BULLETIN DE L'ACADEMIE
POLONAISE DES SCIENCES
Série des sci. math, astr.
&t phys, — Vol. VIII, No.6, 1960

MATHEMATICS

On Generalized Orlicz Spaces
by
W. MATUSZEWSKA

Presented by W. ORLICZ on March 22, 1960

1. We call a g-function (and denote by Greek letters g, p, ...) every
continuous function ¢ (u) defined for u =0, non decreasing, vanishing
only for u =0, and such that @(u)—oco for u—0co.

For x(t) measurable in {a,b; (where — oo < a<b < +0c0) we write
b
Jp(x)= [ (x(t))dt. I Jp(x)<<oco, then x is called g-integrable, we then
a

write xeL?<{a,by. If AxeL?{a,by for a constant A=2,=>0, we write
xel*?<{a,b). The set L¥{a,b) is convex and the set L**?{a,b is a linear
space (called the Orlicz space, if ¢ is convex, [2]).

In this paper I give some results pertaining to the question, which
theorems known for the space L*?<q,b> in case of a convex ¢ can be

generalized to arbitrary g-functions. 1

We say that ¢ is non-weaker than y for large u (in symbols » 2 @),
if there are constant ¢, d,l k>0 such that

b+) ey (lu) < de(ku) for  u > u,.

t {

If <y and y < ¢, we write (pirp and call this relation the equi-
valence for large u-fpﬂiy) if and only if there are constants a, b, ki, ks >0
such that for sufficiently large u

ag(l;w) <y (u) < b (k,u),

{

{ is an equivalence relation and =< is transitive. If @ is convex, then our
!

definitions of — and * are equivalent to those of [2]; for arbitrary ¢ they

are more general that those given in [1] and [2]. We say that ¢ satisfies
the condition (Ae) for large u, if

plou) - dep @) for u=>1u (a),
[349]
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where de =1 is a constant. Moreover, ¢ is said to satisfy the condition
(o), =1, for large u, if
@ (u)ce < @ lau) for  u > ug(a),
ge =1 being a constant.
It ¢ i‘ip and if ¢ satisfies the condition (Ag) or (Ae), then so does p.
If the inequality (+) is satistied for u=uy=0, we say that ¢ is

a
non-weaker than y for u =0 (or: for all u), in symbols p < @. In a similar
way we introduce the relation of equivalence for all u (writing Py
and the conditions (4} and (Aq) for all w.

2.1. The following properties are equivalent: (@) ¢ satisfies (4,) for
large u; (b) ¢ satisfies (da), a =1, for large u; (e) rpf»x, where y(u)=yp(u")
and y is a concave ¢-function. The exponent r may be chosen equal to
r=1g d/1g a, where, in case (b), de is the constant defined in (4.) and in
case (c), y satisfies (4«) with the constanl de.

2.2. The following properties are equivalent: (a) ¢ satisfies (A«), 2 =1,
for large u, (b) rpﬂ{*x, where y(u) =1y (u’) and p is a convex p-function.
The exponent s may be taken s=—1g c«/1g ¢, where, assuming (a), C« is
the constant defined in (), and, assuming (b), x salisfies (Ae) with the
constant ce.

2.3. A necessary and sufficient condition for rpivp, where y is a convex
function, is

@ (uy) >m @‘_(_?ﬂﬂ for g Uy 2 Uy
Uo 2 u1 R = 1= 0
m, n being positive constants. Replacing in the last inequality == by <
we obtain a necessary and sufficient condition for equivalence of ¢ to
a concave function for large u. Theorems analogous to 2.1 — 2.3 hold also
in the case < and for the conditions (4«), (A«) for all u.

3. A necessary and sufficient condition for the inclusion

M L% {a,b>CLY <a, b}
r=1

is the existence of a positive integer m and of a constant d > 0 such that
() p (W) < dsup [, @), go @), oy o @],

where (%) is to be satisfied for u=uy, if ‘g, b is finite and for u =0,
if <a,b) is infinite.

3.1. The inclusion

L¥¢a, b, C ! L* {a,b)
r—1
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holds if and only if there are: a positive integer m and a constant c¢,, > 0
such that the inequality

(22) om (W) Cm <y ()

is satisfied for all u =, if <a,b) is finite, and for v =0, if ‘a,b> is
infinite.

As corollaries to 3 and 3.1 we note

3.2. (a) If L* (a, by CL**1 {a,b), L™*'<a, b>+# L¥ ¢, by for n—=1,2,...,

then for every y, L"{a,b> % L L P 4a, b5
v=1

(b) If L% g, by ILPH (g, by, L#H (g,by # L (a,b) for n=1,2..,
then for every u, L¥{a,b) # (M EP £, b
p=1

3.3. A necessary and sufficient condition for L¢ {a,by=L"¥<a,b) is
that @ should satisty (4,) for large u, or for u==0, depending whether
{a,b> 1is finite or infinite.

34. If ¢ does not satisfy (4,) for large u and if <a,b> is [inite,
then there exist functions = and y such that

Tp(x)<<oo, Tpldx)=co for A>1,
Jg{dy)<<co for 0<i<1, Ty (y} =00,

An analogous theorem remains true for infinite 7a, b ; the condition
(A,) must then be satisfied for all .

35. A necessary and sufficient condition for the inclusion
L*¢:<{aq,b>C L**:<a, b (resp. the equation L**{a, by =L*"{a,b>, tohold is

! a
P == oy (resp. ¢ f @), if <a,by is finite and @; < @, (resp. @, ~ @), if <a,b>
is infinite.

4. In this section we shall introduce a kind of convergence (called
g—-convergence) in the space L**<a, b>. The g-convergence is a special
case of the modular convergence in the sense of Musielak and Orlicz
(cf. [4]). A sequence of elements X, of L*?{a,b> is called g-convergent
to x (in symbols Tnorxy), if Tp(A{xa— x,)—>0 with a certain A>0
(depending on the sequence x,). In L*¢{a,b>, an F-norm may be
introduced in such a way that the convergence of a sequence I, to 0
with respect to this norm implies Jg (x,)— 0 and so :r:,,'—(iO, too, This
norm defined by the formula |z |==inf {e=>0: Jp(x/e) < &} (cf. [3], [4]) will
be called the norm generated by @. By the symbol |L** {a, b>, IHle] we
denote the Fréchel space L*¢<q, by with the norm | lg.

‘%-1- Let the interval <a,b, be finite; the following properties are
equivalent: (a) ¢ satisfies the condition (A,) for large u; (b) L™ <a, b, is
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separable; (¢) Jg(x,)—0 implies | Xn|e—>0. An analogous theorem
is true for infinite <@, b, we have only to replace in (a) the expression

“for large u” by “or u=0". As regards (a) and (b) in the case o a con-
vex @, (cf. e.g. [3])-

4.2. An element xeL*?<a, by is called finite, if Jy(dx)<<o00 for an
arbitrary 4> 0. We denote the set of the finite elements by M?<a,b).

43. Let <a,b> be finite; the element x is finite if and only if
| x|, is absolutely continuous, ie. |zyg |,—0 for E.C<a,by, |En|—0.
Here y, denotes the characteristic function of the set E. An analogous
theorem is true for infinite <a,b), assuming ¢ to satisfy the condition
(4,) for small u *). If (4,) does not hold for small u, then there exist
elements with absolutely continuous norm which are not finite.

4.4, The set M¢? {a,b)> 1is identical with the smallest linear subspace
closed in [L**{a,b), | |ly] containing the bounded functions in the case
of finite <@, b> and containing ithe bounded functions equal to zero
outside a certain finite subinterval of <{a,b) in the case of infinite
‘a,b>. Hence, M?{a, b) is separable with respect to the norm [ |lg.

4.5. A necessary and sufficient condition for M¥<a,b)=* L*<a,b) is
that ¢ should satisfy (4,) for large u, if {a, by is finite and for u>0,
if <a, b} is infinite.

4.6. The following three relations are equivalent: (a) L*?<{a,b)=
—L*v<a, b; (b) M?{a,b>=M¥<a,b>; (¢) [[Zally—0 implies ||xafy—0
and conversely, where in the case of finite <{a,b) we restrict Za to
bounded measurable functions and for infinite <a,b) to bounded mea-
surable functions vanishing outside a certain finite subinterval of <a,b),

respectively; (d) xn!'—“> 0 implies x, %0 and conversely, where x, are
taken as in (c).

461. If ¢y, Ca,b) is finite, the relations x| y—>0 and |xaly—0
are equivalent and analogously in case ~ and <a,b) infinite.

4.7. If ¢(u) =y (u’), where 0 <<s <1 and if p is a convex function,
then in L**¢a,b> norm

x;;:inf:e>0_:9¢(£)<1}

may be defined. This norm is s-homogenous, i.e. lAz|e=I4] || and
equivalent to the norm generated by ¢; consequently, |22 lp— 0 implies
Jglxy) = 0. For s =1, this theorem is known.

4.71. If an s-homogenous, complete norm || [ is defined in L*?{aq, l:.'>_,
0 <<s<C1 and if the convergence to 0 with respect to this norm implies

*) Condition (4,) for small u means that ¢(u)c, < ¢ (au) holds for U<t (?}'
where ¢, >1 is a constant.




On Generalized Orlicz Spaces 353

the modular convergence to 0, then q;ri %, if <a, b is finite and gofi ¥, if
{a, b is infinite, y(w)=w(u’); » is a convex function. Special cases
of 4.71 were proved in [3] and [6]. Let us note that if ¢ satisfies the
condition (1. and the constant c. is known, it is possible to introduce
the s-homogenous norm and the degree of homogeneity of the s-norm
in 4.7 is completely determined; s=1g c«/lga.

4.8. A set X,CL**a, b> is called g-bounded, if taxn— 0 whenever
xneX, and t,—> 0. A set X, is g-bounded if and only if it is bounded in
[L*%<a, b>. | 4.

4.81. (a) If ¢ satisfies the condition (.1.) for large u in the case of
‘a,b)> finite, and for u =0 in the case of {a, b} infinite, then every set
X, ={x:T,(x) <r} is g-bounded; (b) if a certain set X,={x:Jy(x)<7}
is @-bounded, then ¢ satisfies (Ag) for large w, if <a, b is finite, and for
u >0, if <a,b> is infinite.

The case of ¢ satisfying the condition (4,), <a, b, finite, was
considered in [6].

Full proofs of the above theorems will appear in Studia Mathematica.
The author wishes to express sincere thanks to Professor. W. Orlicz for
his helpful criticism and valuable remarks.
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