O homeomorfji pewnych przestrzeni. – The Homeomorphy of certain Spaces.

Note

de M. S. KACZMARZ,

présentée, dans la séance du 7 Novembre 1932, par St. Banach m. c.

It is known that spaces L^p , $p \geqslant 1$ i. e. metric spaces, the elements of which are functions f(x), such that $|f(x)|^p$ is integrable in the interval (0, 1), are all homeomorphic with L^1). Recently the notion of spaces L^p was generalised as follows by W. Orlicz²). Consider any function M(u) with the following properties:

1) M(u) continuous in $(-\infty, +\infty)$.

2) M(0) = 0, M(-u) = M(u), M(u) > 0 if u > 0.

3) $\frac{M(u)}{u} \to \infty$ if $|u| \to \infty$.

- 4) M(u) is convex and thus increasing for u > 0.
- 5) $M(2u) \leq KM(u)$.

If we write N(v) = Mar [u | v | - M(u)] for $u \ge 0$, then N(v) is a convex function.

A function f(x) belongs to the space L(M) if it satisfies the inequality

 $\int_0^1 M[f(x)] \ dx < \infty.$

A space L(M) thus defined is a space of type (B) i. e. a vectorial, normalisable and complete space. The norm of f(x) is defin-

1) S. Mazur, St. Math. Vol. I. (1929) p. 83.

²) W. Orlicz, Über eine gewisse Klasse von Räumen vom Typus B. Bull. Ac. Pol. d. Sc. et L. A. 1932.

ed by

$$||f(x)|| = Max \int_{0}^{1} f(x) g(x) dx$$

for all functions g(x) satisfying

$$\int_{0}^{1} N\left[g(x)\right] dx \le 1.$$

This norm possesses the following properties:

a)
$$\int_{0}^{1} M[f_{n}(x)] dx \le C$$
 is equivalent to $||f_{n}|| \le C^{1}$.

b)
$$\lim \int M(f_p - f_q) dx = 0$$
 is equivalent to $\lim ||f_p - f_q|| = 0$.

The question arises as to whether the spaces L(M) are homoemorphic. The answer is in the affirmative as may be established in the following manner.

Theorem. If M(u) satisfies the conditions mentioned above, the space L(M) is homeomorphic with L_1 -space. We prove first a lemma.

Lemma. Given a sequence of functions $\{f_n\}$ and a function f(x) belonging to L(M) and such that

a) any subsequence of $\{f_n\}$ contains another subsequence $\{f_{m_n}\}$ converging almost everywhere to f(x) and

b)
$$\int_{0}^{1} M(f_{n}) dx \rightarrow \int_{0}^{1} M(f) dx,$$
then
$$\int_{0}^{1} M(f_{n} - f) dx \rightarrow 0.$$

To prove this lemma, suppose first that $f_n \to f$ almost everywhere. Then, for any $\eta > 0$ a set E exists whose measure is greater than $1 - \eta$, such that $f_n \to f$ uniformly in E; hence, given $\varepsilon' > 0$, N exists, such that for n > N, $|f - f_n| < \varepsilon'$. But

$$\int_{0}^{1} M(f_{n} - f) dx = \int_{E} + \int_{CE}$$

and for n>N and see that we have the constraint parallely forms the fifth

$$\int\limits_{E}M(f_{n}-f)\,dx<\varepsilon$$

where $\varepsilon = M(\varepsilon')$. From

$$M(f_n - f) \le M[2 \max(|f|, |f_n|] \le K[M(f) + M(f_n)]$$

we obtain

$$\int_{CE} M(f_n - f) \le K \left[\int_{CE} M(f) + \int_{CE} M(f_n) \right].$$

Further

$$\int_{E} M(f_{n}) + \int_{CE} M(f_{n}) \to \int_{E} M(f) + \int_{CE} M(f)$$

hence for large n

$$\left|\int\limits_{CE} M(f_{\rm n}) - \int\limits_{CE} M(f)\right| < 2 \ \varepsilon$$

on account of $(M[f_n(x)] - M[f(x)]) < \varepsilon$ when x is contained in set E. Finally we have

$$\left| \int_{0}^{1} M(f_{n} - f) \right| < \varepsilon + K \left[2 \int_{CE} M(f) + 2\varepsilon \right]$$

and

$$\left| \int_{0}^{1} M(f_{n} - f) \right| < \varepsilon + 4 K \varepsilon$$

$$\int M(f) < \varepsilon.$$

if

Returning to the general case, assume that $\int_{0}^{t} M(f_{n} - f) dx$ does not converge to zero. Then, in consequence of the boundedness

relation

$$\left| \int_{0}^{1} M(f - f_n) \right| \le K \left[\int M(f_n) + \int M(f) \right] < K C$$

there is a sequence n_k for which

$$\int M(f - f n_k) \to B \neq 0.$$

But a subsequence of n_k exists, which we may denote by m_k , for which

$$f - f_{m_b} \rightarrow 0$$

148

almost everywhere; in virtue of what has been proved

$$\int M(f_n - f) \to 0.$$

Now this is in contradiction with the hypothesis $B \neq 0$ so that the lemma is true.

We can now prove the theorem. We denote any function belonging to L by f(x) and to L(M) by $\varphi(x)$. Let

$$\varphi(x) \equiv M^{-1}(|f|) \operatorname{sgn} f$$

correspond to f(x) and

$$f(x) \equiv M(\varphi) sgn \varphi$$

correspond to $\varphi(x)$. The correspondences thus established are uniquely defined and we have to prove that they are continuous.

Indeed, if
$$\int |f - f_n| \to 0$$
, then
$$\int M(\varphi - \varphi_n) \to 0.$$

The sequence f_n being asymptotically convergent to f(x), we see that $\varphi_n(x)$ converges asymptotically to $\varphi(x)$ and by reason of

$$M(arphi_n) = |f_n|$$
 we have $\int M(arphi_n) o \int M(arphi).$

Thus by the lemma we have

$$\int M(\varphi_n - \varphi) \to 0.$$

Now let us assume that

$$\int M(\varphi-\varphi_n) \, \to \, 0.$$

Then $f_n \to f$ asymptotically by the same argument as above. We have further

$$\int |f_n| = \int M(\varphi) \to \int M(\varphi) = \int |f|$$

and by the lemma we obtain

$$\int |f_n - f| \to 0.$$