smooth lift of ¢, . Since we have shown that the final smooth structure on R
induced by p is the discrete one, it follows that p is not final and thus not a
coequalizer. O

7.1.7 Propesition. Let E:=C*(R, R) and F:={feE; f infinitely flat at 0}. The
Sfunction ¢: F—=R defined by o (f):=f(f(1)) if f()=0 and o (f):=0if f(1)<0 is

smooth but has no smooth extension to E.

Proof. We first show that ¢ is smooth. Using the morphism & F— E associated
to the smooth curve ¢: R—>F' of (7.1.5) we can write ¢ as the composite
eva(c, evy) of smooth maps.

Assume now that a smooth extension y: E-R of ¢ exists. Using a fixed
smooth function k: R—[0, 1] with h(t)=0 for t <0 and h(t)=1 for t> 1, we then
define a map o:E—E as follows: (ag)(t):=v(g+(t—g(1)h)—(t—g(1))h(2).
Obviously oge E for any geE, and using cartesian closedness of the cat-
egory of smooth spaces (cf. (1.4.3)) one easily verifies that ¢ is a smooth map.
For feF one has, using that (f+(t—f(1))h)(1)=¢, the equations (af)(t)=
(f+E—=f DO — (t —f(1))h(t)=£(¢) for t>0 and (af )(#)=0—(t —f(1))h(t)=0 for
£<0. This means af=¢f for fe F. So one has {=a+¢1 with ¢ smooth. Differ-
entiation gives ¢=¢'(0)=0'(0)=1, and ¢’(0) is a Con-morphism E—E. But in
the proof of (7.1.5) it was shown that such an extension of & does not exist.

O

Remark. For the smooth map of the previous proposition there does not even
exist a smooth extension to a neighborhood of F in the Fréchet space E, since
such a local extension could be multiplied with a smooth function E—R being 1
on F and having support inside the neighborhood (E has as nuclear Fréchet
space smooth partitions of unity [Michor, 1983]) to obtain a global extension,

7.1.8 Example. The structure curves of a C®-quotient need not be liftable as
structure curves and the structure functions on a C®-subspace need not be
extendable as structure functions (quoted after (1.1.4)).

We use the previous construction and note that 1: F—>FE is an initial
C*-morphism, since it is an initial Pre-morphism. Thus we only have to show
that g:=1*: E'>F' is a final C*-morphism. So let f: F'—R be a function such
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that f= g is smooth. Clearly f is co-times weakly differentiable and in order to
verify that fis smooth it remains to show that the differentials of fare Ziz ~, cf.
(4.3.30). This is the case since Mackey-convergent sequences lift which can be
seen as follows: Boundedness of {t,(x,—x); ne N } implies that a bounded B< F’
exists with t,(x,—x) € q(B). Choose y with g(y)=x and y, with t,(y,— y)e B and
q(t,(y,—y)) =t,(x,—x). Then y,—y is an M-convergent lifting of x,—x.

7.2 Preservation of categorical limits

In this section we want to discuss the inheritance properties of the basic functors
with respect to limits and colimits.
The functors we consider are:

L: Con®? x Con —— Con cf. (3.6.3)

£°: (£™XPxCon—> Con  cf. (3.6.1)
Lif*: (Lef*)Px Con— Con  cf. (4.4.3)

& ConxCon— »Con of (38.4)
@  Pre Con  df (265)
£l £%- Con  cf (5.1.23)
A Liji Con cf. (5.1.1)

7.2.1 Theorem. The following functors are left adjoints (hence preserve colimits)
and have the stated additional properties:

(i) @: Pre—Con, it also preserves countable products.

(if) £1: £~ Con, it also carries finite products to tensor products in Con.
(iii) A: Zif*—Con, it also carries finite products to tensor products in Con.
(iv) ()@ E: Con—Con.

Proof. That these functors have right adjoints was proved in (2.6.5) for (i), in
(5-1.1) together with (5.1.23) for (ji), in (5.1.1) for (iii), in (3.8.4) for (iv).

In order to show that @ preserves countable products we use the linear
extension lemma (2.6.6). By (3.3.6) every linear morphism on a countable
product depends only on finitely many factors and thus extends to the product
of the completions. Since the Mackey closure of a product of finitely many
subsets is the product of the Mackey closures of these sets, and since the set of
points with only finitely many non-zero coordinates is Mackey dense in the
countable product, the countable product of preconvenient vector spaces is
Mackey dense in the product of their completions.

That the two functors in (ii) and (iii) carry the product to the tensor product
was shown in (5.2.4). (o]

We give some examples which show that none of the functors mentioned in
the above theorem preserves all limits:
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7.2.2 Examples (0) A particular important morphism s.: (RN)(M—(R(NM)N is
characterized by pr, o s in,:=in, o pr,. Its image is not closed since it contains

the dense subspace formed by the double sequences with finite support and since

» 1S mnot surjective. It is, however, initial, since the initial Con-
embedding (RN)(M)—(RN)N (cf. (3.4.4)) factors over it. -

Moreover no Con-isomorphism (RN)N) (RN exists, cf. [Jarchow, 1981,
p. 333].

(i) @: Pre—Con.

@ does not preserve uncountable products: Let Q be the first uncountable
ordinal, i.e. the set of all countable ordinals. It can be shown [Kriegl, unpub-
lished] that there exists a preconvenient vector space E for which the ath
Mackey adherence M-adh*(E), cf. (6.3.4), in the completion E is not the
completion if « <Q. We prove that the product E® is not Mackey dense in £<
Choose for every a<Q an element x,e E\M-Adh%(E). Let x:=(x,) be the
corresponding point in the product £2. Assume that x is in the Mackey closure
of E®; then there is an « <Q with x e M-adh*(E®). For the image with respect to
the projection on the «th factor one has: x, e pr,(M-adh*(E®))= M-adh*(E),
contradiction.

@ does not preserve equalizers (kernels): [Jarchow, 1981, pp. 98] gave an
example of a vector space E with two metrizable locally convex topologies, one
being non-complete, the other one being coarser and complete. In this case
completeness in the locally convex sense is equivalent to completeness as
preconvenient vector spaces, cf. the remark after (2.6.2). Then the extension of
the identity to the completion has obviously a non-trivial kernel, but the
completion of the kernel of the identity is {0}.

(i) 4: Z4*—>Con and ¢* = 1: £*—Con.

A does not preserve finite products: For any finite discrete .#-space X
(M ={ or M =) one has A(X)=R*¥ and thus A(XnX)=R*"X is unequal
to AX)nA(X)=R*nR¥=R*"¥ provided that X has at least three points.

4 does not preserve equalizers: For any finite discrete space X the diagonal
map A: X->XnuX is the equalizer of the two projections pr,, pry: XnX—X.
Applying the functor A gives (A): R¥*—R*™¥ which cannot be the equalizer of
AMpr;): R¥™* > R¥ for reasons of dimension provided X that has at least three
points.

(iii) ()& E: Con—Con.
(_)®R(M) does not preserve countable products:

RN @ RM (RN @ R)M 2 (RN)N (RN (RS RV, cf. (0),

(_)&®¢* does not preserve equalizers (kernels): Clearly ¢2—C(K, R),
x—{x,_» is an isometric embedding of Banach spaces where K:= {xet%
[x[ <1} is a compact space considered with the weak topology, cf. [Jarchow,
1981, p. 158]. In [Jarchow, 1981, p. 327] it is shown that applying the projective
tensor product (_)®¢? yields /2®£*2->C(K,R)®#? which is not an
embedding. Since all spaces are metrizable the projective tensor product
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coincides with the tensor product in Pre (considered as locally convex space).
The extension of this morphism to the completion is not initial in Pre and hence
is not an equalizer.

7.2.3 Theorem. Let E and F be convenient vector spaces and X an £™-space or a
C*™-space. Then the following functors are right adjoints and hence preserve limits
(cf. (8.5.1) for the particular case where the domain is an opposite category):

(i) L(E,_) : Con—Con;
(i) £<(X, ) :Con—Con;
(iiiy C*(X,_) :Con—Con;
(iv) L(_,F) :Con**—Con;
®) ¢, F) (%)~ Con;
(vi) Lip*(_, F) : (Lip*)P—Con.

The functor in {v) preserves in addition co-equalizers.

Proof. The functor L(E,_) in (i) is right adjoint to (_)&® E by (3.8.4). The
functor L(_,F) in (iv) is right adjoint to L(_,F). Con—Con® since
L(E,, I{E,,F))= L(E,, L{E,F)) by (3.7.3). The results for the functors in (ii) and
(v) follow from those in (i) and (iv) by using that #*(X, F)= L(¢*(X), F) and that
1 (£°)°P—Con® is a right adjoint by (ii) in (7.2.1). The results on the functors in
(iii) and (vi) follow from those in (i) and (iv) by using that ##"(X, F)= L(A(X),F)
and that 4: (Z#")°°—Con°" is a right adjoint by (iii) in (7.2.1).

The functor £%(_, F) preserves co-equalizers since every co-equalizer g: X —» Y
in (£/°)°? is an embedding in #*, hence has a left inverse (for ¥# ¢J). Thus
q*: /(Y F)>{*(X, F) has a right inverse and is therefore a final surjection and
a co-equalizer. o

Let us now give examples that show that none of the functors mentioned in
the theorem above preserve all colimits:

7.2.4 Examples. Many of the examples will make use of the following general
remark:

(0) Let g=sm=q, be a composite of two Con-morphisms. [f w is injective and
not final (e.g. the image is not closed in the locally convex topology of the
codomain) then q is not a co-equalizer and not final.

Proof. Tfthe image of . is not closed then 4. cannot be final since otherwise the
image is a complemented subspace by (7.3.3). If g=w=q, were final then
by (8.7.2) » would be final. Assume now that q is the co-equalizer of two mor-
phisms f and g. Then e q of=qaf=qrg=wmscq,~g and since » is injective
g,°f=q,°g. By the unjversal property of the co-equalizer there has to be a
morphism h with g, =h=q. Again from the universal property and the equation
q=wmioq,=mohaq one concludes that szoh=1, ie. » would be a retraction
and thus final, contradiction. O
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(i) Z(E, _): Con - Con.
L(R™, _) does not preserve countable coproducts:
LR, RM) = LR, RM)Y > (RN g (RM)® = L(R™, R)™, cf. (0) in (7.2.2).
L(RV,_) does not preserve co-equalizers (cokernels): Consider the final surjec-
tion g: C*(R, R) —» R", c(c™" 1(0)), which is by Borel’s theorem (7.1.2) the
cokernel of the subspace F formed by the functions that are infinitely flat at 0. By
(0) the map g«: L(R", C*(R, R)) - L(RV, RY) is neither final nor a quotient
map since using (7.1.3) it factors over the initial Con-morphism
(RY™ — (RM)N = L(RY, RM) of (0) in (7.2.2).

(i) £*(X, _): Con — Con.

¢*(X, _) does not preserve countable coproducts in general: This follows from
the corresponding example in (i) using that £ (X, _) = (_)¥ = L(R®, _) for any
discrete space X.

£%(X,_) does not preserve co-equalizers: Let E be a Fréchet Montel space for
which a quotient map q: E — £! exists, cf. [Jarchow, 1981, p. 233]. Then the map
%(N, E)= L({', Ey— L(¢*,¢") = £*(N, £!) is neither surjective nor a co-
equalizer since its image is contained in the subspace K (¢!, £') formed by the
compact operators, ie. by those ge L(*,¢") for which g({xe/"; |x|| < 1}) is
relatively compact (use that for he L(¢', E) the set h({xes%;[|x|| < 1}) is
bounded and since E is Montel it is relatively compact and so is
qth({xes'; |x|| < 1})). Since K (£1, £')is closed in L(*, £*) by [Jarchow, 1981,
p. 371] the map g% cannot be a cokernel.

(iii) C=(X, _): Con - Con,

C*(R, _) does not preserve countable coproducts: C*(R, R™) # C™ (R, R)™
since the curves ¢,(t):=h(t—n) with he C*(R, R), & # supp(h) < [0, 1] define
a curve c=(c,)e C* (R, R™) with ¢ ¢ C* (R, R)™,

C*(R", _) does not preserve co-equalizers (cokernels): We apply (8.3.8) to (i)
by using that L(E, F) is a complemented subspace of C*(E, F), by (4.4.24)
for j=1, k= 0.

(iv) L(_, F): Con®® - Con.

L(_, RY) does not preserve countable coproducts: L(RY, RY) = L(RV, R)Y
~ (R(N))N ;‘; (RN)(N) ~ L(R, Rm)(w)_

L(_, R™) does not preserve co-equalizers (cokernels): This follows from (i)
since L(_, R™) = L(RY, (_)) by (3.7.3), C*(R, R) is reflexive by (5.1.7) and ()
preserves by (iv) of (7.2.3) the kernel ¢: C* (R, R) > R" in Con®, cf. (7.1.2).

(v) €=, F): (¢£<)°* - Con.

£ (_, F) does not preserve finite coproducts provided F {0}: One uses the
natural isomorphisms £ ({x}’, F) = £*({«},F) = F and FY x=/*({x}, F)¥
and the fact that the summation map F — F is an isomorphism only if J is
single pointed.

(vi) C=(_, F):(C*)°® - Con.

C®(_, F) does not preserve finite coproducts provided F # {0}: One uses the
same argument as in (v) with £ replaced by C~.
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C*(_, R™) does not preserve co-equalizers (cokernels): This follows from (iv)
since C*(X, F) = L(A(X), F), A(R) = C*(R, Ry, A(N) = C*(N, RY = R™, and
the inclusion N — R is an equalizer in C™.

Now we will show that some other functors which have been considered do
not preserve limits. We begin with the functor #: Born — £*. By (1.2.4) it is left
adjoint to the inclusion, it preserves the underlying vector spaces and the
morphisms, and the /*-structure of #X is the one generated by Born(X, R).

First we give a useful construction involving certain bornologies % on N. We
shall denote the respective bornological space by N4, while N will, according to
(1.1.6), denote the natural numbers with their standard £ *-structure for which N
itself is bounded, cf. proof of (1.2.8).

7.2.5 Proposition. Let # be a bornology on N such that Born(Ng, R)=¢%,
ie. §(Nz)=N. Then the Pre-subspace {x € R"; supp(x)e #} of RV is the inductive
limit in Pre of the Frechet spaces R? = RY with Be 4.

Proof. Each R? can be considered as the subspace {xe R, supp(x) = B} of
E:={xeR", supp(x)e #}.

First we want to show that E is barrelled, i.e. every o(E’, E)-bounded subset of
E' is equicontinuous, cf. [Jarchow, 1981, p. 2197. Since E contains the sequences
with finite support, E is a dense subspace of the Fréchet-space RY; thus
E'=(RY =R™. So let 4 = R™ be bounded at each x e E and suppose 4 is not
equicontinuous, i.e. not bounded in R™, Since A4 (e,) < R is bounded for each
vector e, of the natural basis of R®™ there have to exist a"€ A with n— k,:=max
(supp(a™)) strictly increasing. Since f: N — R defined by f(k,):=n and f(k): =0 iff
k¢ {k,;neN} is not globally bounded, some infinite subset B of {k,; ne N}
belongs to 4. By passing to a subsequence we may assume that {k,;ne N} e 4.
Let us choose x,eR with X, x,(a"), =n {x,, is defined inductively by this
equation and x,:=0 iff k¢ {k,; ne N}). Now x:=(x,),€ E and a"(x)=n, contra-
diction.

Now we are going to prove the universal property which characterizes
inductive limits. Obviously every linear map #: E — F into a preconvenient
vectorspace F is uniquely determined by its restriction to R? for all Be # and it
remains to show that 4 is a morphism provided x|z is a morphism for all Be 4.
It is enough to show this for F=R. Consider the linear morphisms
wegi=m|gr 2 prg: E < R¥— R® - R. Pointwise the net »:; converges to s, since
xeE implies wep(x)=s2(x) for all B < supp(x). By the Banach-Steinhaus
theorem for barrelled spaces, cf. [Jarchow, 1981, p. 2207, the assertion that - is a
morphism follows provided we show that {s(x); Be #} is bounded for all
xeE. Obviously {prz(x); Be Z} = R*™P*™ js bounded and s:g(x)= s(pry(x))
= gy ppPL5(X)). Hence {s5(x); B€RB } = migypp({Pra(x); Be A} ) is bounded.

O

7.2.6 Example. For every Aec, the bornology {B<= N; Y _,A(n) < oo} satis-
fies the assumption of the previous proposition. The same holds for the
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bornology given by the subsets A = N of density 0, i.. those 4 for which
(1/n) card {ke A; k < n} converges to 0 for n — .

7.2,7 Lemma. For any set J the following statements are equivalent:

(1) # preserves all products with index set J;

(@) (I; ;N =1L ;1 (Ny,) for any family of bornologies #; on N;

(3) If #;( JEN) are bornologies on N such that every barnological function
R Nﬂj — R is globally bounded then an infinite Be ()., #,; exists.

Proof. (1=-2)is trivial.

(2=3) Assume that B, (jeJ) satisfying the hypothesis in (3) exist.

Consider the product of the spaces X; =Ny , the maps ¢;=id: N - X, and
c:=(c;);- The maps c; are structure curves of 11(X ) since by assumption every
fieBorn (X;, R) is global]ly bounded. Hence c is a structure curve of IT;_;#(X;).
Now define f: IT; X - R by f(c(n))=n and f(x):=0 if x ¢ c(N). This function is
bornological on II;c; X; since for every bounded set B <II;X; the set
{n; c(n)e B} is contained in {mn= pr;{c(n))epr;(B)} =pr;(B)e &, for all jed
and thus is finite, i.e. f (B) = {n; c(n)e B} is finite. Hence f'is a structure function of
7(IL; X;); but not of IT;x(X;) since (foc) (N)=N is unbounded in R.

(1<=3) We give an indirect proof. So we assume that some product I, X; is
not preserved by » and then construct a family of bornologies #; on N that
contradicts (3).

Since by assumption the structure of »(I1;X;) is strictly finer than that of
IT;n(X;), there exists a structure curve c=(c;) of II;#(X;) and a bornological
function f: I1; X; — R with foc¢/*®, and by passing to a subsequence we may
assume that | f(c(k))| > k. Let 4, be the initial bornology on N induced by cj,le.
Be4;iff ¢;(B) < X; is bounded Obviously Be #; implies c; 1(c (B))EZ

Let fi NA, —-R be a bornological function. We have to show that fJ(N) is
bounded. CO]I‘lSldCr a new function g defined by g(n):=sup({| f](k)l
kec; (e (n))} >|f;(m)|. The function g is well-defined, since ¢; '(c;(n)) is
boundled in #; and it is bornological since sup{|g(b)|
be B} <sup{|f;(b)l; b’ ecj (c;(B))}, which is finite since Jf; has to be bounded
on the bouunded set ¢; '(c;(B)). Since ¢; i(m)=c;(n') implies g(n) g(n') we may
define a new map h X,-»R by h(c (n):=g(m) and h(x}=0 if
x¢ci(N). Then h is bornologlca]l since for any bounded B < X; one has
h(B) h(c;(c; *(B)=g(c; '(B)), hence hec;=gel™. Since g(k)> Ifik) it
follows that £;(N) is bounded.

By (3) there exists an infinite B = N with Be #,; for all je J. Then ¢;(B) € X is
bounded and hence I1;c;(B) < IT; X; is bounded. Thus f(IT;c;(B)) 2 (f=¢)(B)is
bounded. This is a contradiction since |f(c(k))| = k for all ke N. O

7.2.8 Corollary. For any countable family of bornological spaces X, (ne N) one
has n(IL, X,)=I1,n(X,).

Proof. Tt is enough to verify (3) of (7.2.7) for J = N. Each bornology 4, satisfies
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the formally stronger condition: every infinite subset 4 of N contains an infinite
A, e 4,. Otherwise we can define a bornological not globally bounded function
[Nz — R by f(x;):=iand f(x):=0if x¢ A, where A={x,, x5, ... }. Now one
easily chooses inductively the infinite sets 4,4, and points a,€ 4, with
{ag,...,a,} €A,+, = A4,and a,,,€A4,,,\{a;,...,a,}. Then the infinite set
B:={a,,a,,...} < A, belongs to 4, for all neN. O

Finally we show that # does not preserve products of cardinality at least the
continuum.

7.29 Corollary. For every index set I of cardinality larger or equal to that of the
continuum there exists a family {#;;jeJ} of bornologies on N such that the
structure of n(I1;Ny ) is strictly finer than that of TI;n(N, ).

Proof. 1t is enough to show that there exist 2% many bornologies on N for
which (3) of (7.2.7) fails. For every jec, let 4, be the bornology on N defined by
Ac;iff Yy, i) < oo, cf. (7.2.6). Each of these bornologies is of the required
type. Assume that there is some infinite B={b,, b,, . . . } = N with Be %, for all
jEco, 18 Y uenljm)l < oo for all j. Define a j, € ¢y by jo(b,):=1/n and j,(k)=0 if
k¢ B. Then Y 4 cpljolk)| =3 nenljo(bu)l =), 1/n=c0, contradiction. O

Now we consider the embedding {o,: Pre » LimVS. It can be factorized into
Pre— bLimVS — LimVS, where the first functor is a right adjoint and the
second one a left adjoint, cf. remark (i) after (2.4.3). We will show now that this
composite is neither a left nor a right adjoint (quoted in (2.4.3)).

7.2.10 Example. (i) The embedding Pre— LimVS does not preserve
products, hence cannot be a right adjoint.

In order to see this we consider E =R’ with J equal to the set ¢, of all real 0-
sequences. Let x"€ E be defined by (x");:=j, and let # be the filter on E
generated by this sequence. It is easy to see that .# is not M-convergent, but
pr;(#)is convergent in R and thus M-convergent. Hence .# is convergent in the
product of the M-convergence structures.

(i) The embedding Pre— LimVS does not preserve cokernels, hence cannot
be a left adjoint.

In order to see this, consider the subspace E of RY formed by those x € R that
have support 4 of density 0. According to (7.2.5) themap q: I ,R4=F - Eisa
Pre-quotient, cf. (3.5.3). Assume that g is final with respect to the Mackey
convergence structures. Define another convergence structure on E by # — yiff
F =q(9) for some filter ¥ converging Mackey towards an xe G with g{x)=y.
This turns E into a convergence vector space £, and makes q: F — E,; con-
tinuous. By the assumed finality of q: F — E the identity E — E, is continuous.
Now consider the sequence n—(1/n)y ., Which is M-convergent to 0 in E,
hence in E,, and thus has an M-convergent lifting to F. But this is impossible,
since the union-of the supports of this sequence is N, which does not have
density 0. .
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7.3 Preservation of initiality and finality

We first give some useful characterizations of final morphisms.

7.3,1 Promsitiom. For any .#-map g: XY (with arbitrary #, cf. section1.1)
the following statements are equivalent:

(1) g is final,
(2) Y is the coproduct of the two M -subspaces g(X) and Y\ g(X) of Y,

9:X—-g(X) is final and Y\ g(X) is discrete, ie. carries the finest /-
Structure.

Proof. (1=2) As set Y is the disjoint union (1.e. the coproduct in Set) of g(X)
and ¥\ g(X). Thus the functions fon ¥ are determined by the restrictions fo to
g(X) apd Jito ¥\ g(X). Since g is final the structure functions on ¥ are those f
fo.r which f, 2 g=fg is a morphism, i.e. those where Jo 18 a structure function
_w1.tl.1 respect to the final structure on ¢(X) and where fi1 is arbitrary. Hence the
;mtlgl structure on g(X) is the final one induced by g: X —g(X), that of Y\ g(X)
is discrete, and Y is the coproduct of g(X) and Y\g(X) with their initial
structures.

(1<=2) ]Lfat f: Y—>Z be a map for which fogis a morphism. Let again f, and f;
be the rgstnctions of fto g(X)and Y\ g (X). Thenf, g =fegis a morphism and
hence f; is a morphism since g: X —g(X) is final. Furthermore, f, is a morphism

since ¥\ g(X) is discrete. Since X is the coproduct of g(X) and Y\ g(X) we
conclude that f'is a morphism. O

The .Iast proposition allows us to restrict some considerations about final
morphism to surjective ones.

‘7}3,2 Proposition. For any .#-map g: X~ Y the Jollowing statements are equiv-
alent:

(1) g is a final surjection;
(2) g is a coequalizer, cf. (8.3.6).

Proof.  (1=2) Consider the pullback pry, pry: X x X—»X of themap g: X>Y
s
with itself. Then ¢ is the coequalizer of pr,, pr,: X x X—X. In fact, let [ X7
a .

be a morphism for which f pr, coincides with fepr, on the pullback X x X, i..
Y

f(?cl)f f(x;) provided g(x,)=g(x,). Then there exists a unique map f: ¥—»Z
with fog=F, and since ¢ is final this map is a morphism.

(.1 <=2) One only has to recall that a colimit in .# has as underlying set the
colimit in Set of the underlying sets and as structure the final one and that any
co-equalizer of two maps g,,g,: X~ Yin Set is surjective (it is the quotient map
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from ¥ to the equivalence classes with respect to the equivalence relation
generated by {(g;(x), g2(x)); xe X }). O

Now we will prove for Pre and Con results analogous to (7.3.1) and (7.3.2).

7.3.3 Propasition. For any Pre-morphism and any Con-morphism g: E—F the
Jollowing statements are equivalent:

(1) g is final;
(2) F is the coproduct of the subspace g(E) and a discrete subspace and
g: E—g(E) is final.

Proof. (1=2) Let F, be an algebraic complement of g(E) in F; ie. F is
algebraically the direct sum of g(E) and F,. Then any linear map f: F—G is
determined by its restrictions f,, to g(E) and f; to F,. Since g is final those f are
morphisms for which f, = g=f= g is a morphism, i.e. those where f; is a morphism
with respect to the final structure on g(E) and where f; is arbitrary. Hence the
subspace structure on g(E) is the final one induced by g: E—g(E), that of F, is
discrete, and F is the coproduct of these two subspaces. In particular these
subspaces are M-closed and thus are convenient, provided F is convenient.
(1<=2) Let f: F—G be a linear map for which f= g is a morphism and F the
coproduct of g(E) with a discrete subspace F,. Again we denote with f; and f;
the restrictions of fto g(E) and F,. Then f, - g=f+g is a morphism and hence f,
is a morphism since g: E—g(F) is final. Furthermore, f; is a morphism since F;
is discrete. Since E is the coproduct of g{E) and F, we conclude that f is a
morphism. 0

The anaf]logue to proposition (7.3.2) works only for Pre and not for Con.

7.3.4 Proposition, For any Pre-morphism g:E—F the following state-
ments are equivalent:

(1) g is a final surjection;
(2) g is a coequalizer.

Proof. (1=2) Consider the pullback pry, pry: E x E=E of the map g: E-F
F
with itself. Then g is the co-equalizer of pry, pr,: E x E—E. In fact, let f: E-G
F

be a morphism for which f= pr, coincides with fe pr, on the pullback E x E, i.e.
F

f(x;)=f(x;) provided g(x,)=g(x,). Thus there exists a unique mapf: F—G with
feg=f. and since g is final this map is a morphism.

(2<=1) One only has to recall that a colimit in Pre has as underlying vector
space the colimit in VS of the underlying vector spaces and as structure'the final
one and that any co-equalizer of two linear maps g,, g,: E—F in VS is surjective
(it is the quotient map from F to the equivalence classes with respect to the
congruence relation generated by {(g,(x), g,(x)); xeE}). O
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Now we discuss the permanence properties of the basic functors with respect
to initial and final morphisms.

7.3.5 Theorem

(i) £':£®—Con preserves initial and final morphisms.
(i) A: Zip*—Con preserves final morphisms.
(ii)) L(E, _): Con—Con preserves initial morphisms.
(iv) £*(X, _): Con—Con preserves initial morphisms.
(v) C*(X, _): Con—Con preserves initial morphisms.
(vi) L(_, F): Con®®—>Con carries surjections to embeddings.
(vii) £°(_, F): (£°)®—~Con carries surjections to embeddings and initial
morphisms of £% to final morphisms.
(viii) Zig*(_, F): (Lip")°P— Con carries surjections to embeddings.

Proof. The functor in (i) preserves initial morphisms, since every initial map
(#) in £* has a right inverse. And maps having a right inverse in Con are
initial.

That the functors in (i) and (ii) preserve final morphisms follows from (7.3.1)
and (7.3.2), since they preserve colimits and discrete spaces. They preserve
discrete spaces since every discrete space in the domain category is a coproduct
of single points, the functors applied to a single point give R and a coproduct of
factors R is discrete in Con by (3.4.6).

(iii) Let g:F,—F, be an initial morphism. We have to show that Gy
L(E, F,)=L(E, F,) is initial. So let h: G- L(E, F,) be a linear map for which
gy °h is a morphism. Since the Con-structure of L(E, F,) is the initial one
induced by the evaluations ev,: L(E, F,)—F| it is enough to show thatev, chisa
morphism. This follows since geev,°h=ev °cg,°h is a morphism and g is
initial.

(iv) follows from (iii) since ¢ (X, _ )= L(Z1(X), _).

(v) follows from (iii) since C*(X, _)= L(A(X), _).

(vi) Letg: E, »E, be surjective. Then g*: L(E,, F)—L(E,, F)is injective. Let
h:G—L(E,, F) be a linear map for which g*¢ h is 2 morphism. Since the Con-
structure on I(E,, F) is the initial one induced by the evaluations ev,:
L(E,, F)—F it is enough to show that ev, < k is a morphism. This follows since
evyoh=ev,og¥*ch provided x is chosen such that g(x)=y, which is possible
since g is assumed to be surjective.

(vii) and (viii) The statements concerning surjections are proved as in (vi). So
let 1: X > Y be an initial morphism of #*. It has a left inverse (for X # () hence
1*=¢>(1, F) has a right inverse and consequently is final. O

Let us give some examples which show that among the functors considered

only those explicitly mentioned in the last theorem preserve initial or final
morphisms.

7.3.6 Examples. (0) We will make use of the examples (7.2.2) and (7.2.4) and
the fact that a composite g= s g, of two Con-morphisms is not final by (8.7.2),
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provided s is not final (and hence in particular provided the image of 4 is not
closed in the locally convex topology, cf. (0) in (7.2.4)).

(i) @: Pre—~Con.

& does not preserve final morphisms: In (7.2.5) we gave an example of a
Pre-quotient g: F—E, cf. (3.5.3), where F is convenient and E is an M-dense Pre-
Espace of RM Applying @ gives a non-surjective, non-final map
@(q): F>E—E (4, ..., x,¢E form a bounded sequence).

@ does not preserve initial morphisms: In (6.3.2) we gave an example o~f a Pre-
subspace 1: E@® R—F, (x, tf)>x+ty of a convenient vector space F=E whose
Mackey-closure is F. Applying @ to 1 gives a map i: F @ R— F acting as (x, t}—
x+ty. The kernel {¢(y, —1);t€ R} of this map is not trivial. Hence 'is not injec-
tive and thus not initial, cf. (3,2.1).

(i) A: Lip*—Con.

A does Hc?preserve initial morphisms in general: In [Joris, 1982] it is shown
that f:R-R2, t—(t3, ¢*) is initial in C*. But Af:AR=C%(R, R)y—
C*(R?, Ry = A(R?) is not even injective (evy° Z € C*(R, R) is mapped onto 0).

(iii) (_) ® E: Con—Con.

(L)® E does not preserve final morphisms provided E is not discrete: Applied
to the final morphism {0}—R it gives the non-final morphism
{0}={0) ® E-R® ExE. o)

(L)®¢? does not preserve initial morphisms: This was already contained in
the counter-example (iii) of (7.2.2).

(iv) L(E, _): Con—Con. _ '
L(R™)__) does not preserve final morphisms: This was already contained in
the counter-example (i) of (7.2.4).

(v) C*(X,_): Con—Con.

C*(R, _) does not preserve final morphisms: By (7.1.5) there exists a quotient
map q: E-»F and a smooth curve c: R—F with ¢(f)=0 for t<0 not having
locally around 0 a smooth lifting to E. Thus ¢,:C*(R, E)»C*(R, F) is not
onto. In order to prove that it is not final we consider the smooth curves
¢ R—F defined by ¢ (t):==c{t—s). We claim that {c,; seR} is linearly inde-
pendent in C*(R, F)/image (q,). Assume some finite sum Za,c, belongs to
image (q,) with not all & equal to 0. Then there exists a smooth curve e: R—E
with g °e=Za,c,. Let so:=min {s; o, #0}. Then (g=e) () = a,c,,(t) for ¢ near s,
and hence t (%) '-e(t+5s,) is a smooth lifting of ¢ locally aroumd_ 0,
contradiction. If ¢ were final then C* (R, F)/image (¢,) would be discrete, which
is not the case, since the linearly independent family {c,; s€[0, 1]} is bounded in
C*(R, F) and thus in C*(R, F)/image(q,,).

(vi) L(_, F): Con®*—Con.

L(_, F) does not preserve initial morphisms, i.e. does not transform final
Con-morphisms into initial Con-morphisms, provided F # {0}: Let E; E, bf:
two discrete convenient vector spaces. Then the inclusion 1E,—E, is
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final in Con. But L(E, F)=L(RY, F)=F’ for every discrete space E=RY
and hence 1* = L(i, F) is not injective and thus not initial:

L(_,R™) does not preserve final morphisms: This was already shown in the -

counter-example (iv) of (7.2.4). Even the duality functor (_) does not preserve
final morphisms. Applying it to the initial but non-final morphism R®™ —RY
gives RM SRV,

(vii) £=(_, F): (£)*~Con,

¢™(_, F) does not preserve initial morphisms provided F #{0}: Let X; = X,
be two discrete £ “-spaces. Then the inclusion 1: X; —»X, is final in £*. But
¢ (X, F)=F* for every discrete space X and hence 1* =/ (i, F)is not injective
and thus not initial.

(vifi) Zip*(_, F): (") >Con.

Sip*(_, F) does not preserve initial morphisms provided F # {0}: Let X, = X,
be two discrete .#/s*-spaces. Then the inclusion i1: X; — X, is final in %z, But
Lip*(X, F)=FX for every discrete space X and hence 1*= %4*(1, F) is not
injective and thus not initial.

C*(_,R™) does not preserve final morphisms: This was already shown in the
counter-example (vi) of (7.2.4).

Now we want to give an example which shows that finality is not preserved by
the functors Pte—»Born, Pre—¢ =, and Pre—»C®.

7.3.7 Example. The bornology, the £ *-structure and the %4*-structure of a
Pre-quotient need not be the final structures.

(i) Recall that the final barnology (final convex bornology) for a surjective
map consists of the images of all bounded sets. There exists a Fréchet Montel
space which has /' as LCS-quotient [Jarchow, 1981, p.233]. The unit ball
cannot have a bounded lift, otherwise this lift would be precompact (since the
space is Montel) and thus the unit ball would be compact as closed image of a
precompact set.

(ii) Recall that the final linearly generated .#-structure (.4 =£= or .4 = Lip*)
is the final Pre-structure.

Consider the subspace E of R" consisting of all those sequences whose
support has density 0. Then LI, R*—E is a final Pre-morphism by (7.2.5) and
(7.2.6), where A4 runs through all subsets of N with density 0.

The final .#-structure on this space E is compatible (M =¢%, or M = %i4>),
ie. the vector operations are .#-morphisms; but it is not the final Pre-
structure and thus not linearly generated.

In order to see that the final .#-structure on E is compatible one uses that the
product of final morphisms is final (by cartesian closedness) and the vector
operations on E are induced by those of 11, R“. Now we show that this structure
cannot be the .#-structure of the final Pre-structure.

Let ¢: E—R be defined by ¢(x)=) ,n"x," ... x, (for xe E this is a finite
sum, since some coordinate of x has to be 0). Then ¢ is not bounded on the
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M-convergent sequence (1/n)x; , and thus is not smooth, ie. it is not a
structure-function of the .#-structure associated to the final Pre-structure. But
for any A = N of density O the restriction ¢|p« is smooth and bornological, since
there exists an N e N\ 4 and thus p(x)=), _yn"x;. .. x, for all xe A. Thus ¢ is
a structure function for the final M-structure.

Remark. The previous example shows at the same time that a compatible
smooth structure on a vector space is not necessarily linearly generated.

7.4 Various counter-examples

7.4.1 Example. A convenient vector space E with a point separating subset
S < E’ such that the bornology on E does not have a basis of o(E, & )-closed
subsets (quoted in (4.1.17)).

Let E=/",{: N x N—N a bijection and &= {£e£ ™ =(£); lim_, . £ (Y (n, k)
exists and equals n-£(¥(n, 1)) for all ne N}.

Let us show first that % separates points: Let xe£!, x#0. Take i, minimal
with x, #0, (o, ko):=y ~!(iy), and define £ by £(y(no, k)):=sgn(x;,) for k<k,
and appropriate for k>k, such that lim,_ (Y (ny, k))=n,-sgn(x;,) and
£(Y(n, k)):=0 for all n#n,. Then clearly £e.% and <{¢, x) =sgn(x,-o)xi0+zk>k0
L, ing, K)xyo,190>0.

We show that B, :="\,ce¢ ~'¢ Bis not bounded, B being the open unit ball in
¢'. It is enough to show that (n/2)ey, ,€B;. One has
LyBY=1—1l{l x> I£] [, because on the one hand |{¢, x>|<| £, | x|, and
on the other |t}< |||, implies |£,|>|t]| for some n, thus [{{, e, >|=|{,|>t|.
So we obtain

n
‘</: ;elll(n’ 1)> | =

74,2 Example. Pre-embeddings which are not LCS-embeddings (quoted in
(3.2.2)).

Since every separated locally convex space E is a projective limit of normed
spaces by (2.1.17) one has an LCS-embedding of E into the product of these
normed spaces. Now we can take any non-bornological E (e.g. an infinite-
dimensional Banach space with the weak topology, cf. [Jarchow, 1981, p. 271]).
Then the bornologification yE of E is Pre-embedded into the product, but it is
not an LCS-embedding (provided the cardinality of the index set of the product
is non-measurable), since ySE is different from E.

. : -y 11
S/, 1))‘ = iy A 1 KD 5 <5 1

7.4.3 Example. A convenient vector space E whose locally convex topology is
not quasi-complete (quoted in (2.6.2)).

An easy example consists of the Pre-subspace E of R’ formed by all xe R’
with countable support provided J is uncountable. Clearly E is M-closed in R/,
hence convenient. If the locally convex topology of E were quasi-complete, then
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the closed bounded set {xe E;|x;|<1 for all j } would be complete; but this is
not the case since the characteristic functions yy (F < J finite) form a net which
converges in R’ to y; ¢ E. For a different example see [Jarchow, 1981, p. 71].

7.4.4 Example. An M-complete convex bornological space whose bornology
is not complete (quoted in the remark after (2.6.2)).

An example of such a space E is due to [Nel, 1965] and is as follows: the
underlying vector space of E is /* and B< E is bounded iff B€#* is bounded
and there exists some finite-dimensional subspace F < E with B E,+ F, where
E, denotes the subspace formed by the sequence with finite support (one uses
that in complete convex bornological spaces the #*-hull of bounded subsets is
bounded, cf. [Hogbe-Nlend, 1977, p. 126]).

7.4.5 Examples, We consider the following natural morphisms, which are

isomorphisms if the spaces involved are finite-dimensional vector spaces, resp.
manifolds:

(i) E'®@F-L(E;F)
(i) E®F' ~(E®FY
(iii) L(E, FY—L(F,E")
(iv) C*(X,R)® F>C*(X, F) S @y (x—f(x)y)

(V) C*(X, FY>L(C*(X, R), F') g1~ (y—=a.(/(0) M)
(vi) C*(X, R)® C*(Y,R)»>C*(XnY,R)  f®g—((x, )—f(x) g()
(vii) E" @ F'>L(E, FY X1 ® y1 - (g—x1(y129)

(vii) C*(X, R ® F'>C*(X, FY i ®y1=g—fi(y1°9)
(ix) C*(X, RY @ C*(Y,Ry>C*(XuY,R) f, ®g,—~>(h—fi(g:°h"))
(x) AX)->C=(X, RY of. (5.1.1)

() (RYY & RY and L(RY, RV) are not isomorphic:
RM & RV =(R & RM)™ x(RN)™M (RMIN = L(RY, RN L(RY, RN),
(i) (RVY & (RMY and (RVNQ® R™™MY are not isomorphic:

(RN)'®(R(N))"_‘—_’ R(N)@ RN ;(RN)(N)$(R(N))N ~ ((RN)(N))IQ(RN ® R(N))/_
One can even achieve E and F to be the same, if one takes both equal to
RN @ RN,

(i) L(RN, RNY and L(RV, (RV)) are not isomorphic:
L(RY, RYY =(RM)VY = (RY) N RV)V= LRY, RV)
(iv) C*(R, RY®RM-C(R, R™) is not an isomorphism: Using that
CH(R, E)—>‘EN, c(c(n)), admits a right inverse x>, x,h(t—n), where he
C*(R, R) with h(0)=1 and supp(h)<[ —1, 1], we conclude that RN is a comple-

mented subspace of C*(R, R) and that (R™)V is a complemented subspace of

C*(R, R™). Thus this counter-example follows from the one given in (i) using
(8.3.8). '

(v) C*(R, RNy L(C*(R, R), (RNY) is not an isomorphism:

X1 ® y(x—x(x)y)
X1 @y = (x @ y—=x1(x) y1(3)
g1 =y (X g,(x,() )
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As in (iv) one considers RN as complemented subspace of C*(R, R) and (RN
as complemented subspace of C* (R, RN, Thus this counter-example follows
from the one given in (iii) using (8.3.8).

(vi) C*(R, R)® C*(RN, R)—»C* (Rn RN, R) is not an isomorphism: One
considers R™ = L(RY, R) as complemented subspace of C*(RY, R); because of
C=(RuRY, R)= C*(R, C*(RY, R)) this example follows from the one given in
(iv) using (8.3.8).

One can even take X =Y:=RV, since C*(RN, E) contains C*(R, E) as
complemented subspace.

We do not think that the morphisms in (viij{x) are always isomorphisms. We
have no counter-examples but we now show that one for (ix) would yield others
for (vii), (viii) and (x).

(vii) Let ¢ denote the natural morphism E” ® F'— L(E, F). In the case where
E and F are reflexive the dual ¢* is a retraction whose right inverse is
12 L(E, F)-L(E, F)’ composed with the isomorphism (E"QFY=(E®F) =
L(E, F'; R)= L(E, F")= L(E, F). Thus the bidual ¢p**is a section which implies
that ¢ is initial.

We do not know an example where ¢ is not surjective. Recall in this
connection that denseness of EQ F' in L(E, FY with respect to the locally
convex topology is equivalent to the reflexivity of L(E, F), cf. (5.4.18).

(viii) Anexample showing that this map is not an isomorphism would also be
an example for (vii) by setting E:=A(X)->C>(X, RY.

(ix) An example showing that this map is not an isomorphism would also be
an example for (viii) by setting F:=C*(¥, R).

(x) An example showing that the map in (ix) need not be an isomorphism
would also yield an example for (x): If for all X the morphism A X »C (X, R) in
(x) were an isomorphism then using the isomorphism a(XnY)=AiX ®AY of
(5.2.4) would show that the morphism in (ix) is also an isomorphism.




8 SOME CATEGORICAL
NOTIONS AND
NOTATIONS

This chapter is by no means an introduction or a survey on category theory. It is
intended as a helpful guide for a reader who is not familiar with categorical
terms and reasonings. Therefore it only recalls those standard definitions and
basic results which are used in this book. No proofs are given; they can either be
found in the standard textbooks on category theory or are trivial.

8.1 Categories

8.1.1 Definition, A category & consists of

(i) a class denoted |Z;
(ii) for each pair X, ¥Ye|Z| a set denoted Z (X, ¥);
(ii1) for each triple X, ¥,Z e |Z'|a map (¥, Z) x Z(X, ¥) - X (X, Z) denoted
(9. f)—>gef;

and the following axioms are supposed to hold:

(@) (X1, V1) # (X5, ¥p) = (X, Y ) n (X, ¥s) = &

(b) feX(X,Y), geZ(¥,Z), he X(Z,U)=>ho(gof) = (hog)-f:

(c) for each X e|Z] there exists an element 1ye % (X, X) such that fal, =1

for any fe ' (X,Y) and 1y0g = g for any ge (Y, X).

The elements of | %] are called the objects of Z'; the elements of & (X, Y) are
called the &-morphisms from X to ¥ or also the morphisms having X as domain
and Y as range and one also writes f: X — ¥; the maps (g, f)— g f are called
compositions of Z'.

A morphism f: X — ¥ of & is called isomorphism iff there exists a morphism
g:Y—> X in & satisfying fog =1y and g«f=1y. Of course g is uniquely
determined and denoted by £ 1.
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If one has fog = 1y for two #-morphisms f: X — ¥ and g: ¥ - X then fis
called retraction (of g) and g is called section (of f).

In most examples of this book the objects are sets with additional structures
{e.g. algebraic or topological); and the morphisms certain maps between the
underlying sets, compatible with the structures (e.g. homomorphic or continu-
ous); and the composition will be the usual composition of maps.

In many important examples such as the category Set of sets, the category VS
of (real) vector spaces or the category Top of topological spaces the objects form
a proper class and not a set; if they form a set one speaks of a small category.

For two categories & and % the product category & x % is defined as follows.
Objects of Z x ¥ are the pairs (X, Y) with X an object of & and Y an object of
% morphisms of Z x# from (X, Y,) to (X,,Y,;) are pairs (f,g) with

f:X,—X, an Z-morphism and g¢:¥, - Y, a %-morphism; composition

consists in composing the components.

A category % is called subcategory of a category # iff the objects of Z form a
subclass of the objects of %, and the morphisms of & are morphisms of %, more
precisely 2(X,X,) S #(X,X,) for all X,,X,¢e|%|; and Z-morphisms are
composed as %-morphisms. A subcategory & of % is called full iff (X ,,X,) =
Y(X,,X,)forall X, X,e|&]|; and it is called replete iff any object in % that is
#-isomorphic to an object in # lies also in #.

8.2 Functors and natural transformations

8.2.1 Definition. A functor a:% — % from a category Z to a category ¥
consists of

(i) a map || — |#| for the objects denoted by X r—aX;
(i) for all Z-objects X, X, a map ¥(X,X,) - #¥(aX,,aX,) for the mor-
phisms denoted by fi—af;

and the following axioms are supposed to hold:

(a) a(ly) = 1,4 for any object X of &,
(b) a(fg) = af=ag whenever fog is defined.

So-called contravariant functors 2 — % can be avoided by considering
ordinary functors 2°® — %, where the category Z°° opposite to a category &
has as objects the same as Z'; °P(X, ¥):= (¥, X) for all objects X, ¥; and fog
in Z°" is g of'in the sense of &.

For any category Z one has a functor Z'(_, _): °° x & — Set, called the hom-
functor of Z. It associates to (X, X ,) the set Z(X,,X,) of #-morphisms from
X, 10 X, and to (g,f) the map &(g.f):h—foh =g.If g = 14 then we write f, or
Z(X, f) instead of Z'(Ly, f), ie. f,(h) = f=h . Similarly we write g* or Z(g, X)
instead of &' (g, 1), i.e. g*(h) = h=g. Then X(g. ) =fi2g* = g* oS-

One has always a functor denoted Id,: & —> % that acts on objects and
morphism as identity.
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Functors a: & = % and f: % — & can be composed in the obvious way to
form a functor Bea: ¥ —» Z.

A functor o: & — % is called faithful (resp. full) iff for any two objects X, X, of .

& the mapping fro(f), (X, X,) - ¥ (X, aX,) is injective (resp. surjec-
tive). A full and faithful functor is called an embedding. A category & with a given
faithful functor & — Set is called a concrete category.

8.2.2 Definition. A natural transformation $:a — f, where a, f: & — % are two
functors, is a family of %-morphisms 8y:aX — X (X €|%|) that satisfies the
following axiom: For every &-morphism f: X; — X, one has 8y, caf = Bf=3y4,.

Two functors o, f: % — % are called isomorphic iff there exists a natural
isomorphism, ie. a natural transformation 8: a—f such that 3y is a #-iso-
morphism for all X e #.

A functor A: ¥ - % is called representable iff there exists a representation, i.e. a
natural isomorphism &: A= (4, _) for some Z-object A.

8.3 Limits and colimits

8.3.1 Definition, A diagramin a category Z is a functor V: # — %, where £ isa
small category. Let us write X;:== V(j) for any je|.f|.

A source in ¥ is a Z-object X together with a family of #-morphisms
fi:X - X; (jeJ). A sink in Z is a Z-object X together with a family of &-
morphisms f;: X; —» X (jeJ).

A limit of V is a source (X,; p;:X,—X; (jel£]) in & with p;=
Vo < p; for any .#-morphism ¢:i — j, having the following universal property: for
each source (X, f;:X » X; (je|#))) in & with the compatibility property
fi=Veof; for any #-morphism ¢:i—j there exists a unique #-morphism
X > X, withf,=p;of for all je| #|.

The dual notion is the following: A colimit of V is a sink (X ; g;: X; » X,
(jel#1) in & with g, =q;oVe for any .#-morphism ¢:i—j, having the
following universal property: for each source (X; g;: X; = X (je| £ |)) in & with
the same compatibility property there exists a unique &-morphism g: X ,, —» X
with g; = gog; for all je| |

We mention some important special cases:

8.3.2 Products and copraducts. One takes as .# a discrete small category, i. a
set J of objects, and as only morphisms the identities 1; for jeJ. A diagram
V:.4 — ¥ is uniquely determined by the family X; (jeJ) of objects. The given
definitions of limit and colimit are simplified because the conditions involving
#-morphisms become void. A limit of V is called product of the family X; and is
denoted by pr;:II;; X; — X (j e J); similarly a colimit is called coproduct and is
denoted by in;: X; - L, ; X; (jeJ).
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8.3.3 Inverse or projective limits. Let J be a set directed by a relation >, cf.
(2.2.1). One defines a small category .£: The set of objects is J; £ (j, i) has exactly
one element if j > i and is empty otherwise; the composition is then unambigu-
ous. A diagram .# —» Z consists of a family of Z-objects X; together with }’-
morphisms f; ;: X; —» X; for j>>i that satisfy f; ; = 1y for alll jed and f; ;
fiiofe jfor k>j > i. Such a diagram is usually cal]led 'an inverse or prOJectlve
system and a limit of it is called an inverse or projective limit.

8.3.4 Direct or inductive limits., Let (J, >) be a directed set as before. One
forms the category .# in the dual way: The set of objects is J and (i, ) consists
of exactly one element if j > i and is empty otherwise. A diagram .# — & consists
of a family of & -objects X; together with Z-morphisms f; ;: X; — X; for j > i that
satisfy f; ; = 1 for al]l] and f; , = fj.xof., j for k> j>i. Such a diagram is
usually called a dlrect or inductive system and a colimit of it is called a direct or
inductive limit.

8.3.5 Pullbacks and pushouts. One takes as .4 a category with three objects, say
0, 1,2, and with two morphisms besides the identities, namely 1 - 0and2 - 0. A
diagram V:.# - & consists of three objects X,, X, X, and two morphisms
g:X, - X, and g,: X, — Xo. A limit of this diagram is determined by two
maps f;: X, — X, and f,: X, — X, satisfying g, of; = g,of,. It is called a
pullback of (g4, g,). Pushout is the dual notion, i.¢. a pushout of two morphisms
g,:Xo— X, and g,: Xq — X, is a pullback in Z°? of (g;, g,)-

8.3.6 Equalizers and coequalizers. One takes as .# a category with two objects,
say 0 and 1, and with two morphisms 0 — 1 besides the identities. A dia-
gram V:.# — & consists of two objects X, X; and two morphisms g;: X — X,
(i =1, 2). A limit of this diagram is determined by a map f: X , — X, satisfying
g1°of = g of. It is called an equalizer of (gy, g,)-

A coequalizer of (gy,g,) is the dual notion, ie. is an equalizer in Z°° of

(g1, 92)

8.3.7 Definition. A category Z is called complete iff all diagrams in & have a
limit. It is called cocomplete iff all diagrams in & have a colimit.

8.3.8 Lemma. Suppose there are given morphisms:
X > Y
S
X' Y

such that res=idy, r'os'=idy, ger=r'of, fos=s"cg.

If f is a coequalizer, a section or a retraction then g has the same property.
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84 Adjoint functors

8.4.1 Definition. Let p and 4 be two functors as follows: & <—p>_tﬂ. Then p is
i

called right adjoint to A(and A left adjoint to p) if there are bijections between the
following sets:

XY, X)=H(Y, pX) for X e, Ye¥

in such a way that they form a natural transformation between the functors
(A, ), H(, p_):¥°® x X — Set. This natural transformation is called an
adjunction between p and A.

842 If such an adjunction is given, then to 1,; corresponds a %-
morphism #y: ¥ — pA¥ and similarly to 1,5 an Z-morphism ey:ipX — X.
These are easily verified to constitute natural transformations #: Id y —> podand
e:dop —1d,, and to satisfy the identities ¢,y Any = 1,4 and pey o Nox = Lox-
One calls # the unit and ¢ the counit of the adjunction. Conversely, any two
natural transformations #:1d, —» p<4 and e:dop — Id, satisfying the above
identities yield an adjunction: one defines (1Y, X)— ¥ (Y, pX) by f— pfany
and (¥, pX) - Z (1Y, X) by g~ ¢y 0 Ag. The assumed identities imply that these
are inverse to each other.

In many of our examples the objects of 2" and # are structured sets and #y
and ey the identity maps of the underlying sets. In these cases the trans-
formations Id, — p~A and A» p — Id, mean that pZ coarsens and Ap refines the
respective structures.

8.4.3 Often only one functor p: Z — % is given and one wants to know whether
it has an adjoint. Suppose for every object ¥ of % one has an object AY in &
together with a #-morphism #y: ¥ — p(1¥) such that for any #-morphism
1Y - p(X) with X €| Z| there exists a unique #-morphism f: 1Y — X such that
/= p(f)>ny (In this situation the pair (1 ¥, y) is called universal arrow from ¥
to p). Then A extends in a unique way to a functor 4: % — Z that is left adjoint to
p and has » as unit of adjunction. The adjunction is given by fe #(¥, pX)—>
feZ (1Y, X).

In the dual way one obtains a right adjoint to a given functor A:% — &
if for every #-object X one has a #-object pX together with a #-morphism
&x:A(pX) — X such that for any Z-morphism g: 1¥ — X there exists a unique
#-morphism §: ¥ — pX satisfying g = ey 4g.

8.4.4 If the inclusion functor of a subcategory has a left (right) adjoint one
speaks of a reflective (coreflective) subcategory. A left (right) adjoint to an
inclusion functor is called reflector (coreflector).
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8.5 Adjoint functors and limits

8.5.1 Propesition. (i) A functor p: & — % which has a left adjoint preserves
limits; ie. if ppX,—X; (jelF|) is a limit of a diagram V:F5 — &, then
p(py):p(X ) = p(X)) (je|.#£1) is a limit of the diagram p=V: ¥ - ¥.

(ii) Similarly a functor which has a right adjoint preserves colimits.

Remark. That a functor p: °° — % preserves limits means that it transforms
colimits in & into limits in #.

8.5.2 Proposition. Let 1: & — # be the inclusion functor of a full replete sub-
category.

(i) Suppose X is a reflective subcategory of #. Then one can choose a left adjoint
(reflector) A:% — X such that Ae1=1d,. Let V:# > & be a diagram. If the
diagram 12V :.% — % has a limit (in %) then this limit belongs to Z' and is a limit of
V (in Z). If the diagram 1-V: .5 > % has a colimit (in ¥) then one obtains
(according to (8.5.1)) a colimit of V (in Z') by applying the functor A.

(i)) Suppose & is a coreflective subcategory of %. Then one can choose a right
adjoint (coreflector) p: % — & suchthat po1 = 1d,. Let V: & — & be a diagram. If
the diagram 1. V: . — % has a colimit (in %) then this colimit belongs to ¥ and is a
colimit of V (in Z). If the diagram 1-V: ¥ — % has a limit (in ¥ ) then one obtains
{according to (8.5.1)) a limit of V (in &) by applying the functor p.

8.5.3 Corollary. Let & be a full replete reflective (resp. coreflective) subcategory
of a complete and cocomplete category %. Then ¥ is complete and cocomplete.
Limits (resp. colimits) in & are obtained by forming them in %. Colimits (vesp.
limits) in & are obtained by applying the retraction functor to the colimit (resp.
limit) in %.

8.6 Cartesian closed categories

8.6.1 Definition. A category & is called cartesian closed iff

(i) # has a terminal object 7, i.e. an object such that for any object X there
exists exactly one morphism X — T;
(i) For any pair of objects a product exists, ie. the functor & —
IxI, X—(X, X), f>(f.f) has a right adjoint _n_: ¥ x ¥ - Z;
(iii) For every object ¥ the functor _nY has a right adjoint.

Remark. Let Q(Y, ): % — & denote a right adjoint to _nY. Then Q extends
in a unique way to a functor Q:2°? x ¥ — & such that one has bijections
F(XnY, Z) = F(X,Q(Y, Z2)) being natural in X, ¥, Z.

Unit and counit of the adjunction(s) are of the form #%: Z — Q(¥, ZuY) and
el QY, X)nY - X.
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8.6.2 Example, The category Set is cartesian closed. Any singleton is a ter-
minal object, the product is the cartesian product, and as Q one can take the

hom-functor Set(_,_). The unit consists of the insertion maps ins}:Z —-

Set (Y,Z x Y), ins(z)(y):= (z, y) and the counit of the evaluation maps evy:
Set (Y, X) x ¥ = X, ev(f, y)i= ().

The adjunction Set(X x Y, Z) = Set(X, Set(Y, Z)) is given by the map fi— [,
where f (x)(y):= f(x, y); the inverse map is gr—g", where g” (x, y) = g(x)(y).

8.6.3 Remark. For the cartesian closed categories Z in this book the forgetful
functor & — Set is represented by & (7, _) (T denotes a terminal object). In this
situation one can choose @, n and the adjunction in such a way that the
underlying set of (X, Y) is the set of morphisms (X, Y) and that of X1 Y is
the cartesian product of the underlying sets of X and ¥. Unit and counit consist
of the insertion and evaluation maps, and the adjunction is given fi— fV and
g—g” where f¥ and g” are defined by the same formulas as above.

8.6.4 Remark. In any cartesian closed category 2 one has a natural iso-
morphism Q(X 1Y, Z) = Q(X,Q(Y, Z)), which can be written as exponential law
ZXEY) ~ (ZY)¥ if one uses the notation ZY for Q(Z, Y). Other exponential laws
that are valid are X* =~ X, (Xn¥)? = X*n ¥¥ and Xu7 = X. One has always a
natural morphism Z¥Yn¥* — Z*; in the concrete situation above this is the
composition map.

8.65 A category & is called locally cartesian closed iff the comma-categories
(Z, X) are cartesian closed for all ¥-objects X, where the comma-category (¥, X)
has as objects all #-morphism with range X and as morphisms ¢:f — g those Z-
morphisms dom(f) » dom(g) for which g - @ = f. The product in (¥, X) of two
(@, X)-objects fand g is just the pullback in & of fand g. Thus locally cartesian
closedness of 4 implies that pullbacks in & preserve colimits. And since for any
terminal object T of 2" the comma-category (%, T) is isomorphic to 4 the locally
cartesian closedness implies cartesian closedness provided a terminal object
exists.

8.7 Initial sources and final sinks

For this section we suppose that a faithful functor ¢: & — % is given, ie. a
functor such that for all Z-objects X, Y the map Z(X, Y)->%(¢X,0Y) is
injective.

8.7.1 Definition. (i) An initial source with respect to ¢ is a source formed by an
Z-object X and a family f;: X — X (jeJ) of -morphisms with the property: If
Z is any Z-object and g: 9 Z — ¢ X is any %-morphism then ¢f;cgc o X (Z, X;)
for all jeJ implies ge @ X(Z, X). An initial morphism with respect to ¢ is an
initial source with a singleton as index set J.
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{(ii) The dual notion is the following. A final sink with respect to ¢ is a
sink formed by an Z-object X and a family f;: X; > X of Z-morphisms
with the property: if Z is any Z-object and g: ¢ X — @Z any #-morphism then
goofiepZ(X;, Z) for all jeJ implies gep X (X, Z). A final morphism with
respect to ¢ is a final sink with a singleton as index set J.

(iii) An initial source f;: X — X (resp. final sink f;: X; — X)), je J, with respect
to ¢ is called initial source (resp. final sink) over a family of #-morphisms
g;: Y= oX;(resp.g;:0 X; > Y)iff o X = Y and ¢f; = g, for all je J. We say that
Z has initial sources (resp. final sinks) with respect to ¢ iff over every source
g;: Y- X;(resp. sink g;:0X;—Y), jeJ, in ¥ there exists an initial source (resp.
a final sink) in Z.

Remark, We only use the special case where the objects in 4 can be considered
as objects of # together with some additional structure. Then taking an initial
source over a family g;: ¥ — Y, (jeJ) amounts to supply ¥ with an additional
structure and we will call this structure the initial structure induced by the
morphisms g; (je J). The additional structure corresponding to a final sink over
a family will be called final structure induced by that family.

Remark. If one has a family f;: X — X, (jeJ) of Z-morphisms and the product
pr;: I, ; X; — X; exists, then the f; (je J) form an initial source if and only if the
corresponding morphism f: X — I1;_; X| is an initial morphism.

The dual result is; if one has a family f;: X; — X (jeJ) of Z-morphisms and
the coproduct in;: X; - I;.; X; exists, then the f; (jeJ) form a final sink if and
only if the corresponding morphism f:11,.; X; — X is a final morphism.

8.7.2 Proposition. (i) The composition fog of initial ¥-morphisms is initial.
Conuversely, if the composition fo g of two X -morphisms is initial then g is also
initial.

(ii) The composition fog of final ¥-morphisms is final. Conversely, if the
composition [« g of two Z-morphisms is final then f is also final.

8.7.3 Propaesition. (i) If & has initial sources with respect to @: ¥ — % then ¢
has a right adjoint. If in addition % is complete, then Z is also complete, and a limit
of a diagram V:¥9 — X is obtained by taking an initial source over a limit
g4;: Y, 20X, (je|F)of p-V:F >,

(ii) If & has final sinks with respect to ¢: & — % then @ has a left adjoint. If in
addition ¥ is cocomplete, then also ¥ is cocomplete, and a colimit of a diagram
V:# — Z is obtained by taking a final sink over a colimit g;: @ X; > Y, (je|.#])
of p=V:F > %.

Remark. If ¢~ *(Y)is a set for every #-object ¥ then Z has initial sources iff it
has final sinks. For this as well as for the existence of the adjoints one uses the
special case J = (.
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8.7.4 Proposition. Suppose one has functors according to the diagram:

Xy — %

[

p
¥r ——— &

T
such that the diagram commutes (i.e. oA = X'\ and p' ¢ = Yp); that @ and Y are
faithful, that A is left adjoint to p with unit n and co-unit ¢; that 2’ is left adjoint
to p' with unit n' and co-unit ¢'; and that ¢(ex) = ey, for all Z-objects X and
Y(ny) = Ny, for all Y-objects Y. ‘

Then p transforms initial sources (with respect to @) in & into initial sources
(with respect to ) in %; and A transforms final sinks (with respect to ) in % into
final sinks (with respect to @) in Z.

8.7.5 The above proposition is often used in the following special situation:
T =%, p' =1 the identity functor, and the unit #" and co-unit & are the
identity transformations.

8.8 Embeddings and quotient maps
For this section we suppose that a faithful functor ¢: % — Set is given.

8.8.1 Definition. (i) An &-morphism f'is called an #-embedding (with respect
to ¢) iff fis initial with respect to ¢ and ¢f is injective.

An object X is called an & -subspace (with respect to ¢) of an object Y iff p X is
a subset of @Y and there exists a (unique) #-embedding /: X — ¥ such that @fis
the inclusion.

The dual notions are: a morphism fin & is called an #-quotient-map (with
respect to ¢) iff fis final with respect to ¢ and ¢f is surjective.

An object X is called an & -quotient-space (with respect to ¢) of an object ¥ iff
¢X is the quotient of ¢ ¥ with respect to some equivalence relation and there
exists a (unique) &-quotient-map f: ¥ — X such that ¢f is the projection map
associated to the equivalence relation.

Remark. Suppose that ¢ = ¢,0¢, for some faithful functor ¢,:4 = VS,
where ¢, denotes the obvious functor ¢,: VS — Set. Then the notions of #-
embedding and Z-quotient-map remain the same iff one replaces ¢ by ¢;.

8.8.2 Proposition. For any morphism f the following statements are equivalent:

(1) fis an isomorphism;
(2) fis a surjective (i.e. of is surjective) embedding;
(3) fis an injective (i.e. f is injective) quotient-map.
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Remark. Ifinitial sources exist then the embeddings are exactly the composites
fog with g an isomorphism and f an embedding of a subspace.
And if final sinks exist then the quotient-maps are exactly the composites g = f
with g an isomorphism and f a quotient map onto a quotient space.
Proposition (8.7.2) yields immediately:

8.8.3 Proposition, (i) The composition of embeddings (resp. quotient maps) is an
embedding (resp. a quotient map).

(i) If the composition = g of two morphisms is an embedding (resp. a quotient
map) then g is an embedding (resp. f is a quotient map).
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functions of #* (X, R) with finite support

functions of £1X with finite support

space of j-flat Z4*-maps
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ith partial difference quotient of order &
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domain for an extended difference quotient of order x
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derivative of curve ¢

kth derivative of curve ¢
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ith partial derivative

partial derivative of order k
differential
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normed subspace generated by B E
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identity map of a set X
pr_ojection map onto the jth factor
injection map from jth summand
evaluation map, ev(f)(x):=f(x)
point .evaluation, ev,.(f)=f(x)
Insertion map, ins(x)(y):=(x, y)
composition map, comp( f, g):=f°g
diagonal map, A(x):=(x, ..., x)
natural inclusion map
characteristic function of a set X
signature function
I x0=f(x, y)
I 9)=f(x)()
JMa)=g-f
Jelg)=f-g

diagram in category

identity functor of a category &
class of objects of category 7'
opposite category of &
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end of proof
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ArcVS
Born
BornVS
bLCS
bLimVS
ce
CBS
Con
Con*®
ConAlg

ConCoAlg

DVS
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M-VS
Pre
Set
sPre
tCBS

arc-generated topological spaces
arc-generated vector spaces
bornological spaces

bornological vector spaces
bornological locally convex spaces
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LCS- (54.4)

n- (5.44)
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separated
bornological vector space (2.1.2)
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