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INTRODUCTION

The basic idea of these Lectures Notes is to consider the

tensor product of an arbitrary family of vector spaces (Ei)iel

as the inductive limit of the finite tensor products @ Ei R
ied

J finite subset of I ; to this end we suppose that we are given

for each i, a non zero vector ti in Ei and we define, for JcK,

a mapping LJ,K : ;fJ Ei-———» £?K Ei by writing
® Ei = ( ® E;)e ( @ BE,)
iek 1 ieg * iek-g *
LJ’K(x) = xo( o ti) ;

ieK-J
we thus obtain an inductive 1imit which we denote by @tEi .
If each Ei is a Banach space ti must have norm one ; if Ei

is a # - algebra ti must be hermitian and idempotent.

If now we have C*— algebras Ai with non zero projections
e; we can define two tensor products éeAi and geAi , which
are identical if the Ai are postliminar. Our main results
concern the irreducible representations and the characters
of %eAi where o = Vv or =« ; for instance if each ey is
central every finite character of aeAi is a tensor product
of characters and we get a precise description of the topolo-
gical space (H( aeAi) (see n.14.3). As for the irreducible
representations of ; eAi we examine two thoroughly diffe-
rent particular cases : if ey is"large" in the sense that Ai

admits sufficiently many irreducible representations * with

rank v(ei) > 2, geAi is antiliminar and, with some further
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assumptions, admits an irreducible representation which is
not a tensor product (see § 11). On the contrary if e; is
'smallu, i.e. if for each = in ﬁi we have rank w(ei)s1and
if moreover each Ai is postliminar, then 5 eAi is postli-

minar, each irreducible representation of it is a tensor pro-

duct and we get a precise description of the topological

T
space @ A, (see n.13.2).

In § 8 we introduce the notion of infinite tensor pfoduct
of Hilbert algebras, which gives us a very simple method to
determine the type of certain infinite tensor products of

type I factors (see § 9).

In § 1 we introduce a notion which plays a basic role
throughout these lectures : the restricted product of a family
of sets Xi with respect to a family of subsets Yi ; this is
the subset H(Yi)Xi of FIXi consisting of all families
(xi) such that X; € Yi except for a finite number of indices
i ; if each Xi is a topological space and Yi is open in Xi ’
the restricted product becomes a topological space in .a natu-

ral way.
®

* *
Given a set I we denote by i_(I) the set of all finite
subsets of I ; we say that a property P of an element i of I

holds for almost every i or almost everywhere if P holds for

every 1 lying outside some finite subset. If i is an element
of T we denote by Si the real function on I which takes the

value 1 at i and O at each other point.

If X is a topological space we denote by 'K(X) the space

of all continuous complex functions on X with compact support.
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If A is a x - algebra every hermitian idempotent element in

A will be called a projection. We recall the following result

concerning infinite products of complex numbers : given a
family (xi)iéI of non zero complex numbers, the product

mn Xy is convergent and non zero if and only if we have
iel
2 lx;-11<eo

i€I
We finally recall the associativity property for finite

tensor products : given a finite family (Ei) of Banach

i€l

spaces and a partition I I, , there exists an isomor-

= VU
Ael ~A

A A A
phism F of @ E; onto @ ( ¢ Ei) such that F( ¢ xi)
i€l AL 4T, ieI
= 0( @ xi) for each family (xi) in 11 E, . Similar
el ieT, ier 1
L 3
results hold for the v and * tensor products of C - algebras.



§ 1. Restricted products of sets and topological spaces.

Definition 1. Given a family (Xi) of sets and for each

iel

i a subset Yi of Xi’ we call restricted product of the family

(Xi) with respect to the family (Yi) the set of all families

(x;) ¢ TTX. such that x.e Y. for almost every i ; and
1 el 1 (Y ) 1 1

we denote it by nt X,
tel 1
(a)

we write n

If Yi is reduced to some point a;

. (tayd)

a
X, or m Xy instead of [ i

For each finite subset J of I we denote by X(J) the set

of all families (xi) e [1 X4 such that X € Yi for ig¢ J ,

- [l x. M .
(1) jeg i i)eI-J 1

(Y -
then the X(J) are subsets of fj 1 Xi which is their

union, and X(J) C X(K) if JcK .

Suppose now that each Xi is a topological space and that

(Y,)

. ) ) i
Y; 1s open in X; ; we shall define a topology on [T X4

in the following way : we endow each X(J) with the product

topology ; then for J ¢ K, X(J) is an open topological
Y.)

subspace of X(K) 3 we say that a subset U of [] 1 Xi is

open iff for each J , Uf\X(J) is open in X(J) ; we get a
topology which is the inductive limit of those of the X(J) y

and is stronger than the product topology ; each X(J) appears

(¥;)

as an open topological subspace of [] X4



Particular cases.

(i) If Y, = X; » the restricted product is identical to the.
ordinary product.

(ii) 1If for each i, Xi is locally compact and Yi compact,
the restricted product is locally compact since each X(J)
is locally compact.

(iii) If Xi is discrete and Yi is reduced to some point aj,
the restricted product is discrete since each X(J) is
discrete.

(iv) If X; is a locally compact group and Y, a compact open
subgroup, the restricted product is, in a natural way, a
locally compact group ; this construction is used in order
to define the so called " adele groups " : in the simplest
case 1 is the set of all prime numbers, the Xi are the p-
adic fields Qp and the Yi - there rings of integers 2
(see for instance [37], ch. III, § 1).

(v) If X, is a discrete gfoup and Y, is reduced to the neu-
tral element, H(Yi) X, is nothing but the usual restric-
ted product H'Xi .

(vi) If X; is a compact group and Y, = X; the restricted

1

product is identical with the ordinary product r]Xi .



Restricted products of Borel spaces.

We now suppose that each Xi is a Borel space and Yi a Borel
subset of Xi s put on each X(J) the product Borel structure ;
then for Jc¢K , X(J) is a Borel subspace of X(K) ;s we define

(Y,)
a Borel structure on X = f1 1 Xi by saying that a subset
U of X is Borel iff for each J, Uan(J) is Borel in X(J) 3

then each X appears as a Borel subspace of X.
(J)

Restricted products of measures.

Suppose that each Xi is locally compact, Yi compact and
open, and that we have a positive Radon measure #i on Xi
with g (Yy) =1 5 set v, = 4, |Y, ; for each J ¢ ¥ (I)

we can form the product measure

» = ( ® p.)e( @ v.)
(J) jeg 1 ieT-g 1
if J€K we have r(K) IX(J) = ﬁ(J) , hence there exists

(Y.)

a unique positive Radon measure p on J] 1 Xi such that

2 IX(J) = F(gy 5 it will be called restricted product of

the measures )*i .

If in particular Xi is a locally compact group, Y. a compact

i
open subgroup and rioa left Haar measure on Xi’ M 1is a left

(¥;)

Haar measure on [] Xi

Finally if Xi is a Borel space, Yi a Borel subset and A
positive Borel measure on Xi with ri(Yi) = 1, the same cons-

truction applies and yields a positive Borel measure s



§ 2. Infinite tensor products of vector spaces.

)

Let us consider an arbitrary family (Ei iel of vector

spaces and for each i a non zero element ti in E; ; denote

1

by t the family (ti) ; for each finite subset J of I we set

E(J) = .®J Ei ; for Jc K we define a linear mdpping
ie
bik f OB — Ey
by writing
)y T B @ Bgeg)
LJ,K(X) = X ® (ie?%-J ti) Y x € E(J) ;

the mappings LJ K are injective and form an inductive system,
9

which means that for JCKCM we have LJ,M» = LK,M°:LJ,K .
| (t;) .
Definition 2. We shall denote by ® E, or ® E;
i€l i€l

the inductive 1imit of the above inductive system, and by LJ

the canonical mapping E(J) — @t Ei ; the LJ will sometimes

allow us to consider the E(J) as subspaces of @t E. which

i 9

is then their union ; if J is reduced to a point i we shall
‘. 3 . t
write L, instead of L{ig' For each family (xi) € N’ Ey we

denote by @ Xy the element LJ( ® xi) where J is an arbi-

ied

trary finite subset verifying X; = ti V i ¢ J; every element

of @t Ei is a linear combination of elements of the form

® X.

; 3 the mapping (Xi)p—_e;Q X, 1is multilinear.

1



Properties of the infinite tensor product.

(i) Universal property.

Proposition 1. For every multilinear mapping u of Iﬁt Ei

into a vector space F there exists a unique linear mapping
v e ®t E;, —> F such that v(e xi) = u((xi)) for each
(xi) e Nt E; 5 in this way we get a bijective correspondance

between the multilinear mappings F1t Ei ——F and the linear

mappings @t Ei —_ F

Proof. Choose a finite subset J of I ; for each family (xi)ieJ

define a family (x'i)ieI where
X. if ied
x! = +
B {t. if i4d
the multilinear mapping

n E, — > F

(x3)5¢g —> ul(x}))
gives rise to a linear mapping

vy ¢ E(J) — > F
® x; ——s ul(x})) ;
ied

the \& form an inductive system and v is their inductive limit.

(ii) Associativity.

For each partition I = AULI* there exists an isomor-
€
phism ® E, — ® ( @ Ei) taking each element

i€l ML i€,



of the form x, into @ ( ® x.) ; here we have pet u. =

Ael ieIA 1 A
(t.). and v = ® t. .
i 1eIA A ieIA i

(iii) Functorial property.

Let us also consider vector spaces Fi and non zero elements

u in Fi ; let v, be a linear mapping Ei —_*’Fi with

vi(ti) = uy ; there exists a unique linear mapping @ vy oo
t u
® Ei —_—® Fi such that
_ t .
(@vi)(e x;) = @ v (x;) V(xy) e T E;;

if the v, are injective, @ vy is injective too.

(iv) Bases of ®t Ei .

Suppose that for each i we have a basis of Ei of the form

(e. ) where the index x. runs over some set X., and that X.
1,x5 i i i
conta?ns)an element yi with ei,yi = ti ; for each X = (xi)

. Yy L
in N X4 we set €(x) = ii . ei,xi ; then it is easy

to verify that the vectors e(x) constitute a basis of Qt Ei .

Bibliography [9].

N.B. There is no pages 7,8,9.
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§ 3. Infinite tensor products of algebras.

)

Let us consider a family of algebras (A and for

i’iel
each 1 , a non zero idempotent e, in Ai ; the finite tensor
products A(J) are algebras and the mappings LJ,K are mor-
phisms of algebras ; by endowing @e A.i with the inductive
limit structure we get an algebra whose multiplication is

characterized by

_ e

Let us now suppose that for each i, Ai is a % - algebra and
e, a projection (i.e. hermitian idempotent) ; then the A(J)

are x - algebras and the LJ gk are morphisms of »x - algebras
9

we get a structure of x - algebra on ®° Ai characterized by

t 4
(e»ai) = ®a, .

The reader will easily state the properties similar to (ii)

and (iii) of § 2.

A particular case. Suppose that e, is a unit element for Ai H
we then write @® Ai instead of @° Ai ) @ei is the unit ele-
ment of @ Ai 3y the LJ are mutually commuting morphisms of
unitary « - algebras ; moreover ®‘Ai has the following uni-
versal property

Given a unitary « - algebra B there exists a bijective corres-

pondance between the morphisms (of unitary » - algebras) u :
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® Ai —> B and the families of mutually commuting morphisms

u; Ai —— B ; this correspondance is given by

u(ea;) = T ou(ay) V(a;) e N° Ay

Infinite tensor products of representations.

Proposition 2. Let, for each i, A.

; an algebra, €; a non zero

idempotent in Ai’ E.

; @ vector space, ti a non zero element of

E.

~
1]

a representation of Ai in Ei such that ‘/Ti(ei).ti = t..

i’ T i i
Then there exists a unique representation 7 of @€ Ai in the
t
space @ Ei such that
— _ e R
n(@ai)-®xi = ®ni(ai).xi V(ai) ¢ n Ai’ (xi) € n Ei'

Proof. Take a family (a.) ¢ n°¢ A, and a finite subset J with

i
a, = ey V ieI-J ; write
e B - (e E)e( @ ‘m) ;
i€l ied ie I-J

we have an operator ® ‘W.(ai) in the first factor and, by

ieJ 1t
property (iii) § 2, an operator ® ‘Wi(ai) in the second
ieI-J
factor ; whence an operator in ® t Ei which we denote by
ieI
u((a,))
_ .1t .
u((ai))'®xi = ®Tl(al)'xl y (xl) € Tl El ’

the mapping u : M€ Ay .___$F£(<at Ei) is multilinear, hence

defines a linear mapping

e t

v & ‘Ai .___>‘1’(®

T(@ al)'Qxi = & ’Wl(al).xl ’

finally it is easily seen that m is a representation.
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§ 4. Infinite tensor products of Banach spaces.

Let us consider a family of Banach spaces Ei and for each
i, a unit vector ti in Ei ; let us endow each finite tensor
product E(J) with the A crossnorm ; if J¢ K. the isomor-
hi E E E is isometric, th th
phism (K)’V (J)® (K-J) sometric, us e LJ,K are
t

isometric ; we put on @& Ei the inductive limit norm, so

that each mapping LJ becomes isometric ; we have

bex 0 = Tx, | V(x;) en® &, .
Definition 3. We shall denote by E%; Ei the completion of
® t Ei with respect to the norm defined above ; this is also
the inductive limit of the Banach spaces ng Ei .

Definition of ® X, for certain families (x.).

Proposition 3. Let (xi) be a family of vectors x;¢ E; such

that = | X; - ti ] < e@ ; the product Tlnxiu exists, and it
is null iff one of the X5 is null ; the family of the vectors
LJ( ® x.) has a limit in @t E. , whose norm is equal to

. i i

ied
o xg .

Proof. The proposition being trivial if one X is null, we

can suppose x; # 0 Vi ; then

2 hxgn-11 = Z| g = Mty

IA

N
%
|
o+
A
8
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w@ence ljuxiﬂ exists and is not null ; the finite products

N hxi)l are bounded by some constant k 2 1 . We must now
ied

prove that the vectors X; = L,( ® x.) form a Cauchy
I J ieg 1
family, i.e. that for every £ > 0 there exists K €F (1)

with the following property :

Jy s Jy 2 K == UX; -X; I & & ; (1)

2 1

take K such that
"JAK = f — Zhx; - b5l & e /k
c€J ‘

in order to prove (1) we can suppose Jicdy, 5 set J = Jy=J

we have !
X. - X = I; (@ x;-( e x)e( @ t.))
do Ty I ieg, 1 ieg, 1 ieg 1
I x. - X, ) = N otx; el @ x, - ® t. | ;
do  Tdy ieg, ied T qeg 177
denoting by i1,... in the elements of J we can write
@ x, - ©® ¢t = X. & . e X, -1t. & ® b,
ied 1 jeg 1 i n 1 iy
= (X; = t, ) @ X; @ ee0 @ XKoot t. @ «. t. @(x, -t. )
11 11 1 ln' 11 11'1-1 1 1
l @ x. - ® t.0 & klx, —t. I + + kllx, - t, |
ieg I qeg 1 1, 1 In i
£ € /k
whence
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Definition 4. Given a family (xi) we set
X. = 1lim L ( ® x.)
i d jed I

whenever the righthand side makes sense ;3 this is the case if

b | X5 - till < oo ; in any case we have e x; | = ﬂl(xil/.

Bibliography [917] .
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§ 5. Infinite tensor products of Banach % - algebras.

Suppose we are given a family of Banach x - algebras Ai
and for each i, a projection ey of norm 1 in Ai ; then 86 Ai
is a Banach x - algebra, the inductive limit a@f the finite
tensor products '6 Ai

i€d

® € A; , which will be denoted & A, , has the follo-

for Ai’ ®
wing universal property : given a unitary Banach x» - algebra
B and mutually commuting morphisms (of unitary x - algebras)
continuous and with norm 1, u; s Ai —> B , there exists a

unique continuous morphism u : ® Ai —> B such that

u(e a;) = MNuy(ay) Viag) ¢ M° Ay .

Example 1. We consider the situation of § 1, (iv), set A =
L1(Xi) and denote Dby ey the characteristic function of Yi ;
this is a projection of norm 1 if the Haar measure K on Xi

is chosen so that f*(Yi) = 1.

N
Theorem 1. There exists an isometric isomorphism w of ® ¢ A.

i
(Y.)

onto L1( n * Xi) with the following property : for every

e (Yi)
family (ai) in 07 A, w(e® ai) is the function f on N
defined by

. . if = .
flx) o {l1al(x1) i x (xl) € X(J)
0 in the opposite case

(we have set J

{1 la, # e;3).

X

If in particular ey is a unit element

i
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~ 1
u H ® A. — 3 L ( n X.)
d 7 4eg 1 ieg 1

which transforms each element ® ai into the function
ied
(xi)ieJ .__92 ai(xi) ; then an isometric morphism

A 1 - ~ 1 . 1
ve: ® A, L, L (F1 X))eL'( T 1Y) L'(X )
7 jeg 1 jeg 1 je1-g 177 (J)

a »+—— uj(a) @1 ;
(Y.)

1

finally extending vJ(a) to a function on X = T1 X.

1

which is zero outside of X(J), we get an isometric morphism

P 1
WJ: ® Al p-—-)L(X).
ied
As easily cheked the Wi form an inductive system and we get

an isometric morphism

s e

Wi o® A — L1(X)

which transforms <9ai as indicated in the statement. It re-
mains to be shown that Im w is dense in L1(X), or that
each function f in K(X) is a limit.of elements in Im w ;
the suppoft of £ is included in some X(J) ;3 by the Stone-
Weierstrass theorem we can suppose that f depends only on a
finite number of coordinates, i.e. that there exists some

J'€ ¥ (I) such that f = g @1 with g ¢ K( iﬂJ' Xy s
€



17

we can also suppose that J'; J , but in this case f ¢ Im LATID

Corollary 1. The L1.algebra of the restricted product of dis-

crete groups G; is canonically isomorphic to 62L1(Gi) .

Corollary 2. The L

algebra of a product of compactsgroups Gi
is canonically isomorphic to ®° L1(Gi) where e; is the func-

tion 1 on Gi'

Example 2. We first define the symmetric algebra of a Banach

space. Consider a Banach space E and set, for each integer n y o

on L
E = Ee.... ® E n-times ;

every permutation s of the set {1,... n 3 gives rise to an

@n
automorphism Us n of E such that
9
the operator P. = (n!)~' 3 vu is a projection of norm
n s S,n A

n ®n
1 ; we set STE = 1Im Pn = the set of all elements in E
which are invariant by all Us n’ finally we denote by SE

9

the Banach direct sum of all S®™E for n = 0,1,2y0.. , i.e.

the set of all sequences x = (xn) where X, € S"E and

Ixih = Z Wx Il < oo ; by definition S°E = C .

It is proved in the courses of Algebra that there exists on

oo en
the algebraic direct sum A = & E a structure of
n=o0
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commutative algebra such that

n
(xy), = :éo Pr(xp@ ¥y ) (2)
for every x = (xn) and y = (yn) in A ; we then have
Il (x Y b < gz; [ Xl e U¥pp I
Txyn = 2 nxyh < ZNxX NNy n = wxn .yl

#a

hence the multiplication can be extended to SE which becomes

a commutative Banach algebra ; (2) is still valid for x and

y € SE ; SE admits a unit element ¢ = (1,0,0,...).

For each a €E it will be convenient to denote by exp a the

following element of SE :

® 2 ®n
exp a = (1, a, a /’?1,..., a /4n!,...) ;
we have
na n
Il exp a I = e
and
exp(a+b) = exp a . exp b.

Each Banach space Ss"E is generated by the particular tensors
®n
X ; then the algebra SE 1is generated by £ and E identi-

fied with the set of all elements (0, x, 0,0,...).

Proposition 4. The Banach algebra SE possesses the following

universal propérty,; given a commutative Banach algebra B with

unit, by associating with each morphism of unitary algebras
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V:SE—— B with nvu ¢ 1 y i1ts restriction to E one gets
a bijective correspondance between such morphisms v and all

the continuous linear mappings E —, B of norm ¢ 1 .

Proof. We have to show that every continuous linear mapping
u: E —s B of norm ( 1 can be extended to a morphism v ;

we have for each n a multilinear mapping of norm ¢ 1

w“m
E —5 B

(a1,... an) —_— u(a1).... u(an)

whence a linear mapping of norm ( 1

A
@n
vhp ¢ E ——> B

A0 ... ® a, .__>u(a1).... u(an) ;
it suffices to set, for each x = (xn) € SE
[ 5-Y
v(x) = ,.Z“ vn(xn) .
QED
u(a)
Note that v(iexp a) = e 5

Corollary 3. Let (Ei)ieI be a family of Banach spaces, E
its Banach direct Ssum, i.e. the set of all families x =
(x;) € ME;, with Jxy = Z»xi I < oo . Then SE is cano-
nically isomorphic to g;SE:.L 3 this isomorphism carries each
exp x 1into @exp X; -

The proof is purely categorical : it suffices to remark
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that SE and 6 SEi are solutions of the same universal

problem ; note that ® exp Xy exists because Z|lexp Xy, - &g ]
_ X
{ o0 since N exp X; - Eil) = e -1 ~ Hxill.
oo
Remark O. For ae¢E , exp a is nothing but ZE. an,/n!, the
n=o

image of a in the exponential map which can be defined in any

Banach algebra.
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§ 6. Infinite tensor products of Hiibert cpaces.

n.6.1. Definition and first properties.

Let us consider a family (H )iGI of Hilbert spaces and

i
for each i, a unit vector ti in Hi ;s endow each H(J) with

its usual prehiibert structure ; the mappings LJ K are iso-
9

metric and we can put on @t Hi the inductive limit prehil-

bert structure ; each H(J) appears as a subprehilbert space
of ®t Hi and we have

t

(@x; | ®y;) = M(x;)y;) Vo(x;),(y5) e N Hy .

' h
Definition 5. We shall denote by ® t H, the Hilbert comple-

1

tion of the prehilbert space @t Hi 3 it is also the induc-
tive 1imit of the finite tensor products fg Hi .

| ied ) .
It is easy to construct orthonormal bases of @ Hi : choose
for each i an orthonormal basis (e ) of H; with

1,333,

e, = t, ; for each element f = (f(i)) in 1° J. set
i,o i i

o‘ai,f(i; ; then it is easy to verify that the ey cons-
h
t

titute an orthonormal basis of ® Hi .

€r

Associativity. For each partition I Qﬁ_IA there exists

h . h (v,) hou,

an isomorphism of @ Hy onto @ (® Hi) with
iel Ael ieIA

the same properties as in § 2 (ii).

Bibliography [9] .
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n.6.2. Definition of @ x; for certain families (xi).

lim L

I

As in § 4 we set ®x, J( @ xi) whenever this

ied
limit exists ; one c¢an prové exactly as in prop.3 that it does

exist if 2 llxi - ti I < o0 ; but it still exists under more

general conditions

Proposition §. Let (xi) be a family of vectors satisfying

Z'lllxin-1l < oo (3)
Z I(xi' ti) -1 } { & ’ (4)

then T] Xy Il exists, and it is null iff one of the Xy is null.

vy

h
The family of the vectors LJ( ® xi) has a limit in @& 5

ied
whose norm is 1TI] Il xill 3 moreover we have

lim | & x; - ©® till=0.
J i€I-J ieI-J

Proof. As in prop. 3 we can suppose Xy # 0 V i ; then N Xy I/
exists and is non null by virtue of (3) ; set ¢ = W)I)cil2 ;

the finite products oy x. | are bounded by some k > O ; on

ied +
the other hand we have (xil ti) #0 almost everywhere and
we can suppose (xil ti) 20 Yi; by (4), N (xil ti) has a
value d # O . |
Take a number & > O ; there exists J €% (I) such that K>J
implies

| 11 ax1% - ¢ | < £c /(4xse)
ieK

and
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| R (x;1 t5) -=d ) < eld) (8k+e) ;
ieK '
setting L = K - J we have
uaxi-@tu = | ® xu+1-2Re(0xilot)
i€L ieL ieL iel ielL

I

lilzLuxihz -1l 2] No(xy0ty) -1 )

ieL
[N uxinz- = | N qu -c+c - TT llxinz |/ ”xxinz
ieL i€eK ied ied
< (2¢ec /(4k+e)) /(c-ec /(4k+e)) = €/2k
P (xg b ty) =1 ) = ) T (xg0t5) -d+4d - n(x:t)l/m(xi:t)
ieL icK ied
< (2f1d1/(8k+e))/ ((d -€1dl (8k+e)) = &/4k
| ® x; - ® tu & ¢/k ; (5)
i€ L ieL
then
L.( ® ) - L (® )i = ) @ x, - L @_ x.)
” (1er (1eJx e 7,k %)

M oyx.n.) ® x, - ® ty
ieg 1 fer 17 qep il

x (e/0)F = (en)t,

LN

this proves that (LJ( ® xi)) is a Cauchy family. Finally
ied
our last assertion is a consequence of (5).
hy

n.6.3. Relations between the various tensor products ® Hi .

We shall prove that if two families (ti), (ui) are suffi-
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h h
ciently close, @ ¢ H. and ] u Hi are canonically isomor-

phic.
Lemma 1. The following relations between families (ti),(ui)
of unit vectors

_Zl1~(tilui)l < oo (6)

2 (1 - | (t.

- i lul) < oo (7)
are equivalence relations ; if we write them respectively
tAu and ta~ u, we have t .~ u if and only if there

exists a family of complex numbers «; with l(il = 1 and

t.) .

Proof. These relations are trivially reflexive and symmetric ;
let us show that the first one is eFmmwlsd transitive : suppose

(u;) = (vy) ; then
1 - (ti}vi) = 1 - (tilui) + 1 - (ui]vi) + (ti-uilui-vi)

5 -
2ty - ugl = Z(2-2 Re(t;1u;))

< 2211-(ti:ui)l < oo

and similarly
2

b3 tuy = v < oo
hence
Zl(ti-ui)ui-vi){ < Z'Mtiaui he Tuy=ve 1 < oo

We now prove the last assertion ; if (ui) zr(di t;) we have
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\< Z |1 - ('(itllul)l < oo ’

conversely suppose t ~ u and set

.- {i(tilui))/(ti’ui) if (tjiuy) # 0
i - '
1 in the opposite case ;
then
211 - («yt50ug)l = Z (1 =1t uy))) < o,

The transitivity of ~ is now immediate.

Theorem 2. Let us suppose t ~ u and more precisely (ui) >

h
(Aiti) 3 there exists a unique isomorphism F : @ E Hi —_—
h u
® Hi with the following property : if axi exists in the

first space, ecxixi exists in the second space and is equal

to PF(e xi).

Proof. The unicity is clear since the ® X5 with (xi) <J1tHi
generate the first space. For each Je¢ F(I) we define a mul-

tilinear mapping

h u h h h u
n Hi —_— ® Hi = ( ® Hl) ® ( ® Hl)
ied ieT ied ie I-J

(x.). —s (% .d.x.)@ ( ® «.t.)
i’ied ied " iTi i€ I~ i%i

which makes sense by prop. § ; it gives rise to a linear map-

ping



FJ : ® Hi ——— ® Hi
ied ieI

® X: — s (@ 4. x.)®( ® d . t.)
ieg 1 | teg *t 1 jer-g 11

which is easily seen to be isometric ; since the FJ form an

inductive system we get an isometric linear mapping

h h
. t u
t
® X; =8y X4 V(xy) e n'Hy .

Let us prove that F is onto ; if (yi) eﬂuHi '~ we have, for

J sufficiently large

® Y, (® y)e( ® u,

ied ier-g *

lim( ® y)e ( @ «.t.)
ieg "t jer-g 11

by the last assertion of prop. § ; since

(® y.)eo( @ d.t.) € ImP
jeg "1 jer-g 11 ’

we see that Im F 1is dense, hence equal to the whole space.

h
Let us now suppose that Qoxi exists in @ t Hi s then
F(®x.) = F(limL ( @ x.))
i J jeg 1
= lim F.( ® x.)
d jeg 1

= lim ( ® «.x.) ® ( & d.t.) ;
jeg 11 ier-g 1177

and this is equal to 1lim ( w® "(ixi) © ( & ui) since
ied ieI-J

I( @ 4.x.) @ ( © A.t.) - ( w .x;) ® ( @ u.) |l
ieg b1 Cdier-g t 1 ieg 11 i€1-g *
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M. ® <.t - @ w. i
ieg % ieI-g 11 je1-g 1

which tends to O by the last assertion of prop. & .

Remark 1. The infinite tensor products of Hilbert spaces
have been introduced by von Neumann in [44] ; the spaée

®  H, is denoted by him n’(?: H, where &is the class of
t with respect to the relation = ; if we take one element
t in each class and the sum of the eorresponding tensor pro-
ducts, we get T @ H 5 finally if we take only elements t

€T

which 1pe in some class with respect to ~ y we get 1 ®«.- H«'
«€T

n.6.4. Infinite tensor products of operators.

Proposition &. Suppose we have for each i a continuous linear

operator T, in Hi such that ﬂl}’l‘il( exists and
Zlur; tin- 1) < oo (8)

fl(Ti ti

It) =11 ¢ eo ; (9)
. h t
there exists a unique continuous linear operator T in @ Hi

with the following property : if ® X; exists, ® Tixi exists

and is equal to T(@xi).

Proof. First take an element x of the algebraic tensor product

@t Hi and write
t . t
- ieg 1 ie1-g 1
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x = x-@( ® t.) ;
J iel-g 1 ’

by prop. & we can consider the vector

T x = ( @ T..x;) @ ( @ T.t.)
| jeg 179 jer-g 11

. : t . . .
and we get a linear operatofTHn -] Hi ; T is continuous since

T x I < T 0 Nx ). oy T .t
jeg 1 gl gt

€ px . Tl

hence it can be extended to a continuous linear operator T in

h
® E Hi . Suppose now that @.xi exists ; then
T(® X ) = T(1lim L.( ® x.))
i T d jeg 1t
= lim?(( ® x)8( ® t;))
J ied ieI-Jd

lim ( ® Tixi)@( ® T.t.)
J ied ieI-d

and this is equal to lim ( ® Tixi)aa( ® ti) by the
J ied ieI-Jd

same reasoning as in the end of th. 2.

Befinition 6. Given a family (Ti) of continuous linear ope-

rators in Hi’ we set

® T. = str.lim. ( @ Ti)QI
ied

whenever this 1limit exists ; it does exist under the hypothe-

sis of prop. §.
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h
Proposition . In the situation of th. 2, if ® T; exists
h u h t 1
then @ T, -exists too and is equal to F. ® Ti.F- i

In fact it is easy to see that for each finite J, F carries
J

h
( ® Ti)¢>I into the analogous operator in @ % §

ied 1

n.6.5. Distributivity of tensor products with respect to Hilbert

sums and integrals.

In the following theorem we suppose I countable.

Theorem 3. Let us consider for each i, a standard Borel space

X;y @ Borel subset Yi’ a positive Borel measure My on Xi with

pi(Yi) =1, a }; — measurable field of Hilbert spaces X —s
Hi,xi y and a square integrable vector field ti,x. € Hi,xi
where ti - is of norm 1 if X; € Yi and O in the opposite
y X
i

case. For each i let us set

@
H. = /f H. d p.(x))
i X i,x4 it
i
]
ti = /[ ti,x.‘d"i(xi) (unit vector in Hi) ;
X. i
i
(¥,)
let us set X = T[] Xi and define 4 on X as in § 1 :
finally for each x = (xi) e X we set
( h ) h ( h (ti - )
H = ® H. ® @ 'L H, )
(x) ieg 10Xy ieI-J 1rXy
where J = {1i|x,¢{ Y, }. Then one can put on the field

X h——,f%xj a structure of p - measurable field such that
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h t &
® H. is canonically isomorphic to /’ H(x).dr(x).
X

. i
ied

Sketch of the proof. For J €% (I) we have, by § 1.3 of Part

I, an isomorphism

h ® p
u :®H._>K=/’ ® H, .d(@/A(x)
J ieg 1 nx; i€ ¥ ieg
séJ
R / RLICIVIRICY
1€J 1,X ied
@
where a; = j( a; o .dri(x.) j then we have an isometric map-
X, % :
i
ping ' @ n ‘ti . )
uj:K.__>L=K®/ o Xy 4 e p)(x)
T7Yi ieI-J o | 1eI-J
Lé]_]
(*]
b —>s b ao/ ® ty x40 @ p)(x)
ieI-J L | ieI-J
then an isomorphism
@
u:.} : L —s / H(x)-d/‘(J)(x) ;
()

and finally an isometric mapping

" &®
uy /X(J)

consisting in extending each vector field by O outside of

© .
H(x)-d)’(J)(X) _,/X H(x)-d)"(X)

X(J) ;3 the mappings ug'ach‘qu uy form an inductive sys-

tem, hence define an isometric mapping

h
u ® E Hi ___9‘/; H(x).dr(X) H

one proves that it is surjective by a reasoning similar to

that of theorem 1.
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Corollary 4. If Ky has total mass 1 and Yi = X; we get an

i
isomorphism
x fe H, . .dp.(x,) ~/ o thixi) (@ p ) (x).
ier  Txy, Xt NX; ieI Xy t
Corollary 5. If Hi,xi = € and ti,xi =1 or 0 depending on

whether Xy belongs to Yi or not, we get an isomorphism

h
® " Lz(xi,ri) ~ LA, )

where ti is the characteristic function of Yi'

Corollary 6. Assuming the hypotheses of both corollaries 4

and 5 we have an isomorphism

h

® t

2
L (Xi’ I“l) v Lz(nx:-L’ ®)"i)

where ti is the function 1 on Xi‘

Suppose now that each | has the mass 1 at each point
and that Yi is reduced to some point ay the reader will be
able to state a result similar to th. 3 ; strictly speaking
this is not a corollary of th. 3 since ip our particular case
we have not to assume I countable and Xi standard ; we shall

only state the following corollary, analogous to cor. 5
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Corollary 7. Suppose we have for each i, a set Xi and a point
(a;)

a, of X, ; then 52(,1 + Xi) is canonically isomorphic to

n (4 )
o 2gP(xy).

n.6.6. The Hilbert symmetric space of a Hilbert space.

We shall introduce a notion similar to that of * symmetric
algebra of a Banach space " (see § 5, ex. 2), but conveniently
adapted to the category of Hilbert spaces. Let H be some Hil-
bert space ; for each integer n > 0 we can consider the
Hilbert space

2 n h h
H = H ® .... ® H n - times

and then the closed subspace S"H consisting of those elements
which are invariant by all permutations ; we denote by SH
the Hilbert sum of all 8™H y n=0,1,2,... ; an element of

SH 1is a sequence X = (Xn) with X e s"H  and we have

1X IR

2 .
Zuxnn ( o0

(X 1Y)

(X, 1Y)
For every x in H we denote by exp x the following element

of SH :
2
exp x = (1, x, x@ /(2!)%,... xen/(n.’)%,...)

so that we have
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(x1y)
e

(exp x| exp y)

5 I x1
Il exp x)< = e

whence it follows that the mapping exp is continuous.
Lemma 2. The elements exp x are total in SH.

It is sufficient to prove that each element of the form
on
a belongs to the closed linear subspace K generated by the

exp X ;3 let us set for each real number t

f(t) B exp t a ;

an easy computation shows that

Moy - mnt &

now the relation

f(n)(O) = 1im nl t7® (£(t) - £(0) -... = t% Y(n-1))"" -
t=0 N ;,-//>
—
{ (n-1)
~ f (0))

(n)
proves by induction that f (0) € K .

Proposition £. Let H be the Hilbert sum of a family of Hilbert

. L S=:
spaces Hi ; there exists a unique isomorphism F of sg%
h (€.)
SH onto ® SHi with the following property : for each
h (&)
X = (xi) ¢ H, ® exp X4 exists in ® SHi and is equal
to F(exp x).

Proof. The unicity is clear. Now if (xi) ¢ H we have

%hxinz 5
| exp x; =1 = e -1 ~ % Mxin



(exp X | ei) -1 = 0

so that exp X; exists by prop. & ; we have

(® exp Xyl ® exp y,) M exp x; | exp y;)

=

e(xi!yi)

Z (x5ly;) (xly)
= e = e

(exp x | exp y) ;

thus there exists an isomorphism F of SH onto the closed

h ¢
linear subspace of ® SHi generated by the elements @ exp x.
with  F(exp x) = ® exp X; ; but the @ exp x; are total in
h¢
® SHi

Remark 2. The space SH is used in Quantum Field Theory for
the so called Representations of Commutation Relations ; see

for instance [321,[341,[39].
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§ 7. Infinite tensor products of von Neumann algebras.

n.7.17. The concrete tensor product.

Let us consider a family of Hilbert spaces Hi and for each

i, a unit vector ti in Hi and a von Neumann algebra di in H,.

i
¢ 4
Definition 7. We shall denote by @ ~&, the von Neumann
by
algebra in the space H = @& Hi which is generated by all
operators of the form ®T, where T, € C?i and T, =1

almost everywhere.

c
Clearly ®© tQi also contains every operator QTi with

Ti € di in the sense of definition 6 ; and in particular
every operator @ T, where T, € di y TN T, exists,

Z I NT,t.li-1] <eo and Z (756501 ty) =11 <ee . In the si-

1
(¢ c
®

tuation of th. 2, @® t&i and udi are spatially isomor-

phic ; more precisely we have

c c
t -1 _ u .
F. ® "Q,.F = ® ai ;

c
we shall see later (see § 9) that the type of ® tdi depends

strongly on the choice of t.

. t o St '
Proposition 9. We have ® di = (® di) , the—sguaiite

First assertion : if T. e, , T! € Cl'i and T. = T;._ =1

almost everywhere we have
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— ‘ v —_ [] — ]
-8y = Ty Ty = T T, = oM.@f, .

c ]
Second assertion : take some operator S in ( ® tlﬁi) , sSome

weak neighbourhood V of S
Vo={s [1((s'-8)x )y ) 1 <1 ,n=1,... N %
and some ¢ > 0. There exists J ¢ 7 (I) with the following

property

HP.xn—xn I < I!P.yn—yn)l ¢ ,n=1,...N

where P is the projection onto the subspace K = ( @ H;) a(ié?_Jti);

icd
we can write P = I®eQ where Q is the projection onto the
vector ® ti
i€I-J
c '
We claim that Sp € ( ® @.) ® I ; in fact for T. ¢ Q.
. i i i
ied
and xiéHi with id¢J gTi = I, X5 = ti y, we have

SP'®Ti'®X‘1 P.S.soni.@xi

P.® Ti.S.csxi

I®Q.®Ti.S.® X

@ Ti.].'@ Q.S5.® X4

® Ti.P.S. @xi
= @ Ti.SP. ®xi

Since our assertion is true for finite tensor products (see
[['g-] '{’v- eore .. AL 'j,
=

S e—

= raTI-SmRR-

c
22), this implies Sp ¢ ( ®A!)® I ; now
ieg *

SP, operator in K, has the form R®I where Re @ Q! ;
ied
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h
we can consider the operator Rel in @ t Hi where
h t
I is the identity operator in ® H; ; we have
ie1-g !

c Cy
ReI ¢ ( @d)el ¢ ® ai ;
ied
on the other hand if ¢ is sufficiently small we have Re I

€V since

l((RQI-S).xnIyn) | € I(R aI.xn]yn) - (RoI.PxnIPyn) |

+ | (R eI.Pxanyn) - (S.Pxanyn)I

+ 1(8.Px IPy ) - (S.x ly )}

the second member of the righthand side is null while the

other two are less than & S u.(llxnn + Hyn]).

‘ c
Theorem 4. The von Neumann algebra @ tdi is a factor if

and only if each &, is a factor ; it is equal to L(H) if

and only if di = -(ﬂ(Hi) Yi.

Second assertion : if for some j, Qs contains a non scalar

c 1]
operator Tj’ (® tOi) contains the non scalar operator

©T; where Ty =T, if i=3j, T, =1 if 14 .

Conversely suppose di K(Hi) ; by the preceding proposi-
tion we have

(@ td.) - o tal = scalars.

First assertion : if for some j the center of Qj contains a
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c
non scalar operator Tj’ the center of @ tai contains the
above operator @ Ti‘ Conversely suppose di is a factor ; by
the preceding proposition the von Neumann @ generated by

c c ; ,
o b ai and ( ® t(ﬁi) contains all operators @ 7,7} where

T, ¢ di , T'ied'i » Ty =T, =1 almost everywhere, hence all
operators @® Si where Si éf(Hi) ’ Si = I almost every-
where ; by the first part of the proof we have & = £ (H),

c
and @ tdi is a factor.

n.7.2. The abstract tensor product.

Civen a family (& )ieI of von Neumann algebras and,

i
for each i, a projection e in (ii, we shall construct a von

a .
Neumann algebra @ ¢ lﬂi which admits as quotients the various

c
concrete tensor products @ K G.i

Let us first define the inductive limit of an inductive

system of von Neumann algebras ; let I be a filtering ordered

set, (A4 .) a family of von Neumann algebras, and for

i’ieI

¢, My j @ normal morphism &i — aj (by convention
9

all morphisms of‘von Neumann algebras preserve the unit ele-

ments) such that M M for i ¢ j &k ;

i,k My 5 i,k

denote by ./4 the algebraic inductive 1limit of this inductive

system, by Mi the canonical morphisms ‘21 —_— /2 and by

% the direct sum of all cyclic representations ¢ of A such



that po M. 1is normal for each i ; the von Neumann A& gene-

rated by 7 (A) will be called the inductive limit of our

inductive sygstem ; note that it exists if and only if there
exist representations ¢ of the above type ; it has the fol-
lowing universal prpperty : given a von Neumann algebra b ’
by associating to each normal morphism v : Q —>JQ) the fa-
mily (Vo‘ui), we get a bijective correspondance between the

normal morphisms v and the families of normal morphisms A

ai — R such that vj""i,j = v, for i j (induc-
tive systems of normal morphisms).

a
We are now in a position to define e © i3 by realizing

each ai in some Hilbert space we can define the finite ten-
. .

sor products @ di s, Which are independant of the chosen
ied

realizations and form an inductive system : for J ¢ K we

write
c c c c
i€K ied ic K-J
and define MJ,K by
M (a) = ae( © e.) .
J,K i€K-J 1
2 o
Definition 8. We denote by ® LQi the inductive limit of
ieI
a
the above inductive system. If e = I we write e A, .,

ieI

Proposition 10. Let, for each i, Hi a Hilbert space, ti a

unit vector in Hi’ 'T(i a normal representation of di in Hi
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with ’Wi(ei).ti = ti ; there exists a normal representation
a g h t
T of ® di in ® ° H; such that 7 (@ ai) = @'n‘i(ai)
c
for each family (ai) eﬂedi . Moreover Im *# = @ © Im L
by
Proof. Set H = ® Hi "%i = Im %; = von Neumann alge-

h
bra in H; ; take some J in + (I) ; by [1], p. 60 we have a

normal morphism

(o] (¢4
J: ® 4. —_— @)/5.
ied

u

on the other hand we can define a normal morphism

o B, —> L)

u'
J ied
by writing
h h h %
H = (@ H) e ( o' H)
ied ieI-Jd
ut(hb) = b®( ® Ts(es))
J je€I- itvi
we get normal morphisms
. £
v = ulosu : ® 4. —— L (H)
J J J ieg 1

which form an inductive system and define a normal morphism

g o
T o ® ai __,.é(H) such that

T(ea;) = emn(a) y (a;) e neai .

c
Last assertion : clearly we have Im v ¢ @ t55i ;3 to prove
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the converse inclusion it suffices to prdve that ® b'i é¢ Im 7w
for each family (bi) with- bi € ”)i and bi = T almost

everywhere, i.e. for 1i¢J ; for each 1ie¢dJ there exists

a; in (?i with ‘n’i(ai) = b, ; take K>J and define an
c
element a in @ &. by
(K) ieK 1
a = ( ® a.,)e ( @ I) ;
(X) jeg 1 i€ K-J ’

since VK(a(K)) belongs to Im w , it suffices to show that
VK(a(K>) converges strongly to &b, , i.e. that

vK( )).x ——»ebi.x

*(x)

for each x in H ; by equicontinuity and linearity we can

suppose X =Oxi y Xy 0= ti for i¢ K ; then

]

v,(a )X
K*7(K) ied i€K-J

(@ b;.x;) & (

x.) @ ( ® t.)
ied ieK-J * i 1

® bi'xi = @b, .x

( @ Ti(ai).xi) ® ( @ xi) @ ( e K";T.(e.) t.)
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§ 8. Infinite tensor products of Hilbert algebras.

Let us consider for each i, a Hilbert algebra "41 with
Hilbert completion Hi’ and a projection of norm one ey t-'./qi ;

then the left multiplication operator Ue is a non zero
i

projection. The algebraic tensor product A= 8¢ "Qi is a

¥ — algebra and at the same time a prehilbert space whose
h

Hilbert completion is H = @ © Hi ; we claim that A is a

Hilbert algebra : the axioms (i), (ii),(iv) of [1], p. 66
are trivially verified ; as for (iii), take an element a =
® ay in A 3 by prop. 6 we can form the continuous operator

ho
® - U in H and we have, for (bi) ¢ A

83
h e
(® Uai)(®bi) = éoaibi = ®ai.®bi ;
. h
this proves that ® U = W and that the mapping
ai eai

b —» ab of ./4 into itself is continuous for each a of

the form ®a; ; the same property holds by linearity for each
a €A

We shall denote by ui y ’U'i , U, VU the von Neumann algebras

canonically associated with Ai and A.

c c
Proposition 11. We have U= @& € U, , U= o v .

i i
c
We have U c® © ui since U is generated by the ope-
g i C e .
rators U@a. = ® Ua. which belong to e ui ; in the

1 1
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c
. e
same manner V¢ @ V} ; then we have

c 1 '

Example 3. We take for A, the algebra of all Hilbert-Schmidt
operators in some Hilbert space Ki whose dimension T is finite
or infinite but > 1 ; define the scalar product in 'Ai by

s;1 Tr ab®

(al b)

where S5 is some integer verifying 0 < s.'s rsoj finally we

1

take for e; a projection of rank FE

Proposition 12. If I is infinite, the type of the factor W is

(i) I if s. =1
(ii) II if s; =ry (which implies r, < oo )

(iii) II if 1 <s, < r, .

Proof. We first remark that r; infinite implies W infinite.

Now choose an orthonormal basis ( ?4 ) of Ki such that Im e.

i
is the subspace generated by i g oo }4 ; there exists an
, 1 Si
isomorphism P : ,Aj_ ——4>Kﬁ ® Ki with the following proper-

ties : for each a in J?i with matrix (a‘ﬂ) we have

1
Fla) = sfﬁa‘p.‘ﬁ@?ﬁ;
A
_ -3 - : )
Fleg) = £§1 ?‘n ¢ an ’
F.U P = Ya el .

a
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Suppose now 8; = 1 ; we can write
2 h
®i T €41 @ &3 )

then using the associativity of the tensor products

h h (e ) h h (e; ,)
® © _ i,1 i,?2

Hy (® ’ Hi,1) © (@ ’ Hi,z)
h h (e; .)

1 t
e °Uu, = (o b a;)e I
i
h (e,
u - (e 'V H, eI
i 1

which proves (i).

Now suppose s; ? 1 ; denote by c; the projection onto ? ;

we have

-1
(ci| ci) = sy < 1 ;

then for each J ¢ % (I)

n s ;

jeg *

2
Il( & c.) e ( ® e )l
jeg 1 jer-g 1

the left multiplication operator corresponding to the element

( @ ci)c ( @ ei) is a trace class projection in U,
ied ieI-J

whose trace is arbitrarily small ; hence M is continuous.

In case (ii), ey is a unit element for A:i’ ®e_Ai has a

unit element, W is finite and consequently of type II1.

Finally consider the situation (iii) ; if Ty is infinite, U

is infinite, continuous and also semi-finite, hence of type
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IIw y if r; is finite, ‘Ai has a unit element 1i with

(151 14) r;/s;
by a reasoning quite analogous to the above we can construct
projections in W whose trace is finite and arbitrarily large,

so that U is of type IImo .



45

§ 9. The type of certain infinite tensor products of von

Neumann algebras.

We suppose I countable ; for each i€ I we set Hi =
h
Hi,1 ® Hi,2 where Hi,1 and Hi,2 are Hilbert spaces having

the same dimension ris 1<y & }(0 ; every element t; of Hy

can be written

7, -1
D N t
i n=o i,n i,1,n @ i,2,n
where (ti,j,n) is an appropriate basis of Hi,j and di,n a
positive number with
2
di,o > di,1 Y ceeen and é?‘ii,n = 1 .

The aim of this paragraph is to determine the type of the

¢ ¢
factor @ “Q. where Q. =£(H. ) I .
i i i,1

n.9.1. Pirst method.

We shall use prop. 12 ; we first suppose that for each i,

the strictly positive di n are equal, let

-7
°{ . = eeeee = = .
i,o di 3-1 84
*7i
where s, is some integer ¢ r; » and
di,n = 0 for n ) Sy -

Denote by ‘Ri the Hilbert algebra of the Hilbert-Schmidt ope-

rators in Hi y endowed with the scalar product

1

-1

*
8, . Tr ab H

(al b) i
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and by e the projection corresponding to the subspace of

generated by ti,1,o yo
h

A i — Hy ;1 ® H; , described in § 8 gives rise to an
9 b
. e h t
isomorphism of the Hilbert completion of @ ./Zi onto @ Hy

Hi,1 .oy ’01,1,31_1 3+ the isomorphism

c
which carries U( oeﬂi) into ® tdi ; thus the type of

c
ot ai is given by prop.12.

Suppose now the o in arbitrary ; we can replace the family
9 5

(t.) by an equivalent family’without changing the type of

i
S ¢
® di (see § 7 after defin. 7) ; if we set
] -
5= %51,09 %50,
' — . 3 _ ) k3 - .
we have  (t, | tl) = "(i,o ; thus if ? (1 "i,o) is finite,

c
t is equivalent to t' and @ tdi is of type Iw ; one can

get in a similar way the other results contained in the

c
Theorem 5. The type of & tdi is

(i) I, if a2(1 —o(i’o) Y-
_% L.
(ii) II, if r; <eo and 2 (1 -r, Z A, ) < oo
i < i i,n

< n=o

(iii) IT,, 1if there exist integers s; with 1 < s; <ry
-3 2
and Z (1 -8, 2 d,.) <o .

n.9.2. Second method.

c

In this number we shall prove that ® t&i can be ob-
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tained by the method used by Murray and von Neumann to cons-
truct examples of factors (see [1], p. 132), which will allow
us to establish the converses of (i) and (ii) in th. 5. It

will be more convenient to write

T T

i neN. i,n i,1,n @ t1,2,n
i
where N, is equal to Z if r, = HO and to Z/ri'Z if
r. is finite ; we can suppose
Yi0 291,10 YAy, 24 0 YAy 5 deeen if ry = H,
“i,0 44,0 % e 24y p if ry <K,
a) Particular case.
We suppose #i n 0 for each i and n . Let us denote
9
2

by » 4 the measure on Ni having the mass 4 at each point

i,n
n , by J&,n the Dirac function at n ; set

K. = 19

i1 Nis #3)

2
K é (Ni) ;

'-1
the elements di,n * “i,n ® i,n-p
h

basis of K. @ K. 3 define an isomorphism
i,1 i,2 .

constitute an otthonormal

h h
My ¢+ By q,@H o, —s K @K,

by 1
Mi(t 1n@%i,0,p) = din - 94 @dinp
then

Mi(ty) = ZJi,n edi,o = 1®'fi,o :

A
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The von Neumann algebra .((Hi 1) is generated by, on the one
]

)

hand, the diagonal operators with respect to the basis (ti 1.n
9 9

and on the other hand the shift operator

Vi ¢ ti,1,n ““—9'ti,1,n+1 i
if Tf is the diagonal operator of multiplication by some func-
tion f, Mi carries Tf@I into Tf@I ; on the other hand

Mi carries Vig I into Wi defined by

wi(‘ji,n‘”éi,p) = di,n /"(i,n+1 . Ji,n+1 @J;,p+1
The restricted product ﬂ'Ni acts in the space T1Ni by com-
ponentwise addition ; consequently it acts in L2(T1Ni’®’H)
by unitary operators Um for m ¢ ﬂ'Ni 3y similarly H'Ni acts

in ?2()1'Ni) by unitary operators U; . Now we have an iso-

morphism

° M, o v H, = > t(Hi’1 a Hy ) e (1®Ji’°)(Ki1@K12) ;
then by the associativity property, an isomorphism

® (1“"’fi"°)<1«:i,1 ® K; 5) —> ( ® Ki’1)£ (5 Y120 Ki o) s

finally by corollaries 6 and 7 an isomorphism

h h h (Ii,o)

h :
(e'k; Do (o Ky, 0) — B3NN, op)) @ €2(1'N,) 5

by composing these three isomorphisms we get a new isomorphism
hoy 2 ho o

M carries each operator of the form @(Tf @ I) into Tor ® I
i i
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m,
each operator O(ViI@ I), where m = (mi) € ﬂ'Ni, into the

, c
operator Um@ Um 3y hence M carries @ tai into the von Neu-

mann algebra generated by the operators Tf® I with f ¢
00 n ' . 1
L ( N, @;ui) y and U @ U~ with m €77 N,

c
Suppose @ t&i is of type I ; by [43], ®p; 1is atomic ;

since the point in T'INi which has the largest measure is the

point with all components null, we must have ﬂa/i o > 0,
9

or equivalently 2 (1 - 4 ) < oo

i,o

t

c
Suppose now @ ‘& ; is of type II, ; by [43], 84 is equi-

i
valent to some finite Borel measure, invariant under IT'Ni 3
on the othet hand all r, are finite , r]Ni is a compact
group for the product topology, and' H'Ni is a dense sub-
group acting by translations ; each finite Borel measure on
n Ni is a Radon measure, and being invariant under H'Ni,
it will be invariant by all translations, i.e. equivalent to

the Haar measure ; the Haar measure is the product of the

measures v, which have a mass r? at each point ; by [41 )
_% n, -1
® ~ i i -
»s ® v, implies ‘2 (1 ry = a(i,n) { oo ,

b) General case.

The previous results still hold since we can make all

i n strictly positive by modifying them sufficiently little
4

to not change the équivalence class of (ti) nor the nature
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of the families (1 - «, ) + thus we

have proved the following

Theorem 6. With the notations of the beginning of § 9, the

c

type of the factor @ t di is

(1) I if and only if 2 (1 —’(i,o) < oo

4

2 -
2 o )< eo
n=o0 n

-3
if and only if r; <o and Z(1 - r,

(ii) IT i

1

Remark 3. It is more difficult to distinguish the types IIM
and IIT , C.C.Moore proves in L 42 ] the f llowing result, by

means of a deeper analysis of the infinite products of mea-

C

sures : suppose «, _ > k Y i for some k > O, then @ td;
9

is of type III if and only if

2 2

2 2
iZn °‘i,n (1nf(di,o/o(1’n -1,¢c) ), = oo
?

for some (or equivalently for all) constants c¢ > O ; he

also states without proof on p. 458 a result equivalent to
the third assertion of our th 5 . E.Stormer has proved by
another method (see [ 46]) some results contained in th. 5

and also the following (contained in Moore's theorem) : sup

c
independant of i ; then ® ta. is of

. an . i
poserladoll, i

n

type III iff there exist at least two distinct and non null

p(i,n °
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. c
Remark 4 (On the isomorphisms between the various factors @ t(ﬁi).

In [ 35] Araki and Woods study systematically the set E of
c
the isomorphism classes of the factors @ tcﬂi which can be

obtained by varying the r.

i and ti ; E can be divided into

five mutually disjoint subsets E E

1’... 5
E1 contains only one factor, which is of type I .
E2 contains only one factor, which is of type II1 and hyper-
finite.
E3 contains exactly the factors -AA’ de Jo,4[, constructed
¢ ¢
in the following way : A)‘= e &i where r, =2,
A =2 ,d i.q = 1- M ; these factors are of type IIT ;
1
it had beeh proved earlier that they are mutually non
isomorphic ([45]).
4 contains factors of various types and among others an

uncontable family of type III factors.

E contains exactly one factor, which is of type III.
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X
§ 10. Infinite tensor products of C - algebras. Definition

and first properties.

Let us consider a family (Ai)iGI of ¢™- algebras and
for each i, a non zero projection ey in Ai ; 1f we endow each

finite tensor product ® Ai with the v crossnorm (resp.
ied

the »* crossnorm), the morphisms LJ K are isometric, so that
9

we can define the v and x norms on ee Ai ; clearly these are

respectively the largest and the smallest C*— crossnorms ;

* . . Ve *’e
the C completions will be denoted by @ A.i and @ ‘A.i H

they can also be considered as the inductive limits of the

v ¥
finite tensor products ® A. and ® A, ; if each A.
. i . i i
- , i€ d . i€d
has property (T), ©°F A; and ®° A; are identical.
ve e

+*
A. and ® A. possess properties

The tensor products ® i i

of associativity similar to that of § 2.

v *
If ey is a unit element for Ai, we write ®‘Ai and @& Ai

© A, ; ® A. has the following

~ »”»
. e
instead of ® Ai and ® i i

universal property : given a C*- algebra B with unit,there
is a bijective correspondance between the unitary morphisms
u 6 Ai iy B and the families of commuting unitary mor-
phisms u; 2 Ay —» B ; it is given by u(e@ ai) =T1ui(ai)

for each (a;) in ne A; -
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Proposition 13. . Consider a family of Banach x - algebras Ai
1th projections ey of norm 1 ; denote by ei the canonical

image of e, n C*(Ai) and suppose el # O . Then 0*(6e Ai)

i
. ; . . ve' »
is canonic 1lly isomorphic to @ C (Ai).
In fact we have
v ' * * A
e ° C*(Ai) = lim @ (Ai) = 1limC ( ® Ai)
ied - ied
x
and it is easy to ee that the functor commutes with the

inductive limits.

Cor llary 8. Let (Xi) be a family of locally compact groups

X.) 1is canoni-

Y >
with compact open subgroups ; then ¢ (T
v
calls isomorphic to ® (3*(Xi) where ey is the characte-

ristic function of Yi'
This s a consequence of th. 1 and prop. 13.

Example . Let (le be a family of locally compact topolegi-

(¥;)

cal spaces with compact open subsets Y. 5 then 22( N Xi)

*
is canonically isomorphic to ¢@°¢ fz(xi) where e, s the

characteristic function of Yi' The proof is quite similar

to hat of th. 1.
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*
§ 11. 1Infinite tensor products of .epresentations of C -algebras.

*—
Proposition 14. Let us consider for each i, a C - algebra

A a non zero projection e, in A , a Hilbert space Hi’ a

19

unit vector ti in Hi and a representation Tri of Ai in Hi such

that
Z( 1 -1Ix (ey) et 0) < oo (10)

[

€ A. in

*
Then there exists a unique representation % of ® i

h
P H; such that T(® ai) = ®7Q(ai) for each family (ai)

. e
in NN Ai
Proof The unicity is clear. To prove the existance take an

element in @e Ai of the form

a = a; ® ( @ e.)
J ieT-J 1
where Je¢% (I) and a. ¢ ® A ; write
J . i
ied
h t h h h t
©® "H = ( e H)e( e Hy)
id ieI-Jd

(107 implies Z|1 - (my(e) -ty | t;) | < b0 and by prop. 6 we
‘ h

can consider the following continuous lin-ar operator in ®>t Hi

T (a)

h
t
® i . . . H
( & i) (az) @ ( iG%LJ 1(91))

one can easily check that 7 is a representation and moreover

by prop 6 we have

Il (a) I ¢ "aJh = lal
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then v extends to a representation of ée Ai which has the

required properties.

Definition 10. The representation 7 defined in prop. 14 will

tlv

be denoted by Ee M . The von Neumann algebra it generates

i
: c 4 " :
is identical with ¢ Wi(Ai) (the proof is the same as for

x
prop. 10) ; thus @t ©; 1is factoria. or irreducible if

~

and only if each I has the same property.

‘e,t

The kernel of & W. depends only on the kernels of the

1

- . . *e,t _
W . 3 in particular @ N

i is faithful if and only if each

M, is faithful.

¥
On the other hand by prop. 7 if t~t' , & e’t'ﬁi and

¥ (]
® €at Vi are equivalent ; the following proposition is a

partial converse of this result.

Proposition 15. We suppose each T’i is irreducible ; then

+e,1t * e,t! . . .
® ¥; and @ ®, are equivalent if and only if we

have t~ 1t .

Proof. We suppose t t! and prove that the two represen-

tations are not equivglent.

a) Particular case.

We suppose Ai = g?(Hi),‘Wi = identity. Since tx~ t',

we have zZ (1 -I(ti ti)l) = oo ; there exists a countable
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subset I _¢ I such that 2 (1 =1(t1t)))) =900 ; it is
° i€l i
)

sufficient to prove that the representations @ Wy and
iel
o

® e’t'vri are not equivalent, so that we are led back to
i€

o
the case where I is countable, say I ={1,2,... }. Denote by

Pi the projection operator in Hi onto ti and set

Tn = P1@P2®...®Pn@en+1®em_2® ses 3§

”»
(® ety i)(I.)converges strongly to O

we shall prove that
while ( 5e’tﬁfiytldoes not, which will establish our result.
To prove that

(6e’t"ﬁ'i)(Tn)-X —> 0 Y x ¢ @

]
we can take x in the algebraic tensor product Bt Hi since

our operators have norms { 1 ; then by linearity we can take

X ® x4 where Xy = ti if i is larger than some number j ;

then for n ) j

4
t' ~-
(6% v.)(rT).x = (@ P.x,)e( ® P.t)®(@® t!)
tn R T T R
* o t'_ "* .
N(e® " w (T ).x I < uxi. i=?+1'(tilti)] ;
o [ =]
since 2 (1 —l(tilti)l) =00 , T l(tilti)‘ = 0,
i=j+1 i:j+1

A

mn ,(ti'ti)"_—’ 0 and we are done.
i=j+1

b) General case.

set f., = 'n'i(ei) ; @fﬂ(Hi) is included and weakly dense



a
in the tensor product @ f..{(Hi) defiged in n.7.2 ; we have

a morphism @¥; : ®° Ay — @f[(Hi) whose image is weakly

dense since each 1‘1 is irreducible ; by prop. 10 we have

2 r -
representations u and u' of @ A?(Hi) in @ H; and
h _, ‘
® E Hi ;3 by the first part of the proof the restrictions of

u and u' to Oe Ai are not equivalent, but these restrictions

e;t - e,t’

. T, o
T3 and e

are nothing but ® i
Theorem 7. If I is infinite and if each A; admits sufficiently
many irreducible representations % with rank’ﬂ(ei) > 2 ,

R 3
then ae Ai is. antiliminar.

Proof. For each i there exist a set Xi and for each point Xy

of Xi an irreducible representvation ’Wi - of Ai in some

s X
i
Hilbert space Hiexi such that rank'ﬁi’xi(ei) y 2 and
@ ﬁwigx is faithful. We choose a point vy in X, and
xiexi i

vectors ti,xi . té,x. in Im*Wi’X'(ei) such that
i Shit1
t. it =
( inﬁ 1"‘1) )
1 if X. =Y
Bty g 0= 0ty 0 = { i i
i | ' 0 ctherwise ;
(y3)
for each x = (xi) in x = N °1% ; we set
ve (t, ) se (t! )
—_ - l,X- - 1 x‘ —
“(x) = @ TTios Tix) <@ Ty
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which makes sense because t. and t! . are unit vec-
i

tors for almost all i ; TT(X) and ’sz) are irreducible re-
presentations of <§e Ai y have the same kernel and are unequi-
valent by the preceding proposition ; it suffices now to prove
that e ’V(x) and @ T(x) are faithful. Consider the

xeX xeX
first : as indicated in n.6.5 we have an isomorphism

ot ( )
® H —_— ® @ H. ;
xeX (x) ieT x,eX 1yXy

as easily verified this isomorphism carries 22 '"(x) into
xeX

*
® e,t( @ ’ﬁi - ) ; since the second representation is
i€l xiexi 'y

faithful, so is the first.

Corollary 9. If I is infinite, e,

i = unit element, and Ai has

*
no nonzero commutative two sided closed ideal, @ Ai is anti-

liminar.

Corollarx\10. We suppose that I is infinite countable, Ai is
postliminar separable and admits sufficiently many irreducible
representations « with rank W(ei) > 2 ; then ;e A; admits
an irreducible representation which is not equivalent to a

tensor product of representations.

Proof. Take a partition I = I1u I2 with I1 and 12 infi-
. . * e * e
nite and write @°- A, = B.@B where B. = A, ;
1 L J jer, 1

J



by Part I, prop. 7, B1 and 32 have property (T) and we can
also write ée Ai = B15B2 3 ZB1 and B2 being separable and
antiliminar, by Part I, th. 6 the algebra B16 B2 admits

an irreducible representation which is not a tensor product
of representations of B1 and 32 » and consequently it is not

a tensor product of representations of the Ai .

Bibliography [9] .

[
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§ 12. Infinite tensor products of positive functionals on

*
C - algebras.

» _
We consider C - algebras Ai with non zero projections e,

Proposition 16. Let fi be a positive functional on Ai such

that  f.(e;) = 1 and n I£51 <oo (note that e 3 1),
Then there exists a unique positive functional f on 15e Ai
verifying

f(e a;) = Tlf(ay) V(a;) € p®a;
its norm is equal to f1lfiu 3 finally the representation

*
associated with f is equivalent to @e’t w

i where ‘Fi is

the representation associated with fi and ti the correspon-

ding cyclic vector multiplied by ”fin .

Proof. The unicity being trivial we shall prove the existence
of f ; we have a multilinear functional on ITeAi : (ai) —_—
f]fi(ai) y whence a linear functional f on @°© A; such that
f(® ai) =Tl fi(ai) ; £ is positive since its restriction to
any finite tensor product is positive ; moreover if a 1is an

element of ® A. we have
. i
i¢d

m .
M) b« Tt cnan, ¢ fLuen.uvan; (1)
ied
*
hence f extends to a positive functional on ®° Ai .

We now denote by Hi the space of TTi, by Xy the corresponding



cyclic vector and set ti = Xy Ilfill ; we have
fl(ai) = (’ﬁi(ai).xi' xi) Y aj_( Ai
2 _ 2 -1 _
sl = Ixiu . Mfiu = 1
2
= Wt (T (e ) exy [ x) = £
i ‘ i i i - i ’
since T fiﬂ > 0 we have
-%
Z (1 - )lfill ) < @
by prop. 14 we can form the representation -« = ;e’t’ri :
since
x5 o= (xijti) = JfH
we have
Z((x5)t) - 1) < oo
and we can consider the vector X = @Xx; ; it is cyclic for
% and we have f(a) = (7 (a).x])x) for each a of the

-*
form ¢ a; » hence for each a in @e Ai .

We finally prove that )£l = Iy fi) 5 by (11) we have U £
T llfill ; to prove the converse inequality take an & > O ,

ﬁ
a Je¢9v(I) such that

I KEsn > Mt (1+&)”
ied
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and for each 1ie¢J an element ai in Ai such that

-1/n
pasn = 1 and £ (ay)l > Wfyn.(1+¢)
where n = card J ; set
a = ( ® a )@ ( e e.) ;
ieJ 1 ie€1-g 1 ’
then fal = 1 and
beo » 1f(a)l = N )f(a)!
i€d

-1
>y (1+8) T Ve
ied
-2
(1+¢) .F1Nfiu

A4

Definition 11. The positive functional f defined above will

be denoted by & © £, 5 it is factorial or pure if and only
if each fi has the same prpperty ; it is a state if and only
if each fi is a state. In particular if €5 is the identity

of A; one can form the tensor product of an arbitrary family

of states.

*
Proposition 17. Let us consider a C - algebra AO , a nonzero

projection e, in A_ and two distinct pure states fo and 8,

0
ith f (e ) =g (e ) =1; let t A= &°
onAow1 oley) = 8yle,) = ; let us se -@Ai
* e
where Ai = Ao y €5 = €. f =@ :fi where fi = fo y & =

éegi where 8; = 8 - Then the representations associated

with f and g are unequivalent.
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Proof. Suprose they are equivalent ; denote by Hi,T?j, Xy
and Ki’ Pir ¥4 the objects associated with fj and g; respec-

tively ; by hypothesis there exists an isomorphism

h - h y
F : ® Hi————> ® Ki
with
-1
_ _ ~€ .
IF.@:.i(ai).F = ®(>i(ai) Yy (ai)g i Ay s
if a; = ey except for one index jJ, ®sri(ai) and @pi(ai)

are multiples of 7j(aj) and pj(aj), so that 'Fj and Fj

have a common multiple ; since they are irreducible they must

be equivalent and we can realize them in some common Hilbert

space Ho with two vectors X and Yo which are nonproportional
xe,x _ #€,¥

since f_ # g, ; by prop. 15, @ 7, and ® fi are

unequivalent, which is a contradiction.

Remark 5. E.Stormer proves in [ 467] that the above result still
holds when fo and g, are not pure, and that one can replace

in the conclusion the word " unequivalent " by " non quad-
equivalent ". In the same paper he also studies the states

of é Ai which are " symmetric ", i.e. invariant by all the
automorphisms of é»Ai determined by permutations of I ; he
proves in particular that the extremal symmetric states are
exactly the states afﬁ_ where fi = fo ’ fo a state of A0 ;

*
and he determines the type of such a state @iﬁvwhen fo is

factorial.
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In [40] A.Hulanicki and R.R.Phelps prove the following result :
consider some group GO of automorphisms of Ao ; then G0 acts

¥
by automorphisms in @ Ai 3 let G be the group of automorphisms

*
of ®JAi generated by Gg and the permutation automorphisms ;

then the extremal G-invariant states are exactly the states

L 4

® fi where fi = fo , fo a Go—lnvarlant state of AO.
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§ 13. Study of the case where e has rank £ 1 .

n.13.1. Definitions and examples.

In the preceding paragraphs we have seen several proper-
ties of 58 Ai in the case where €5 is "large® in a certain
sense (for instance prop. 17, th. 7, cor. 9 and 10); in this
paragraph we shall be concerned with the thoroughly different

case where ey is "small".

*
Definition 12. Given a C - algebra A, a projection e in A 1is

said to have rank ¢ 1 if for every irreducible representa-

N

tion 7 of A the projection <% (e) has rank ¢ 1.

¢ 1 1is contained in

By [2], 4.2.6 each projection of rank
the largest liminar ideal of A ; consequently it must be O
if A is antiliminar. On the other hand if a projection e liesg
in some closed two sided ideal I of A, it has rank ( 1 in I
iff it has rank ( 1 1in A (in fact for each irreducible re-
presentation w of A, w11 1is either null or irreducible);
finally if f is a projection of rank ¢ 1 in A, its canoni-

cal image in A/I has also rank 1 .

Example 5.
(1) If A is commutative every projection has rank 1.

(i1) 1If A is elementary (i.e. of the form JL¥(H) with H

s Hilbert space), every projection which has rank 7 in
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the usual sense has rank ¢ 1 in our sense. If we set
* e . . .
Ay = f?(Hi) and take e, of rank 1, g A; is nothing
by
but f’?( ® Hi) where t, ¢ Im e; ; in fact if (ai) €
oy
ﬂeAi , ®a; belongs to J¢(a H;) since it is of

the form ( @& ai) @ ( ) ei) where both factors are
i€ d i€1-J
compact ; it follows that &° A; is included in
h t
[?( ® Hi) y but being irreducible it must be equal

to it.

(iii) Let A be the C*- algebra defined by a continuous field
of C'- algebras (A(t),®) (seel2], 10.4.1); e = (e(t))
an element of A such that each e(t) is a projection of
rank ¢ 1 in A(t). Then e is a projection of rank £ 1 ;
in fact one obtains all irreducible representations 5
of A in the following manner : taking an index t and an

irreducible representation p of A(t), and setting
m(a) = p(a(t)) for each ae¢A

In particular if the A(t) are elementary one can take

e = (e(t)) where rank e(t) =0 or 1.

(iv) Let G be a locally compact group containing a compact
open subgroup K with the following property : for each
irreducible representation 7 of G in a space H, the

space of all vectors in H invariant by « (K) has dimen-
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sion { 1 . Then the characteristic function e of X has
rank ¢ 1 in C*(G) s in fact it is known that w“(e) =
j;ﬂr(K).dk 1s the projection onto the space of all vec-
tors invariant under = (K). Here dk is the normalized

Haar measure of K.

(v) 1Llet p and q be two projections in a Hilbert space H :
*®
then the sub-C - algebra A of gg(H) generated by p and
qQ is postliminar and P and q have rank £ 1 in A (G.K.Pe-

dersen, Oral communication).

n.13.2. Irreducible representations of ée Ai

In this number we consider a tensor product A = ;e Ai

where each e has rank ¢ 1 in Ai 3 we denote by Yi the set

N
of all % in A; such that 'W(ei) # 0 ; it is open in A,

We define a mapping

(Y;) A ~
n 1 Ai-—>A

in the following manner : take an element [ = (Wi) in

n A; and a finite subset Jc¢ I such that i¢J implies

T, €Y., ; then for i¢J , Wi(ei) has rank 1, we can take

a unit vector ti in Im Wi(ei) and form the representation

® e,t,wi y Which is independant of the choice of ti in
ieI-J

+ »
Im Ti(ei) i now by writing A = ( ® A.)® ( ®° A.)

ieg 1 i€T-g 1
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* * B
we can form the representation ( ® 7T.)e( @& e,t L
ied i¢I-J
A
of A ; this is an element of A which is independant of the

)

choice of J (easy verification) and which we shall denote by

F(I).

#
Lemma 3. Denote by A a C - algebra, by e a nonzero projection
in A, by S the set of all pure states f on A verifying f(e)
=1, by Y the set of all w in A verifying w(e) # 0 , by

~
M the canonical mapping f —s T of P(A) onto A . Then

f

M|S maps S onto Y and is open.

Proof. We have M(S)<cY since
1= fle) = (Vele)oxpl xp) == Tele) #0 ;

we have M(S) = Y : in fact if = belongs to Y we can take a

unit vector x in Im 7w(e) and setting f = Wy om we

have f(e) = 1 and T = e . To prove that MIS 1is open,

denote by T the set of all f in P(A) verifying f(e) # 0 ;

to each f in T we associate the state L(f) defined by

L(f)(a) = f(eae)/f(e) ;

then L is a continuous mapping of T into S ; if f is in S we

have L(f) = f since writing f = w T we have

f(e) = 1 (7(e).xIx)

MT(e).x X

L(f)(a) = (m(eae).xlx) = (7% (a).xlx) = f£f(a) ;
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this proves that L maps T onto S. Let U be an open set in S ;
L-1(U) is open in T, hence in P(A) since T is open ;
M(L—1(U)) is equal to M(U) since we have M(f) = M(L(F))
for each f in T ; since M is open? M(U) is open and M]|S is

open.

A
Proposition 18. The mapping F : I Ai'__’ A is in-

jective and bicontinuous.

Proof of the injectivity. Suppose F(MN) =F(Nn') and take

j in I ; there is J ¢ ¥(I) such that je J and
we can write

» g *
Mn) = ( ® 7)e( @ e,t 75
i€d i€ I-J

and similarly for F(J]') ; since the assertion is true for

x «

the finite tensor products we have @ Wy = 7ri and
ie¢d ied

then T.= WL o

Proof of the continuity. It is sufficient to prove that for

each J, F| X(J) is continuous ; but F| X(J) is the compo-

sition of the following mappings

b x * e, t
(7 .), & (., (7). ) (@ 7.y, 8" x,)
i’ieI > i‘ied ? i’ieI-J’ +———> ied l,ieI-J i
* x *
s @ m)el & Ot w)
ied i€ I-J



70

a is trivially continuous, c¢ i8 continuous by Part I, prop. 5

* 5 .
as for b, (17’i)iGJ —> ® T 1s continuous by the same re-

ie¢dJ
sult, and it remains to be shown that (ﬁ’i)ieI—J —_
»*
® e’t'ri is continuous ; in other words we are led back
i€ I-J

to prove the continuity of the mapping F in the case where
ww.(e;) # 0 V i. Denote by S; the set of all pure states
f of A, verifying f(ei) = 1 ; by lemma 3 the mapping My o
S, —=Y¥, is open ; then the mapping M = (Mi) : M8, —

n Y, 1is open j consider the following diagramm

ns, _ G . P(a)
M l
/s
Yy, —— A
+ F

since it is commutative we have only to show that the mapping
*

G : (fi) A @e fi is continuous, i.e. that for each a

. . NN * e . .

in A the mapping (Ii, —s (® fi)(a) is continuous ;

since all our positive functionals have norm 1, by equicon-

tinuity we can suppose a€®° Ai , then by linearity a =

® a; , (ai) <I7eAi ; then the assertion is trivial.

Proof of the bicontinuity. Take Je% (I) ; an element N of

(Y.)
1 A. Dbelongs to X iff F(F1) is not identically
i (J)

zero on & A; ; thus we see that F(X(J)) is open in Im F ;
i€d
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it suffices to prove that P is continuous on F(X(J)), or

that each mapping F(N) , > M . 1is continuous on F(X(J)) i

J

we can suppose Jjé€¢ J and write

* * *
F(N) = (8 7)6( 8% )
i¢d i€eI-J
*
by Part I, th. 5, @ &, 1is a continuous function of F(MN)
ied
¥
and a7, a continuous function of ® . .
J ied

Theorem 8. If each A is postliminar and ey has rank ¢ 1,
(Yi) A PN

the mapping F is a homeomorphism of T A; onto ée Ay

*e . -
moreover @ Ai is postliminar.

Proof. We shall prove that each factor representation -« of
A is of type I and also that if < is irreducible, it is equi-
valent to a tensor product of representations. There exists

o x 5
a Je+(I) such that =) @ A, # 0, i.e.
i€dJd

n ® . 0
()@ ® o)) #

for some a(J) in ; A. ; since this algebra is postliminar
i€d

. #*
we can write by Part I, prop. 2, % = ‘F1 @'WZ where L] is

some factor representation of 5 Ai and 'F2 some factor
ied
x
representation of ® °© Ai F T’1 is of type I and if moreover
J

i€ I-
9 is irreducible, 1‘1 is irreducible too and is a tensor

product of irreducible representations of the Ai’ ied ; on

the other hand
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wlaggy el 2 ) = Tlagg)) ey t 3y ot

implies 1'2( ® e.) # O ; we are thus led to prove the
ie I-J
following assertion :

If 7 (® ei) # 0,7 is of type I ; if 4 1is irreducible

it is equivalent to a tensor product of representations.

We denote by H the space of o and choose a unit vector u in

Im 7 (@ ei) ¢ H; for each je¢ I we can write (since A. is

J
postliminar)
H = K, £ K'
J J
T o= P, eP!
m(®e;) = pile;) @pi( @ ey)

i#]

where (j is a factor representation of Aj in Kj H Pj is a

multiple of some irreducible representation ‘Tj in a space

H. and we can write

J
H H : L : K!
BEEP I I
¥ s
T = T, ®T @
J FJ
T (® ei) = "j(ej) ® I ®(73( iij ei) ;
setting H' = L. é K! and T! = I @ ¢! we obtain
J J J J J
H = H. ® H!
J
x
T = T, W!
J J
7T (®@e;) = 7. (e)opwt( @ e.) ;
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since ‘Wj(ej) has rank 1, u has the form tjetﬁ where tj

is some unit vector in Im Wj(ej).

Consider now a finite subset J of I ; by the same procedure

as before we can write

h
H o= Hgy e Hiy
o= T ® ")
T(®e;) = Tg re1 ) @ T 1€1-3 1)

where ‘W(J) is an irreducible representation of £ Ai in
i€d
H(J) 5 'W(J) is a tensor product of irreducible representa-

tions Fj of the Aj’ j€dJd 3 for each je J +the restriction

65 of T(J) to Aj is a multiple of Kj ; write
» » » »
A = A @( o A e ®eAi)
J i€J-j i€I-J

and choose approximate identities (us) and (vt) of the second

and the third factors in the righthand side ; for each a'j in

Aj we have

ﬂr(aj ® U, @ V) = "Tj(aj) owﬁ(useo vy)
h
which converges strongly to Tj(aj) ® I in Hj ® Hs ; we
have also
T (a;0 uge Vi) = T(g(ajeug)e iy (vy)
h

3 ] 3 1 -
which converges strongly to o'j(aj)@ I in H(J) ® H(J) ;



74

this proves that 7ij and 63 have a common multiple ; conse-

quently 'Wj is equivalent to Kj 3 we thus can write

h h
—_ ]
H = ( i?J Hi) ® H(J) (12)
* X
To= (e Ty emyy, " (13)
iedJ
T (@e;) = ( ® %.(e.))® 7! ( ® e.) ;
i jeg 1o0d "(J) jeT-g 1 ’
= t. !
’ ( ffJ 1) )
! i i t i n W} 2 ).
where t(J) 1s some unit vector in Im (J)( i:}-J el)
If K>J we have
u = (@ t.)e t)
iex 1 (K)

(@ t.)e( @ t.) ® tzK)

ieg i€K-g 1
whence
t! = ( (] t.) ® t) . (14)
(J) i€K-J 1 (K)
h
Define an isometric linear mapping UJ 0 ® Hi'—_’ H by
iedJ
writing (12) and
_ ] .

the various UJ form an inductive system : in fact denoting

h h
by LJ K the canonical mapping ® Hi ———> @ H. we have
’ ieJ iek *
= . ]
UK(LJ,K(X)) X @ ( ie?_J tl) ® t(K)
= X @t (by (14))

]
[
Cy
b
~
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this inductive system gives rise to an isometric linear map-

h
ping U : ® ¢ Hi ——» H . We now prove that U intertwines
xe,t _ .
the representations ¢ N4 gnd o, i.e. that
$e,t i
U((e ~° ﬂTi)(a).x) = 9(a).U.x
h t
for each a in A and x in ® Hi ;s we can take a = @ ay
’ | e _ . t ]

with (ai) €M A, and x = ®Xx,; with (xi) e " Hy 5 we
have a; = ey and X; = ti if 1 belongs to the complement

of some finite J , then

U((e% "7 .)(a).x) )

U(0<rri(ai).xi

(( @ aﬁi)( ® ai). ® Xi)o-;er)( i@ ei)'t&J)

ied ied ied €I-Jd
= T(a).(( ® x))e tEJ)) (by (13))
ied
= % (a).U.x.

»
Thus U intertwines ee’t'ri and W ; since the first repre-
sentation is irreducible and the second is factorial, it is

of type I ; if moreover < 1is irreducible, it is equivalent

Corollary 11. Let for each i, Gi be a postliminar locally
compact group containing a compact open subgroup Ki with

the property indicated in example 5 (iv). Then the locally

(K. )
compact group nt Gi is postliminar and 1ts spectrum



is homeomorphic to Tl 1 G; where Y, is the set of all

~ A
in Gi such that the space of all vector invar:iant by ﬁf(Ki)

has dimension 1.

Interesting applications of this result to adele groups can

be frund in [ 371, ch.III, § 3, n.3.

Corollary 12. If Gi is a commutative locally compact group
(K.)

17 6.

and K a compact open subgroup, the dual group of Tl i

(L.) A
is isomorphic and homeomorphic to N * Gi where Li is the

subgroup orthogonal to Ki .

In fact a character x of Gi verifies /[ x(k).dk = 0

Ky

if and only if it is trivial on Ki'

Another corollary has been stated in example 4.
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(K,)

n.13.3. The Plancherel measure class of [ g, .

1

In this number we suppose I countable and consider for
each i a separable postliminar locally compact group Gi with
compact open subgroup Ki such that for each ™ in‘ai the space
of all vectors invariant under TT(Ki) has dimension 1 ;
we denote by Yi the set of all w such that the above space
(Y;) A

X ="n Go .

(K;)
1
n Gi 9 i

has dimension 1 ; we set G =

We recall that given a separable postliminar group G, the
N~
Plancherel measure class of G is the measure class on G cor-

responding to the central desintegration of the left regular

representation of G .

Proposition 19. One can choose for each i , a measure Ai in

the Plancherel measure class of Gi in such a way that Ai(Yi)
P

= 1 and that the homeomorphism F : X —s G of corollary

11 carries the restricted product of the Xi (see definition

in § 1) into a measure belonging to the Plancherel measure

class of G
We shall need the following lemma :

Lemma 4. Let G be a separable locally compact group, K a
compact open subgroup, e the characteristic function of K
considered as an element of L1(G), t the same function . on-

sidered as an element of L2vG) = H , ™ the left regular
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representation of G in H ; let us write the central desinte-

grat on of

®

H = fx H, .d p (x)
9

o= [ Tx.dp(x)

where pm is some Borel measure on some standard Borel space

@
X ; t admits a decomposition /tx.dr(x) ; then the sets

X, {x 17 (e) #0}

X

2 {X | t, 70 §

are identical up to negligible sets.

Proof of the lemma. Since 7 (e).t = t we have "u'x(e).t

X

= tx almost everywhere and X2 is almost contained in X1.

To prove the converse inclusion deno:e by '3 the algebra of
all diagonalizable operatcrs, by 13' the algebra of all de-
composable operators, by & the von Neumanﬁ al_ ebra generated

by T (G), by ¢ the right regular representation ¢f G in H :
A
(p(g).f)(g') = A(g) .f(g'g) ;
set L = Imw(e) ; we can write
®
L = /Lx.d/A (x) with Lx = Im'Trx(e);

L is the set of all f in H which are constant on the righ:
cosets Kg ; since G is separable and K :pen these cosets

form a ccuntable set, say Kg , Kg,.... with g_ = neutral
o] 1 o}
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element ; L has an orthonormal basis Wor Wyse..  where W
is the characteristic function of Kgn, LA t w, admits

8
a decomposition ‘/ w (x).dp(x) ; we have

3 -1
A(g,)) - ¢(g,) € a' ¢ &

3 -1 ®
hence 4 (g,) . ¢(g,) admits a decomposition /.Tn(X).d}(x) ;

on the other hand we have
-1 )
A -
(gy) - flegy) - wy = w
hence for almost every x we have

Tn(x).tx = w (x) Y n;

since for almost every x the wn(x) generate L , we see that
for almoét every x

o .

ct
»

"
(@)
=

»

1]
(@]
=

»
®

1

Proof of the proposition.

Denote by 7’1 and T the left regular representations

. 2 . ‘ 2
of G, in Hy = L (Gi)- and of G in H = L°(G), by t, the
-characteristic function of Ki considered as an element of
Hi’ by Ky a left Haar-measure on Gi with ri(Ki) = 1 3

by § 1 the restricted product ;M of the »; is a.left Haar

measure on G ; by corollary 5 we have an isomorphism
h

U etHi‘__,H

with the following property : if fie Hi and fi = ti almost



everywhere, Uf is the function defined by Uf(g) = r‘fi(gi) ;
it is easy to check that U carries @'rj(gi) inte % (g) for

each g - (gi) in G .

Take an arbitrary measure Xi in the Plancherel class og Gy 1

we can write the central desintegration of T‘i :
@

L fg, g

1
@
U8 =/ Ti’(i.dli(.ai)

s o]
1

where ‘Wi p is some multiple of Pi ; by lemma 4, ti admits
Y 3 j
1

@
a decomposition.‘/ ti,Pi.d)i(pi) such that ti'Fi 4 0 1iff
P, €Y, ; then we can replace Ai by an equivalent measure
which we still denote by A., and suppose I ty 0 I =1 for
'y
each Fie’Yi ; since lltiM - 1 we have )i(Yi) = 1 and
we can form the restricted product A of the )i ]

By theorem 3 we have an 1somorphism

]
ht h(ti,(’i)
V: ® “H —» ® H,
* X

dA(p)
i, (p) 3

as easily seen V carries the representation @t'ﬂi into

@  (t; ,)
/ ® 0 4, .dA(¢) , the proof will be complete if
X

i,py
* 03
we show that for each f¢ X , ® 1y b L p is a multiple
, s
i
of F(p). Since T, is a multiple of Pi we can write

i,05



h
H = K
1sgy 1’Fi® Kl’pl

Lo b = Pi ®1I
“hen
gince tivPi € Im Ti’pi(ei) and rank ﬁi(ei) 1 we
can write

t. = . !

with sy 0 € Im pi(ei) » then by virtue of the associativity
0.
i

h (¢, ) h (s, ) h h (s! ,)
1,¢: 1,007 i,e:
® ’ H. = ® K, @ KL
R ( 1’Fi) ® ( I’Pi)
(t; ) (s; ,)
® b, by ® DE o) eI

I
o>
=)
~—
®
—
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§ 14. Infinite tensor products of traces on C*— algebras.

n.14.1. Definition.

Let us consider.Afor each i a C*— algebra Ai y @& non zero
projection ey in Ai and a semi-finite lower semi-continuous
(s.f.1.s.c.) trace f; on A; such that fi(ei) = 1 ; denote
by m,, ny, N; the associated ideals (ef.(2], 6.1.2 and
6.2.1), by fli the Hilbert algebra n,/ N, , by a the cano-
nical image in ‘Ai of any element a in n; by Hi the Hil-
bert completion of lli y by Ui the left von Neumann algebra
associated with Ai » by t; the natural trace on ui y by T,
the representation of Ai in Hi defined by fi ; ey is a pro-

Jection of norm 1 in Ai and we can form the Hilbert algebra

b (e;)

A (ei)
= ® Jli ; its Hilbert completion is H = H

i

and the left von Neumann algebra of A is U =

s 1)
1

denote by t 1ts natbural trace and by T the ideal of Hilbert-

Schmidt operators for t ; since ’Wi(ei).ei = ey we can

form the representation T = oe(e; )‘TT which generates

i
the von Neumann algebra U ; for each family (ai) in neAi

with aié n1 we have

'fr(eai) = U |, e T(A) A~ T ;

®a,
1

since the operators - (@ ai) generate ', we see that the



|
RV

pair (ar ,t) 1is a traced representation ; hence it defines

* e

a s.f.l.s.c. trace f on A = @ A, 2 f=t .m ; if (ai) €
e + . _ .2 +
n Ai and a;€ m; we can write a; = bi where bie ny
and we have
f(@a;) = f((e@b)%) = t(7 ((®1.)%))
i i i
2 y g
Qtﬁ

Il
I

Moyl oy) = Mey((w, )%

i

Mt (w5 (6)°)

mn t (7 5(ay)) = rlfi(ai) .

Let us now suppose that the fi are finite and TTHfin <00 ;
the definition ideal m of f contains each element @ ay
with (ai) ¢ N¢ A; , hence contains ¢° A; ; on the other
hand, by prop. 16, f is continuous on ®° Ai ; since it is
l.s.c., it must be finite and hence equal to the positive

functional <§e fi . Thus we have proved the following

Proposition 20. Given for each i a s.f.l.s.c. trace fi on

Ai such that fliei) = 1 we can construct canonically a

¥
s.f.l.s.c. trace f on ® ° Ai with the following properties

(1) f(e ai) = r1fi(ai) if aj € A; » &; = e; almost

everuwhere and fi(ai) { oo

(ii) the representation associated with f is quasi-equivalent



Xe. € : :
to <ge’¢’ﬁ where 7; 1is the representation associated

Ey
A

w' th fi and éi the canonical image of ey in the space

of w. .
i

If each f, is finite and fT"fiﬂ <00 , f is nothing but the

. *
central positive functional &°¢ fi .

Suppose now that fi(ei) = 1 only for almost all i ;
taking J in ?~(I) such that idd = fi(ei) = 1 we -

can write

and consider the tensor product of the traces & fi (defi-
ied
ned in Part I, prop. 21) and f (defined in prop. 20)

Definition 13. The above &.f.l.s.c. trace on 36 Ai will be

denoted by é)e f. ;3 1t is a character if and only if each

i
f. is a character. If each fi is finite and F?hfiu <o

is nothing but the central positive functional ge fi

By composing with the canonical morphism ée Ai SN ;e Ai

Ye

v
we also get a trace ®° fi on @& A. which has the same

1

properties.

In the remainder of this paragraph we shall prove that cer-

k2 v
tain s.f.l.s.c. traces on @e Ai or ee Ai are tensor

products of traces.
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n.14.2. Type I characters of ée Ai

Theorem 9. We suppose each Ai postliminar ; let f be a cha-

racter on 5 € Ai which is of type I and satisfies the fol-

lowing condition : there exists a family (ai) in ”e A; such

that 0 < f(e ai) <eo . Then f is a tensor product.

Proof. Let J ={ija ;+e,}; we can write

* ¥ +*
A = 5eAi=(®Ai)e( oeAi)
ied i€ I-J
a, = ( @ a.)e (. e e.)
i ieg 1 ier-g 1’

by Part I, prop. 22, f is the tensor product of two charac-

*
ters £, , £, of ® A, and @
I

z ieJ 1 i€

e
-J

Ai respectively, and

f1 is a tensor product of characters of the Ai, i€e Jd ; on

the other hand we have 0 < f2( ® e.) <o© , so that

ie1-g !
we are led back to prove the theorem in the case where

0 < f(@ei) -]

"Let 7 be an irreducible representation of A in a space H
such that f = Tr oW where Tr is the usual trace in H ; for

each j we can write

h

H = HJQH:]
*

T = TJ.O’TT&

where Tj and 15 are irreducible representations of A. and
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* e

@ Ai s then
i#]
T(oe,) = T.(le.) oni( @ e.) - (15)
i 3t 3" qgq 3
Trow(@ ei) = Tr'wj(ej)eTr-wé\ iga ej) ;

hence Tr %j(ej) is a strictly positive integer..

Consider now a finite subset J of I ; by the same procedure

as in th. 8 we can write

( n h
H = @ H., ® H!
fed (J)
* »*
" = 5 )
( i?J 3 1) @M(J) $
then
trv(®@e.) = Tl Trw (). Trvin( © e,) ;
e ieJ ithi (I yeqg 177

the second tactor in the righthand side is a strictly positive
integer, so that

M Trv . (e;) & Trw(®e.) ;
i€d o *

since J is arbatrary Tr‘wi(ei) must be equgl to 1 for almost
every 1 ; by taking off again a finite set of indices we can
suppose Tr'Wi(ei) =1 Y i . Then 'Fi(ei) is a one dimen-

sional projection ; we choose a unit vector u in Im %(® ei) -

by (15) u is of the form u = tio té where tj is a unit
vector in Im Tj(ei) ; now the same reasoning as in th. 8

*
applies to prove that ¥ is equivalent to @e’t'ﬁi ; each

pair (ﬁi,Tr) is a traced representation since Tr'ﬁi(ei)
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f
= 1 ; set fi = Tr a'ﬁi ; we shall prove that f = ®° fi 3

fi defines a Hilbert algebra ‘Ai’ and a representation ({

of Ai in Ki = A ; let éi be the canonical image of ey in

i
A, ; we can identify A, with a dense subalgebra of the al-
i i

gebra of all Hilbert-Schmidt operators in Hi’ Ki with the

h .
space Hi ® Hi y €y (the projection onto ti) with tia'ti ’
h
f; with ¥.,eI1 ; then @&

h h h
to (@ Hi) ® (®

€ Ki is canonically isomorphic

t t

Hi) ; the representation associated

xQ #* b
with 0.fi is quasi-equivalent to ©°° Py o hence to

L
(;e’t’;'ri)wl , then to @e’t’h’ and to % ; but the re-

i
presentation associated with f is also quasi-equivalent to

, and this shows that f = ®°¢ £,

3

Corollary 13. Consider a family of postliminar locally com-

pact groups Gi with compact open subgroups Ki’ and an irre-
(K;)

ducible representation m of [T - Gi ;3 suppose that there

(K;)

exists an integrable function f on [ - Gi of the form
f=@f, such that 0 < Tr¥(f f) <o and that for almost
every i, fi is the characteristic function of Ki . Then m
is equivalent to a tensor product of irreducible represen-

tations T 4 and for almost every i the space of all vectors

invariant by ‘Fi(Ki) has dimension 1.

Interesting applications of this result to adele groups can

. be found in [373, ch.III, § 3, n.5.
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o
n.14.3. Characters of ®e Ai when ey is central.

In this number we suppose that for each i, ey belongs to

the center of Ai ; then if % is a factor representation of

Ai, ’h‘(ei) must be equal to O or I ; if f is a character of
A; and 0 < f(ei) (o , f is finite ; if moreover f is nor-

med we have f(ei) = 1.

Example 6. If G is a locally compact group and K an invariant
compact open subgroup, its characteristic function is central
in ¢ (G).

Proposition 21. Let f be a character of &° Ay (a4 = v or

% ) with the following property : there exists a family (ai)

in N°¢ A; such that 0 < f(® ai) <o . Then f is a tensor

product in the sense of definition 13.

Proof. For the same reason as in th. 9 we can suppose that

0 < f(® ei) <02 ; since @ e, belongs to the center of

A = ® Ai y I is finite and we can suppose it is normed 3

it defines a representation % in a space H and a finite

"
normed trace t on the factor & = %(A) ; we have T(® ei)
= I. The canonical morphisms I‘j : Aj‘—’ A are commuting ;~’
set Wj = Mo I‘j s representation of Aj s the von Neumann

"
algebras ’il’j(Aj) = aj are included in QA and commuting .
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Consider a family (a;) in e A; with a;, =e, for i¢J ;

i
we have
N L.(a;,) = ( @ a.e.)o( o e.)
jeg Lt 1 jeg 11 jer-J 1
= ®ay .o‘ei
hence
7.(a;) = T(®@a,).T(ee,) = T (® a,) ;
ied itTi i i i

then the di generate Q and consequently are factors ; the
von Neumann algebra a(J) generated by the Czi wiith i€ J

is also a factor ; set t, =t | dj_, ti5) = t | dTJ) ,

fi = tio L character of Ai ;7 we want to prove that f =

® ¢ f; 3 it suffices to prove that f(@ai) = ﬂfi(ai)

with a; = e, for 1i4¢J ; then

flea,) t(v(@a;)) = t( T 7, (a;))

ied
= t(J)( zzJ'Fi(ai)) ’

by Part I, lemma 13 we get

— il — —
f(®al) = lng tl( 1] i(ai)) = ]!—@(J fi(al) .

QED

We shall now inﬁestigate the finite characters of A ; we

denote by U, the set of all f¢ C1(Ai) such that f(ei) =
1 3 U; is open since for each f in C1(Ai) we have f(ei)

(uy)
=0 or 1 . For each family F = (Pi) in 1 % C1(Ai),
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af
we denote by T(F) the character @° £, .

(U.)
Theorem 10. The mapping T is a homeomorphism of I C1(Ai)

€A .

to C.( &
onto 10 i

T is injective : suppose T(F) = T(F'), take j in I and J

in % (I) such that je€J and fi(e,) = fi(e;) =1 for

i¢J ; for each a in : A. we have
ieg *
(& £)(a) = (M®)(ae( o o))
i€d i€eI-J
- (M(F))(ae( e )
ie I-J
- (@ 1))

and this implies fj = f5 .

T is surjective by prop. 21.

T is continuous : we must prove that for each J G;‘(I), T

is continuous on X(J) = A C1(Ai) x M U, ; thenT
ied ieI-J
is the composition of the following mappings

a 4 o °
P (P45 0 By gl (@ L5, @ 13)
4 £ 2«
ieJ i€I-J

a is clearly continuous ; b is the direct product of two

mappings b1 , b2 ; b1 and ¢ are continuous by Part I, prop. 5
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the proof of the continuity of b2 is the same as for the con-

tinuity of G in prop. 18.

T is bicontinuous : T(X(J)) is open in C1(A) since a
2 e .
character f = @ f; Dbelongs to T(X(J)) iff fi(ei) =0

V i¢ I-J , which is equivalent to f non zero on the subal-

{ o
gebra ( ® Ai) e( @ ei) . Thus it is sufficient to
i€ d ieI-J

prove that ] is continuous on T(X(J)), i.e. that for
d
each j, the mapping ®° fi — fj is continuous on this

subset ; we can suppose je€J ; then our mapping is the com-

position of the following ones

od 't { ¢
defi = ( e fi)a( 6 fi),__, ® fi'_—“f'
ieJ i€I-g ieg

and both are continuous by Part I, th. 10.

. 3 d
Corollary 14. If e; is the identity of A,y C1(0.Ai) is

canonically isomorphic to N C1(Ai).

Corollary 15. We suppose Ai separable and I countable ; then
e (Y.) —~
(®° A.). 1is Borel isomorphic to T 1'(A.). where Y. is
i’f i’f i
—
the set of all % in (Ai)f with ﬂT(ei) # 0.
T
In fact it is easy to see that the mapping (@ .Ai)f —_—

n (Ai)f is Borel ; on the other hand both spaces are

standard.
QED
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Given a locally compact group G we denote by E(G) the
set of all extremal continuous positive definite functions
¢ on G with q(eo) = 1, e, = neutral element ; there is
a bijection E(G) «— C,(C7(G)), to each ¢ in E(G) corres-
ponding the character a ,—» fé(a) = J/ a(g).¢(g).dg.
If K is a compact open subgroup of G and e the characteris-
tic function of K, we have £ (e) = 1 iff [ ¢ (k) .ax = 1
where dk is the normaliaed Haar measure of K ; and this is

equivalent to ¢(k) =1 V ke¢K since |l¢(g)l < 1 for

each g in G.

Corollary 16. Consider for each i a locally compact group Gi

(X;)
1 G’-)

and an invariant compact open subgroup Ki ; then E( 5

(¥;)

is in a canonical bijection with n E(Gi) where Yi is

the set of all ¢ in E(Gi) verifying ¢(k) =1 V keK, .

Corollary 17. If G; is compact and K, = Gy, E(FiGi) is in
(€.)
a canonical bijection with 1 * E(Gi) where &, is the

function 1

Corollary 18. If Gi is discrete and Ki is reduced to the
neutral element, E(iﬁ'Gi) is in a canonical bijection with

FIE(Gi) .
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