
Locally bounded linear topological spaces 

by D. H. HYERS 

A. Kolmogoroff* has shown that a linear topological space 

is a formed space if and only. if it is locally convex** and locally 

bounded.. In most of the existing literature on linear topological 

spaces, local convexity is usually assumed. The novelty of the 

present paper lies in the fact that although local boundedness is 

often assumed, it is never found necessary to require the space 

to be locally convex. Hence all the theorems of this paper apply 

to spaces more general than normed spaces (see the discussion 

after theorem 3 below), although local boundedness is a severe 
restriction. 

Section 1 is devoted to postulates, definitions; and a few fun-

damental properties of linear topological spaces in general. The 

See 17]. The numbers in brackets refer to the bibliography 
at the end of the paper. 

"locally convex" means that every neighborhood of x con-
tains a convex neighborhood; "locally bounded" means that 
every neighborhood of x contains a bounded neighborhood. 
Locally bounded spaces were introduced in [I] . 

— 555 — 

* 

** 



R E V, IS T A 	DE 	CIE NCI A S 

postulates are adapted from v. Neumann's in [2], but unlike 

the latter, they are equivalent to Kolmogoroff's (see [7] or [8]). 

The concept of boundedness is discussed in section 2, and four 

equivalent definitions are given 

In section 3 it is shown how an "absolute value" may be 

defined in a locally hounded space. Since the space is not requi-

red to b locally convex, the absolute value does not satisfy the 

triangular inequality. This absolute value does satisfy Frechet's 

postulates for the "length" of a vector in a "family of abstract 

vectors" (see [10] pp. 125-6). 

Linear funtions` are discussed in section 4. In sections 5 

and 6 it is shown how the Riesz theory of completely continuous 

linear functional equations could be carried over to locally boun-

ded spaces. Only a few of the proofs are indicated. since it is 

only necessary to show that Riesz's results do not depend on the 

triangular property of the norm. 

In section S one of Riesz's theorems is shown to hold for 

any linear topological space. It would be interesting to know how 
of the Riesz theory could be carried over without requiring local 
boundedness. Another unsolved question is whether or not it is 

possible to define an absolute value in a locally bounded space 

which is nor only upper semi-continuous, but continuous. 

1. Linear Topological spaces in general. 

By a linear topological (1. t ) space, we mean a linear 

* 	For a discussion of linear functions in spaces which are loca-
lly convex but not locally bounded see [11] . 
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space* which has a Hausdorff topology**, with respect to which 

the fundamental operations x+y and a x are continuous. The 

Hausdorff axioms are not the most convenient ones however, 

and we use instead the postulates*** given below, which we shall 

prove equivalent (see theorem 1). 

Throughout the paper we use the following notations: L being 
a linear space, x0 a point of L, S, T sets in L, a a real 

number and A a set of real numbers, xo+S denotes the set of 

all xo+y with y e S ; S+T denotes the set of all x+y with 

x e S; ye T; aS stands for the set of a x with x e S; S•T 

is the intersection of S and T; AT denotes set of ß x with 

ß e A, x€T. 

Let L be a linear space in which there exists a family U of 

"fundamental" sets U subject to the following postulates: 

T 1: The intersection of all the sets U e U is the one element 

set consisting of the origin 9 . 

T 2: If U e U, V e U, there exists a set W e U with WcU•V. 

'I' 3: If U e U there exists a V e U such that V+VU• 

T 4: If U e U there exists a set V e U such that a V U 

for all real a satisfying - 1 < a < 1. 

* 	See [11, p. 26 for the definition of a linera space. 

** I. e. the space satisfies postulates (A), (B), (C), (5), pp. 
228-229 of [61. 

*** These are a slight generalization of those given by v. Neu-
mann in 2. 
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T 5: For any given x e L and U e U there exists a real num-
ber a such that x e a U. 

THEOREM 1: If L is a linear space satisfying T 1 -T S, then 
L is a linear topological space. Conversely in any linear topologi_ 
cal space there is a family U of sets satisfying T i -T 5. 

PROOF: For any set 
the set of points x such that 

Then, following the proof of 
that L is a Hausdorff space, 

neighborhoods of the point x, 

x+y are continuous, so that  

we denote by Si (interior of 
S ) there exists U e U with x-{-Uc;S. 

v. Neumann in [2] one can show 
with the sets x -1- U1 (U e U 
and that the operations 	

) as 

a x and L is a 1. t. space. 

Conversely, having given a 1. t. space, let U be the famil 

of all open sets which contain the origin O. Now U is a com_ 
plete neighborhood system of B and from the Hausdorff poste_ 
lates (cf. [61 postulates (A), (B), (C), (5) pp• 228-229) it is 
evident that postulates T I and 'I' 2 are satisfied. Moreover, 
since x-f-y and a x are continaous at the origin, it follows that 
T 3 and T 5 are satisfied. It remains only to prove that T 4 
is satisfied. In order to do this we first prove the following lem_ 
ma, which is of interest in itself. 

LEMMA 1: Let L be a 1. t. space, A a non-vacuus open set of 
real numbers and G an open set of L . If either A does not 
contain 0, or if G does contain the origin O, then the set AG 
is open. 

PROOF: First suppose that A does not contain O. Then, since 
A and G are open, for any a e A and any x e G there is a 
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< 0 such that 13 e A for I ß- al < S, and a Hausdorff neigh-

borhood U (x) with U (x) c G. Now a T  0, so y y is.conti-

nuous at 7='/a , y=ax . Hence there exists a U (a x) such 

that 1/0 U (a x) U (x) for sufficiently small I ß - a I . Hence for 

all ß in a sufficiently small neighborhood I (a) of a we have 

U(ax) c: I (a) U (x) A G , which shows that A G is open. 

Next suppose that 0 e G, and take any a e A and x e G. 1f 

=/= 0, the above proof applies. If a=0, a x=0, and we must 

show that there exists a neighborhood U(0) c A G . Take ßeA, 

ß =/= 0 . Since 0 e G, there is a neighborhood V (0) 	From 

the continuity of a x , there exists a U(0) with '/ßU(0)c-V(0)r_.G, 

or U(0) ß V(0) c-AG. This completes the proof of the lemma. 

To prove that T 4 is satisfied by the family U of open sets 

containing 0, observe that since a x is continuous, there is for 

any UeU a TV e U and a real interval I: - S < a < S such 

that I TV U. Since 0 e W, lemma 1 applies, so that Ill' is 

open. Putting V-ITV, we have x V U for .all a satisfying 

-I<a< I. 

q.e.d. 

Having demonstrated theorem 1 , we may regard T I-T 5 

as a set of postulates defining a 1. t. space. Any family U' of 

sets satisfying postulates T 1 - T 5 will be said to be equivalent 
to U if for each U e U there is a U' e U' with U'r U, and 
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if for each V' e U' there is a V e U with V' V. Equivalent 

familigs define the same 1. t. space, since they define the same 

points as limit points of a given set. We shall find the following 

lemma useful in a later paragraph. 

LEMMA 2*: Any I. t. space is a regular Hausdorff space, i. e:, 

any open neighborhood U of the origin B contain a neighborhood 

V of o whose closure V is contained in U. 

In what follows we shall need to make use of the concept of 

relativization. Namely if M is any linear subset of a 1. t. space 

L then for every UE U we can define a fundamental set UM  

M ' L, and the family UM  of such sets will satisfy postulates T1 -

T 5. Thus we may consider M as a l t. space by relativization. 

If G is an open relative to M , i. e. will be an open set of the 

t. space M . 

2 Roundedness 

Several equivalent definitions of boundedness in 1. t. spaces 

have been given by various authors. For the sake of complete-

ness they are included here. 

(1) (Banach and Kolmogoroff) A set S L will be called boun-

ded if for any sequence x, e S and any real sequence at, con- 

verging to 0 . the sequence ad  xr  converges to the zero ele-

ment O. 

(2) (v. Neumann) A set S L will be called bounded if for any 

* For the proof, see [7] . 
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neighborhood U of the origin there is a number a such S c U. 

(3) (Michal and Paxson)"- A set S c L will be called bounded 

if for any xo  e S there is a positive number S such that a xo  is 

not in S for ' a l> S. 

(4) A set S d L will b.: called bounded if given U e U there is 

an integer v such that I a I <'/P implies a S c: U. 

THEOREM 2: The above four definitions of boundedness are 

equivalent. 

Pro l.' Michal and Paxon (see [3]) have shown that defini-

tion (3) is equivalent to (2), and it has been shown (see [4], 

theorem 1) that definition (4) is also equivalent to (2). It remains 

to show that- definitions (1) and (2) are equivalent.* - I.et S c L 

be bounded according to definition (1) and assume that S is not 

bounded according to definition (2). Then for some U and each. 

a there is an X t S with j/a x is not in U . I.et a; be a se-

quence of number which approach oo  with i . Then there is a 

sequence xi e S such that '/a x  is not in U . Hence Vai X;  does 

not converge to B , although '/a; —» 4, which contradicts (1). 

Conversely let S be a set of L bounded according to (2). Let 

U be any neighborhood of the origin and let a;  be a sequence of 

real numbers which approach O. Let V be chosen in accordance 

* 	The statement of this definition in [3] is incorrect. 

* This equivalence was stated in Bull. Am Match. Soc., vol. 43 
(1937), abstract N° 228. The proof is published here for the 
first time. 
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with postulat T 4, so that a V a U for I a I < 1. By definition • 

(2) there is a number l3 such that S ß V or I/ß 

Choose v so large that a►  ß < I for i > v , i'hen for i > v 

and for any sequence Xi e S 

oti 	( l + S 	ai  
ß 

we have 

That is, 

0.i Xi = ai 	
1\ 

Q J ß~ 
Xi e 

a►  Xi converges to B , 

3. Locally bounded spaces; absolute values 

DEFINITION: A 1. t. space will be called locally bounded 
i f there exists a fundamental set U e U which is bounded. 

THEOREM 3: * To each element X of a locally 
hound 1. t. 

space L it is possible to order a real number I X j 
, called the lbsolute 

value of X, with the following properties: 

(i) 	j Z I> 0; 	I X I 0 implies X=6 . 

(ii) jaxj= jaj IxI 	for any real R. 

(iii) For every n > 0 there is a B > 0 such that 
,X+ y I< n whenever I X I< S and ! y l< S 

(iv) The sets U1 : I X I < a , a > 0 form a family U' 

equivalent to the original family U of fundamental 
sets. 

" A somewhat less general theorem was proved in [43. In the 
present paper the term "absolute value" is used instead of 
"pseudo-norm" to avoid confusion with v, Neuman's "pseu-
do-metric" introduced in [23. 
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(v) 	For every X e L and n> 0 there is a d> 0 such 
that IyI - IXI,<nfor Iy - XI<ó. 

Conversely, a linear space in which there is defined an absoluet 
value with the properties (i), (ii), (iii) is a locally bounded 1. t. 
space. 

'PROOF: Let U e U be bounded. From postulate T 4 there 

exists a h e U such that a V 	U for -I ` a < I. Denote by I 

the open interval - 1 < x < 1 and put TV=IV; , whete V; is the 
interior of V. Since V;  is open, IV is also open by lemma I. 

Clearly W C U so that W is bounded. By construction, we have 
x W c W for - I < a < I Hence, since W is open, it is easily 
shown that ( — 1) W= TV , so that a TV W for -I<a<I. 

Coniid, r the family U' of sets p TV, where p takes on all po-

sitive values. This family is equivalent to the original family U 

of fundamental sets. For, let there be given any V E U . Then 

since W is bounded, there is a p > 0 such that p W, V. Con-
versely, since each pW is an open set * containing O , there exists 
a V e U such that V; 	pW. By lemma 2, the space is regular, 

so there exists a U e U with U c V; . Hence U c; 0 . It follows 
without difficulty that the family U' satisfies the postula-
tes T 1 - T 5. 

For any given X e L , define I X I as the greatest lower bound 
of positive p satisfying X E p117 . Since the family U': 	pW 

* 	This follows readily from the continuity of scalar multipli- 
cation and the fact that TV is open. 
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satisfies postulate T 1, it is clear that I X I satisfies property (i) 

and the fact Property (ii) follows follows from definition of X 
• 

that pW = (- p) W W. To prove (iv) notice that if X e W 
then 

I X J< I , and conversely if IX I <1 then X e a W, for some a sa _ 
tifying 0 < a < J , so that X e W . That is, the set I X I < 1 is 

 

identical with W. But, from (ii), this means that the 
J X ~< p is identical with the set p W, that the sets I X 1 

p > 0 form a family U' equivalent to U. Property (iii) noW P 

follows at once, since the family U' is known to satisfy postul.l_ 

set 

to T 3. In order to prove (y), let X e L and n > 0 be given 
For p >IXJ we have XepT17,sothat Xe(Jxi-i- n11;17 

The proof of the converse is left to the reader. 

COROLLARY 1: In a locally bounded space a sets is bounded 
ij and only if the set of real numbers J X J, X e S, is bounded, 

C0ROLARY 2: If IX, end y.1 are sequences in a locally 
bounded space L such that J X.1 and J y.1 are bounded, then so 

is1X,+ynj . 

To prove corollary 1, note that if S is bounded, S 7 a W for 
same a> 0, i. e. J X J< a for X e S, conversely J X i< a for 
X e S implies S r. a Ti' . Corollary 2 follows from corollary 1 and 

the fact that if Si , S2 are bounded sets, so also is S1 + S2• 

REMARK: The above absolute value is more general than a 
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norm, since it does not necessarily satisfy the triangular inequali-
ty, bat oily tie. we.;ker conditions (iii) and (v). Condition (iii) 
states that I X + y I is continuous in x, y at the origin, while (v) 
states that y I is upper semi-continuos at y = X . We were able 
to prove (v) from the fact that ih was open. Conversely if we 
are given a linear space subject to (i), (ii), (iii), (v) then the set 

x l < 1 is open, as the reader may easily demonstrate by ma-
king use of (v). 

Two different absolute values I x and 11 x !1 for a given spa-
ce will be called equivalent if there exist positive numbers µ and 
v such that. 	, 

1 x1 <MIII:Lll and 	I I II <v 1x1 

for all x e I . It will be seen that these conditions are neces-
sary and sufficient for the equivalence of the family U consis-
ting of the -sets I x f < p, p > 0 and the family U' consisting of 
the sets x < p, p > 0. 

The ques.ion immediately ari'çes whether or not it would al-
ways be possible in a locally bounded space to define an absolu-
te value satifying the triangular inequality, i. e. a norm, which 
would be equivalent to the absolute value defined above. Tycho-

noff (see [8]) has answered this question in the negative by the 
example Hi h , the space of all infinitely dimensional vectors 

x = (x1, x2, x3, ...) such that 	xi I 
h converges, (each x; being 

s=I 
2 

a real number). For. putting I x I = 
1 ~1 x

; J 	we obtain 

on absolute value satisfying (i), (ii), (iii) and (v), whence H1/2 

e 
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a locally bounded 1. t. space. However H1/2 is not locally, con- 
vex, as Tychonoff demonstrates, and hence it is 

not possible to define an equivalent norm, by Kolmogoroff's necessary and suf-
hcient condition for normahility (see introduction 

of [~ .Although the abso'ute value I x I in H1/2 does not satisfy the 

have the weaker property. 
that 

WŸe have shown in theorem 3 that I x I is 
as upet 

Semi' continuous function of x . The question arises whether   
ways continuous. 'l'he following example shows 

	
x is aI- 

tha t is not. Co
rt_ cider the space of complex numbers z = a~ -ßi• Put !., ~/ az 1:---v fur ß =i = 	and .z 	 I ~a~ o r ß _ 0 

z 1 is certainly not a continuous function of: 
	

• 1 hen 
i z I < I satisfies all the properties that YV 	

although the set 

was supposed 
to have in the proof of theorem 3, so that (i) (ii), (iii) 

floc! by 	~ z ~ . 
 

In t'lis simple example, the 	
(vl 

;re saris_ 

	

f 	
ordinary modulus of .z, which is ,::>ritinuous i; e,

l,rivalent to the above absolute value. 
The general question of whether in a given locally bounded space 

it is possible to define an absolute value with properties 
(i) - (y) 

and which is in aIlition a continuous function of z is still lef
t unanswered. 

4. Linear function., rst lically 6duu.led spaces 

Let L and L, be locally bounded 1. 1. spaces. A function F(z) 

* 	See [8]. ['his liro,,erty is convencnt in proving dint 	x I sa- tisfies (v). 

Is 

triangular inequality it does 

Ix+ YI < 2 (Ix1 +IYI) 
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on L to L, will be cal'e-1 linear it it is additive and continuous. 

In case L1  is the space of real numbers, a function on L to L1  is 

of course called a fu I_ti)nal. The following properties of linear 

function may be demvnstrated exactly as in the case of nornied 

spaces (see for example [1] ). 

(I) A linear function F(z) is homogeneous, i. e. F(a x) = 
F (x). 

(Il) Given a linear function F(x) there exists a posi-

tive number ni such that j F (x) j< m; x i for all z e L. The 

least such number will be called the modulus of F and will be 

denoted by F or F I,  , if it is desired to emphasize the do-

main L of F. Conversely if an additive function F has a mo-

dulus, then F is continuous. 

THEOREM 4: Let L be the linear space of all linear functions 
on L to L1  . Then the modulus I I,' j which is defined on I. has 

the properties (i), (ii), (iii), (v) of the absolute value of theorem 3. 

Thus L is a bcally bounded 1. t. space. 

PuooF: Ad (i): If IFI = 0 then l F(x) < 0 i x f for all x e L 

i . e 	F(x) = H identically. 

Ad Iii); Clear from property (I) of linear functions. 

Ad (iii) : Let x be arbitrary in the set j x I =1. Then 

since L satisfies (iii) we have IF (x) + G (x) J < ni  

<n -for I F(x)1<S and ! G(x)1 <S,i.e. IF+G I 

<n for I FI <S,IGI<S. • 
Ad (v): Proff similar to proceding. 
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5. Completely continuous linear fonctions. 

fn this section we shall not require that the spaces he loca—

lly bounded. A linear function f(x) on a 1. t. space L to a 1. t. 

space Li will be called completely continuous if there exists a 

fundamental set U whose f —transform f (U) is compact." 

A completely continuous linear function takes hounded sets into 

compact sets, for if S is hTau nded, then for some real awe have 

S 	a U , and f (S) ^ f U ) = a f (U) . Now since f 

compact, so are a f ( U) and f (S) . Hence ~ti in L is a linear 
normed space, the above definition of complete continuity redu—

ces to the usual one. (See [1] p.~96). The follot ing theorem 

was proved by Riesz (see [S]. or [1], p. IS?) for Wormed spaces. 

THEOREM 4. If y = f (x). is a completely continuous linear 
function on any 1. t. • space 1. to L , then the equation x = f ( x) 

has only a fini:e number of linearly independent solutions . 

['Roof: [, t M 	t!Ie set of elements of our space L which 

satisfy the equation x = f (x) . 	Then 	M is a linear ma— 

nifold, for if 11 e M and x2 e M then at x1 + a2 x2 belongs to 

,hI . By relativization, may be considered a 1. t. space where 

fundamental sets are taken to be the sets M • U , where U is a 

fundamental set in L (i. e. the sets M. U satisfy postulates TI — 

T5). Now M it closed in L , since it is the set of all elements 

tran.aformed into O by the continuous function x—f(x) 

" A set S 	L will b.2 called compact if„every infinite subset of 
S has a limit point in L . 
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Next, let Uo  be the fundamental set such that f(U0) is com- 
pact. Any point of M. Uo  is clearly in f ( U,) , i e M• Uo 	f(UO) 

Hences ince f(U0) is compact, any infinite subset of M. U. has a 

limit point in the space L . But since M is closed, this limit point 
is also in M . Therefore the set M- Uo  is compact in the I. t. 
space M . Hence the interior of M. U. is compact, so that the 
1. t. space M contains a compact, open, non-vacous set. Hence 

by theorem 4 of [4], M is finite dimensional. That is there exist 
an integer n such that every element of M is expressible in the 
form al  xi  + 0!2  x2  + ... + a„ x„ , where xi, x2, ... , x„ is a set 
of n fixed elements of M . q. e. d 

6. Tile Riesz tgeory of linear functional equations in locally 
bounded spaces. 

In order to further develop the Riesz theory of completely 
continuous linear transformations for 1.t. spaces, it seems neces-

sary to require local boundednes. If we do suppose that the spa-
ce be locally bounded, so that an absolute value may be defined, 

the task becomes easy, since the proofs for the most part follow 

those of Riers (see [5]) . In a locally bounded I . t. space L, a 
set S c L is bxinded is bounded if and only if the set of real 

numbers Ix; with x e S is bounded (corollary I to theorem 3). 
Moreover in such a space completely continuous transformations 

are precisely those which take bounded sets into compact sets. 

The following five lemmas on linear manifc)lds* are fundamen-
tal to Riesz's theory (see [51, pp. 75-79). 

* By a linear manifold we shall mean a closed linear set. 
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LEMMA 3: Let L be a loeally bounded 1. t. spaco, and M1 a 
linear manifold which is a proper subset of a linear manifold 
1112 L. Then there exists an element x,, e M2 such that I x o I f 

and 
Ix -x.l > 1/a 	for all- x e M 

LEMMA 4: if M is a linear manifold of finite dimension in a lo- 
cally bounded I. t. space and y an element not in M then there 
is an element xa E M such that 

Iy-xI > Iy-x~I 	for all xeM . 

LEMMA 5: If M is a finite dimensional linear manifold in any 
1. t. space, any bounded subset of M is compact. 

LEMMA 6: If M is a linear manifold in any 1. t. .space, and if 
every bounded set of M is compact, then M 	finite dimensio- 
nat. 	• 

LEMMA 7: at L be a locally bounded 1. t. space, and let M1 
and .M2 be two linear manifolds in L which have no common ele-
ment other than B . If at least one of M1 and M2 is finite di-
mensional then there exists a constant ,a such that 

Ix l+Iyl < µ Ix+yl for all x E M1 and all y E M2 

Lemma 3 may be proved exactly as in Riecz's paper. Lem-
ma 5 is clear from the fact that a linear manifold in a I . t. space 
is itself a I.t. space by relativization, and the fact that any fini-
te dimensional 1. t. space is continuously isomorphic with a Eu-

clidean space (see [8]). 
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On the basis of lemma 5, we can demonstrate lemma 4 as 
follows. Let ß be the lower bound of I y- x I for x e M , and 

let x„ be a sequence in M such that Iy-x„I 	ß. On wri-
ting x„ = (xn - y) + y it follows from corollary 2 of theorem 3 
that the sequence Ixnj is hounded, since I xn - y I and I y I are 
bounded. Hence by lemma 5, lxn1 is a compact set, and has a 

subsequence ltx(' 1 which converges to an element x„ E M . Cle- 

arly Iy - xo l=ß, 	q.e.d. 

For the proof of lemma 6 see theorem 4 of [41, regarding M 

as a 1. t. space by relativization. 

In order to prove lemma 7, let Mr be the linear manifold 

•with a finite dimension. If the lemma were not true, there would 

exist sequences xn E M1 and yn E M2 with Ix„j { Iy„I > n kn -f-
yn I for all n . We may suppose without loss of generality that 

xnI+Iynl= I, for otherwise we could divide by Ixnl + jyn l and 

obtain this equality. Hence l'x4 is a bounded sequence, and so 

it is compact by lemma 5, so that there is a subsequence x(") 

of 1 xn ti with x(*) -» xc, . Now since I x(")+y(' I < 1/~ , xt ) d-

yt") -, O so that y(m) -» -x0 . By property (v) (Theorem 3) of 

the absolute value we have I x(") I<Ixo1+1/4 and IyI <Ixo l+1 / 4 
for all sufficiently large n . Since Ix(") I+Iyo') 1=1 we find that 

2 Ix.I >'/s 	or Ixol >'/4 

However, since M1 and M2 are both closed, and since x„ 
is the limit of sequence xt•) E M1 and a sequence - y(TM) E M2. 

we have x. e M1. M2 , whence x0=0 , contrary to the inequa-
lity Ix" I > 1/4 . This contradiction proves lemma 7. 

— 571 — 



R E V IS T A 	D E 
	CIE NCI A s 

From now on we shall understand that our space L is a lo-
cally bounded 1. t. space, and u(x) will always denote a com-
pletely continuous linear function on L to L . 

THEOREM 5: The transformation t(x)=x-u(x) takes L into 
a closed set 

For the proof, see p. 151 of [1] . This 
the triangular property of the norm. 

The theorems below may be proved on the basis of lemmas 
3-7 and theorems 4 and 5 above, following Riesz. ([5], p. 80 
et sequi) 

THEOREM 6: If the equation x - u (se has a solution for each 
y e L then this solution is unique. 

THEOREM 7: The necessary and sufficient condition that the linear 
transformation 1(x) = x - u (x) have a unique linear inverse is hat 
the homogeneous .equation x-u(x)=B have a unique solution. 
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