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REARRANGEMENT ~INVARY ANT BANACH FUNCTION SFPACES

by .

Ww,A,J., LUXEMBURG

1, Intreoducticn

The present paper is largely concerned with the theory
of normed spaces of measurable functions which are rearrange-
ment-invariant. Special examples of r.i, spaces are the
classical LP-spaces, the Orlicz spaces and the spaces which
were recently introduced by Halperin {5] and Loventz [9].
The importance of such spaces in analysis was recently shown
by Boyd [2] and Shimogaki [21]. 1In that they showed that
P,i. spaces are well suited for studying problems in Fourier
analysis and related subjects.

We have restricted the discussion to the case where the
underlying measure space is a totally finite measure space

largely for the reason that for such spaces the decreasing

* The preparation of this paper was supported in part by
the National Science Foundation under grant NSF-PG 6111,
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rearrangement exists for every measurable function, Thus the
first part of the paper is devoted te a discussion of the

properties of the decreasing rearrangement of an arbitrary

measurable function, In these secfions the reader may find
several improvements of older results as are presented in {7].

Several new results for rearrangement-invariant spaces
are given. In particular, a general representation theorem for
such spaces is given, Furthermﬁre, it is shown that Banach
function spaces which_are rearrangement invariant can be re-
nermed with a norm which is rearrangement invariant,

Some aspects of the theory of doubly stochastic transfor-
mations are discussed. It is shown that such transfofmations
are contractions on spaces which possess a rearrangement- |
invariant norm. This result, in particular, implies that
rearrangement invariant norms have the levelling length propert
inlthe sense of_Ellis.and Halperin [61],

A separate section is devotsd to show that the classical
inequality of Hardy, Littlewood and Pélya for convex functions
has a natural extension to rearrangement-invariant spaces, and
a new proof for this result is given.

In the last three sections of the paper the properties of

certain compact convex sets are discussed. In particular, a

complete answer is given to the question: Which is the smallest”
closed convex subset of Ll determined by the characteristic
functions of measurable sets of equal measure? ‘A partial

answer to this question was recently given by Nehari in [16]»
A number of problems concerning those compact convex sets are

given in the final section,
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Most of the material collected in this paperwas obbalnad
by the author during the last threé VAR
and was bpresented at various occasions in courses on intégrgd
tion theory at the California Institute af_Technology amnd
- lectures at other institutions. The author is most gvétﬁfui
for the Organizing Committee of the Symposium to have the
author presented with the opportunity to publish part of this
material on this occasion.

For the sake of convenience of the reader we include the
following list of the section headings.

2, Spectral measures,

% Spectral equivalency.

L, - Decreasing rearrangementg of measurable functioms,

5.,. An ineqﬁality of Hardy.

6, A preorder relation for__Ll(Ksu}g

7. Imbedding of é finite measure space in a non-gbomic

fiﬁite measure space.

8, An inequality of Hardy and Littlewood,

9, The values of an intégral@ |

10, .The.decreasing rearrangsuents of guma and produchs.

11, ‘Rearrangement~invariant Eanach_function spaces,

12, A representation theorem,

13, An inequality of Hardy, Littlewced and Pdlva,

lh._ Doubly stochastic transfarmatianﬁs |

15, Some properties of the sebs O{f ) = {f:f{faﬁ

16, Every u.r.i.~ Lphapace ham an equivalant w,w. i o

17. Extremal properties of (P and some velated prahlows
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2, Spectral measures.

Let (X, A, W) be a finite measure space, i.e., X is
a non-empty point met, A 1is a o-algebra of suhsets of X ,
and. g' is a countably additive non-negative measure defined
on A such that u(X) <@ , The notation Idu will always
denoté integration (with respect to U ) over the whole set,
ﬁnd Cp wiii denpte fhe characteristic function of the set
EcX . By M= M(X,u) we shall denote the set of all ex-
tended real-valued W~-measurable functions defined-on X .

Let R denote the réal-number system and let S = S(R)
be the Riesz space of all real step fuﬁctions on R., where
a step function on R is a function on R which takes on
only a finite number of different values and each ﬁonwzero
value is taken on on an arbitrary interval of finite length,
 Then for every f € M(X,u) and s € S(R) we have that
s(f) € M, and, in fact, s(f) 4is a simple measurable function.
éghis simple observation justifies the following notation,

For every £ € M, tﬁe mapping s - Is(f)du of S into
R will be denoted by If o

It is easy to see that If is a positive'linear.functional
on S8 , Furthermore If is gggiiguggg in the following sense.

If g (t)10 for all t € R (the sequence s  of step
functions decreases to zero everywhere), then If(sn)ao , l.e.
If is an integsrsl.

By Ug we ghall denote the Radon measure on R which

Then the following formula holds

is deﬁérmined by If .
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Fof 2ll f E M hnd'fefgall é £ & we have
- fs(£)au = [ sdu, . | (2.1)

Th@'measure Qf. will be célled the ngggggl_gggggzg
gf & with respect o p or shortly the p-spectral measure
of f ., It can belréprésented by the right-continuous
increasing function ef(tj = u{{x:F(x) <t}), t €R . 1In

addition, we shall also introduce the distribution function

a.(t) = u({x:f(x) > €}), ¢ € R, of £ which ié a right-
.continuous decreasing function. Then ef{t) + df(t) = u(X)
for ali t ER . It is easy ﬁo see that df(t) - u({x:£(x) =
—+ @) as t =+ ® and eglt) - u({x:£(x) = ~ ®}) as

t ~ - ® , The functions eg and dp are discontinuous at

t € R if and only'if w({x: f(x) = t}) > 0 , Furthermore,
thé mapping f - ef._is decreasing and the mapping £ -~ clf

ig increasing, and if fhff everywhere, then e, le, and

It

df ?df .

b
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3. S uival .

Let (X, A, @) and (X', A", u') be two finite measure

spaces, A measurable function £ € M(X,u) and a measurable

function f? € M?*(X?,47) are called spectrally equivalent or
equimeasurable whenever WMo = u'o, , and in that case we shall

wpite £ .~ FT7

It is easy to see that the binary relation =~ is an

equivalence relation between the classes of the almost every-

where equal measurable functions,
In the following lemma we shall collect some simple results
concerning this equivalence relation for future reference, The

proef is omitted,

(3,1) LEMMA, i) £ ~ g Aif and only if f -~ & and £ - g
ii) If inf(|£51,1€,]) =0 and inf(|gl,le,l) =

and fl - g] and fz -~ gz' y then f]_ + fz ~ gl + gz . In

particular, if £ ~ g , then |f] ~ |g]| .

iit) If £ ~ af , for some 0 < a # 1 , then

f = 0 almost esvervwhere ,

iv) If f -~ g and if s € S{(R) , then s(f} ~ s

v) 1If fan everywhere and gntg everywhere
and f ~ g for all n, then f ~ g,
vi) If T 1is measue reserving transformation

of (X, A, u) , then TFf ~ £ for all F£ € M(X,p) .

vii) If £ € LY(X,u) and £' € M(X',u') , then

£ .~ £' implies that f£' € LY(X',u') and [fdu = [£tdu’
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where (X,A,u) and (X',A',u') are finite measure spaces.

If E 4is a u=~measurable subset of X and f is a
meaaurable function of some finite measure space such that
£ » ¢y, then £ is almost everywhere equal to the character-~
istic fumctieon of a measurable set whose measure is equal to
the measure of E . If we apply this to simple functions which
are measurable functionms which take on only a finite number of
different values we obtain the following simple reéulto

{3.2) LEMVJA, Two _simple functions are spectrally eguivalent

if and ogly if they take on the same value on sets of

agual positive measure,

A, Decreasing rearrvangements of measurable functions,

It the valuves &f a measurable funétion. £ ére rearranged
in such a way that the measures of the sets of the spectral
family Ix:£(x) > t}, t € R , is preserved, then the resulting
measurahle functicon is cobviously spectrally equivalent with £

It is natural to ask whether it is possible to rearrange the

Lol

vaziues of a function in decreasing order in an equimeasurable

03

fasghion? The purpose of this section is to discuss the well-
¥nown affirmative answer to this question for measurable functions

o finite measure spaces (see [71).
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We shall first recall the definition of the right and
left inverses of a monotone function,
Let p(t), t € R , be a decreasing function, Then the

xight-continuggg inverse ¢q of p is defined as follows:

(4,1) q(u) = inf(t:p(t) Su) , u € R,

where we set q(u) =+ © whenever p{(t) > u for all t €R
and q(u) = - ® whenever p(t) Su for all t € R'. Then
q is right-continuous and decreasing and it satisfies the

following relations

(4.2) q{p(t)) >t for all t €ER and ql(p(t)-e) 2t
for all t € R and all 0 <e¢ € R , Observe also that
qlu) = sup(t:p(t) 2 u} = gup(t:p(t-) 2 u}) , and gfu-) =
= inf(t:p(t) <u) . Furthermore, q(p(t)-) 2t and
q((p(t)+e)-).§'t fFor all + € R , The right inverse of
q 1is equal to p .
The following simple observation is fundamental for what
follows, If p is a decreasing function defined on a finite

interval 0 <1t < a , then
(4,3) g{u) = inf(t:pl(t) <u) = m{{t:p(t) > u})_,

where m denotes the Lebesgue measure,

Thus we have the following lemma,



- 91 -

(L. L) LEMMA, If p 4is a decreasing function defined on
the interval 0 <t < a , then its m-spectral measure

mp of P 4is determined by its right-inverse q .

We are now in a position to answer the following question,
For a given measurable function £ € M(X,u) of a finite measure
space does there exist a right-continuous decreasing function
on the Lebesgue measure space {t: 0 <t < u(K)} which is
spectrally equivalent with f ? The answer is contained in
Lemma k4,l, Indeed, this lemma states that if such a decreasing
function exists, then its right-inverse must be equai»to the
distribution function de 6f f , and so the right-inverse of
de satisfies the required conditions. This justifies the

following definition,

(L,5) 'DE-FINITIOﬁ, Let f € M(X,u) be a measurable function
| defined on a finite measure space. Then the right-
in#grsg 5f_ of its gisﬁgibution function df , Which
satisfies f ~ 6, , is called the u-decreasin
£ , or shertly, the decreagsing

rearrangement of f .
In symbols

(4.6) 8p(t) = influrn(lxif(x) > ub) <) = iaf(urde(u) S¢),

0 <t Sulx),



- 92 -

It is easy to see that f is integrable if and only if
b, is Lebesgue integrable over the interval 0 <t L a,
a U
where a = p(X) , and in that case [fdu = [ 8.(t)dt . Further-
8]
more, £ ~ g if and only if bf = 6g ’
In the following lemma we shall collect some simple

properties of bf . The proof of the lemma ig left to the

reader,

(L.7) LEMMA, i) £, SE, =06, S

ii) If a >0 , then 6af = abe .
iii) F ight ~continuous increasin
. 3 _ E
function p on R we have 6p(f) p_(&f)._.___:_5
iv) For any s € S(R) we have s(f) ~ s(ﬁf) i~

v) .lﬁ. £, 0 in measure, then 6f -0
: n

uniformly on eveny closed subinterval of

Lo,u(x))

We recall that if f is a measurable function, then
ess, sup £ = inf(k:u({x:£(x) > k}) = 0) , The values of b;
can then be expressed in terms of the values of £ in the

following way.

(L,8) THEOREM, For all f € M(X,u) and for all
0 <t <u(X) <« , we have _
bf(t) = inf(ess.sup(f—ch):_u(E) <t) , and

6f(t-) = inf(essfgup(f—ch)i w(E) <t) .
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PROOF. If u € R 3is such that dg(u)} ¢ , then
E, = {x:€{x) > u} satisfies u(Bu) <t, and so
ess.sap(f;?cE) <u impliés that inf(ess,aup(f-—ch):g(E) <t} <
| &f(tj'_; C'onversely, if W(E) <t and, if we set essosup(-f-f'cﬁ) =
=u , tﬁen {x:£(x) > u} cE , and so df(u) <+t . Hence,

6f(t)_S.inf(eaa,sup(f*fcﬂ): w(E) <t} , and the proof is finished.
The _fnllawing theorem will be used repeatedly in what follows,

{L,g), B THEOREM.' ,Lm;' £ € M(X,u), a = u(ﬁc) <®, Then
| Ca) () = b, (8) = 8a-(a-t) for all 0 <t Sa ;
m inf (6., (t), b-(at)) = 0' for all
oSt <Sa. |
1) (87 = oo, and (8.)7(8) = so-(a-t) ,

0 <t S-a..

114) -af;_(i:) bela-t) , 0 St Sa.

Il

) [0l (e) = 8p,(8) + bo-(a=t) , and i [o,] = g,

then 5g= 6|f| .

. PROOF. We shall only prove i} If & <0 , then _
do(t) = & - de- ((-2)-) , and if ¢ >0, then dg(t) = dey (2] o
‘Then it Pollows from the definition of 6, that if dg(u) <+¢
implies - u = 0 , then 6f(t) = &f+(t) . On the other hand if

df(u)-'St for some u < 0 , then b.(%) =influ:a-d.~{(-uj-) <t}

= inf(u: ~d~((-u)-) < t-a) = influrde-((-u)-) 2 a-t) =
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= ~aup(v:dfﬂ(v-) > a-t) = ~6f—(a—t) ; and the proof is finished,

Baefore we shall continue with a discussion of the theory of_;
decreasing rearrangements of measurable functions we shall first ;
present a well-known inequality of Hardy and one of its conse-
quences. Furthermore, Hardy's inequality may also serve ag a

motivation for what is to follow.

5. An inequality of Hardy.

We shall use the following simple inequality of Hardy
repeatedly.  The proof of it follows immediately by integration

by parts and is left to the reader to verify.

(5.1) THEOREM (Hardy). i) Let £,,f, be L easur-
able functions defined on the interval a <t <b and .

Hh&ghﬂﬂxﬂ_;ﬂﬁﬂgrable gver all the ;ntgrvglg La,t),
a<t< b. If Fy (t) = I £, {u)du <fj £ ( Jdu = Fz(t)

for all a <t <b , or_a a_S't <b
J £, (Wglwdu < j £,(u)g(u)du 11 positiv easi

functions g on a <t <b such ;hg gf; € Ll[a,t]
(1 =1,2) forall a<t<b,
ii) If £y,1, ¢ L1 La,bl and if Fl(t) Ssz(t) for_all
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g8 St <b and Fl(b) = Fz(b) , then
b b

J £y wglwdu <[ £, (welu)du for all decreasing
a a

functions g on a <t < b such that gf; € L a,b]
(i = 1,2). |

The following theorem is an easy consequence of ii).

(5.2) ~ THEOREM, If £ € LL(x,1), a=u(x) <o, then
l j do(u)du  is decreas sing in t for for all 0 <t S a.,
PROCF, Let O <'t1 <'t2 X a, and let £, == ®lo,t.} °

and let f2 = c[O,tl) . Then Fl(t).S-Fz(t) fer all

0<%t <a and Fy(a) =+t; =F,(a) . Then by ii) of (5.1) we
t, .a | | ty
have_l I 8 (u) c[o £, )(u)du = t I f(u)du <CI 5 (u)du s

2 o
: t
and so - f 2 be (u)du < J ‘1 8 (u)du completes the procf,
2 1 o

CF.

6, A _preorder vrelation for Ll(K,u) .

Let (X,A,u) be again a finite measure space, In [6],
Hardy, Littlewood and Pdlya introduced for the first time a

very important preorder relation for n-tuples of real numbers
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and later for Lebesgue integrable functions., We shall present

this preorder relation here by means of the following definition.:

(6.1) DEFINITION, If f£,g € LY(X,u) , then we shall write
t t
f < g whenever [ 8c(u)du <[] b (u)du for all
2] e

© <t <a=pulX) and ffdu = Igdu s 1f only

t t
J 8. (u)du <[ bg(u)du holds for all 0 <t <a ,
[ = I =]

then we shall write £ << g ,

 The reader shoﬁld compare the present definition with the
conditions imposed on fl’fz in Theorem S,i.
If £ <g , then obviously f << g . Furthermore, f < g
and £ < g implies f =g ¢ ~ a,e.
It is easy to see thaf_ f ~ g Aif and.only if £ < g and
.g.< f 4if and only if £ << g and g << £ , The relations <
-and << are preorder relations of which the latter is finer

than the former,

The preorder relations < ‘and << are in no way compatibi

with the linear space structure of Ll o This will be-particuli S

illustrated in i) of the feilowing result,

(6.2) LEMMA, i) If f,g € L'(X,u) and if £ < g , then
pf <pg for all r € R, ii) f,e € LY(X,p) , 0 <g
and £ < g dimplies £>0 . iii) If £ € L', then

G Jfdwey, < £, and if g = oy , then f < g dimplies

f = Sy , U - a.e,



- 97 -

PROOF, 1) We have only to show that f < g implies
-f < -g , From 1ii) of (L,9) it follows that 5hf(t) = wa(amt)

for all 0 <t <a = u(X) , and so

t | t a - |
Joéﬂf(u)du = -Jo bp{a-u)du = Ja bo(u)du implies using £ < g

t_ ' a a-t a-t
that JO b_f(u)du+ Iobf(u)du = IO bf(u)du S:Io 6g(u)du =

& : a-t t a
= je 8, (u)dut ja b (u)du = jo 6_g(u)du + jo s du . Hence,
- < _g"
ii) Follows immediately from i},

i1i) From Theorem 5,2 it follows that
1 _1 N 1t " o
.u(x).(jfdu) = i jo bp(u)du <1 ja 6p(u)du , and so, if
' 1 t t
€= 5 (ffdu)cx » then Io bg(u)du = LX) (feau)t §fj05f(u)du

and equality for t = a ,

t .
Finally, if [ 8.(u)du <t for all 0 <t <a with
: o

| | N
equality for t = a , then t(8.(t)-1) </J ud(6.) <0, end so
| _ o
a .
6.(u) 1 for all 0 S<u<a. Hence [ bt (u)du = a implies
| o |

that 6f = 10

We shall now make another pause before proceeding with the
general theory in order to show in which sense a finite mneasure
space can be imbedded in & non-atomic measure =space, a fact
which will be used later to show which results in a non-atomic

space carry over to the general case,



- 98 -

inite measure space in a non-atomic

Let (X,A,u) be a finite measure space. An element
A€ A is called a u—-gtom whenever u(A) >0 and B € A,
Bc A implies u(B) =0 or u(B) = ufA) . It is evident
thét any two atoms are disjoint (-a.e. and tﬁat any.measur—
able function ié constant a.e, on an atom,

If a measure space has finite tdtal measuré (of is totally
g-finite), then it can possess at most a countable number of

m

‘atoms. Thus X = X_ U (_u1 A.) , where Ay (i = 1,2,000) are
1:

‘the u-atoms and the restriction of 1 to Xo is atomless,
We shall now show that every measure space can be imbedded
in a non-atomic measure space. To this end, let

o0 .
X, =%, u (U I[ai,bi]J , where I[ai,bi] (i = 1,2,...) are

i=1
disjoint intervals of the real line such that b;-a; = u(Ai)

1

(i = 1,2,...) « Then (Xlgﬁl,ul} shall be the direct sum of
the measure space (XO, AN Ko,u) and the Lebesgué me asure
spades (I[ai,bi],m) (i = 1,2,...) » Then (X, A, “1) is
é non-atomic finite measure space of total measure ul(x) .
Furthermore, M(X,A,u) can be imbedded, i.e., identified with
the subset of all elements of M(Kl,nl,ui) which are constant
onn the intervals I[ai,bi] (i =1,2,...) . More important,
however, is the fact that Ll(X,A,p) is a petract of

Ll(Xl,Al,ul) in the following sense.
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(7.1) THEOREM, For every f € Ll(xlsul) we_set
[os] 1 bj_

(7.2) T £ =fc, + L (I eleddele, .

- U Xo 1=1 Pi™25 Y, Ay

i

Then Tu is a positive linear transformation of

Llixl,ul) onto Ll(xgu) which leaves Llixgu)

invariant asnd which in addition bhas the following

i) Fgr all f E'Ll(Xl,ul) ; _hgxg. I(Tpf)du'm
= [edu, ang iz elly < Hielly .
ii) For all £ € LY(X,,u,) we have [T £l < el .
_ 1773 W Vg w
1ii) Fop all F € Ll(Xl,ul) and g € M(X,u) guch

: 1

that fg € L7(X;,14;) we have gfgdul = J(Tuf)gdu .
_ ' - 1 , .
iv) Tufl < f for all £,f €L (Xl,ul) satisfving

f ~ fl with respect to Uy e

We shall omit the proof since i), ii) and iii) are trivial

and iv) is a conseguence of iii) of 6.2,

In what follows Tu will always denote the transformation
‘defined in {7.2).

The reader who igs familiar with the notion of a conditional
expectation will immedistely recognize that Tuf is the condi-~
tional expebt@ti@n of f with reSpeét to the G-ring.generated
by X, N A and the intervals I[aigbi] (L = 1,2,000) o We

shall return to transformatioms of this type in section LA



| Finally, the reader should observe that if f € M(X,u)
is considered to be an element of"M(Xl,ul) , then its
p-decreasing rearrangement is egual to its ul-decreasing

rearrangement,

8,  An_inequality of Hardy and Littlewood.

In fhis gsection we shall prove an inequality'due‘to Hardy
and Littlewéod; which will play a fundamental role in what is
to fbllow, The inequality given below represents a departure
from the customary inequality (see [7], Théorem 378) in that
thé functions are no ionger supposed to be non-negative,

We shall begin with a lemms. It will be convenient from
now on to write &g in place of 8, , where E is a measur-

E
able set. .

. n
(8,1) =~ LEMMA., i) Let £ = T f.cp € M(X,u) simpl
N be a simple

i=1

uppo hat ©0 < £, <f, TR <f, . Ihen

n _ .
— [} J= L - ;'= _
b = 121 £l b s where £y = f1,£; = £ T A e
o i
and F; = VYV E,; .
J1=1

.n
ii) I£ f.a i£- fini , where £, >0
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(i

i
1—l
b

)
.
L]

-
=
St

ME].DEZ:),...DE t_!'_lﬁzl

n 2

iji) For all By,E, € A we have

a a
[7 b, (8) 8y (a-t)dt < fop cp du ST op (£) op (t)de
o "1 P2 By Py o ™ Fa ’

where a = wix) .

. . n
PROOF, i) IfF 0 <t <f, , then d (t) =u( U E.) ;
1 £ j=1 3
il

and if f| <t < fk+1 , k=1,2,,,.,n , then df(t) = u(jgk+lgj) .

Furthermore, observing that & )y s We obtain that

| e~ “lo,u(e
i) holds.
ii) Follows immediately from i),

: a
1i1) Jop cp du = w(By N E,) and [ 8g 8p dt =
1 2 : 0 1 2

: a
= min(u(El),p(Ez)) , and so JcElcEng,S Io 6Ele2dt ., From

a
[ g () g (a=t)at = (u(By) - a+ w(E, )T = (u(B U By) +
o

+ u(Elﬂ Ez)—a)+ < u(El N Ez) e ch cg du ,'the result follows.
. 9 . ;

1

REMARK, Statement i) of (8.1) appears to have bean first

used systematically by F, Riesz ([1%], p. 164) .

We shall now prove the following inequality.
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(8. 2) THE&RBM (ﬂangx and ;;;;gﬂ gg) if f,g € M{X,ul},
a = ou(X) . <o ? gug iﬁ blfl 5|g1 is Lebesgue integrable

ngn [0 a]
. .
j b (a~t)6 (t)dt = J 5 (t)b (a-t)dt < j fgau < [ s-(t)s _(e)dt
o . o =
Iy .

PROOF We shall first prove the result for non-negabive
functlons. Since a. non«negative measurabxe Ffunction is the
everywhere llmit of an increa31ng sequence of Sﬂmplc functions
we have only to prOVe it for nonqnegative simple fdﬂﬂflﬁﬂbm To

__this_end, let_ f =.‘$_fhc :l; fi >0 (i = 1,2,c00,0n) and

T o 3= Ei

Fy @ Fé":.;.. > F, . Then by 11) of (8.1) we have

. E | o ﬁ

f = R f 0[0 U(E )) and bg — i 1 jCLO;U(F }} 5 and so

.6'63ﬁ='§$+.f

o S .15‘3":[6,,'“{:1(;@,_),utpjm implies’ that

a o _ _
Jonbfbgd? = 121'figj min(u(Ei),u(Fj)) . Furthermore,
. . ' 'R . . .

_ o -
I th) b (a-t)dt = E fig1(u(ai)-a+u(F )" . Thus the result
i’ .

followa from 111) of (8 1)},
For arbitrary f,g E M(X,H) we first observe that

élfl bl {" integrable implies that I]fgldu < @ , Then
obaerving that jfgdu = If g du - Jf g-duy - Jf g du

| _ 1 A ‘
o ff'sVﬁﬂ.S Jo o 6g dt —_jb. o (c)& (a“t\du - 55%{amt}a Lltddt
R : et g o :

in
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+f & _ b _dt =] 8.8 dt , and similarly for the left hand
o f g o g :

side inequality.

This completes the proof,

REMARK, It is good to observe that, in general,

éfg-S bfﬁg does not held. Indegd? £f £0 , then not
(6]f| < - 6?) may hold, On the other hand, however, it is

not difficult to see that if 0 < f € M{(X,u) , then

6ch_S ébe for all E € A,
9,. The values of an intggnﬁl.
Let f£,g € M(X,u) . If o1¢) blg| € tlo,a]l , a = u(x) ,

a
then by (8,2) it follows that [|fgldu < | 8lg| Ojg| dt » and
O

so, if f’ ~f and g’ ~ g , then also |[f’g’| is integrable.
In this secﬁion we shall determine the set of values taken on
by the integrals Jfg’du if g’ runs through all the functions

which are equimeaeuréble with g .

(9.1) THEOREM., Let f,g € M(X,u) and let 6|f16|g|'6 L o,als
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where a = w(x) . Then, if ¥ has no atoms, then the

set of values {Ifg’du:gs ~ g} is the entire closed

. g a
interval Uobf(t)bg{awt)dt, Joéf(t)bg(t)dtl .

PROOF, The proof is divided inte several parts. First
we shall assume that g 1is a characteristic function ¢ »
with u(E) =a >0 . Let g = 1nf dg (¢) . Then if for some

t, df(t) = a , then it is easy to see that chF © = I dadu
t

where F, = (xif(x) >t} . If wF) #a for all t , then

either U(Ft) < q for all t or there exists a number T

such that u(Ft } > a and u(Ft)'< @ for all t = t, In
o

the first case we may take any set of measure a containing
. the set {x:£(x) > -®} , In the second case the situation is

somewhat more involved., Let t it . Then, if W(UF, ) = a
n

we may tgke. E = UFtn , if, however, u(UFtn) <q , then by
addlng a set of {x:£(x) = t }  such that the total me asure
equals @« will determine the required set. Working with eg
will produce the inequality on the left-hand side, Then the
extension to non-negative gimple functions is obtained by usihg
ii) of (8.1). Finally for g non-negatlve approximation by
simple functions'gives'the required result. Finally, consider-
ing positive and negative parts ac in the proof of (8.2) the
result will follow. The details are left to the reader. In

order to show that all the values are taken on we write

viw) = [ 8ple)p umedde + J‘j bg(8)8,(£)ds, 0 Su Sa
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Then Y is a continuous function in u and takes on all the
values in the interval, and it 1s not difficult to see that

there is a function g' ~ g such that Ifg’dp'= y(u) ,

(9.2) COROLLARY., If 1 has no atoms and if 0 < f,g € M{X,u)
satisfy f£'e is integrable for all f' ~ £, or fg is
integrable for all g’ ~ g , then bb, € tY0,a] and

max(ff'g'du:f_Q £, g ~g') = max(If'gdu:f' ~ f) =

a
= max(lfg'du:g' ~g) =] 6f6g dt .
Q

REMARKS, 1, If u has atoms, then the above result may be
false, Indeed, if X = Xj U A, , where A; is an atom and
a
Xo is atomless, then ch Cy duo = Q and I ﬁx 6A dt =
o 1 o o "1

1
whenever u(Al) > u(Xo) , and so the set of values of the

% min(u(xo), u(Al)) . But any g ~ cAl is equal to c,

integral is always {o} .

2, If X is finite and y 1is the discrete
measure, then the set of values of the corresponding sums do
not f£ill the whole interval but. the endpoints can be attained.

(See [7], Theorem 368).

Using Theorem 7,1 we are in a position to prove the

following result for general measures
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(9.3) THEOREM, i) Let f,g € M(X,u) and let 5|f]6]g1 €

¢ t3[0,a] , where a = w(X) . Then the set of values

{Ifg’du: g’ < g} is_the entire closed interyal

[joaf(t) b (a=t)dt, Ioéfbgdtl, |

ii) If o < f,g € M(X,u) and

Jfe'ds is finite for all g’ < g, then &g5, € L'[0,al ,
, a = u{X) , and in that case max{[fg'duig’ < g) =

a
= Js Bpb dt .

PROOF, i) We have only to observe that by (7,1)
If(Tugg)du = Ifg'dul , g/ ~ & with respect to M, and

Tug' < g the result follows immediately from (9.1). The

proof of ii) is similar.

The preceding discussion seems to justify the following

definition

(9.4)  DEFINITION, A finite measure space (X,A,u) is
called adeguate whenever for all 0 < f,g € M(X,u)

. a
£,k -
.mg have max(jfg du:g’ - g) _Ioéfégdt .

The problem of characterizing adquate measures seems to
be open. We have shown that the non-atomic measures and the

discrete measures are adequate,
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We conclude this section with the following theorem,

(9.5) THEOREM, If f,g € L_l(X,'u) and f < g , then

l£] << el .

PROOF, It is evident from Theorem 7,1 that we have to
show this only for the case that 1 has no atoms., Then it

: t
follows from (9.1) that I blfl(u)du = Ilf]cgdu , where E
o :

is some set of measure t . From JlflcEdp = If sgn(f]chp
a

. t
it follows using (8.2) that I 6lf|(u)du,5 j bf(u)bh(u)du',
' o o

where h ='sgn(f)cE ., Then f < g implies, using ii) of

t : a a
(5.1), that Joblf[(u)du < josf(u.)ah(u)du Sjoag(u)ash(u)du -

= Igh'du for some h' .~ h , Since h is a simple function
which takes on only tﬂe values +1 , 0 and -1 and the measure
of the set where'it is different from zero is < t the
funétion h’ has the same property, and so |h'l is the
characteriétic function of a set F of measure S‘t. ‘Then

t
Jghfdu_g I|g|cF SfI 6]gl(u)du completes the proof.
© 0
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1 .
If £,z € L (X,u) , then in general 6f+g‘£ 6f+6g .

Indeed, assume that EI’EZ are two disjoint sets of equal

positive measure, Then 6El = 632 = C[O,U(El)) and

6 = c , and so & g + &, -, Concern-
B,V B, Lo,zu(Bl}) E,U E, N E,

ing sums we can still show that the following result holds,

(10.1)  THEOREM, IE £,...,f € tl(x,u) , then for all

il
0 <t < a we have J 6f {u)du + L I bf (a-u)du <
. o i jfi o 7§

n t
(Wdu £ £ [ % (Wau , 1 =1,2,...5n,

<Js
fit...4 j=1 ‘o T

and with equality on both sides for t = a .
PROOF,  From (7.1) it follows that we need to show this
only for non—atomic spaces, Furthermore we may restrict the

discussion to two functions, Then the result follows easily

from (9.1} in the following way.

t t
Io 6f1+fz(u)du = max(IE(f+g)du:u(E)=t)‘§ foéfl(u)du +

il

t t
+I f)f {(u)du , and Ioﬁfl_H? (u)du

max(I (f+g)du:u(E)=t) =
o 2 2 E

_ t t t
> max([ fduru(B)=t) + [ 8 (a-w)du = [ 8 (u)du + [ ¢ (a-u)du
E o & o o 8

finishes the proof.
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(10.2)  COROLLARY. If f € LY(X,u) , then
t t
f |8c(u)ldu < f 6|f|(u]du for all 0 <t < a and
o] (o] ’
with _equality for t = a .
t t t
PROOF, [ [6c(u)fdu = [ & ,(w)du + [ & (a-u)du <
's] o f o f
t t
S I o + (u)du = Io-blfj(u)du" by (10.1). S&ince |f|~]6f]

o £ + f

equality for t = a follows,

(10, 3) THEOREM, Let g be a bounded decreasing function on
[0,a] and let (X,A,u) finite measure space with

a B

a = u(X) ., Then the function p(f) = [ 6f(u)g(u)du is
o

sublinear on Ll(X,u) .

PROOF, Combine (10.1) with ii) of (5.1).

For products of non-negative measurable functions the

following result holds,

(10.4) THEOREM, i) If O < f£,...,f € M(X,4) , then for

all 0 <t <a w have [ b ¢ (uldu <
O 1'.'n
t
S'I bp (u)6f (u) ... be {u)du , and
o 1 2 n

a
i) [(f; ... £ )du sjoafl(u)afz(u) ﬁfn(u]du :
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ii) If fl,...’fn € M(X,U} _ﬂn_;d__iﬂ 6]f1! eos 6‘fn1 €

€ Ll[o,aJ , where a = u(X) , then for all

0 <t £a we have

t t

) (Wdu < ) () ... d (u)du ,
[ 3¢, .o.g ] I 4e] X
PROOF, i) We need to shn& the first part of i) only for

two functions according to i) of (5.1), Now we may also assume

t
that u has no atoms, Than [ be ¢ (u)du = I f,f,du , for some
e 12 E

E with w(E) =t , and so

t t
Ja, o (Wdu <[ 8 b, du < [ b, 6, du,
o f1f2 I fieg T o f1 Ty

ii) Use 1) and Corollary 10.2,
REMARK, Some more general ineﬁualities concerning n-tuples

nt runctions and their decreasing rearrangements were gilven by

Lorentz (see [8] and [111])
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il. Rggrgangemgnt-invagiggi Banach function spaces.

Banach function spaces or more generally normed Riesz spaces.
of measurable functions have been studied extensively {see f12]
and [14]). In this paper we shall present some properties of
such gpaces which are in addition rearrangement-invariant and
for which the underlying measure space is totally finite.,

We shall recall first some of the definitions and properties

of such =paces,

(11.1) DEFINITION. Lgﬁ (X,A,u) be a finite measure space
and let M+(X,u) denote the set of all non-negative exten-—
ded real measurable functioms defined on X . A mapping ¢
of M™  into the {extended) real number system is called a

function norm gﬁgngzgg ¢ has the following properties.

i) 0 < p(f) < for all £ €M ; and e(£) =0 if
and only if £ = 0 u-a.e,

. + o
ii) p(£ytf,) < plfy) + p(f,) for all £,,f, € M ;
plaf) = ap(f) for all f € M and all a > 0 3 and

0 <f SF, implies e(F;) < el(f,) .

A function norm p is said to have the sequential Faton

propeprty whenever

iii} o© Sffan pointwise everywhere implies p(fn)Tp(f) .

tien norm ing the sequential Fatou property is

11 Fatou norm.
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Given a function norm ¢ we extend its domain of defini-
tion to M by defining ¢{f) = p([fl) for all £ € M , and
we denote by L® = LP(X,u) the set of all f € M such that
p(f) <o , If p-almost equal functions are identified in the
usual way, L? is a normed linear space with respect to the
norm |IFll = "f”p = p(]£|) . Such spaces are obviously general-
izations of the classical Lebesgue and Urlicz spaces,

From the hypothesis of p it does not necessarily follow
that p has no purely-infinite sets, i.e., a seﬁ of positive
. measure A such that p(cB) = o for all subsefs B of A of
positive measure, If A is purely-infinite then every f € LP
vanishes on A ., For the investigatinw of L we may therefore
remove the p-purely-infinite sets from X , It was shown in
([1L]), Note IV, Theorem 8,3) that there exists a largest p-purely-
infinite set, Removing this set from X and denoting this set
again by X_ shows that we may assume without loss of generality
that p is saturated, i.e., there are no p-purely-infinite sets.

Concerning completeness of L? it was shown in ([141],

Note I, Theorem 4,8) that L® is norm-complete if and only if

p has the Riesgz-Fischer property, i.ec., Zp(fn) < o implies
P(E|fn|) <o , In particular, if p is a Fatou norm, then L
is.norm—complete.

Our next remark concerns the first and second asscciate
function norms p' and p" of p respectively, They are

defined as follows:
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sup([|feldp:iolg) S1), £ ¢ M, and

sup([|fgldu:p'(g) <1) , £ e M,

(11,2) p? (£)
pr ()

I

i

Since p 4is saturated p' is a Fatou norm, Furthermore,
it was shown in ([1.], Note IV, Corscliary 11.6) that o' ig
also smaturaved which is much harder to show than the Fact that
p' ie s Fatow norm, Thus p" is slzo a saturated Fatou norm,
Furthermore p" < p and (p")?" = pt ., Concerning the Fatou
property we have the following basic result (Se@‘ﬁl&}, MHote IV,

Lemma 11.3).

(11.3) THEOREM (Lorentz and Luxemburg). We have p = @@
ifand only Af ¢ has the seguential Fatou property.

? nil -
The space L and  LF are norm-complets and are called

the firat and second sssoclate spsce of 1P ragpactivaly,

We also have the following Halder type inequality.

(11.4) For.gll € €1® qua g ¢ L

| [fzdu] < [legldu < pn(£)ati{g) < p(£)p*{e) .

9
The associate space L is a closed normal subspace of
the Banach dusal (Lg)% of L? and LF = (LY if and only
if p satisfies the following condition: 0 < £ € LP and

£,40 implies 9(fn)40 .
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It is easy to see that since the measure t is finite’

1

that 1ci? cL if and only if P(CX) < ® and P’(CX) < o

@

In the remainder of this paper we shall only consider
1

m L)
function norms ¢ which satisfy L cP et s i,¢., such

o« 1
that the Lp—space is between L and L~ ,

(11.5) DEFINITION, function norm p is_called rearrange-
ment-invacviant whenever f; ~ f, implies p(fy) = p(£,) .

.? is called rearrangement-invariant whenever

P . ; - ¢ P
fl €L and fl ~ fz implies f2 £ LV ,

If p is rearrangement-invariant thea also L? s
rearrangement-invariant, The converse need not hold. Indeed,

1 2
consider the function noem p(£) = [ [£(t)|dt + 2] ]f(tgdt ,
_ : o 1 _

then elcrg 13) =1 and plepy ,7) =2 and ery 47 ~ o[q 5] -

We shall now prove the following fundamental lemma.

(11.6) LEMMA, If W is adequate, in particular, if W
has no_atoms or if H# is gjsgrgtg_ggd if ¢ is_a

b

Faton norm, then L g
and only if 6.6, € 110,a) , a = u(X) Ffor all

'
0 <f €Ll and 0 <gc€ L? , and in that case L?

L1
and LP are rearrangement-invariant.

PROOF, Assume that LP is fearrangement invariant and
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There is a good generalization of the present theorem for
the case that u 1is arbitrary. 1In that case, however, we have
to rely on the discussion given in section 7.

For this purpose we shall say that L.? is universally

rearrangement-invariant (u.r.i) whenever f € LP implies

Tufl € L? for all fl € M(Xl,ul) satisfying fl ~ £ . Using

then the fact that 0 < f,g € M(X,u) , then éfég € Ll—o,al

if and only if I(Tufl)g du <@ for all £, € M(X,,n) satis-

fying fl ~ £ 4 the following result can he shown to hold in
the same way as (11.,6) and (11.7).
The reader should observe that if W is adequate, then
LP

L? is rearrangement-invariant if and only if L has the

(ulrai)—proper‘tY‘

(11.8) THEOREM, i) If LP has the (u.r.i)-property, then
0 <f €L implies bgb, € L10,a), a = w(X) , and if »p

is a Fatou norm then the converse holds,

ii) If L has the (u,r,i)-property, then

' ' '
g1 < &, e LP implies g; € LP , and O Sﬁgl << g, ¢ LP -

!
implies £y € LP e Similarly for P if p 4is a Fatow

We shall now turn our attention to rearrangement=invariant

norms .,

(11,9) THEOREM, If ¢ 1is adequate, in particular if u

has no atoms or if w is discrete, and if ¢ is
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prearrangement-invariant, then for all ©0 < f € M(X,u)

&8 .
we have ¢'(f) = sup([ 6.8 jdt:plg) 1), a= w(x) ,
| o :

- _
([ &8.8; qdt:p'(g) <1) .
SODUNEETAE

and pr(£)

In particular, p' and p" are rearrangement—invariant.

1f, in_addition p 1is a Fatou norm, then for all

0 <f € M(X,u) we have
. ) |
p(£) = sup(] bpd| gy dt: pt(g) S 1). .
PROOF, We need to prove this result only for p' , From

the definition of p' and from the fact that u is adequate

and p 1is rearrangement invariant we obtain immediately that

if 0 < f € M(X,u) , then

a
pt(£) = sup([fleg|du: elg) 1) = sup( [ 6f6ig1dt.p(g).5 1) ,
(0]

and the proof is finished.

(11.10) THEOREM, If u is adequate and if ¢ is_a Fatou

norm which_is_rearrangement-invarjant, then

i) £, < £, € th(x,u) implies o(f;) < p(£,) .

i1) 0 S £, << £, implies o(fy) S p(f,) o

In particular, if p is rearrangement-invariant,

then ' and " satisfy i) and ii),

PROOF, We shall only prove i), From {(9.5) it follows

that '|f1| << Isz , and so by (11.9) we have
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P(fl) = sup(ja 6|f |6l |dt:p(g) < 1) ., Then i) of (5.1} shcws
o 1 &

a a
th IPE < P s 6 N |
at [ blp |Bgpdt S by |Bjgdt , and so plEy) S elfy)

If 4 is not adequate, then (11.10) may be false as the

fellowing example will show.

Let (X,A,u) be a measure space with one atom A . Thus
X =X, U A . Furthermore, assume that u(Ko) = 1 and u{A) =2 .,
Let £, = ¢ + 1 and f, = ¢

1 X 2 ©a 2 > S

Then fl < fz . Let
o o

p(£) = j If|du + [f(cA)l . Then ¢p is rearrangement-invariant.
Xo
- 2 | - '
But P(fl) p and p(fz). 1 , and so p(fl) ¥ p(fz) .

~If w 1is arbitrary, then p_.has to satisfy é stronger
condition for (11.9) and (11.10) to hold,
For this purpose we shall say that p dis universally
rearrangement-invariant whenever p(Tufl)_S p{f) for all

0 <f € M(X,u) and all £ € M(Xl,ul} satisfying f; ~ £ .

(Observe that T f

uf >0 by ii) of
(6.2)).

< f dimplies that Tufl
If 1t 1is adequate, then p dis universally rearrangement -
invariant if and enly if p is rearrangement invariant.

The following result can be shown to hold. The proof is

left to the reader,
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{11.11) THEOREM, Let ¢ be universally recarrangement

invariant. Then the following statements hold.

i} p' and P" are universally rearrangement-
invariant.

ii} For all 0 <¥f € M(X,u) we have

a
p? () sup(I afﬁlgldt: p(g) <1) , and
o . _ :

il

.
Cp(£) = sup([ bgdyg|dtt e'(g) S 1), where
: o _

a=u(X), and if p is a Fatou norm, then
for all f € M{(X,u) we have also

p(£) sup(faéfélgldt: pt(g) <1) .
o _

iii) £, < £, € L'(X,n) implies ¢'(£;) < p'(£,)

and P"(fl) < p"(fz) » and siﬁilgrlz for ¢

provided ¢ 4is_a Fatou norm.

iv) 0 £f£; << £, dmplies p'(f;) < p'(f,) and

b”(fl),S pﬂ(fz) , and similarly for ¢

Qngziﬂgd p is a Fatou norm.

12, A _representation theorem.

The rearrangement-invariant spaces such as the classical
Lebesgue spaces, the Orlicz spaces and the spaces introduced

by Halperin and Lorentz (see (51, (9], [10]), Boyd [2] and
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Shimogaki [21] are all of the following type.
Let (X,A,u) be a finite measure space and let a = w(x) .

+ .
Let ) be a function norm defined on the space M of all

non-negative real Lebesgue measurable functions defined on the

interval [0,a) ., Furthermore, assume that X is a Fatou norm

which is rearrangement-invariant., Then the following result

holds.,

(12.1)  LEMMA, The mapping O < £ = p(£) = a(&;) of M(X,u)

inte_ the extended real number system is -a Fatou norm which

is universally rearrangement-invariant. Furthermore,.

pt(£) = a'(b.) for all 0 <f € M(X,u) .

PROOF, Since Lebesgue measure has no atoms it follows

immediately from (11,9) that for all 0 <h € Mlo,al we have

r(h) = sup(Ia bhélg]: 2(g) <1) , and so
o :

p(f) = sup(ja 6f6|g|: vi(g) <1) .
o

Then it is easy to see that ¢ dis a function norm-only the
subadditivity property needs a proof, This will follow from
(10,1) and i) of (5.1) in the following way. Let

0 <f

a
12E, € M(X,u) o Then p(£,+f,) = sup( | bfl+fzﬁlg]dt:k‘(g) 1=
| o _

a a
< su 6, O dt + 6, & db: 't <1} < f + £ .

< p(.ro e Olgl I o blef (g) <1) < elgg) + p(£,)
It also follows immediately that p is a Fatou norm. In order

to prove that p is universally rearrangement—invariant it is

sufficient to show that 0 S:fl <= fz implies p(fl).S P(fz) .
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a
This follows from i) of (5.1) as follows: p(f;) = sup([ 6. JITC
' o 1

a
At(g) 1) <sup(f &, |db: A7(g) S1) = o(£,) . Finally,
o

°l
2 €
the definition of p' immediately implies that p'(f) = x'(bf)

for all 0 < f € M(X,u) , and the proof is finished,

Taking special norms X then gives us the examples we
referred to above, For instance in the case of the classical

. a 1
Lebesgue spaces, l(f)a(f 6fp (t)dt)p , 0 <f € Mo,al .
: o .

We shall now prové a converse namely that all universally

rearrangement-invariant norms are of this type,

(12,2)  THEOREM, Let (X,A,4) be a finite measure space, and
let p be_a Fatou norm,  Then p is universally

ggarzgnggmgnp—inﬁgriang_(rgarrgggement invariant if W is
adequate) if and lex if there exists g rearrangement-
invariant nogm. A defined on M+[0,a], a = p{X) such that
p(£) = A(3,) for all 0 <f € M(X,u) .

PROOF, From (12,1) it follows that we only need to prove
the existence of A , To this end, we observe that by (11,11}

191 (g)< 1) .

_ | a
we have that for all 0 < £ € M(X,p) p(f) = sup(] 6f6]g|
o _

Then for every 0 <h € Ml0,al we set
a : o
x(n) = sup(] 6h6|g]: p7(g) <1} . It is easy to see that 1
is a Fatou norm which is rearrangement invariant which satisfies

o(£) = 1(5f) for all © < f € M(X,u) . This completes the proof,
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13, An ipequality of Hardy, Littlewood and Pdlya.

Let x = (xl,.;e,xn). and y = (yl,...;yn) be two
n-vectors of real numbers, and let x¥* = (x*l,,..,x*n) and
yH* =.(Y*1,..,;y*n) be the n-vectors obtained from x and ¥y
respécti?ély by rearfanging-their respebtive components in
non increasing order.k As in seqﬁion 6 we shall set x < y

whenever 121 x¥* . S:'El y*. , k =1,2,...,n , with equality

for k =n ,

We recall that a matrix A = (

o aij) s 1,3 = 1,2,...,n ,
is said to be doubly stochastic (d.s.) whenever a; 4 >0,
i,j =1,2,...,n , and z aij =1 for 1 =1,2,...,n and
, =1 ;
n
'El ajq = 1 for j =1,2,,.44n ., Furthermore, it is not
i= ' :

hard to show that a matrix A is d.s. whenever Ax < x for
all x .
If 7 is a permutation of the set {1,2,...,n} » then

by X, We shall dencte the nfvector (xn(l);ooo;xn(n)) 5

and by 0(x) we shall dencte the convex hull of all the n!
vectors X oo

With these notations a fundamental theorem of Hardy,

Littlewood and P&lja (see [6]) can be formulated as follows,

(13.1) THEOREM (Hardy, Littlewood and Pdlva}. Let x and
v be two n~vectors of real numhers. Then the following

statements are equivalent.

i) y < x .,



iidi)

n
iv)

For an.intereating discussion of the Hardy, Littlewood
and Pdlya result and the theory of doubly stochastic trans-
formations we refer the reader to the important paper {151
of L, Mirsky. |
o It will be our purpose to investigate in which seﬁsé (13,1)
can be extended to include measurable functions defined on
finite measure spaces, 1In this section we shall present a
result which is an extenéion of this kind of the statemént of. (13,1}
that 1) and iv) are equivalent,

For this purpose we shall use the following setting. Let

(X;A,g) be a Finilte measure space “"dh;ﬁt g be a Fatou norm

such thet L  c1Lfc L

. Fupthermore, we shall agsume that
LP is universally rearrangement invariant, and s0 by (11.11)
we have fy < f, € L®, then £, € L?,
We shall mow introduce the following definition the termino-

logy of which is borrowed from [15].

{(13.2)  DEFIRITION.
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i) - < @f) <+ @ for all f € L? and for some

£ eLl, &f) <o,
ii) &  is_convex, i.e,, @(rfl+(1—r)f2)‘f r@(fl)+(l—r)®(f2)

for all f,,f, € L and o0 <r <1,

7
iii} @ is o(LP,LP )-lower semigontinous,
iv) & is rearrangement-invariant, i.e., fl ~ f2 € L?

implies @(f;) = &(f,) .

The reader should ohserve that a function @ satisfying
i) and ii) satisfies iii) if and only if Ilfnmfl|g|dulﬂ 0 as
. p ¥ . . . .
n—~ o for all g €L implies @®(f) < lim inf @(fn) . In

n " ®
particular, such a function @ satisfies i1ii) whenever

£ | <f£, € L? and £ - £ p-a.e. implies &(f) < lim inf B(£) .

We shall now present some examples of Schur-convex functions,

EXAMPLES. i) Let - @ be a real continuous convex function

defined on R such that 1im inf o(u)/u is finite. Then

u —-®

e(£) = Im(f)du , £ € .’ is Schur-convex, This is the type of
functions considered by Hardy, Littlewood and Pdlya in (13.1).

ii) If in addition ¢ is increasing, then
t

&(f) = [ w(bf(u))du , £ €LP, 0 <t <p(X) is also Schur-
o

convex.,

We shall now prove the following extension of the Hardy,

Littlewood and Pdlya inequality,
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(13.3) THEOREM, Let W be an_adequate measure and let
Lp he a universally rearrancement-invariant space.

Then the following conditions are_equivalent.

i) £, € L? ana F; < F, .

i1} For every Schur-convex function ¢ on P

we have @(Fl) < ¢(f2) .
PROOF, We shall first show that ii) = i}, Since for all

0 <t < ulX) = a we have that &, ( é ( }du is Schur-~
. t

convex we obtain immediately that J éf u)du I 6 (u)du for
0o

ali 0 <t <a . In order to prove the equality for t = a

apply the Schur-convex functions jfdu and .J(—f)du respectively.

i} = ii). The proof is based on the following well-kanown
result concerning lower semicontinuous functions on locally
convex spaces, namely that every such a functien is the supremum
of its subgradients (see [1])., This means in our case that if
we set for every g € p?' , 2(g) = sup([fgdu - &(£): £ E L® ,
then : &(F) = sup(jfgdu - ¥g): g € Lp?) .
Since € is Schur-cenvex and since U is adequate we oht ain

immediately that
a ot
(13.4) &(£) = sup(] 68, dt - Be): g € LV ) .
. 0 o]

If now fy <1, , then by ii) of (5,1) we obtain
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T .
J be 6gdt for all g € L?" | and so (fy) = @(fz)

a
o dt < [ 6
o ‘18 o £

2

which finishes the proof,

If W is not adequate, then the result does not hold any
longer as was shown in Section 12, In order to include all the
measure spaces we have to extend the notion of .a Schur-convex
function as feollows,

A function @ on L? satisfying i), ii) and iii) is called
a universal Sgﬁgg:cggxgx function whenever @(Tufl),S &(f) for
‘all £ € L? and £, € M(X,,u;) satisfying £, ~ £ .

It is clear from the preceding theorem that if u is
adequate, then every Schur-convex function on L? is a universal

t
Schur-convex function. The function ¢%(f) = I 6f(u)du , £ € LP
9]

are of course universal Schur-convex,
We have the following theorem, The proof is left to the
reader.

(13.5) THEOREM, For all f£;,f, € LP , £, < £, if and only

~
L

if ¢(f1),5-¢(f2} for_ all universal Schur-convex functions

& of LP,

For increasing Schur-convex functions the following result

holds,
(13.6) THEOREM, i) If W 4is adeguate, then for all
£1,6, € LF , £, << £, if and only if &(f)) < &(f,)

for all increasing Schur-convex functions on [P
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ii) Feor all f;,f, € L? we have £, << f, if

and only if @(fl) S:¢(f2) for all increasing

universal Schur-convex functions on 1L P .

PROOF. We shall only prove i) since the proof of ii) is
similar, Using the increasing universal Schur-convex functions

t
g, (£) = joéf(u)du , £ €LP we see that ¢(f,) < &(£,) for all

such functions implies fl << f2 . In order to prove the éonverse
tet £, € L® be such that #(f ) <@ and let & (£) = &(£+f,) -

- @(fo) , £ € LP ., Then ¢0(0) =0 , ¢ is non-negative and &

o
satisfies conditions i), ii) and iii) of (13,2). Hence,

1 4
¢b(f) = sup([fegdy - Io(g):g € L) ., Since ¢, ‘is increasing
Ly u » L} p '
it follows immediately that Qb(f) = sup(Jfg+du - Io(g):g £ LY ) .,

L} ?
Then finally, &(f) = sup([fgtdu - I _(g) + &(f,) - jf0g+du:g e LP) =
11 '
= sup(Jfg+du + agt & € .Y ) ., Sinece & is Schur-convex we then

. a t .
obtain that &(f) = sup(f bbb + aig € L") , and so the
0 e |

result follows from i) of (5,1). This completes the proof of

the theorem,

We have shown in (12.2) that if p is u.i.r.; then there
oxists a r.i - Fatou norm A on M[{O,u(X)] such that
p(f) = l(ﬁf) . The same holds for the universal Schur convex
function & on such an L Namely, we have the following

result
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(13.7) THEOREM; If € is a universal Schur-convex function

on L , where p(f) = 1(6f) » then there exists a Schur-

convex function @0 on Ll[O,a] gsuch that @(f) = @O(Gf) P
and conversely, \

a _ 1
PROOF, Indeed, &(f) sup(I 6f6gdt - I(g): g € LP) ’
. |
and so if we define @ (h) = sup([%s 6 dt - I(g): g € LP')
.o

for all h € Ll , then &(F) F'@o(éf) . The rest is easy.

Some years ago L, Fuchs (see [4]) generalized the Hardy,.
Littlewood and Pdlya inequality as follows,

Let x = (xl,..,,xn), y. = (yl,.a,,yn) be two.n—vectqrs

and let ©® be a real continuous convex function défined on

R , The following result holds.

P

kK - ' '
If T y* v, £ T x* v, (k=1,2,.,.,n) with equality
A T S |

_ . n : n
for k =n, then I o(y*.)v, < T o(x*.}v, , where
. o i1 it = L0 i’

v = (vl,...;vn}' is an arbitrary n-tuple of real numbers,

-+ This result can be immediately generalized.in the following
manner, Let ¢ =be'aﬁ u.i.r. Fatou norm and iet. & be a universal
SQhur-convex_function on 'LP(X,u) . If v is any funbtion éf
bounded variation on fO,a], a = u(X) such that LP c Ll(v) ,

t t
f2 whenever fobfl(u)dv(u) Sfjoéfz(u)dv(u)

for all 0 <t < a with equality for t = a , Furthermore, let
' a

then we set fl <v

Qv(f) = Sﬁp(f 6f6gdv -‘§(g): g € Lp') . Then the following
o]

result holds,
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(13,8) THEOREM (L. Fuchs). If £;,f, € L® , then
£, <, f, if and only if mv(fl)‘i.év(fz) for all

universal Schur-convex function ¢ on P .

14, Doubly stochastic transformations

.The extension of the notion.of a doubly stochastic matrix
(see section 13 for a definition) to Ll-SPaces appears to have
.Been first given E& Rota (see [18]). The theory was further
developed by Ryff in [19) and [20]. We shall recall first some
of the definitions énd results of this theory hefore applying
it to the theory of rearrangement-invariant spaces.

Let (X,A,u) Be a finite measure space. A linear trans-
formation T of Ll(X,u) into Ll{X,u) is called doubly

stochastic whenever Tf < f for all f € Ll(X,p). In particular,

it follows from iii) of (6,2) that if T is d.s., then T =1,
It is also easy to see that ii) of (6.2) implies that every d.s.
transformation is non-negative, Furthermore, a d.s. transforma-
tion is a contraétion in both 11 and L® . 1Its associate trans-
formation T! defined by the relations I(Tf)gdu = If(T'g)du,

f ¢ Ll, g € L” , is a transformation which can be uniquely ex-

tended to Lt by limits to a d.s. transformation.
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(14.1)  LEMMA. i) A linear transformation T of LY(X,u):

into Ll(X,u) is d.s, if and only if Tf < f for all
0o <f el |
ii) (J.V. Ryff). A linear transformation T

of Lw(X,u) into Lm(x,u) can_be extended uniquely to a

d.s. transformation on LY(X,u) 4if and only if T satis-
fies the following conditions: 0 S'TCE <1 and
Jlegdu = w(E) for all E € A . |

1

"PROOF, i) From Tf < £ for all 0 < f € LT it follows

using i) of (6.2) that Tf < f for all £ <0 in L%, Now
let £ € L1 » Then setting Tf = Tf+ + T(-£7) = gl +
obtain, using (1,%) and (10,1}, that for all 0 <t < a = u(X)

t ot t t
Iobg(u)du =.Ioﬁgl+g (u)du Sffoégl(u)du + Ioﬁgz(u)du

il

2

_rt' (u) ¢ '(") jt (u) jt (a-u) jt ()
= & du + b du = b dua - o -“ujdu = i} )da ,
o £ e Id ~f" s o £ He o £ " : o f v

. a
For t = a we have f 6g(u)du = [(rf)duy = ij+du - ITf_du
o
- ) .
= If.du - If du = Ifdu = I 6f(u)du .
o .

ii) Following the proof of Ryff in [19], we see
immediately.by using (8,1) that Tf < f for every simple
function £ which is non-negative and so by i) of (14.1)
we see that Tf < £ for all simple f , Thus T  acts as a
contraction_in.bdth Ll*norm and the L -norm on the simple
functions, Thus T extends uniquely to a positive linecar

1

transformation T on L , In order to .show that this transfor-

mation is d.s., we have to show by i) that for every 0 < f € Ll,
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TF < £ , Let {fn} he an increasing sequence of simple func-

tions such that fan everywhere, then Tfn?Tf and TfIl < fn

(n =1,2,,..,) dimplies Tf < f and the proof is complete,
0f course any linear transformation T of Ll(X,u) into
13(x,u) is d.s. whenever Tf ~ £ for all £ € LT , For instance

if 1T is a measure preserving transformation of the given measure

space, then the transformation T,f = £{r) satisfies Tf ~ f
for all £ € L1 , and so is d.s. -Another important class of

such transformations are furnished by the so-called conditional

- expectations, Let ﬁl he a g-subalgebra of A and 1et.
f € Ll(X,u) . Then it follows from the Radon-Nikodym theorem
that there exists a unique Al -measurable function Tf such

that [ fdu = [ Tfdu for all E € Ay . It is then easy to
E E

see that T satisfies the conditions ii) of (14.,1), and so T
is d.s.

A special case of this process is furnished by the follow-
a0

ing example. Let X = XOIU (U Xi) be decomposed into a dis-
i=1 '
joint system of measurable sets of positive measure, Then, if

i is the 0-algebra generated by the family of sets A N KO

1
and {Xii i= 1,2,...} , the Alvconditional expedation T can

be expressed as follows:

. [y
(14.2) Tf = fc, + I -;*"—'(f fdu)c,
Xo g1 WXy) X, X

The reader should observe that we have already met this

special case in section 7,
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{(1L.3) THEOREM, Let ¢ be a Fatow norm which is u,r.i. or

r.i, in case the measure is W-adequate, and let as always

Lco c P ¢ Ll » Then every linear transformation T of

t? into L® which satisfies Tf < f for all 0 < ¢ LF

is the restriction_of some d,s. transformatiocn of Lt into
. ’ 1 1
Lt s and_its associate T' maps L?" into LP .. Further-

more, o(T€) < p(£) for all £ € L® and p'(T'8) < p7(£)

: ?
for all ¢ € L?

‘PROOF, Using (ih,l) we see that we ha?e only to show that
#(TF) < p(£) for all £ € L% . But this follows From (11,11),

In [9], Ellis and Halperin introduced the so-called levelling
;Qggth property for function norms. In our terminclogy this con-
dition reads as follows, Leﬁ_ p he a function norm, Then p
has the levelling length proPerty whenever for every set E of

positive measure p(fl),S p{f) , where £l =cy gt (ﬁ%ﬁj IFfdu)cE .

Hence, using (14,2) we have the following result for r,i,=~function

norms,

(1h,4) THEOREM, Every Fatou norm which is u.r,i, or r.i, if

U is adequate has the levelling length property.

REMARK, The equivalence Qf i) and ii) in Theorem 13,] of
Hardy, Littlewood and Pdlya for general measure spaces, i.e.,
£ < gt Ll(x,p) if and only if there exists a d.s, transformation
T such that f = Tg , secems te he an open problem, For the case
of the Lébesgue me asure space of a finite interval the affirmative

answer was given by Ryff in [20].
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15, BSome properties of the sets Q(fo) = {f: £ < fo} .

Let (X,A,u) be again a finite measure space and let ¢
he a Fatou norm on M+(X,H) such that _Lp c it and L°is
universally rearrangement-invariant, i.,e,, f1 < f2 ¢ P implies

$
£, € LP (see (11.8))., Then for every f € LP and g € L? we

1

have that '6f6g € Ll[O,a], where a = w(X) . According to (10.3)

. a
the function pg(f) = I 6f6gdt is sublinear on LP for all
o

L )
g € LP . Furthermore pg has the following properties,

a .
(15.1) i) -pg(—f) = Iobf(a*u)ég(u)du_f Ifgdn,f
a '
<[ bo(u)6 (u)du for all £ € L? ana g eLf
o]
a : ) . p p?
ii) ng(f)|,g joalflalgldt for all £ € LP and g € L

iii) If £, < f, € L? , then pg(fl) s'pg(fz) for all
g € Lp' .

iv) If £y << £, and f,f, € L? , then pg(fl)_S

S py(£,) for all 0 <gc¢ L,

v) If P is a linear functional on i,P which is
T
pg-continuous for some g € 1P , then  there
t
exists an element h € LF such that

F(f) = [fhdw for all f € LP ,

Of course the same results hold by interchanging the role of

f and g .
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(15,2) DEFINITION, If f£_ € L® , then 0 = 0(f)) denotes

the set of all f, € Ll(X,u) such that f, < f .

(15.3)  LEMMA, i) For a1l £ € LP, q(f) cLP,

ii) fﬁ = Q%ET (jxfdu)cx € 0(f) for all

£ ¢ L? and £, € 0(f) implies that

I » i.e., £ is the smallest

element of Q(f) with respect to <,

For the following result we shall need the following compact-
ness criterium, Let 9§ be a saturated Fatou norm, Then a sub-
set AC Lg_ is relatively U(LP,LP?}-compact (= relétively
' O(Lp,Lp')—sequentially compact) if and only if N(g) = sup
(flfelan:£ € A) is finite for every g € LP' and 0 < g € Lf’
such that. g,t0 implies N(gn)¢0 ., For a discussion of this
result and related results we refer the reader to section 5 of
(131, | | |

fhe locally convex topology on L°? generated by the family
of Riesz seminorms Ilfg|du , g € LP" will be denoted by |
16| (L?,1P") . Tt is easy to see that LP' is the ]o|(LP,LP)-
dxal of L7,

We shall now prove the following important result.

(15,3) THEOREM, For every £ € LP, a(f) is a c(Lp,Lp?)-

compact and convex subset of LP




PRPOOY.  ve =2hall first show that Q(FfY is cenve:. 7o

thig end. let fi.f, € Q(f) and let g = £, 0+ (l—r)fz,
t

"< r < T, Then it fellows from (inr.1) that f Sqfu)du <

1 t T o
< f éf (uldu + (1-v) f o (wdu < f éf(u)du for all

o 1 o ~Z o
Lt < a and egqualitv for t = a follows easily. I crpiex

El

t+o show that QUFf) is U(LD,LO J-closed we have only to show

1 L
that it is ¢ 1(LP.LP Y-closed since the ol (1P, 1P )-dual of
neodis UV 7o this end, it is easy to see that we have oiliv
to shaow that if f € Qify (n = 1.2,...) ard f_ = £, in the

L1 (1.9.1.% Y_topology, then £ ¢ Q(f) . Then £ ~f] » ¢ in

MEASUTE 4% no» @ , and so (uXiu > 7 as o o= ow Fon

fta
o) Ifn"fol

all 0 <t <a . Using (10.1) and (2.5} we have

T T T
[ f e du - [ d. duf < j-élf "f[du for all n and for all
o 'n a to o !"n
t
0 <t <a , and so f 6f du » J ﬁf du as n =+ o and for all
o n o "o
t t
0 <t<a. Hence, 6 du < [ 6. du for all 0 <t <a,
o o o

with equality for t = a , i.e., f, & a(f)
al

Observing that N(g) = Sup(f[f'g|du:f' e Q(£)) < I 6rf
o

we see immediately from the result quoted above that G(f) is

1
o(LP,LP J-compact, and the proof is finished.

REMARK. For the spaces Ll[U,l] , the present result is
due to Ryff (see [20] Theorem 2 of section 3). The above proof
is entirely different from the proof given by Rvff for the

space Llfﬂ,l] .
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(15,k) - THEOREM, For every f € L?, a(f) .1§ p-bounded.

PROOF, If Q(f) is not p-bounded, then there exists a
sequence fn € Q(f) _(n = 1,2,,,.) such that P(fn) - o
Since Q{f) is G(Lp,Lp')-compact we conclude that
supnjfngdu_ is finite far-evéry g € Lp‘ , and so by the
' Banach-Steinhaus theorem -(Lp? is p'-complete) we obtain
that supn(sup(xfngdu:p?(g) <1i) = supnp(fn) < ® gince

p = p" by (11;3). Conttadiction and the proof is finished,

The sets Q(f)_ cah be characterized also as follows.

(15.5) THEOREM, €, € O(£,) Aif and only if [figdw <p, (g)
. ’ . o

: - ot o
for all g € L? .

PROOF, If £,

N a
€ Q(fo) , then jflgdu S:Ioﬁflégdt's

a . o ' .
< Iobfoﬁg dt = pg(fo) (by ii) of (5.1))5 In order to prove
the converse we set H = {h: h € L? and Ighdu Sfpf {(g) for

. _ o

' ? : : . '
all. g € LP'} | Then 0(f ) cH , If Q(£,) #H , then there

is an element h_ € H such that h_ £ G(fo) . 'Hence, from the

separation theorem for closed convex sets it fellows that there
? ' .

exists an element g ¢ L?  such that sup(Jgohdu:h € Q(fo)) <

< Jgohodu . Then using (9.3) and (8.2) we obtain that

- a S : _ _
.ijﬁf 6gudt“< Igohodu fﬁg.éh Pe (go) and a contradlctlgn is
o o o g - S0 o o

obtained,
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Using the separation theorem for closed convex sets the

following result can easily he established.

(15.6) THEOREM, i) If v is_ adeqguate, and so if u dis

non-ztomic, then for every £ € L, Q{f) 4is the o(Lp,Lp?)—

closed convex hull of the subset of (f) gof all functions

£1 satisfving f£' ~ f .
ii) For every £ € LP., Q(F) is the

. ’ .
O(Lp,Lp }~closed convex hull of the subset of Q(f)

of all functions Tufl of all f, € M(Xl,pl) such that
fl Land f )

PROOF, We shall only sketch the proof of i), Let A be
the o(L",LP )~closed convex hull of the set of all £f ~ f£.
Then A < Q(f) , If A # Q(f) , then there is an element
£, € (£} such that £ ¢ A, From the separation theorem
for closed coavex Sets it follows that there exists an element

1 .
g, € L° such that a = sup([flg duw:f! € A) < [f g du <

a a

<[ 8,8 du <[ 6.8 du by ii) of (5,1). Since p is

f, & fg
0 O ) o o

) : a a
adequate we have that a = t 8.6, dt , and so a <] bfﬁg dt
8] go . o O

is a contradiction and the proof is finished.

REMARK, Recently Z, Nehari consgidered in [16] the follow-
ing problem, Let (X,A,4) be a finite non-atomic measure space
and let E € A be a set of positive measure, Determine the

smallest closed convex subset A in Ll(X,u] which contains
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all the c¢p, F € A and u(F} = u(E) . It was shown in [16]
that if f € Ll[O,l] satisfies 0 £f <1, ess,sup £ =1 ,
ess, inf £ = 0 and [fdu = w(E) , then f € A, Since every
£ et which is equimeasurable with c¢p dis of the form cp
where u(F)}) = u(E) we see that the preceding result provides
'a complete anawer to Nehari's question namely A = ﬂ(cE) .

and so £ € A if and only if 0 <f <1 and [fdy = u(E) .

'The purpose of this section is to prove the following

interesting result,

(16.1) THEOREM, If p is a saturated Fatou norm such that

Lp is universally rearn ment-invariant, then there

exists a universal rearrangement invariant saturated Fatou
norm p; such that p and ¢, are equivalent, i.e.,
there exists_a constant Y > 0 such th vip < Py S P o

PROOF, For every O < f € M(X,u) we set
pl(f) = sup([e'|gldu:fr € Q(f) and p7(g) <1) =

a
sup(j 6f6]gldt: pt{g) <1) .
(8]
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It is easy to see that Py is a saturated Fatou norm
and that Py is u,r.1i.

Furthermore, p < Py Since O{(f) is p~bounded by (15.,5)
1 _ e

&

we see that ¢(f) < implies pl(f) <o, Thus L
Then since both spaces are complete and norm convergence implies
convergence in measure it follows from the closed-graph theorem

that p and py are equivalent, and the proof is complete.

_ 17. Extremal properties of {(f) n om e roblems,

. It was shown in (20] that if f' ~ f and f € Ll[0,1] s
then f'!' is an extreme point of (f) . The proof of this
resﬁlt carries over immediately for general finite measure
spaces, and so we have the following result, :For the proof

we refer the reader to [20], Theorem L of section k.

(17.1) THEOREM. If f£ € LP(X,u) and f£' ~ £, then £

is an_extreme point of Q(f) .

The following prohlem seems to be open.'

PROBLEM 1, Determine all the extreme points of (f) 2
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It seems reasonable to conjecture that at least in the
case that 1 is adequate f' € Q(f) is =xtreme if and only
if f' ~ £,

We shall now present as a first attempt to a solution of
the problem a criteron which is necessary and sufficient for anf
element of f£' € Q(f) to_be_ektreme. Since Q(f) < 11 it is
sufficient to consider this prohlem for L1~spaces only, _

To this end, let f£_ € L'(X,u) and let a = 0(f) . For
every f € Q “we define the following function p¥, on L
-by_means'of the following definition,
du - Ifgdu , B € L 0

. . a
(17.2) prelg) = joafobg

Then by (10,3) and (8.2) we have that p¥; 1is non-negative
a
‘and sublinear. Furthermore, p*f(~g) = Ifgdu —.Jobfo(u) ég(a-u)du :.;i

q%f(g) is also sub linear ard¢ non-negative on Lm_.

The following result can now be shown to hold,

(17.3) THEOREM. f is not an extreme point of 0 = Q(f )
if_and only if there exists an element £, € Lt (x,u) such

that £, #0 and. |[f edu] < p*.(g) for ald g€ 1",

PROOF, Assume first that for sonme £, #0 in LT we
have ljflgdul Sfp*f(g) for al} g € 1” ., Then by (15.5) we.. i
have f f £, € QQ and also f £, €0, , iie,, f= 2((f+f1)+(f—fl)%ﬁ

-Thus f 1is not an extreme point.
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If £ is not an extreme point, then £ = L(h +h ) with
hy,h, € 0, and By 7 By o bt £ = 5. Then

1= ~

g+ ¢, =h, €0 and £-f =h Ta ,and so by (15.5) we

obtain that |[figdu| S p*elg) for all g € L7 and the proof

if Finished,

(17.4) COROLLARY, f is not an extremg,nq;gt of Qo if and
only if there exists an element 0 # £4 e Lt such that,
Jfygdi S prele) and [Piedu < g*.(g) for all g €LY,

For every finite sysﬁem of non-negative linear functionals

there exists a largest non-negative sub linear functional which
is majorized by each of the given systems, For e%ery £f € Q(f)
_we-shall denote the:_inf(p%f,q%f) by rp ; and it can be given

in the following form,

. . ‘ .
-(17.5) For all g € L™ , r.(g) = 1nf(p*f(gl)+q*f(g2).
8,78, = 8 5 81,8y € L) , Then (17.4) implies immediately

the following resulit.

(17.6)  THEOREM. f € O = O(f_) 4is extreme if and only if
Ce (g} =0 for all g ¢& L, '
If fo = cy , then Qo = {CX} y and so its set of extreme

points is closed, In this connection the following problem

seems to bhe open,
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PROBLEM 2., For every ¢ E'Ll(x,u) determine the

U(Ll, Lmléclosure of the set {f':f' " f} ?

The preorder relation fl < fz in Ll can be extended
in the following manner to include certain measures, To
 this end, let f0 € Ll(X,u) aﬁd let K(fo) denote the cone
of all uni#ersal Schur-convex fgnctions which are finite on

9, = 0(f)) . Furthermore, WL = WL(R ) shall denote the

set of all positive Radon measure defined on the U(Ll,Lm)—

" compact set no .

Let vlgvz € WLO . Then we set vy < v, . whenever

v (8) < v, (@) for. all & € K(f)) . If v <wv, , then
vl(ﬂo) = vz(ﬂoJ . Furthermore, it is easy to see that if
£3,F, € 0, then £, < £, if and only if v; < v, , where
Vy S €g  and v, = cf are the discrete measures of total

Lot T 2
measures 1 supported by {fl} and {fz} respectively,

PROBLEM 3, Find all the maximal measures of WL(QO)
with respect to the preorder relation =< introduced above?
Is an element f E'ﬂo extreme if and only if €p is

maximal?



10,

11,
12,

1\3'0
il.

15,
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