Locally bounded linear topological spaces

by D. H. Hyers

A. Kolmogoroff* has shown that a linear topological space
is a normed space if and only if it is locally convex** and locally
bounded. In most of the existing literature on linear topological
Spaces, local convexity is usually assumed. The novelty of the
present paper Kes in the fact that although local boundedness is
often assumed, it is never found necessary to require the space
to be locally convex. Hence all the theorems of this paper apply
to spaces more general than normed spaces (see the discussion

after theorem 3 below), although local boundedness is a severe
restriction.

Section 1 is devoted to postulates, definitions, and a few fun-
damental properties of linear topological spaces in general. The

See [7]. 'The numbers in brackets refer to the bibliography
at the end of the paper.
*%

“locally convex” means that every nei%hborhood of x con-
tains a convex neighborhood; “locally bounded” means that
every neighborhood of x contains a bom.md‘ed neighborhood.
Locally bounded spaces were introduced in {4
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postulates are adapted from v. Neumann’s in [2], but unlike
the latter, they are equivalent to Kolmogoroff’s (see {7] or [8]).
The concept of boundedness is discussed in section 2, and four

equivalent definitions are given

In section 3 it is shown how an “‘absolute value” may be
defined in a locally bounded space. Since the space is not requi-
red to b: locally convex, the absolute value does not satisfy the
triangular inequality. This absolute value does satisfy Frechet’s
postulates for the “length” of a vector in a “family of abstract
vectors” (see [10] pp. 125-6).

Linear funtions* are discussed in section 4. In sections 5

and 6 it is shown how the Riesz theory of completely continuous
linear functional equations could be carried over to locally boun-
ded spaces. Only a few of the procfs are indicated. since it is
only necessary to show that Riesz’s results do not depend on the

triangular property of the norm.

In section 5 one of Riesz’s theorems is shown to hold for
any linear topological space. It would be interesting to know how
of the Riesz theory could be carried ever without requiring local
boundedness. Another unsolved question is whether or not it is
possible to define an absolute value in a locally bounded space

which is not only upper semi-continuous, but continuous.

1. Linear topological spaces in general.

By a linear topological (I.t) space, we mean a linear

*  For a discussion of linear functions in spaces which are loca-
lly convex but not locally bounded see [11]-

-
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lf()CALLY BOUNDED LINEAR TOPOLOGICAL SPACES

space® which has a Hausdorff topology**, with respect to which
the fundamental operations x+y and ax are continuous. The
Hausdorff axioms are not the most convenient ones however
and we use instead the postulates®™* given below, which we shall
prove equivalent (see theorem 1).

Throughout the paper we use the following notations: L being
a linear space, xo a point of L, S, T sets in L, a a real
number and A a set of yeal numbers, xo+S denotes the set of
al xo+y with yeS; S+T denotes the set of all x+y with
¥€S; yeT; aS stands for the set of ax with x¢S; ST

is the intersection of S and T; AT denotes set of 8 x with
BeA, xeT.

Let L be a linear space in which there exists a family U of
“fundamental” sets U subject to the following postulates:

T 1: The intersection of all the sets UeU is the ene element
set consisting of the origin 8 .

T2 1f UeU, VeU, there exists a set WeU with WalU-V.
T 3: If UeU there exists a V e U such that V+VC‘U

T 4: If UeU there exists a set VeU such that aV U
for all real @ satisfying -1 <a<l

*  See [1], p. 26 for the definition of a linera space.

** 1.e. the space satisfies postulates (4), (B), (C), (5), pp-
228-229 of [6].

*** These are a slight generahzatxon of those given by v. Neu-
mann in 2.
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T 5: For any given xeL and UeU there exists a real nym.

ber a such that xea U.

Tueorem 1: If L is a linear space satisfying T 1-T 5, thesn
L is a linear topological space. Conversely in any linear topolog;.-
cal space there is a family U of sets satisfying T 1-T 5

Proor: For any set S=L, we denf)te by S (il.iteriol' of gy
the set of points % such that there exists U e U with "+ch5_
Then, following the proof of v. Neumann in [2] one cap show
that L is a Hausdorff space, with the sets 2 + U; (U ¢ Uy, 2
neighborhoods of the point z, and that the operationg ax

. . | and
x4y are continuous, so that L is a | t. space.

Conversely, having given a I. t. space, let U be the fami).
of all open sets which contain the origin 8. Now U js , Com}:
plete neighborhood system of 6 and from the Hausdorff Postu-
lates (cf. {6] pogtulates (A), (B), (©), (%) pPp- 228‘229) it is
evident that postulates T 1 and T 2 are satisfied. Moreoyer
since x4y and ax are continaous at the origin, it follows that,
T3 and T § are satistied. It remains only to prove that T 4
is satisfied. Tn order to do this we first prove the following Jeq,.

ma, which is of interest in itself.

Lemma 13 Let L be a l.t. space, A a non-vacuus open sg of
real numbers and G an open set of L. If either A does not
contain O, or if G does contain the origin 8, then the set AG

1s open.

Proor: First suppose that A does not contain 0. Then, since
A and G are open, for any aeA and any x€G there is a
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LOCALLY BOUNDED LINEAR TOPOLOGICAL SPACES

8 <0 such that BeA for |B-a] <8, and a Hausdorff neigh-
borhood U(x) with U(x) = 6. Now a0, so vy is.conti-
nuous at y=1a, y=ax. Hence there exists a U(a¥) such
that 1/gU(ax %)= Ulx) for sufficiently small [B—a|. Hence for
all B in a sufficiently small neighborhood I(2) of « we have

U(ax) at1(a) U(x) o AG, which shows that AG is open.

Next suppose that 0 ¢G, and take any xeA and xeG. If
a =/=0, the above i)roof applies. If =0, ax=0, and we must
show that there exists a neighborhood U(8)c AG . Take BeA,
B =/=0. Since 8¢G, there is a neighborhood V(8)cG. From
the continuity of ax, thereexistsa U(®) with }/gU(8)cV(6) =G,
or U@ =B V() =AG. This completes the proof of the lemma.

To prove that T 4 is satisfied by the family U of open sets
containing @, observe that since ax is continuous, there is for
any UeU a W eU and a real interval I: ~¥<a _<_5 such
that IWcaU. Since 0¢W, lemma 1 applies, so—that I s
open. Putting V=IW, we have 2V aU forall a satisfy'mg
—1<ag]

q.e.d.

Having demonstrated theorem 1, we may regard TI1-T 5
as a set of postulates defining a 1.t. space. Any family U’ of
sets satisfying postulates T 1-T 5 will be said to be equivalent
to U if for each UeU there is a U’ e U’ with U'c U, and
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R E A\ I s T A D E (o} 1

if for each V' eU’ there isa VeU with Va2 V. FEquivalent
families define the same 1.t. space, since they define the same

points as limit points of a given set. e shall find the following

lemma useful in a later paragraph.

LemMa 2*: Any 1.t space is a regular Hausdorff space, i. e:,
any open neighborhood U of the origin 8 contain a neighborhood

V of 0 whose closure V is contained in U.

In what follows we shall need to make use of the concept of
relativization. Namely if M is any linear subset of a L. f. space
L then for every UeU we can define a fundamental set Uy =
ML, and the family U, ot such sets will satisfy postulates T1 —

T5. Thus we may consider M as a I t. space by relativization.
If Gis an open relative to M, 7. e. will be an open set of the

1.1, space M .

2 Boundedness
Several equivalent definitions of boundedness in l. t. spaces
have been given by various authors. For the sake of complete-

fiess they are included here.

(1) (Banach and Kolmogoroff) A set S <L will be called boun-
ded if for any sequence X, €S and any real sequence oy con-
verging to 0, the ssquence a, X, converges to the zero ele-

ment 0.

2 (v Neumann) A set S < L will be called bounded if for any

—— e

FOf the proof, see [7] -
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LOCALLY BOUNDED LINEAR TOPOLOGICAL SPACES

L ]

neighborhood U of the origin there is a number 2 suchS <% U.
(3) (Michal and Paxson)*- A set S o L will be called bounded
if for any xo € S there s a positive number S such that 2 Xxo1s

notin S for |2| > S.

(4) A set S L will be called bounded if given U e U there is
an integer v such that |a| < /v implies 2 S aU.

Tueorem 2: The above four definitions of boundedness are

equivalent.

Proof: Michal and Paxon (see [3]) have shown that defini-
tion (3) is equivalent to (2), and it has been shown (see [4],
theorem 1) that definition (4) is also equivalent te (2). It remains
to show that-definitions (1) and (2) are equivalent.* let S<=L
be bounded according to definition (1) and assume that S is not
bounded according to definition (2). Then for some U and each,
a there is an x €S with ¥/a x is not in U. Let a be a se-
quence of number which approach o with . Then there is a
sequence X; € S such that */a X is not in U. Hence */a; X; does

not converge to 6, although '/o; —» O, which contradicts (1).

Conversely let S be a set of L bounded aceording te (2). Let
U be any neighborhood of the origin and let a; be a sequence of
real numbers which approach 0. Let V be chosen in accordance

* The statement of this definition in [3] is incorrect.

* This equivalence was stated in Bull. Am Match. Soc., vol. 43

(1937), abstract N° 228. The proof is published here for the
first time.
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with postulat T 4, so that « V.o U for [a| < 1. By definition
(2) there is a number 8 such that S =8 V or 1/BV =S
Choose v so large that | 8] < 1fori>v. Thep for i>vy

1
i Xi = a —_
and for any sequence Xi € S we have a X =g B( B) X; e

o 8 (L) Sco; B VaU. That is, @ X; converges to 8

3. Locally bounded spaces; absolute values

Deriniion: A L4 space will be called loca/yy bou

Co hdeq if
there exists a fundamental set U ¢ U which ig bounded.

Tueorem 3: * To each element X of q locally bottngeq |
space L it is possible o order areal number |x|, called the o, 1. .
Solite

value of X, with the following properties:

@ [X]>0; [X]=0 implies X =g

(i) [aX| =|a] |X]| forany real o .

(iti) For every 7 >0 there isa 5> 0 such that
[ X4+ y| < n whenever[Xl<5and{y,<S

@) The sets U': [X|<a, a>0 form a family O
equivalent to the original family U of fundamenta)
sets.

——

* A somewhat less general theorem was proved in [4]. In ¢h
present paper the term “absolute value” is used instead o?'
“pseado -norm”  to avoid confusion with v, Neuman’s “pgen
do-metric” introduced in [2]. pseu-
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(v) For every XelL and # >0 there isa 8§>0 such
that [y| ~ | X[ <nfor [y - X | <5

Conversely, a linear space in which there 1s defined an absoluet
vale with the properties (1), (it), (111) is a locally bounded /. t.
space.

"Proor: l.et Ue U be bounded. From postulate T 4 there
exists a /e U such that « V o U for —| < e < |. Denote by I

the open interval —1 < 2 < land put W=IV;, whete Vijis the
interior of V., Since Vi is open, W is also open by lemma
Clearly W < U so that W is bounded. By construction, we have
a W =W for — | < a<| Hsnce, since Wis open, it is easily
shown that (—1) W=1, sothat a W oW for -| S af] )

Consider the family U’ of sets p 1V, where p takes on all po-
sitive values. This family is equivalent to the original family U
of fundamental sets. For, let there be given any VeU. Then
stnce W is bounded, there is a p > 0 such that p W .oV . Con-
versely, since each pWW is an open set * containing 8 , there exists
a V eU such that Vi o pW. By lemma 2, the space is regular,

so there exists a U e U with U < V;. Hence U oW, It follows
without difficulty that the family U’ satisfies the postula—
tes T1 — TS5,

Ior any given X ¢ L, define | X | as the greatest lower bound
of positive p satisfying X ¢ pW . Since the family U’ ) el )

* This follows readily from the continuity of scalar multipli-

cation and the fact that W is open.
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satisfies postulate T 1, it is clear that | X | satisfies property (i),
Property Ei'l) follows follows from definition of | X | and the fact
that pW = (—-p) # . To prove (iv) notice that if X ¢ jp » then
IX| < 1,and conversely if {X|<lthen X ea IV, for some 4 sa-

tifying 0 < a <[, so that X e W. That is, the set | x { <

. is
identical with #. But, from (u),wthlsln:em;s that tl‘le set
| X | < p is idgntical with the set p W, that the sees [x!\< o

p > 0 form a family U’ equivalent to U. Property Gii) 1oy
follows at once, since ths family U’ is known to satisfy post

U]a\
te T 3. In order to prove (v), let XeL and n > be given
For p>|X| we have X ¢ p 1V, so that Xe( | XH. n) W B, '

. M : 1
since (| X ]+ n) 11" is an open set, thereis a § > 0 such th :
a

ye(|X|+n)Wfory —xeSW. That

is !J’I<!X!+”
for |y-2]<S.

The proof of the converse is left to the reader.

CoroLrary 1: [n a docally bounded space q setS 45

bozmdcd
if and only if the set of real numbers |X |, X ¢S, s boundeg

Cororary 2: If { Xy ! cnd {1y} cre sequences " a localpy
bounded space L such that | Xo| and |3, | are bounded,

then s,
75 | Xy + pa |

To prove corollary 1, note that if S is bounded, S = o 1 for

X <a for
X e S implies § =a IVV. Corollary 2 follows from corollary 1 and

the fact that if Sy, S, are bounded sets, so also is S, + S,.

same ¢ >0, i.e. [X[<a for XeS, conversely |

Remark: The above absolute value is more general than a
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LOCALLY BOUNDED LINEAR TOPOLOGICAL SPACES

norm, since it does not necessarily satisfy the triangular inequali-
ty, bat ealy th: waikzar conlditions (i) and (v). Condition (111)
states that | X + g | is continuous in X, y at the origin, while (v)
states that | y | is upper semi-continuos at 3 = X. We were able
to prove (v) from the fact that W was open. Conversely if we
are given a linear space sul»ject to (1), (i), (i), (v) then the set
| x| <1is open, as the reader may easily demonstrate by ma-
king use of (v). '

Two different absolute values | x| and [l x| for a given spa-

ce will be called equivalent if there exist positive numbers p and
v such that. . ’

be ]l <wlixl and flxll <v x|
for all x ¢ L. Tt will be seen that these conditions are neces—
sary and sufficient for the equivalence of the family U consis—
ting of the.sets |x} < p, p > 0 and the family U’ consisting-of
thesets |{v || <p, p > 0.

Ths question immediately arifes whether or net it would al-
ways be possible in a locally bounded space to define an absolu-
te value satifying the triangular inequality, i.e. a norm, which
would be equivalent to the absolute value defined above. Tycho-
noff (see [8]) has answered this question in the negative by the

example Hy,, the space of all infinitely dimensional vectors

[ . ) . ’
% = (%1, %2, x3, ...) such that = | x| & converges, (each xi being
i1

2
%} we obtain

[
a real number). For. putting | x| = {_El | i ]

=

on absolute value satisfying (i), (ii), (i) and (v), whence H%
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s a locally bounded I . space. However Hl/z is not locally con-—

vex, as Tychonoff demonstrates. and hence j¢ is 70! possible to

S hecessary a4 suf-
ficient condition for normability (see troduction g, 71)
¢ '

1, does not Satisfy the

¢ - 1
define an equivalent norm, by Kolmogoroff

Although the abso'ute value x| in H
. oug

i alar inequality 1t does have the weaker P"Operty N
triangul:

) thye
I+ y | <2 (=] +1y])
We have shown in theorem 3 that ]x[ is an Upper sem;
continuous function of x . The question arizes whethe, EIRR al-
ways continuous. The foliowing example shows that jg Mot (-

' . ' On.
sider the space of complex numbers 5 — @+ g Pur |
a2 {fgz— for 8 =/= 0 and ]2/ = Vat

or B « 0
j2| is certainly not a continuous function of 5

althoygy,

‘ S SUPPose ¢, h
in the proof of theorem 3, so that (), Gi), Giib),

| 2] <l satisfies all the properties that W w ve
(v) are Satjg.
Modulyg Of
absoly te valye,
a“y bounded Space
alue with Propertieg (i) - (v)
and which isin addition a continuous function of 2 is still

' 4 0 this si: ample, the opdi.. .
fied by [z2]. In this sinple exa ple, th ordinary

7, which #s continuous is equivalent to the aboye
'y

The general question of whether in 2 given log
it is possible to define an absolute v

lett
unanswered.

4. Linear functions in locally boun jed spaces

Let L and L, be locally beunded 1. ¢, spaces. A function F(y)

;_aSec [8]. This property is convenicent in proving thar
tisfies (v).

——

lx,sa-
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on L to L, will bz cal'ed linzar it itis additive and continuous.
In case Ljis the space of real numbers, a function on L to Ly is
of course callad a fui:tional. The following properties of linear
function may be demonstrated exactly as in the case of normed
spaces (see for example [1] ).

(I) A linear function F(2) is homogencous, 1.e. F(ax) =
a F (x).

(Il) Given a liasar function F(x) there exists a posi—
tive number m such that |F (x) | <m|x| for all xe L. The

least such number will be called the modulus of I' and will be
denoted by | F| or | F|_, if it is desired to emphasize the do-

main L of F. Conversely if an additive function F has a mo-
dulus, then F is continuous.

-

THEOREM 4: Let L. be the linear space of all linear functions
on L. to Ly . Then the modulus | V| which is defined on 1. has

the properties (i), (ii), (iii), (v) of the absolute value of theorem 3.
Thus L is a locally bounded 1. t. space.

Proor: Ad (i): If [F| = O then |F(x)|<0]x] for allx eL
1.e F(x) =0 identically.
Ad (ii); Clear from property (I) of linear functions.
Ad (ii1): Let «x be arbitrary in theset [z | =1. Then
since L satisfies (iii) we have | F(x) + G (x) ] <My
<nfor|F(x)|<Sand |G (x) ]| <S,i.e |F+G|
<nfor|F| <S, |G| <S.
Ad (v): Proff similar to proceding.
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5. Completely continuous lincar functions.

In this section we shall not require that the spaces be loca-
Hy bounded. A linear function f(x) on a l. t. space L to a . t.
space L, will be called completely con‘inuous if there exists a
fundamental set U whose f —transform f(U) is compact.*
A completely continuous linear function takes bounded setg into
compact sets, for if S is bounded, then for some real e we have
S=alU, andf(S) 2 f(al) =af). Now since f (U ;s
compact, so are a f (U) and f(S). Hence when L is 3 linear
normed space, the above definition of complete continuity

. o redu-
ces to the usual one. (See [1] p.96). The follow

ing theorem
was proved by Riesz (see [S]. or [1], p. 152) for normed spaces.

Theorem 4. [f y = f (1) is a completely continuous linear
funcion on any L. t. space 1. to L., then the ecquation 5 = Fx)

has only a finile nuntber of linzarly independent solutions .

Proor: L2t M b2 the set of elements of our space L which
satisfy the equation x = f(x) . Then M is a linear ma-
nifold, forif x,eM and x2 e M then a; x3 + a2 x, belongs to
M . By relativization, may be considered a l.t. space where
fundamental sets are taken to be the sets M - U, where U is a
fundamental set in L (1. e. the scts M- U satisfy postulates T1 -
T5). Now M is closed in L, since it is the set of all elements

transformed into 0 by the continuous function x —f(x)

* Acset S = L will be called compact if gvery infinite subset of
S has a limit point in L.
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Next, let U, be the fundamental set such that f(U.) iscom-
pact. Any point of M. U, isclearly in fiUs), 1 ¢ M. Us = f(Uso)
Hences ince f(U,) is compact, any infinite subset of M. U, has a
limit point in the space L. But since M is closed, this limit point
is alsoin M. Therefore the set M- U, is compact in the . t.
space M. Hence theinterior of M- U, is compact, so that the
l. t. space M contains a compact, open, non-vacous set. Hence
by theorem 4 of [4], M is finite dimensional. That is there exist
an integer # such that every element of M is expressible in the
form @y x4+ apx;+ ... + ay x,, where xy, %2, ..., % is @ set
of n fixed elements of M . q.e. d

6.

Tiie Riesz tgeory of limear functional equations in locally
bounded spaces.

In order to further develop the Riesz theory of completely
continuous linear transformations for l.t. spaces, it seems neeces-
sary to require local boundednes. If we do suppese that the spa-
ce be locally bounded, so that an absolute value may be defined,
the task bzcomes easy, since the proofs for the most part follow
those of Riezs (see [5]). In a locally bounded 1.t. space L, a
set S =L is bounded is bounded if and only if the set of real

nambers |x] with x ¢S is bounded (corollaty 1 to theorem 3).

Moreover in such a space completely continuous transformations
are precisely those which take bounded sets into compact sets.

The following five lemmas on linear manifolds* are fundamen-
tal to Riesz's theory (see [5], pp. 75-79).

* By a linear manifold we shall mean a closed linear set.
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TLemma 3: Let L be a loeally bounded l.t. spaco, and M, a
linear manifold which is a proper subset of a linear manifold
M, L. Then there exists an element xo € My such that |x.|=1
and

| —xo| >1s for all xeM. .

Lemma 4: If M is a linear manifold of fimite dimension in g o
cally bounded 1.t. space and y an element mot in. M then i),
is an element xo € M such that '

ly—xlzly—x.,l for all xeM .

Lemma 5: If M is a fimte dimensional linear manifold in any
1.t. space, any bounded subset of M s compact,

Lemma 6: If M s a linear manifold in any 1.1, space, and if
every bounded set of M ts compact, then M i< finite dimerisio-

- »

nal.

Lemma 7: Let 1. be a locally bounded 1.1. space, and let M,
and M, be two linear manifolds in L which have no common ele-
ment other than 6. If at least ome of M, and M, is finite di-
sensional then there exisls a constant p such that

x|yl < wlxtyl forall xeM, andall yeM,.

Lemma 3 may be proved exactly as in Riesz's paper. Lem-
ma 5 is clear from the fact that a linear manifold in a 1.t. space
is itself a |.t. space by relativization, and the fact that any fini-
te dimensional 1.t. space is continuously isomorphic with a Eu-
clidean space (see [8]).
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"~ On the basis of lemma 5, we can demonstrate lemma 4 as
follows. Let B be the lower bound of |y~x| for xeM, and
let %, be a sequence in M such that |y—x,]-» 8. On wri-
ting an = (xn~7) + » it follows from corollary 2 of theorem 3
that the sequence |x,] is bounded, since |%a—y| and |y| are
bounded. Hence by lemma 5, {x,} is a compact set, and has a
subsequence {x(} which converges to an element x,eM . Cle-
arly |y—xo|=8, q.e.d.

For the proof of lemma 6 see theorem 4 of [4], regarding M
as a l.t. space by relativization.

In order to prove lemma 7, let M; be the linear manifold
‘with a finite dimension. If the lemma were not true, there would
exist sequences %,¢ My and yne M, with |x,]|4|yn| > n|xa +
¥al for all #. We may suppose without loss of generality that
|%a|+[ynl=1, for otherwise we could divide by |x,| + |ya] and
obtain this equality. Hence {,xn} is a bounded sequence, and se
1t is compact by lemma 5, so that there is a subsequence {'x(")}
of {x,} with 2™ —»x,. Now since |20 43| <Y, z0)+
y™) —» 6 so that y™ -»—x,. By property (v) (Theorem 3) of
the absolute value we have |2 | <|xo[+ /g and |y | < [%o|+1/0
for all sufficiently large 7. Since [ |4|9»™|=1 we find that

2lxol>’/g or lxol>‘/4
However, since M; and M, are both closed, and since x.
is the limit of sequence x™ ¢ M, and a sequence — y™eM,,

we have %o e M, - M,, whence xo=0, contrary te the inequa-
lity |x0] > %,. This contradiction proves lemma 7.
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From now on we shall understand that our space L is a lo-
cally bounded I t. space, and «(x) will always denote a com-
pletely continuous linear function on I. to L.

TueorEM 5: The transformation t(x)=x—u(x) takes L insp
a closed set
For the proof, see p. 151 of [1]. This proof is independent of
the triangular property of the norm.

The theorems below may be proved on the basis of lemmag
3-7 and theorems 4 and § above, following Riesz, ([5] p. 80

et sequi)

TueorEM 6: If the equation x-u(x, has a solution for each
ye L then this selution is unique.

Tueorem 7: The necessary and sufficient condition thar the linear
transformation t(x)=x—u(x) have a uniquc linear inverse is Jrat
the komogeneous equation ¥ —u(x)=0 have a unique solution.
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