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CHAPTER I

INTRODUCTION

This thesis is concerned with the development of a statistical
mechanics formalism for treating thermally driven systems.

Consider the production of non-equilibrium behavior in a closed
isolated system. In general the system is driven by bringing some
external mechanism into interaction with it, thereby violating internal
consexrvation laws, such as conservation of energy, momentum, or particle
number. It is the goal of statistical mechanics to predict the macro-
scopic behavior of a system from the dynamics of its constituenﬁ
particles; in this case we want to calculate the response of the system
to the external driving mechanism: If we have a detailed microscopic
model for the interaction this can be achieved in a straightforward
fashion simply by ,applying dynamical perturbation theory to our usual
statistical mechanics ensemble. In particular if the driving mechanism
is an applied potential, then one immediately finds the Kubo =xnpres-
sions for linear response. However in general we do not have this
detailed microscopic knowledge of the driving process. Instead we have
only macroscopic information on the effect of the interaction on system
variables such as local energy, momentum, or particle density; i.e.,
in the language of hydrodynamics, we-know source terms.

Systems driven by transport mechanisms of this sort rather than
known potentials are called "thermally driven" as opposed to "dynam-
lcally driven".l The problem is this: to find a general characteri-
zation of thermally driven processes so that we can treat the effects of

transport across the boundaries of a system, without going into the micro-
-1-



scopic details of this transport.

Such a characterization is offered. Inp first order it leads to
response functions of the Kubo type for thermally driven processes, in
agreement with a half dozen other schemes.® Relative to the other meth-
ods its advantages are these: greater generality, no low frequency
restrictions, no assumption of an a priori form for the macroscopic
laws, and clear cut interpretation of the driving terms. It is also
unique in that the higher order corrections are clear. In a sense it is
the formal complement of dynamical perturbation theory. Dynamical
perturbation theory can treat dynamically driven systems directly to
all orders, and by making low frequency and first order approximations
can treat thermally driven systems as well. This new approach treats
both thermally and dynamfcally driven systems directly to all orders,
without the need for low frequéncy and first order approgi@ations
(although, of course, approximations may greatly simplify the calcula-
tions). A further advartage is that non-equilibrium thermo-hydro-
dynamics can be derived from it.

Our treatment of thermally driven systems is based on Jaynes’®
Maximum Entropy Estimate (MEE) formalism.3 MEE provides a very general
solution to the fundamental problem of statistical mechanics, that of
picking the proper ensemble to represent given experimental information.
Since specification of a microstate requires'~10zaconditions, while
the mgcroscopic information furnishes~l, obviously_the information
determines a set of microstates rather than a particular one.
Consequently we need a prescription for weighting the possibilities.
This is what MEE does. Jaynes showed that there exists a unique measure

of the information contained in an ensemble. By minimizing this informa-
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tion measure (maximizigg the information entropy) subject to the
macroscopic constraints one picks out the least blased ensemble con-
taining the given information. Of course, the derivation from some
general principle of a prescription for going from experimental
information to an ensemble is formally unnecessary. Oﬁce one has a
prescription its merit must be judged solely on the following empirical
condition: 1if, experimentally, fixing one set reproducibly, then the
ensemble constructed by the prescription from the first set must predict
the second set. Jaynes' arguments serve to convince one that MEE
ought to do this. Such calculations as have been done bear this out.h
For the case of known energy and particle number, the MEE prescription
gives the usual grand canonical ensemble, and the information entropy
is the Gibbs entropy. But with the MEE method it is Jjust as easy to
set up non-equilibrium ensembles as equilibrium ensembles. In fact one
can set up an ensemble based on information gathered in an arbitrary
space-time interval, and use it to predict behavior outside this region.5
This is not the same problem as treating thermally driven systems,
however, for variables obtained from ensembles of this kind are constrain-
ed to obey the conservation laws of the closed syséém, while it is
precisely the violation of these conservation laws by the external

mechanism which we consider as driving the system.



— ~  CHAPTER II
DEFINITION OF THE THERMAL DRIVING PROCESS

In hydrodynamics, dynamic and thermal driving terms are treated
on an equal footing. When attempting to formulate the problem in
statistical mechanics one soon discovers that there is a fundamental
difference between the two concepts. Whereas dynamic driving has a
well defined microscopic meaning, the concept of thermal driving has
an inherent vagueness.

It is necessary to remove this ambiguity by formulating a precise
definition of the thermal driving process. To do this we will need
the MEE prescription for converting macroscopic information into an
ensemble.

1l. Brief Discussion of MEE Method

Consider an experimental procedure for preparing systems in some
macrostate. Although in any particular case the rules of preparation
result in a single microstate, we know that in repeating the prepar-
ation we will in general not produce the same microstate. 1In this sense
the description of system preparation corresponds to specifying an
"experimental” ensemble, which may then be identified as the "macrostate"
of the system. The task of statistical mechanics is to find this
ensemble.

Suppose we are given the average values of some set of physical
variables over this experimental ensemble. The MEE density matrix
containing this information, and nothing more, is obtained by maxi-
mizing the information entropy, 5_7_. = — 7;/ [ ? ,a)f— f ] ,
subject to the constraints on the ensemble averages. Given the values
of A and B the resulting ensemble is

Lo
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4A+38 -

= £ (2.1)
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with the Lagrange mul@ipliersaiand B determined by the conditions

z =T [¢]
(A = Tw[Af] = [A]
(B = T.[Bel = [B] (2.2)

where [A] and [B] denote averages over the experimental ensemble. We

can use this ensemble to predict values of other variables:
L&D T [Cp] (2.3)

This prediction of C is the "best” prediction of C from the values

in

of A and B in the information theory sense that no arbitrary assump-
tions are involved.

By introducing additional variables we could include any informa-
tion obtained from the experimental ensemble. ;E fact, by measuring
a complete set of commuting variables we could in principle determine
the experimental ensemble exactly.

Of course we have nowhere near the complete information necessary
to determine the experimental ensemble exactly. The problem is real}y
to approximate this ensemble. More precisely, we want the MEE ensemble
to yield the proper values of & relatively small number of experimentally
accessible physical variables.

Now if we had to specify the observed values of all our experi-

mental parameters this would be a worthless approximation. But we
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know from experience that our physical variables are usually function-
ally related; experimentally the system is often characterized by some
set of variebles (A, B) in the sense that specification of this set
determines the values of a second set (C, D, E).

This leads to the expectation that our MEE ensemble determined by
A and B also has this property; i.e., since the experimental ensemble
is characterized by A and B with respect to C, D and E, then the MEE
ensemble incorporating only the information on A and B should yield

accurate predictions of C, D and E.

o, Definition of Thermal Driving for Discrete Transfers

Tet the macrostate of an isolated system be characterized by
values of A and B in the sense that experimental knowledge of A and B
determines the values of some set D, E, F. The MEE ensemble 1is

P - L = ,A +4,B (2.4)
LA
where Q and B are determined by the measured values of A and B,

denoted [A] and [B], through the relations

T~ JAP] =<a>=LA] (2.5)
Tr [BF] = <&2=1[B]

and we assume the values of D, E, F to be given correctly by this
ensemble. Suppose now we let the system interact with its surround-~
ings so that [AA[ and [AB] flow in.

A reasocnable choice for the new ensemble is
+ _
a(.:LA Ay B

. 2 (2.6)
g%,

“



-T=

with &2 and [, determined by
{ A)g, = ):Aj + EAA]
<), = [8] » 28]

In picking this ensemble we have actually assumed that after

(2.7)

1

the interaction we can still characterize the macrostate of the system
experimentally by A and B for predictions of D, E and F. Some transfer
mechanisms violate this.. Let us take as part of the definition of

thermally driven processes that no new variables are required to

characterize the system. Then specifying [AA] and [AB] and that the i

variables are driven thermally leads to ?1 .

Now consider the case where [B] [B] + [ABI], but the change in
A is unspecified. Requiring thermal driving leads to

A, A+ 5, D

= £
‘""F,'L Z, (2.8)

with {B), = 8] + [a B] . This is obviously insufficient to
determine the ensemble. We must know how A changes during the process.
| At this point it might seem necessary that the experimenter speci-
fy the change in A as well as B. For many situations this is certainly
the right attitude; if the experimenter imposed conditions on the A
transfer then we should expect to get bad results by ignoring them.

On the other hand there is nothing wrong with singling out a
particular type of A change with a special name in the hope that it will
be useful. In particular it seems that for many transfer processes
of physical interest the change of A associated with the transfer of B
is determined by the state of the system. Guided by this consideration,

we make the following definition.



The transfer of a specified variable is said to be "thermally
driven" if no new variables are needed to characterize the new macrostate,
and if the ILagrange multipliers corresponding to variables other than
the driven one remain constant.

In the present case this means <X ;) = AL 2 , SO the new ensemble
is : +
/0 o % A A, B
2 Z, . (2.9)

with <B)$L= [BJ 4 [AB] : and 0&.1 =K,

This definition is equivalent to two other possible definitions
for the thermal transfer process, as will now be shown.

Returning to the original ensemble, notice that there is nothing
special about the variable A; we can replace it by a linear combination

of A and B and still have the same ensemble. Thus, if

A= A-€B,
th 4 s
en /O _Q_OL'A -Fﬁ’ B (2.10)

=3
i

with
7 -
ﬁ’ z /3'-!-0&, 1=

Driving this ensemble thermally to [B] + [ A B], we obtain the ensemble

. (2.11)
«,A"+8,; B

4 -

P

with

KBy =[B] +I£B]
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or using the definition of A 5

B =P+ AE (2.12)

Now expandfg_ to first order in ﬁz - /B, , about ﬁ . Then to

first order (indicated by dot),

() = KB + (B.- BOKBB  (2.13)
AN, = KAD + (8- B) Kag (22

/ -
Kpo = § de T [ g 8 pp] ey

where

I

(g-/\lz - <B>; <A, (2.15)

Solving equation ( 2.13) for/gl—ﬁ’ , and using this in (2,14),

(A'y, ~ KA, & (KB -<B) {_ié.’é (2.16)

5B

Now set ¢ = KAB so that A' is defined as

Keg

A = A _Kag_ g

K BB (2.17)
With this definition
= O
K ag |
< A’ >2' = <A'> , l.e., A’ is not changed in first order‘by
]

the thermally driven transfer of B. Hence, instead of defining thermally
driven processes by the condition ( & = constant), we could have used

the condition

o LA = O
o LB,

(2.19)

Thermally
Driven
Prccess
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with A! defined by (2.17). But Kp/g has the physical significance
of the covariance of the fluctuations of A/ with fluctuations of B in
the initial ensemble. Hence the thermal transfer process has the
property that the unspecified variables change with the driven terms
exactly as they do for fluctuations in the initial ensemble. In parti-
cular, variables uncorrelated with B remain constant.

A third property of this oL or A’ constant process is that it
minimizes the net entropy transfer. Assume that the driving system
is arbitrarily close to equilibrium under thermal transfer of B with

our driven system. For the driven system the equilibrium parameter is

Q__S_,_) = éi_) = -f)" (2.20)
3B/ 08 /p

KaB
= - B — & "AB
Kes

while for the driving system

(9 Sp
ob A’

The condition for the transfer process to go in the direction of 1

/

- By

i

(2.21)

/
D .

However we can consider making the difference arbitrarily small, so

N /
is that the net entropy should increase, or - ﬂ, > - ﬁ

that the second order terms in the expansion of the entropy about the

AR transfer become important.

AS = A sp' "’Asp (2.22)

Q__S.!_) AR + 825. (AB) F oo o

a6 /A OB A T 2T

OB )u Com) 4 () (a8, ...
QdB*JA' ~Z T
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~ (3°s: (A@z J 9°Sp (a B)*
AS = (aB*)A' ! d B /p 2

Both second derivatives of the entropy are >0 . Since we don't
want to assume any microscopic knowledgelabout the reservoir, let us
just consider the contribution from the driven system. Then in this

case with KA'B = 0,

2 ( |
33 = - — (2.23)
2
dB° /A Kpg
If we had considered processes with some A other than A’ constant,

then
815' _ _ ] - (2.24)
JB: Kpg- AB
. _ Kaa 55
Since KAA KBB— K:B > O it follows that ( B") ,

minimum for A = A'. So in this sense the process we have chosen also
’ AsS

corresponds to a minimum change in entropy. If we interpret o
as proportional to the probability of observing a fluctuation of

magnitude A B between the two sys’cfms , then
AB

PA/ N~ __Q'— ZKBB

for the thermally driven (i.e., A" = constant) process, and

(AB)*
P, ~ = lﬂKBB—.——.ﬁ

for the (A = constant) process. If (AB) is taken » V gg then

P < (an)° ( As_ )
PA’ _Q' Kaa Kes
Kﬂ.

so that unless is correspondingly small, the thermally

KaaKap
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driven fluctuation AB is far more likely.

3. Thermal Driving With Explicit Constraints

So far we have merely defined a particular mechanism for driving
systems and shown that it has some appealing properties. Certainly
there exist processes which occur in the—"thermally driwen"” fashion
and others which do not. In fact all we have to do is to impose some
experimental constraint on the transfer and our general considerations
are inappropriate. If A is held constant, then it is quite irrele-
vant that A' constant is the "natural® constraint. But this is not a
real restriction on the usefulness of our theory, for we can now extend
the definition of "thermally driven" to include transfer mechanisms
which impose constraints.

The transfer of a specified variable is said to be "thermally

driven" if no new variables other than those constrained experimentally

are needed to characterize the new state, and if the Lagrange multi-
pliers corresponding to variables other than those specified-remain
constant.

Returning to our original ensemble, suppose that in addition to
specifying the change in B we also include information that the inter-

action was constrained to constant C. Then the initial MEE ensemble is

as before, i o A + B,B
EE ]

I
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with <A>' = Eﬁ] and <B>l = I:B]

It [E] — <B>\ + [A B] by a thermally driven process, then

the clause "no new variables other than those constrained experimentally”

means that the new ensemble has the form

0(,2A+'/33.B +2”,LC’

= %
P& Z 4
with
<C>z = 4C>' (2.26)
and

W

{By, -<8)+ [aB)

The change in A is not specified so we apply our "thermally

driven" assumption to it;

A, = ai.l (2.27)

There is no restriction to the three variable case. In general
let [A Fn] be added to a system characterized by values of F' se e Fn
with experimental constraints G' e v Gm . The MEE ensernble

for this system is

N
> A F
+7 =
.F - 2 (2.28)
initial Z initial
Where as usual the \'s are determined by

<Fj >ini{ia.\ = Tr [-FJ Fin'ﬁ.ialj (2.29)
Y_Fj ], AR
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Assuming the system to be thermally driven from <@§;> initial to

{F, ) initial + [AF]with G, « + * Gy held constant leads to

_ | m (2.30)

"final

+§ >\.F‘}—>\ Fn
‘j=l J J

with

(Fn> initial + [ A Fp)

{7, final

and

Co;) finel <Gj_> initial , | £ &M

The generalization of "thermally driven" to include constraints
was relatively simple, but it provides a powerful extension to our
theory. The original singling out of a particular process to expect
in the absence of detailed knowledge was bassd on the assumption that
the state of the system determined the process. This is not necessarily
the case. But our extended definition incorporates all the constraints
in the transfer mechanism; it applies the assumption of a particular
process only to those variables whose changes must in fact be determined

by the state of the system, if they are determined by the experi=

mental process at all; i.e., if there is a reproducible phenomenon to

predict. Hence we have good reason to believe that any non-dynamically
driven process should in fact be well described by assuming it "thermally
driven". At least by assuming a system to be "thermally driven" we

have a general prescription for converting information on source terms

into an ensemble, and can then see whether predictions using this
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ensemble agree with experimental observation. To be more precise,
in experiments where a driven change in some variable produces
reproducible changes in some other set of variables, the "thermally
driven" assumption allows us to set up an ensemble from the driven
variable. We then expect this ensemble to correctly predict the

second set of experimentally reproducible variables.

4. Time Dependent Thermal Driving

We have a reasonable prescription for the new ensemble produced
by forcing a discrete change in some system variable. The next step
is to extend this to systems driven continuously as a function of time.
The instantaneous ensemble for a continuously driven system is easily
obtained by a limiting process involving repeated application of the
basic definition of "thermally driven". Note that the ensemble for a
system with time dependent externally driven terms must be a function of
time, incorporating the information on all driving applied to it up
to the present instant.

Consider a sequence of density matrices obtained by adding

[AF, ] with @, constant to P, to form f, , then adding [A F, ]

F,
2
with Gl constant to P, to form P:. , ete.

A A

with

<A>o —- [A] (2.31)
OLA + }/|Gl +>\'IF'

<
!
I
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with
{A), = [4]
<8, = <G, (2.32)
KR = KF), + [AF ]
P - . oL.A+.§____ Yo Gt 7\»,;.‘:,4—
with ? —{ﬂ B

The Fi are any operators we control, and Gi is a constraint imposed

on the transfer of F;. In particular we can choose the Fi and Gj

to be the Heisenberg operators for the physical gquantities F and G

at the bime ti, LHE LHE
_ _ H TR
LHx LHE (2.34)

= = L T W

where H is the Hamiltonian of the isolated, non-driven system. Further

specialize by taking the ti to be ordered and at constant intervals,

AXi— *%L_ [ = A y

Define

Ny T Ak AU

(2.35)

Y. £ AL Y(*;o)

Yy



Then

with

and
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(2.36)

Z7 g ]}m * i AL [A() 6, A () F,tLﬂ

fe

n

<A, = [Ag=o] (27

L < 2.38)
<F;&,-_>;t,; T (gt [aFgd, 1 4sn |

= e . (2.39)
<Gf'j,>j.'i.- Gy dx,, , 'e+~%"

Condition ( 2.38) can be written

{Fepox, = CFed (2.40)

where [ ¥4 . ] is the experimental value of F at time ti, since
ki

[aFy, 1 = CFi;d — <Firy oz, .

Expand Py . about ;ﬂt. . finding to first order in
~ ) ot

At X (D) Fok YD,

or

(2.41)

. ) Kki.
O <6kl.>t,i_ "<GXL>IL_| = A% >\' & GJC,LF’t,L

]

£4
YAk 1((15;))<(5;i‘65}gL

Xa
Kei. Fr.
Y (£) = - K(/b;).—t.*" L .
K L
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where KG;tL FJL i

is the covariance of the operators G /tk

and F . evaluated in the ensemble .
XL Z A’ (2.142)

‘ "XQ}V\ . X
Ta [J:ol%.c FJtA,F& J?‘+ -QMft.GAL ﬂt]

T [Py Ay | Tn |Gt Pt ]
= (B Ga ), — Gy <o

Now teke the limit 5 o0 , A £k —> © nat — k.
Then

K L
@y, Ty

(2.43)

f = 2 sty [242 YR 6() + A0 Ry dr')

with
<A, = [A;= o] (2.1k)
<F;t’>;t’ = EFX] (2.145)
and
t/
or 2 + Y(t) KG*’ G,t,
V) = - a() S e e
e . -

Although (2.L1) is a first order approximation, in the limit

A £ —> 0 it becomes exact, equation (2.46).

Expression (2.43) with & o Y(k') and X_(;':’> determined "by

equations (2.44 ) - (2.47 ) is the formally exact density matrix for
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the instantaneous state of a system with a time-dependent "thermally
driven" variable. Equations (2.43 ) - (2.47 ) represent a considerable
simplification of the general problem; they involve only the dynamics
of the isolated system, with the actual details of the driving inter-
action replaced by source terms. Of course whether the "formally
exact” density matrix (2.43 ) has anything to do with experimental
physics depends on assuming that the experimental process is character-
ized as thermally driven. Above I argued for this assumption. If we
accept it, then the density matrix (2.43 ) should predict any experi-
mentally reproducible effect with no additional restrictions. 1In
particular (2.43 ) - (2.47 ) are not limited to first order departures
from equilibrium, or to slowly varying disturbances; nor was local
equilibrium assumed.

For simplicity the derivation of expressions (2.43 ) - (2.47)
was carried out with a single driven variable and constraint. The
generalization to n spatially dependent source terms with m constraints
is straightforward.

The density matrix for this general situation is (sum over repeat-

ed indices) (2.48)

fe = z, sfp- [ A A +-£td5e, fka%' Y (5 £)6 (53 %)

£ !
+ [ &’[ da” ALG(;LI)FL(X;‘()]
o R
with

(2.49)

Pedio = Lo g
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$atsed,= [Re], , Vi (2:50
..é ’ ! : ’ ’ =
A’ <GL(X)i)>t <Gﬂ_(>(,t ))*‘, O., VQ (2.51)
where (2.50) and (2.51) are required to hold in the region
X' &R (2.52)
;6' < [;011:]
Equivalent forms for (2.50) and (2.51) are obtained by differentiating
<FL(XJ £ )>k and <GL(X’, i,)>t,
(2.53)

GFL (x,8) ~ % <F‘-L(;<,JL)>;t —-(Fi (x,t)>x
' £
= /da)" KF‘L(XI *)Fé (%i))i (X',;t)

’ £ .

and

e  (a.
0 = [dn' Kg s nF }cx;t))\é' o P

-!-/MI Kzﬂ(x,'&) Gk(x:ﬂyk(x’,k),\vll

As before, the definition of the covariance functions is

(2.35)

k _ N
KG&(&M}@'AO = I UW ,, &Fé(x,‘:t')

x o= fi gl(x,ﬂ/)x]



— T, [FJ (X',il)ﬁt] Ta ]:Gi(x,i:) F,t:)

<SRG Gy by (2.55) cont

w—
——

T Oy <Gy D

5. Interpretation of the N's
All the information on the driving process is contained in the
A's and 7'5. Formaliy these are determined by the macroscopic in-
formation through equations ( 2-50) and (2-51). The exact solutions
of these equations would be difficult. However, the AF‘:()(I{) have a
clear physical meaning implied by the expressions ( 2.54) and (2.55).
Consider first the limiting case of a single driven variable

with no space dependence and no explicit constraints. Then

AT RGOVERGO>

= A KW r@)

The quantity f_F<F (-k)) is the total rate of change of F in

(2.56)

the system; the quantity <I“(t)) is the rate of change of F determined
by the ensemble from the past behavior of the system. 6’ F ()‘»’)

is then the total rate of change of F at t minus the rate of change
produced by internal relaxation; i.e. it must be the rate at which F

is supplied to the system by an external source, and is thus appro-

priately called the source strength. In the usual experimental
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situation it is this source strength which is directly measured.

The equal time covariance function K)%'(.{')F(,'Q also has a
simple physical interpretation: it is essentially the mean square
fluctuation of F at the time t in the ensemble ?t . Hence A F(‘*')
is essentially the source strength at t "normalized" by the mean
square fluctuations of F at t.

Suppose the transfer of F takes place with the explicit constraint
that no G is transfered; i.e. the source strength of G is set equal

to zero. Then

i) = %(F(j;)>-—<(g'(ﬂ> (2.57)
_ = % x
MR LT A K
and '
0= % <em>-<6 (k) (2.58)

£
>‘F<*) Kepp Fe + Agt) Ké&)G&)

Solving the second equation for A o(t), we could write this as (2.59)
2

Kt
o £ FR G
&) = AFK F;&:["‘ x 3
F F \ F)T () KEwF@mRemem. -
KXe(
The additional term x is a measure of the
| KEwr®) Kee®
strength of the correlation of F and G in the ensemble 7{', . It

is convenient to introduce a new variable F': — -

F'x) = F(p — Kaw F&) G (k)
K*G(*)G(*D ‘ (2.60)
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Then in terms of this variable the equation determining x F(;t) becomes

4 , £
O - Mew Krwr (2.61)

Hence the constraint merely changes the "normalization" of the source
strength, and does not affect our interpretation of A g ( X)) as the
"normalized" source strength.

Greater complicatioh arises if the system is driven by a set of

variables. The N's are then determined by

| (2.62)

5 7 2 KE om o N

- L=le«N
O;:i.(i) : F: ) F () Ry (2
2'7.1 A a. 3
It will be shown in section (5.1) that the FL (%) form an inner
t

product space with the inner product KF.L (ﬂ F é’ (£) . There-
fore it is always possible to find an orthogonal basis FL (1) for

which equation (2.62) becomes

(2.63)
L

- - . . . h
TOp- ) KF:-L(:O F;._G:)XF;&? Lo j

on this orthogonal basis our interpretation of the A's is preserved.
The generalization to spatial dependence introduces a new problem.
The equation determining A(x,t) for driven F(x,t) is an integral

equation in space:

o

O ety = & KPP - <F i)

(2.64)
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v R
) :'/M K J—‘-(xli)F (.X',.t)>\F(X') t) )V XE€R

In the linear approximation this integral equation is easily handled
by letting R —> P and using Fourier transforms. More generally, note
that for gasses and liquids the equal time covariance function is
usually very sharply peaked relative to the width of the sourcé term;m

thus in this spproximation,

2 o sy (2.65)
O_r (x,%) >\F(x’,x) /Ow K F &4 F (K L)



CHAPTER III
BEHAVIOR OF THERMALLY DRIVEN SYSTEMS

1. Comparison of Dynamically and Thermally Driven Systems

Driven systems fall in two categories: thermally driven and
dynamically driven. Equations (2.18)-(2.54) give our prescription
for the time dependent ensemble of a thermally driven system. Now
let us compare this formalism with the standard treatment of dynamically
driven systems.

By definition an isolated system is dynamically driven if the
Hamiltonian for the interacfing system is the Hamiltonian of the
isolated system plus a known interaction term; H = Ho"l' HZI'.

In general the interaction involves scalar and vector coupling of
external fields with various physical variables. For simplicity let

us take the particular case of a scalar potential field coupling to

Hy = fob)a Px, £) nix,x) (3.1)

At time A£=0 assume the density matrix to be )0 (©) . With

the density,

H° 5 HI, and f(o), known, the ensemble for all later times is determined
by the equations of motion. In the interaction representation the time

development of the density matrix is given by

Fle) = VE) Pl Vi) (5.2)
with . i ,
Vi) = T [- = 5; Hr, o ] (3.3)
Tn this representation the time development of an operator is

A AL
o) H°tF° {,_%—H°t (3.4)

Fx""_z,

-25-
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Hence the expectation value of any physical variable at time t is

given formally by

(FrA), = Tw [Ft P<t)] (3.5)

The relations above are the analogues of relations (2.48) - (2.54)
for the thermally driven system.

"The expressions for F ( %) and f £ ore of quite different form.
As one measure of this difference, note that the information entropy
of f?{) is constant, since it is obtained by unitary transformation
of fYo)6, while the information entropy of f%t is in general not
constant. This indicates that the class of density matrices for
thermally driven systems is wider than the class of density matrices
for dynamically driven systems. In fact we can prove that for any
dynamically driven matrix fﬂgt) there corresponds a thermally driven
matrix F‘k‘ such that PJC‘ = F(i) VA 20 . The converse is
not true, as is obvious from the fact that P (J(:) is restricted to
unitary transformations of f7Co> , whereas no such restriction applies
to f?z?
Préof:

In deriving (2.48) - (2.54)it was assumed that F was a Heisenberg
operator for the isolated system Ft =2 i & 2 ‘%‘n't
since this corresponds to the usual experimental situation where a
specific physical variable is driven as a function of time. But this
assumption was not necessary; (2.48)-(2.54%) hold for any operator

defined as a smooth function of time. In particular we can choose
= d.

Then taking G = and ﬂ = P(q) , the thermally driven ensemble is
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o= 2 A +S.E NAIFys
r = _ -
Zr (3.7)

ap + L fB)— I Plo)

——

Zt

I

o v P£) — Qe Z(0)

Zr

Hence, using

Z, =
T 2y R LPW]) =1

Tr EL,Q,.._ PCEY — Qe Z@)j

we have
P = PE) (3.8)

Thus we can always find a thermal driving term producing the same
ensemble as a given dynamical driving term. The price ﬁe pay is that
the physical interpretation of )\(“.’) and Ft is no longer simple.
If we represent the variables of the system by Heisenberg operators
then in general Fik, is a complicated time dependent linear combina-
tion of all these operators. That this complexity should arise is
quite reasonable; the degree of microscopic control assumed in dynamical
driving is much greatef than that assumed in thermal driving.

On the other hand, it seems equally reasonable that most of this
complexity should not appear in the linear response region. This is

2 °
indeed the case, as will now be shown. Compare ‘f%e and f?(*) :



28

(3.9)

P =£) i (\Ce ) BB NG Fx""’%) o’

To lowest order Fot-: )5(*) requires
p [ No (R CFER) o
RN LRI [y &,

If ﬂ, is the canonical or grand canonical ensenble,

Po = ,o.,qo f— ﬁ( H- M,N)J , the commutator on the right obeys the

Kubo identity.T

__*;'H__. [YT(X,k,),Fa] = [')’ K% Y\(x/;*:> (3.12)
where ! MP
nx£) = f Al 27 v 6 1) X
3 (3.13)
= —ﬂ‘— j;po(.u. n(x 4-iha)
Hence f GIJ)(’ )k(x:i) (F(X;t)—(F(X’J _i>>’> (5.18)
- | = “jd%'ﬁ¢(x}/f) ﬁ-&—;—a
It is convenient tq introduce the force field
g(ml;&) = — 7 $0x,8) (5.15)

Then using conservation of particles

Y% (X/t) T 6-;()(,*) =0 (3.16)
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we can do an integration by parts to find

j' A’ PNES j:) (,Fitfx ) - <:F3t(><');>\)
=+ [ A E (B F050)

The external potential was assumed to have a finite range so that the

(3.17)

surface integral could be neglected.

Hence if we define a thermally driven variable by
Fx) = gt(x) (3.18)

and a corresponding source strength by

A& &) = S E(x\ %) (3.19)

then to first order the resulting thermally driven ensemble is
equivalent to the original dynamically driven ensemble. The physical
interpretation is that in lowest ordér a potential coupling to the
density produces the same effect as an external momentum source.

The condition (ill)for the first order equivalence of ,/it
and jQCk) holds for any choice of external field - physical variable
coupling for the interaction Hemiltonian. Hence to first order an
external field has the same effect as some source term. Conversely,
in first order the source terms of a thermally driven system may always
be interpreted, through (3.11), as some interaction Hamiltonian.

This is an important point. It is always possible to treat linear
response to thermal driving by introducing some appropriate pseudo
Hamiltonian without ever introducing the MEE thermally driven ensemble.
This approach has been used extensivel;y8 in deriving Kubo formulas.

' It suffers from a severe drawback, however; without equation (3.11)
which came from the MEE prescription there is no exact procedure for pick-

ing the pseudo Hamiltonian corresponding to given driving terms. In
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practice the psgudo Hamiltonians are not directly identified as source
terms. The connection is made through a hydrodynamic model, using the
response to the pseudo Hamiltonian driving to obtain expressions for

transport coefficients.

2. Response in the Linear Approximation

The general equations (2.48 ) - (2.54 ) are the analogue for
thermally driven systems of equations (3,1 ) - ( 3.2) for dynamically
driven systems. In both cases the general equations are usually
much too complicated to be solved exactly. Fortunately most experi-
mental relations reveal a first order dependence on the departure
from equilibrium. For this reason, the much simpler linear response
theory obtained by expanding (3.1) - (3.2) and (2.48) - (2.54)
to first order in the driving terms & , A\, and y is of primary interest.

In equations (2.73) and ( 2.7k ) the covariance functions appear

multiplied by A and y. Hence for linear response it is sufficient to

take the zeroth order expressions

o — (3.20)
KGK (x,K) Fj x#) = <F § ) G (X)),
- < Fj (¢, £, <Gybs 2>
For a homogeneous isotropic medium, the correlations are function only

— D
of X -X'andt - t';

iso 1 1Y — = Y
ng F (-, 10 = {Fjloe G (nox, £,

(3.21)

- Fj6eY, <&y (0,90,
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Hence the basic equations for the linear response of an arbitrary

varigble J in an homogeneous isotropic medium are

(3.22)

DS <j(x'i)2'*[ ;ildd' 7&(%',!:’) KJG((X-XSJ&-L')

b4 .
. +£ Ak /'l dx k,-}x,k’7 KIFch-x',;e-t')

with
ﬂo = ?'BH | (3.23)
G 0t - [ A K p Cmiol (i)
_ . (3.24)
"'/ROW' KFLGA(x-x‘,o) Y!L(X',t)
and _

O “-/RM' Kel;:# (x-x'.o7>\9-(x',;t> (3-25)

+ /R dn’ KGZ Gk(x_x; o) \(k(x’, 1)

Note for physical interpretation that the simultaneous correlation

-Ix' will usually be of very short range; thus th
<FL(x,;tvFQ(X,r)> y y nge; thus the
source terms at (x,t) are essentially proportional to a linear combina-
tion of the A's and ¥'s at (x,t).

The basic linear response equations are much simplified by

considering the region R to be infinite. Then taking Fourier transforms,
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* 7
LT = <3O+ [ o Yqlet)Kyg Cetet)

b (Fd g Ued) K (k£ )

o (3.26)

with -3 H

ﬁ - "‘2%;’ (3.27)

c;h(k,i) = KFLFj(“'°> Xé(«'e,vt)
+ KFJLGL (}e.,o) Yz (le,,k-) -2

and

0 = KeyFj (Je0) N (e, $)

(3.29)

+Kg o, (R0 YVigled)

Since the form of these relations is identical to the dynamical
response form, the linear MEE thermal response is conveniently ex-
pressed in the familiar dynamical response notation.

Consider the electrical conductivity. First order expansion of

~f7(£)13ads to the Kubo expression for current at (x,t):

| (3.30)
{fxED= ﬂjtobt' ot K—H (xx, 4D E (x! #7)
(3.31)

where

5= (x-x i-_;t') = () (o0) \ <><—x’,7t-k’> 2
K?otﬁﬁ( ! Qa7 %
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It is customary to turn on the interaction adiabatically f;'om an
initial equilibrium ensemblé at — &< . This simply changes the lower
limit of the time ;'Lntegration to~ O . Fourier transform in space and

time: N _ o0 4 , jbuf
<9(F,t)>=ﬁfoa[mdx ry 9()0& i‘t> E(-’C.t)

(3.32)
=R [ Lot K-ﬂ*@,df (e)

where the Fourier convention used is

£ )= [ i

(3.33)

f di—_ﬁf""t L£(x, %)

Define the full Fourier time transform and the imaginary Laplace

time transforms of the covariance functions by

and

= rwl "(je.,i)
}j ey - J at K g (539

Then the conductivity tensor is

o <Aalkwd gt ()
Oxp (k) = g e w) P ds

(3.36)

The relation between Laplace and Fourier transforms is

(ko) = Zim L f@Kﬂ(k“")

39 €0 2TL "\:J(’Uw - L€

(3.37)
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o , K . (JQ w’)
. i - dus’ DA IR,

Since Kjj (k,t) is a symmetric function of time, Kjj (k,w) is real.

Hence

R KZQ (Jew) = L K(jéo%“’) (3.36)

and

D Kzé( k)= 25 P f:wl Kij (k,w)

w’ - w

(3.39)

e

The importance of these relations is that Rc_, K (JC.,UJ>
measures the dissipation of power in the system while Q—m K+< lg,w7
is a reactive term. To be more precise, from the. theory of conducti-

vity the definitions are admittance,
t, :
Oopp (kyw) = B K émg/a(k"") (3.40)

conductance,

Ra O;Zﬁ(Je,uQ = &'K%d.j ﬁck'w') S

and susceptance, ‘ (3.42)

—%'n O;(‘)g ()Q,w) = -—}3 QMKE.«_?/S('JE’W)

To illustrate, consider the behavior of j(k,t) as a function of

the past behavior of E(k,t').. If we assume E(k,t') = E(k’w)e—iwt"
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then the rate of energy addition to the medium is

P (k1) =&,<g,(k)x)> - Ry E(k,4) _

= p e (4 gCROIE S0 2 )R, (5 ke )

.
< B ey [[K g Jaitdrig

where

& =W-I —ﬂmK*cw) G4

As asserted, the time independent rate of power loss in a system

' +
driven at frequency & is proportional to &Kak ﬁ (w) :

wag_

But the general form for linear response of thermally driven

(3.45)

= % EA("k’ w)Eﬁ (JC/UD&Kg_m?ﬂ (“pe'_)“’)

systems is the same as (3.30 ), with the driven variable F replacing
j and the source term A (x,t) replacing E (x,t). The linear prediction

for F at (x,t) is

(o)) 2 <Flabd +
/M'ﬁiou’d/x’ KFF (x-x’, _;é-.—-)(—_l) N ch ,'i.')

(3.46)

r 4
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with o
— /
Koo (R370) X (&%) = of )
X
OgF_- is assumed to be the experimental information. Taking Fourier
transforms,

Flk,w)) = I<::F(1¢.,w) ANk, w) G5

In order to speak meaningfully of "resistive" and "reactive"
parts of K* it is necessary to have an analogue of the energy added to
the system. This is furnished nicely by the information entropy,

defined

Slk: '“T’b[?,t’q”"ﬂ} (3.49)

Tt will be shown in the section on entropy thet if the interaction

transfering Fy to the system does not couple to the Hamiltonian

(i.e. Kﬁx—’ﬁ = O ) then by (k.12) and (3.46),

3"17h NI <F,t>o> |

(3.49)

This has the same form as the power dissipation(3.43 ), so for a

source term )\(k,‘k) = )\(ngur) _Q_.—'Lttvit"

Sr, = 7% 3 Uewd [| Kip (k)| cos(2 k) + KoKl
W
with (3.50)

_ 1 = 8m k*(k,___w)
6 - tan” ( Re K (k)
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d—

(-3
_ 12 +
S]_',k WW -2 )\ (J@,ur) Ky, KFF (le)ur) is interpreted
as the minimum time independent rate of entropy increase of the driving

reservoirs necessary to maintain the sinusoidal variation in F.

3. Kubo Formulas for Hydrodynamic Coefficients

If we drive a system in some fashion and measure the behavior of
some set of variables, we are directly measuring the experimental
Green's function of the response. In the hydrodynamic region this is
also the Green's function of the differential equations obtained from
conservation laws and ad hoe constitutive equations. Thus experiments
indirectly determine the parameters in the constitutive equations.

But the fundamental quantity is the Green's function rather than the
transport coefficients;kﬁpe Green's functions are perfectly well defined
and experimentally accessible quantities even when the ad hoc constitu-
tive equations are invalid.

This is certainly well recognized for dynamically driven systems.
Dynamical perturbation theory automatically yields response functions
relating applied force and resultant flows; these response functions
aré accepted .as the fundamental physical quantities. Our approach
to thermally driven systems yields expressions of exactly the same
form relating source strength and resultant flows. It is the covariance
functions appearing in these relations which should be cpnsidered the
fundamental quantities, rather than transport coefficients, since it is
these covariance functions which are the experimental Green's functionms.

‘ Nevertheless, for historical purposes it seems worth-while to encode

the correlation function information in generalized hydrodynamic
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coefficients. From the expressions for the generalized hydrocdynamic
coefficients in terms of the correlation functions it is easy to pull
out the so-called Kubo Formulas.
Consider first the expression for thermal conductivity. The

conservation equation is

—\ s
V-3, ¥ &= o (3.51)

and the constitutive eguation defining the thermal conductivity is

taken as

J. = -Ave (3.52)

If we generalize JA_. to non-local space and time dependence. then

- this becomes (3.53)

N , t -1- N _/t/ Y 1 1/
T b = - [ [Fat MG ARG 2 G
3 J o |
Taking Fourier and Laplace transforms, the solution of ( 3.51) and
(3.53) is
Oo"'g Cha“) (3'5&)

)= & —
& Qe — AW +-/\.(k2,w)k1

On the other hand, first order MEE for thermally driven systems

gives

(3.55)
£ (x, £ - [M,/t AKX (x=x) 24D X Gy

or

€ (e, )= K:i (o w) AN(k,w) (356

with the source term
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G (kw) = Kge Gl 2200 X(h,w) (550
Comparing (3.4 ) and (3.56),

K:z. (k"w) — l
K ¢ (e, %=0) “iw + A (e, w) e
” (3.58)
K _(k £ =0) .
- €T ) oW
Atkw) = Sy W K

This can be put in a little neater form by using the identity

(3.59)
S8 . apt . _
e K3 (Rw=w K, Cep) + bk g Cle,d=0)
which follows from the conservation law ( 3.51). Take & in the i 2

direction:

(3.60)
EL E,%’ K_a__;’—_‘_):; (Ilw) = lql KTg,a:a—E.,ﬁ ()Q,Iu))

2 + .
K () = e K;,a:r,a (d,w) + 2 Kgg (R, £=0)

Using these, (3.58 ) becomes
(3.61)

K:r }Q w)
%J. ch W) + Kei_("k £=0)

For the limit k.—-> O +this becomes the usual frequency dependent

,/\_ <Je,w) =

Kubo formula
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+
A (ksow)= KT,?T? (le—>ow) (3.62)
Kzs (k—?o,tﬂg

This may be cast in more familiar form by evaluating

K (’?.—701 =0 ) through equilibrium thermodynsmic ‘derivatives.
e

Letting H be the total energy of the system,

Keg (R0, £=0)= <H € (x=0,%=0)) -<HL<EY

= __&____ (<HH?° —-<H>c, <H>o)

IRy PR

T—:L hBCV' | (3.63)
_V-

So finally for the frequency dependent conductivity

(3.64)

A (h—>ow) = v K 3, (e—>0w)
kgT2Cy 37

and for the static limit, (3.65)

== _._:._V_.._.__._. aQ‘:IW'I vQA.M\ * (k,W)
—/\-unstc.n‘t k-stCV'~ w—>0 J—>0 K:y?:)?

(Note: returning to equation (3.58 ) the static thermal conductivity

is also given by

| (3.66)
1 S i e*Kee Uew)
A ko w7 Kes (R, £=9)
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This might be a more convenient starting point for calculating the
thermal conductivity‘of crystals, since it is known that gﬁL is inverse-
ly proportional to the square of anvharmonic interaction strength.)

The derivation of generalized viscosity and thermal conductivity
for a viscous fluid involves the same principles but is more compli-
cated; there are now five independent variables to consider. The
linear hydrodynamic model for a viscous fluid is characterized by

three conservation laws and their associated constitutive equations.

These are
V:+‘€7‘.7§ = o (3.67)
__:-__\ _,_-V—"‘:l—--:_ _____—8—_3 (3.68)
: J
£+ v .3—; = 5; (5.69)
with
pc - —_ - _> -
T - 1e- G339 - 2190190
(3.70)
and

In order to get a closed set of equations the equilibrium thermody~

namic relations must also be used:
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T (@), 0+ (), om0

( ) (e - f_)_,_(ar) (n-ns)  (3.73)

The thermodynamic derivatives are

TeR e

I SLTLAL 9

n, C~r
- P = ol
¢ = (2o2F =
(aa>n Cv Ky
D = (.3_“’_) - =% (g +p, - 2T _Cx)
2)77 £ n, C:V-kﬁr e oA

with

(isothermal compressibility)

(]
<
(’—‘\
wiv
30w

2

(specific heat at constant
volume per unit volume)

= _ oV
X = Y \aT P (coefficient of thermal
expansion)
The notation is
n,J for the mass and mass current densities

-

b
3,T for the momentum and momentum current densities

——
3 »dg for energy and energy current densities
S

a - .
On,0j,0 are source terms for mass, momentum, and energy densities,
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47 for shear viscosity / mass density
‘71r for bulk viscosity / mass density
§ =9 + Ny
_/\_ for thermal conductivity
FZ ,E;,ho for ééuilibrium pressure, energy density, and particle density.
Equations (3.67 ) to (3.73 ) form a set of'coupled linear driven
differential equations in the five physical variables n,'ﬁﬂ and & .
The procedure will be to solve these equations for n, 'j? and € and com-
pare the result with the linear response predicted by thermally driven
MEE. Requiring the two methods to be equivalent determines the gen-
eralized transport coefficients.
Substituting (3.70 ) - (3.73 ) in (3.67 ) - (3.69 ), the five

differential equations are

Ra—m}‘ = o, (3.74)

(3.75)
? + C,_Vé&: + D¥n —771:3:‘ ——.!5-(4,4-'7,)77"3‘“’3'

g + (RtEDT. 3 - A(Av2e +BV?*n)= &;
e (3.76)

Taking Fourier - Laplace transforms reduces these to coupled

algebraic equations,

—Awn + JJZ; = o, (3.77)

- nga'" + j,T:Cé + ik Dnp + "}k'zz (5.78)
&

+("3"7+ ’Zv) E\(I:—é\) = 3



e

| (3.79)
e + E2&) R (A s BIW)- &

Define F and ?as the column vectors,

n (Rw) 5’,, (Rw)
éx <,h,(0) &ax (klw) (5.80)

B
]

Ay (k) § =| & (ew
}%(k,uﬁ T | 93

O’% (R,
8.()aﬁ3) ) . )
O (ko
Z
Then equations (3.77), (3.78), and (3.79) determine a 5 x 5 matrix
/(/L' such that
' ° (3.81)
JAL(_. }:_ = 0O

The response of the system to thermal driving is then given by
-1 © 3.82)
({ o = F (

I¥Ed) .
where AL is seen to be the Green's function for the hydrodynamic

equation. This has now the same form as the linear MEE result which is
.}.
K> =F (5.85)

where

¥ = K7 Je.,uﬂ
KAT KF”“FY< (3.8)

and

(3.85)

G (o) =K,=,gpog(k,i——o>>\yzkﬁ
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The matrix KF s F;\ (Je,i'ﬁ o) has non-diagonal elements
only at Kanck’ t=0) and K Nne CJQ, r=°> , since in
the equilibrium ensemble for a homogeneous isotropic medium the
equal time covariance functions of vector and scalar quantities are
zero. We can make the matrix completely diagonal by defining a new

energy variable

, - e(kd)— Ken(k,t=0) o (k, £)
e () Kom (e, £70)

(3.86)
- e () - &y (k)
and its associated source strength
o - o
Spr T G — & 0, (3.87)

Tt is also convenient to absorb the normalization of & given by the

K Fa Fa O(, t= °> matrix, in a new K matrix:

K*é =F

where + (3.88)
')’<+ o KF&FY (k,w)
Y -
K Fa FY (h)t-O)
and the F and 3 matrix are now
n 5"n
i O3+ (5.89)

F - : 5
a'a‘ o = o-a‘a,
%? %%y
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The L matrix is modified by the addition of the extra terms
- %—: LK —é} and _A_Ak_" .g_:_ yi  on the left hand side of

-]

equation ( 3.79), and the replacement of %‘_ by 0&, on the right. Also,

equation ( 3.78) has an extre term ’ﬂzc_ Ao on the left.

a.
Now we have

Mt = F
and (3.90)
K& = F
Requiring these to give identical results for any choice of driving
terms determines the relation between the covariance functions and the
transport coefficients.
Siﬁce there are only three variables inkl to determine, we can

solve for them in terms of three K 's
pK:w, = (M—l>mm
0){:\2’;": (M--l)mi’

A J.\x (M ')aya*

(3.91)

Tt is convenient to introduce N ©and K re as well
3¢y e’s

although they can be expressed in terms of the first three.

S —
For the particular choice =3 1 k , the /lL matrix is:

2

i
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- aw o o it o
o — LW . o o o (5.92)
+o;k.
l o o) AW o] o)
+ok®
7
ik(+Cd) © 0 - AW Lka
+g k*
o o . /Po +£° d\ -.LU)
° \ Yo -:_)‘h + AL A\t

So the necessary relations are
I = (Fiw) Ciw +-;]k’~>" [Ciw+Ek¥) (~iw+ A AkD (5.9
tehr( Bl _dy]

b le2(ct + ndd)* [(04C %E-)(- v A AN,

= codet U
dP(tur\ ceaetUnn _ [ i].

Det ML Dc_t M/(”LUJ"‘?JQ")L (3.94)
K" = codetlUsy . _-C k*

he’ Det AL Det M | i o "‘7»‘2")9‘ (3.95)
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(3.96)

¥ tgt = QOAQ{HZIC’ = ("}-w) (".l'.w +Ek")+J{"<D+C é)
free Det AL Det M [ (-dw + gk *)*

(3.97)

+ - Coc(ef'l_ja.g‘;g _ (‘Lw)(;iw + A Ak?)
K Det AL ( Det M/(—Lw—+7zk")?‘

gxé" = godet ijﬂx = : (3.98)
De,t i, —Lw + ’}7.)2»&

The last equation determines shear viscosity directly in terms of the
transverse velocity covariance function, as is reasonable. Expressions
for bulk viscosity and thermsl conductivity in terms of covariance

functions are

(3.99)
2 + o= (=, f_"_§£. - 2 * )
(—Lw +E k%) ’Ka%} Ciw) ( \:\-o q)?(hz,"' (“-‘")‘Ktm
and (3.100)

1 (-iw) Ko = & LO+CR)Cio+ A AR [Hpe

as may be verified by inspection. By conservation laws and symmetry
arguments it can be shown that the parallel velocity covariance function

K% h is essentially K,m. Hence 7, § and A are determined
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by the three covariance functions ?‘( nn J‘K:\é-: and K}xax
To obtain an explicit expression for _A.. it is more convenient to

introduce o)’<5'£' and find (3.101)

(ciw A Koe = i) (BrEe - )+

so that equations ( 3.98), ( 3.99) and (3.100 ) have essentially the

same form in the long wavelength limit:

Livn Kn ,(Jq, i:) Knn (k,*) — > constants

k—o
e Gy Ko Go) oy b
U k—so AW

Tt is customary to give expressions for the generalized (frequency
dependent) transport coefficients in the long wa.veiength limit. The

passage to this limit is facilitated by the identities

a\°<h;_, (kw) = Ké (k w) (3.102)

11'_ 9
- )Q_’- K* A (3.103)
X,w) = == (do ) +
X“h ( ' 399‘

", Ay (R,w) = K (K, w)+ (5.104)
3 3‘ w*c T; T'D

(3.105)
w*e

¥ N Jow
/\2939 (e, KT;@'%L -
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and
2 + .
p}{r, (Je w) = J°. KJ. ;T ('k;‘*ﬁ’*'%é (3.106)
E'E’ a E, VE
w Jr' /9 9
which follow from the conservation laws. The—lz vector is taken in

-—
the .1. 9 direction. The small a, b, ¢, d are the normalizing coef-

ficients introduced earlier; they are time independent and in the k=0

limit may be evaluated thermodynamically:

2 -
a = Khh («k)*':o) = noﬁk'l— (3.107)
TCv
b Kgg (JQ»I ) ke .}3
c = K ) .)Q o) —|— Ne
: jrgr (k=) = 2
¢ 2 Kpe (R#e0) =, 2= K EaR%T

With these identities (3.100 ), {3.101 ), and (3.103 ) yield the exact

expressions
L K? T (kuﬂ
7 = & Ax | X0 ' (3.108)
) = b +
-4 we k<:r§}x—ﬁi3}(lﬁz“”>
(3.109)
+ | b+ &  d\pd l
g = Jé_ KT’:)’:’}T TN T me I)Kélgjz’ Kagﬁ'{:.
|- & 5 e K* C’?. )
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and
1L /R +E& P *
JL = KTe m Iz, ( — q_) KL&_‘-{E’} (3.110)
R Y

In the long wavelength 1imit these become

’7+()2,—>o, w) = & lg_x (JQ—‘—>O w) (3.112)

. T Je w) ot ('z—”"‘h
¢+ (h—s0,0)= & KrygTon 7 Ligu 39 P
(3.112)
+ .
r Kiagy oo
e A P K (kr->°u0

.A-+ (_k—)o,u)) = -,'—_C':r K;Zlg’aé,g<k——>0,w>—nocv 33 ¢

| (5.113)

+ +
The notation has been changed to '7 (J(,w) s E (JQ,W> and
-+
A_ (—k,w> since we have actually been calculating the imaginary
Laplace transform of these generalized transport coefficients. The

constant transport coefficients of hydrodynamics are

w—>>0 J2—90

’)Z constant = L Liom 7 (JQ— UJ/

E constant = M E (JE w>

w—>0 Je——;uo
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./\- constant Sum "Q'w“ —/\—-r ("k)w)

w—weo ko

and

These transport coefficients have been calculated by half a
dozen other methods.9 The method closest to ours is the pseudo
Hamiltonian method discussed earlier. Actually the hydrodynamic
coefficients may all be calculated by solving the hydrodynamic

equations for various physically meaningful Hamiltonians}o

The
novelty of our particular derivation is its generality; the relations
are obtained by comparing response matrices rather than by solving
particular cases.

The fundamental difference between the MEE approach and the six
categorized by Zwanzig does not appear in the calculation of hydrodynam-
ic coefficients. The advantage of the MEE formalism is that its valid-
ity is independent of the existence of hydrodynamics. In particular
note that in ofder to put the hydrodynamic equations in closed form

it was necessary to assume local equilibrium. This assumption is

not necessary in the MEE approach.



CHAPTER IV
ENTROPY

1. Time Dependent Information Entropy

The informetion theory approach to statistical mechanics is based
on the fact that there is a unique measure of the information contained
in an ensemble. By ninimizing this information measure (maximizing the
information entropy) subject to macroscopic constraints one selects the
least biased ensemble consistent with the constraints. The question
naturally arises as to the comnection between information entropy and
experimental entropy.

For equilibrium ensembles the information entropy is the same as
the Gibbs entropy.

For non-equilibrium ensembles it does not correspond with our
ideas of entropy. In particular, it is possible to change the temper-
ature of a system by driving it with an external potential - but since
the density matrix at time t is a unitary transformation of the density
matrix at =0 the information entropy is constant. Although inconsistent
with experimental entropy this is certainly the proper behavior for
an information measure; no new information on the ensemble is given,
only the time development for any given ensemble. Alternatively, one
could construct an initial non-equilibrium ensemble at t=0 and let it
decay. For all practical purposes it eventually decays to equilibrium -
yet here too the information entropy is constant, befitting an informa-
tion measure, but not an experimental entropy. From these considerations
one is led to the conclusion that experimental entropy is related not
to the total information but to the "relevant” part of that information.ll

Although information is not lost, it is "degraded". We will return

-53-
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to this point later, offering a definition of experimental entropy along
these lines; but first we shall see that the information entropy for
a thermally driven system has itself a physical interpretation.
Let us examine the time development of information entreopy for

thermally driven systems. The definition of informa‘tionAentropy is

Sl‘k = - Tx [Ftﬁ"'gt] ~ (4.1)

For simplicity consider the ensemble

po= o2 HONO P e
=

with

O (4) = Kf—iFt AN N (1.3)

Then
£
Sy, = A<= [T XAICFU)Yy M I 2y
The time rate of change of information entropy is
0 * Jt
S1, = B N Kig, — X0 [\ KFarecw

This is an exact relation obtained by straightforward differentiation.

(4.14)

(k.5)

—_— S° I £ is interpreted as the rate of increase in information
content of the ensemble. Notice that if the driving source is turned
°
off at Z° , then S'::)E: o , i>7 ; since the system will in
general continue to decay, this shows that the time dependence intro-
duced by thermal driving is unrelated to the internal relaxation of
the system.

° .
Now expand s T £ to second order in the normalized source

terms A (%)
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ﬁ !
f >‘(’U*'(F‘?(a&)l:(@OL":"i <FPy (1.6)
KJSF& = Kt B = ——._a— (Fa)> (3.7)
) TR Y £
- 3 £ (4.8)
g"l_k 2 RAMKye - 1@(1+,e-a-73)£w,),<;1=@_m

where we assumed < F(I))o =0

To interpret the term linear in the socurce strength, note that the

first order change in total energy is

s
A LHDp =<H e - (Y, %L KuE @) A@) !

+ (%.9)
= Kyr j A (L) it
80 OL i
T <Hy, = Kye ~>§(k) (1.10)
Thus the first order change in entropy comes from energy carried in
directly by the driven variable;
S.’Iﬁ A jﬁ: CH> 4 (5.12)

(In the extreme (k) = H , the exact relation is
[ 4 - - t I
o adonss e BOb['r G4

Hence the first order term can be interpreted as the usual J.Q

T
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entropy of quasi-static thermodynamics.
We could remove this first term by considering driving processes

o
which do not couple to the total energy, i.e. by defining F so *<}4F36::<>'

Then . (k.12)

£ ';t
/
S = =A@ [T W) Kepore
Ik o ’

and the entropy change is of second order in the normalized source
strength, >\ (jE) . We want to put this in a form similar to (4.11).

In order to do this it is necessary to introduce generalized equili-

brium parameters corresponding to Jﬁg

2. Equilibrium Criteria

Consider a system characterized by physical variables A and B

in the usual sense. The MEE ensemble is

XA+AB
f = £ (4.13)

z
Suppose now this system (1) is allowed to exchange some physical quanti-
ty @ with a reservoir (2). What is the condition that there be no net
transfer of G even though such transfer is dynamically possible?

The problem is not well formulated. ¥From a microscopic point of
view the statement "G is exchanged" provides far too little information.
As before, in lieu of explicit detailed information on the nature of
the transfer mechanism, we shall assume the transfer of G to occur by
a "thermally driven" process. Viewed macroscopically this is a very
weak condition; any constraints imposed by the real physical mechanism

can be included in our definition ¢f thermally driven.

If we assume the transfer of G to be thermally driven then we
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can associate an ensemble with every possible distribution of G between
the two systems. Thus the problem reduces to finding a criterion for
picking the "best" of the possible- ensembles. But this is precisely
the problem handled by information theory - the best ensemble (in the
sense of being free of arbitrary assumptions *) is that which maximizes

the information entropy. These arguments lead to

-0 (4.1%)
Cff 12

as the condition for equilibrium between (1) and (2) under allowed

thermal transfer
of G

thermal transfer of G. Since the entropy of the composite system is
the sum of its parts, and since the total value of G is assumed

conserved during the transfer, this becomes

O<ds, +45, (k.15)
35\ (AG) " s, ) (-a6)

a <G), Thermal 3467? Thermal
Transfer Transfer

or . -

—B S) 9 S 2
IH4GY/ Triven X&) trsven

Tt should be mentioned here that this "best" result is

)

usually overwhelmingly the most probable. For if we expand the entropy

about the equilibrium value of G to second order, then

= C{ES) -P~'5 552-

Z (23 §<§,’>=) (ae) ) (Z2=5,) 25 (L&)
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_ (k.16)
A-KQ‘ Gl lKG:LGK_

2 s(G )
PRI

as proportional to the probability of observing a fluctuation in G

Interpreting W (AG) =

of magnitude A G, we find this probsbility to be proportional to

(a@)* (L 4+ L
_Q"' 2 KG\G, KézG:Z}

Hence it is extremely unlikely to find the system farther from equili-

brium than

~ 4 {—KG,GI—}—KGQ_GQ

For the particular case of the Gibbs canonical or the grand
canonical ensemble (4.15 ) reduces to the usual equilibrium conditions
simply by using the appropriate constraints; i.e., energy transfered
at constant particle number leads to temperature as the equilibrium
parameter.

Now consider the case where A is constrained but the change in .
B is determined by the thermal transfer process. The equilibrium

parameter for G transfer is

Y ) /ﬂ - p 2 <8>
(3ol T F@) s o

This derivative may easily be expressed in terms of covariance functions

by introducing
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K
Q= @- »6 A (k.18)
Kan
and formally rewriting the initial ensemble
A A +;/3E5 oA +Jﬁ;E5 i‘)\q;'(;’
F = _3—- = & (%.19)
=
where
Ka
K=k 2~ A
KAA
and
;Xg'=o
Then .

_ o<B> (&.20)
(3(6) A B £ 5 <G?2/A, 1

and since the condition A constant is equivalent to o constant,

- 0 <B)
Ye s CE_ZZ-‘,B X, B

( a>\G’> (¥.21)
87\@, x,B \J<G)/xp

i

.y Kge!
kics’c;l -
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This can be immediately extended to the ensemble
+ (k.22)
. o @A TN @ @), isieeen,
22 3

with the result
(L4.23)

£
by F( WY ’
.YG'(JH =-/ dt’ thft)GCi) AF )
o KG'(*)G'&)

The meaning of the equilibrium parameter }’Gu( Jl;) is that if a
system can exchange the physical variable G;(.£) with a second

system at time t (under constraint A constant) then

'YG/ &)) = IXG/“:),Z (k.2k4)

is the condition that no such net transfer will occur.

These equilibrium parameters will be used to interpret entropy
production. Note first another characteristic of thermal exchange
equilibrium. The condition for net transfer to occur by a thermally

driven mechanism is

S S'I,Z >0 (k.25)

Thermal
Transfer of F

0S5 - 5 S, (4.26)

This allows the interpretation of — SELJC as the minimum rate of
entropy increase necessary in the driving reservoir.

Now let us return to the entropy production equation. In exact

form it was
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(1.27)
S, = ANBBKire - )\(ﬂf Mﬁ)KFu)Fw
(k.28)
But Y - 4 KﬁF&:) B f A(t) KF@L) FE L
FO KEer®) KEF®

B YFE) KEBF® (29)

YE& 5}’;- €9)

o

where O').'; ( £ is the source strength for F,

2 = b — F@®
bopy = S SFOD, — FEX

This has the same form as the first order term

= H
or in the case where H is driven, to the exact form

= Bl 2(4; <H)Jt (k.32)

(4.30)

Hence the equilibrium parameters B8 and 4 pla& corresponding
roles with respect to the entropy increase on transfer of H and F.
The rate of change of entropy for thermally driven systems is always
a product of two terms like this: a source term, measuring the rate
" of transfer, and an equilibrium parameter regarded as measuring the
"potential" at which the transfer occurs.

We conclude that the changes in the information entropy produced
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. . d &
by thermally driven processes correspond to generalized -——%:——-
entropy changes; although information entropy can not in general be
identified with the internal experimental entropy, the changes in

information entropy can be identified as the experimental entropy of

transfer.

3. Internal Entropy Production

In equilibrium thermodynamics, knowledge of the entropy as a
function of the physical variables gives us a complete description
of the system.

In non-equilibrium statistical mechanics it is the information
entropy which has this property. By cunstruction, the information
entropy density matrix contains all our knowledge of the physical
constraints imposed on the system. If these constraints are sufficient
to determine reproducible behavior, then the information entropy
density matrix should predict this behavior. Hence in this sense
information entropy contains a complete description of the system, and
is therefore the logical extension of the Gibbs equilibrium entropy.

We have shown that this relation is even closer: in the thermally
driven transfer of F to the system the change in information entropy

is given by a generalized

expression.

On the other hand, internal relaxation is not measured by inform-
ation entropy. If a system is prepared in a non-equilibrium state,
we know that in the asbsence of further external interaction the non-
equilibrium values of physical variables soon relax to equilibrium.
The information entropy density matrix should correctly predict this

relaxation. But since it is constant, the information entropy itself
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is obviously not a measure of the extent of relaxation.

Tt seems desirable to introduce an index of relaxation. This
can be done in several ways, depending on what is considered to be the
relevant information. In view of their essentially arbitrary nature
it is perhaps unfortunate that all these relaxation indices tend to
be called entropy.

The commonest procedure12 is to set up a new density matrix at
each instant containing the instantaneous values of some specified
set of physical observables. Hemce if [ ; (x,j‘.) 1, |L1L&EMN
are given (determined, for instance, through the information entropy
density matrix Fi" } then

- BH + oty (B Fo ()
f = = (133 )

with

T (Fp) =[] 1£1 €

The resultant instantaneous "entropy" is .

d = -*TJL()&«QM)”) (%.3%)

For the particular choice of variables

’ _ Jolx Ao, A H G 2) - Vix,2) 36 A-i G Dn(%,1)

.7_ (4.35)
this is the familiar "local equilibrium" density matrix.
Note that the time development of ( 4k.34k) is obtained by specify-
ing the change in the instantaneous values [ FiL(ﬁE) 1. In turn, these”
are determined by the complete density matrix rather than by ( 4.33).

The rate of change of entropy is thus
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J = p d’diw - Ay (i)it-(&(i)} (4.36)

where

47‘(%,-2 and %G.‘<F*:( i)> are presumed known, and B

and @;(t) are determined by [H] and [Fi(t)] through equations ( L.33).
There is no question that this entropy is a useful relaxation index.

However, it should be noted that only in first order can £ and o5 ()

themselves be interpreted physically. In this limit, they turn out to

be equilibrium parameters such as those appearing in the external

entropy transfer equation, (4.29). It seems reasonable, therefore,

to look for an "entropy” production with the same form as (4.36),

but with the "exact" equilibrium parameters (i.e., with the equilibrium

parameters determined by the jnformation theory entropy). Such an

entropy is presented below.

In equation (L4.29) we found the rate of addition of entropy by
external means to be given by

L
St = KF(:’:) YF(JH KF(*)FQ’) (4.37)

= YF() OF (D (%.38)

where ¥ is the equilibrium parameter,
F(t)

9 Ox
JCF(1)) | Thermally

Driven

= L,
YF(ﬂ = (4.39)

and gF(t) is the source strength,
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(]

= & —{Fk :
O%6) -—Du:<F(i:)> CRE)? (1.40)

Within the framework of our method these expressions are exact.

Since the external entropy source is the product of an intensive
"potential” and an extensive flow, and since the extensive variable
separates naturally in two parts, it is tempting to interpret these

parts separately. Thus

-

n d
4, = Ve o <FE

is the "net" rate of entropy change, and

(4.11)

o

4, : Vecay LER (142

is the rate of "internal™ entropy change. By ( %.37) we have

n - 2 1 j.
’Jt S, + ’3‘7& (k.43)

Now consider the system to be driven by two physical variables,
F and G. In this case (4.37 ) becomes

° £
St = Yrw KrHF® AF@) (h-42)

+ y@(:t) Rewals) >‘G(t)

To put this in the form of (4+-38 ) we must solve

o - * +
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and
o)

x t
Oatey ~ A F(E) Ke(t)Fc;o + >\6(al;) Kg(;t)@(x)

for X p and Ag. Thus the analogue of (%.38) is not

St = Yrx OFg ™ Vo 1%y (.L46)
but

éj; = a(%) é_l;‘(i')—)_ A () O—C:z(i‘) (4.47)
where . . i

+
o () = Eee Keenem Yre = Kewo e Kewew) Yo r
KGG K):y: - KF‘—G KGF

and (4.48)

Kee Ko Yo - Kre Krr YE
Keg Krr - Kra Ker

|

4R

£
Only if KG(*) F(£)~= O  are these expressions the same.
By resolving the source terms 3F(t)and BG(t)into their components,

we find the extension of (4.%1 ) and (4.42) to two variables is found:

dp = 2@ FON+ 4B <)

(k.49)

i’é = a(DFED+ ) (e (.50)

Now let us suppose that the transfer of G is not given explicitly
after all. The condition for this is XGU?) = O . By (Lk.h5)

this implies
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o x
O/F(ﬂ = NFW) Kr(x)F(;t) (4.51)

and

Sap = Nrd Ke@F®w (1.52)

so that the external entropy production reduces, as it should, to the
original value for F alone. But the A G(:D = O condition affects
only 5" F(Xx) and a-é ( i‘) , not their components; therefore (4.49)
and (%4.50) do not reduce to (4.41) and (L.k2).

On reflection, this is a desirable result. It says that the
internal entropy production is a function of the set of variables
used to describe the system, whether or not the system is driven by
them. But thet the internal entropy should be a measure of "relevant"
information was anticipated. We are now simply defining this "relevant"
information as the information necessary to determine the instantaneous
equilibrium parameters and relaxation rates of the set of physical
variables under consideration.

In order to extend fhe definition of internal entropy production
to n variables, it is convenient to use a vector notation.

Define:

(—ﬁ) = OSE ype o= Ye KRR,
FL 5 <ED

N (4.53)
(~>\>Fl - 7\§:L )

(-é:‘)ﬁ_ - 6—1:1. ’
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and

%), K

F,;,Fé' Fi Fé

Then the external entropy production 1is

o —_ —_

S; = me X | (k. 54)

- — -
where |7 denotes the adjoint of TT . X is determined by
. =
so in terms of the source strengths,
o = 4 -ﬁ"l 2
Sr=T"-K -0 | (% 56)

Hence the internal entropy production is

o —

SE-oFr R CF S (k.57)

It can be proved that this internal entropy production is a function
only of the space spanned by the physical variables F, and not of the

particular linear combination.

Proof: let ?‘ be an arbitrary linear combination of the F's spanning
the same space; F' = A« F. Then the new internal relaxation rates
—_ o

F

._:-\ — S—
will be <F° > = A The transformation law for K following from

the definition

R)riry =¥y T<E o
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is

I

i?/=7K-K;JE+ zquirlgf

’

The transformation law for |’ is slightly more difficult to obtain.

By definition,

(T)

Fi

_@_..S_L__ (4.60)
0>/ therma1ly

Driven

KreFs

To evaluate this derivative generally, note first that any density matrix

under consideration may be written in the form

p- 2% (1. 61)
Z
The derivative indicated is taken by writing this as
< X +XF
}0(0() = = (4.62)
Z (L)

with entropy

Sty =~ Z g X <Fpey * InE@®) (n6)

Differentiating with respect to o, then setting o = 0, we find

(

(05x _ KxF (k. 64)
a < FA) Thermally K F F.‘

Driven

and

'(F)Fé - Kgr; (1.65)



~70-
Since F< . is linear in F:; we then have the general relation
XF, 1
—N
T = 3-7 (1. 66)

Putting the three transformations together proves the theorem:

)&j_’ _ T_—:,-/. —R;/_!‘ <F,—-/) (4.67)
—_ == s ; o
-T. K <Fp-4

This result allows us to express the internal entropy production
in any convenient basis. In particular, an orthogonal basis yields

the simple expressions

Se = Yr ® Ocrp) (169

T ° (4.69)
A},c = ’ﬂ;@)ﬁ<ﬂ’u)>

and

o ; .
A} . Yﬁ ) <F1<ﬂ> (4.70)

Equation (4.69) should be compared to the "local entropy" production,
(4.36). Only in first order are oij. (&Y and 7/,-_-‘: (£) the same. Yet
for most practical purposes this first order equivalence is sufficient
t0o make the distinetion a matter of aesthetics rather than physies. On
aesthetic grounds it seems better to express internal entropy produc-

tion in terms of variables with a definite physical interpretation, as

in (4.69).
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The. treatment of spatial dependence introduces further complica-

tions. For a single driven variable ( 4,37) becomes

: £
Sy M Yren K nred Apw,n ™

where .
J S
—t —_— . (L.72)
V= ooty g
and

O'r(xk) - fd”‘ K’ F(x,£) F(x] %) >\F("I'f:) . (_u73)

Defining the integral operator K‘t’) by

< . (L.7h)
AFe A T f"“‘ KF(xi:)F & UFE ),

one finds the formal relation

S - M f dt' Tegn) K F(xt)F'(x £ O? i) T
Expanding @ then leads to

, -1 = (! (4.76)
= [ fap' Trg 9 K5 gpFees STOOR2 O

for the internal entropy production.

The general form for n variables is correspondingly

___:._*l

fd/f/d% l——r (x,%) e K(x £5%,%) * <:F?(x;;tp (+.77)
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—]
where K is the inverse operator defined by
—_ = g} —_
(k.78
AXA) = /d/{’ K " (xt5x,2) = 0 (x,1) (4-78)

The spatially dependent form is much simplified in the approxif
mation that the spatial variation of the relaxation rate is small
compared to the Qidth of the equal time covariance function.

It is convenient in this limit to introduce the integrated

variables

o < [ARET oo

where the region fL is assumed to be large relative to the width of
the equal time covariance function, but small on the scale of the
spatial variation of the relaxation rate. The equilibrium parameter

for this varisble is

— 0 Sz 4.8
\/F G, k) — (+-80)
O J EL(X; L) / Thermally

Driven
Within the range of fL , the value of 'yf.- _n_(x, #) is independent of (}. .
In this approximation the internal entropy production density for

n local variables is

A6 = YFancx, 5 ﬁ- x,1),) e

where the Fj's have been chosen orthogonal.

This is essentially the internal entropy production assumed in

non-equilibrium thermo-hydrodynamics.l3



CHAPTER V
BEHAVIOR OF THE COVARIANCE FUNCIIONS
Application of the theory.of thermally driven systems to specific
. problems demands knowledge of the covariance functions. In all but
the simplest cases the calculation of these space and time dependent
covariance functions from first principles is well beyond our present
means.

Nevertheless, there are distinet advantages in formulating the
behavior of non-equilibrium systems in terms of covariance functions.
These functions are well defined physical quantities. Even though we
can not calculate them explicitly from their definition as ensemble
averages of physical operators, we can still use this definition to
derive general properties which have physical significance.

Alsﬁ; the covariance function formulation brings great uniformity
to the treatment of non-equilibrium systems; the general expressions
are always the same, only the behavior of the covariance function
differs. For example, the response to a density disturbance 1s given
by the density - density covariance function in both the collision
dominated hydrodynamic limit and in the collisionless ideal gas limit.
Hence one is led to view the covariance functions as the natural vehicle
for interpolation between these limits.

In this chapter we will be concerned with the derivetion of covar-

jance functions from ideal gas ensembles, hydrodynamics, and experiments.

1. General Properties of the Covariance Functions

Let Flo » » Fp be an arbitrary set of Hermitian operators, and

-73=
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let )ﬂ be a density matrix with all eigenvalues > 0. (Any information
theory density matrix has this property). The covariance of F; and FJ-

with respect to # is defined
Krory= T [fan g blg p ]

(5.1)

-Tr [FA..)U] TA[Fé' F] )

Three properties may be deduced directly from this definition.
(1) The KF,(, Fé' are real.

This is of course a necessary condition for thermal response
theory to make sense: the source terms and response are real, so the
covariance relating them must be real. It follows mathematically

from the fact that _2 X P cémmutes with f : +

Ky = T [ (L™ a2y |

.'T}'c Elpj TJ”):_FéPJ (5.2)
=T, [/F}-[/o@.&“”‘@” F e xﬂMPJ

ST A1 IRAD

¥
and so by rearranging the operators in the trace, KFj Fé‘ = KFA F4 .
(2) The covariance function KE& F/} is symmetric in F; and Fs.
It is this symmetry property which leads to the Onsager reciprocity

relations.
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Define (5'5)
' -xdmp x Inpf
;:-:Fé.> = [MTJL [& F.o e Fé. ﬁ:}
(5.4)

With y 1 - x this becomes

_ N P ot
<ﬁF9->=["L‘3T” (¥ R re F;}‘]
<-§—Fi>9

W

therefore

(5.5)
(3) The F, - .- Fp form an inner product space.

As Hermitian operators the F's obviously form a vector space.
The conditions that the KF must satisfy to be an inner product
A

g
for the F's are

(2) KFL-FF' Fa Ke, Ek,+ KFé )

A

(v) KXF‘;’F% = XKFLFé

() FiFy :KF-FL

(a) K\:.F

Conditions (a) and (b) follow by inspection of the definition. (c)
was proved above. (d) can be shown by writing K in a representation
where the density matrix is disgonal. Assume O P, " £ /23 <

Sr'"

is the ordered sequence of eigenvalues of / . Then



(5.6)

N
0]
0

Vv
0

@

0
RN
N
ko

<,/
= 2
7R /cot/s/ Lo J\/ol.a()fﬁ/g
1’"&.0(. +1M£3/3 2
+ = = | C sl '=4p
T AN Y ot

Since the second sum is symmetric under interchange of ¢ and 8, it may

be rewritten as

122 &J/n,fw( (l—ﬂ."(ﬁ&“—j%fﬁﬁ))

———

2 <
f>/3 A/M/‘;« B ﬁu,ﬂﬂf‘i 7y

X /Cac/s/g(l‘_g&x’ff@/a).

But for o )8, ,an, Poto('ﬂ/”,g/g>°5 hence every term in the sum is
> @ , with equality only for C,,(_Jg = (O. Thus <C’, C> } O,
with equality if and only if C = 0. Defining ( = F; —<F.>
- therefore leads to
{TcC)=KrF 2 0
with equality if and only if F;L = < F' i) . Thus with the
n

additional constraint 2 o: F:
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the F; form an inner product space. Physically this constraint is

equivalent to saying that the Fj can not be made linearly dependent

merely by changing the constants from which they are measured; 1i.e.

the Fi represent n rather than n - 1 different physical quantities.
Since the F,: «+ Fy form an inner product space all the usual inner

product theory is applicable; in particular, they can always be repre-

sented on an orthogonal basis, and they satisfy the Schwartz inequal-

ity, KFL F.C KFé Fé P ZF.L' Fé' . An interesting consequence
of this inequality is obtained by letting Ff = F(¥=0) ,F'd’ = F&) .
Then KF( £=0) F(k=0)? IKF(t)F(tw)Lso the time dependent covariance
function is bounded by its equal time value.

To find additional properties of the covariance functions it is
necessary to choose a definite ensemble. The covariance functions
obtained from the Grand Canonical Ensemble are of great practical impor-
tance, for they give the first order effects of departure from equili-
brium. For this density matrix the K functions have four additional
properties.

(k) Kubo identity.
For operators F; which commute with the total particle number,

equation (5.1) yields the Kubo identity:

F. = Lcw o X Pe () XP 59

Y .
4 [t B (i)

i\

and so by carrying out the differentiation and integration formally,

L Kry(0Fj e = 5 RO, FEIT
(5.10)
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(5) Time translation invariance.
Since the time development operator commutes with the density

matrix,

Kr @ R @) " Kr (4-4) Fj (2=0)

(5.11)

}<fi£F5_(Jé"j:>

(6) Space translation and rotation invariance.
This requires the additional assumptions of spatial homogeneity
and isotropy; these assumptions are usually appropriate for gases

and liquids.

Kr—' (X, i‘)ré(x TE)= K): (=%, —;t')Fé(x..o +=0)

L o R AA) (53
= KF-:L Fé'

(7) Symmetry in space - time.

From (2), (5), and (6) it follows that KFL F‘._ (X, *)'?K&&(’?’t)'
This has the consequence that the space - time Fourier transform is
real.

Further symmetry properties depend on the nature of the space and
time dependence of the F's. For instance, if F; and Fj are scalars
then by isotropy KFLFj (7:*)= KFL F'é ('Y: £)

A third class of general properties of the covariance functions are

the so = called sum and limit rules. These have the form

/d“’ wn Kpp (k,w) = 5 (k) (5.15)
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j:y;o KFF(VPQ,Q))‘—‘ g(w)/}

-0

and

(5.1k)

The limit k-0 is equivalent to a spatial integration of the local

c
variable F (x ) . The covariance function of this integrated vari-

able is often related to a thermodynamic derivative.

if F(X,i') =n(x,t) , the density, then

For example,

Loy K. o= N (=040, —m<Np<n(e=o, £
A—>0

( o< N>) - n"
Bou /B0 1 KT s
(5.15)
where n, is the equilibrium density and Ky is the isothermal com-
pressibility.
The sum rules over w are obtained by explicit evaluation of

equal time commutators. Again for the case Fix,£) = h(x,#) y

w’-,KM(«E:w)=j,/dw w K,ﬁm(‘:E/W) (5.16)

=3 [io <A, nGe0 4011

([ (B, 2:0),m(R=0,2:0)]

—

where the Kubo identity was used in the second step. Evaluation of the

2 _ k*n
equal time commutator yields /oéw w™ Knn (J;} W) = —;Z:

several of these sum and

[ 4

¢
In the paper by Puff and Gillis

limit rule calculations are tabulated.
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2., TIdeal Gas Covariance Functions

The density, momentum density, and energy density operators for
the ideal gas are

N
n@A =S mJE @®-%) (5.17)
i

.‘C-:

P

&L = 2/{ '—’; ;’_9_: S (X (#) %) (5:29)

L= 2m

The eqguations of motion are trivially inﬁegrated:
P (k) = £ (o) (5.20)
—— —- -
X, () =X, 0 + £ x

m

For the classical ideal gas the trace of P—_—JZ" 2 KH. is

replaced by integration of the N particle distribution function,

N
WG Fr Xy Pu) = ws(x,8) (52

where <= 2
| lg 2. ___,37_
x,p) = ———’( 2”2
wy (%1 Y LT (5.22)
Hence (5.23)

En(@0IN(R0> = i foly, dp, - dx, Ay
N D.

X WS, F00J®) =)

4!
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% 13 -Amx* s N(N-1)
\’f/' 2ﬂm)}l%/“¢ g’x&_}"m—_‘\—f(L

Therefore in the limit of large volume at constant density,

)< hn (X,i‘) = mn, %)1— —ms - ﬂgj‘;'z. (5.24)

Taking Fourier space and time transforms this may also be written
(kP = - k4"

(5.25)
and ] >
1 ~ Em((W
K, (Bw) = mn (az/fm T . ﬂ—r(rp)( )
5.2
Similarly,
(R = RX -
2 N —_.‘ké: Knn X, #) (5.27)

K-ﬂ*(ﬁ,fc)- ;m[ ('*—- ")+ (1% ))Kma?)

[-(_é,,%; (k,w) = [Ja” 1}2 (ﬂ«%)ﬁ] K, (k)

5

S ] :
KHH (x4 = I}Z;_n; Khn x;)t)

]‘< (jz,i) - :oJeJt’* kA ];,t)
" e Gate LRI

2

- w™ |
Kuw @59 = (o + 35 15 + 1 55) Kin®
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The density - density covariance functions for the ideal Bose

15

and Fermi gases may also be found in closed form.

Bose: K (hlw) 3§ '«_TF iM_ ]_,},&‘(3’4 F)z»]
hn 2 Adlwl P '“/}L'(g’f’)"

(5.28)

ShwV
Fewm: (ot p)* (5.29)
k - Y T /OJYL [ jt+ R 2 8’ LJ
Kpnthe) AN Jwlp 1 +0 o7 §7P

The notation is

A

L

>, \ L

2.7k =

( ﬂ ) , thermal wavelength
m
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(G F )

? = 2 , ratio of phase velocity to thermal
velocity
> al 2
/" = ( ﬁ')’) Je ) , ratio of guantum state energy of mode k
- B ea to thermal energy
and ?, = 9 su , AL chemical potential.

Though in closed form, it is still difficult to calculate with
these e:@ressmns. The most interesting feature is that thf Bose
covariance function has a peak for S v (w’V j{% ) .

But even for extreme degeneracy ( ._Q"e'“‘,\_ a "50)1: is of no practi-
cal importance, since the area under the peak is negligible. (The
condition for sound waves is a peak approximating a delta function.)

It is also interesting that in the "low" frequency approximation,

A -2 LL)
4105 =/315w 2 7x10 (l the Bose covariance function may be

written as a sum of produc’cs of "classical" and "quantum" terms"

(k. w) = YTmpg hﬁ -Ng
o A’meu % n‘)(i ) )

(5.30)

\ ﬁ:;T; - [<ro> J(w-) -—<n,>J(w+w,)J

The expression for the p —a 0 limit
o

( _ n
Ko o) = J\’)w!uu ;‘ [ (521

would have been obtained in our classical calculation by replacing

the Boltzman single particle distribution function, -0( ﬁz—r—n 5
by the Bose single particle distribution function, |
3 - .
a1
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To illustrate the use of these ideal gas covariance functions,

let us find the effect of space and time dependent heating in a
classical ideal gas.

The fundamental formulas for linear response are

(5.32)
H(x 2) - fd/gé KHH (x-x ' 4=0) >\H(xf,t)

which determines N\ H (x, k)

in terms of the known heat source
Cx i) , and

(5.33)
<FRX.2) = {FG, £ //a(,)L KFH[x-x 4- :t/))\ (] £)

which predicts the response of any variable F

Taking Fourier transPrms in space these become

. LN~ (5.34)
T (,£) ~ Kyyu (e =2) "Xy ke, )
and

A
<Py = <Fl,AD+ [ Krnll 220 Ay (i)

If our interest is restricted to the local density and energy

density, the relevant covariance functions are (5.35)
X (:Ez £) = ND)? Jt:L kf#quL
B~ ) "l‘(/g"’) [.S‘ - (/ ).‘_ Khh(h *)
KHn(—EJ*)

o [3“‘ Jlf‘:b’“ ]K (]{jj—)(i%)
Bm L& gL |
and . LA
(R x) = mon, 2T %@7&“ (-0

These expressions are appropriate for the transfer of energy

without explicit constraints. Actually, "heating” usually implies
the explicit constraint that no particles are transferred

Hence
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the driven variable is not H (K;t) but H' (E),t) , where in the linear
approximation
(5.38)

K (JQ o) .
/ - JQ - Hh 4 n(k,t)
Hk ) = Hk,® o p)

= hk 5 — 2 N (Je, £)

The egquations determining the response of the system are now

0.;;/(‘)2_,*) = KH'H’ (k,i"=0) >\H'(J€';{-) (5.39)
<H'(J€,k)> ) ItKH’H’ ()e,i-i’) N H’Nﬁ;ﬁ') (5.140)

> = [ Ko EEH) N, ) O

where we used the fact that in equilibrium <n(k,‘t:)>° and<H(k,t)>°

and

are zero. The new covariance functions are

Ky (&) = Ky (l,£) =2 7 K (ko) k)
R (&,0) (5.42)

+ (KHn(k O) ()Q,*)
Kinin(:0)

)ew kit
= 3 A
4 (Brm)* [G Am (ﬁm ] K" n

and

Ky e d) = Ky (o) = K»nUw)K (R 4)
hn(J?.O)
(5.43)
= KA K (k)

2(Bm)*
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Case I. Pulse Heating.
Suppose 5‘(,](, £) = 5(}9 AW( ) , corresponding to the
instantaneous addition of heat energy of amountAH(k) to mode k.

The predicted decay of this heat energy is

LW (k) = Ky ue (ot A H(R) (5.44)
Ku'n'(k, 0)

1
2 Jili_::_,_ }241'4‘ ]L’ﬁm
3 pm (ﬁm> -

I

A t(k) [J -

while the response of the density is

nll, D> = ihﬂ'(k'ﬂ— NS
|

(5.45)

2 >

JA=  Tagn A BR

l

Qualitatively the density behavior corresponds to atoms leaving
the heated regions faster than they are replaced, leading to a build-up

 in demsity 180° out of phase with the initial heat pulse. The relax-

ation time \/ ;}g— is the order of time required for an atom of
n .

average velocity to travel one wavelength.

Case II. Constant Heating.

Suppose we heat mode k contimuously from t = O at the rate o(k,t)=AH(k).

Then

; KHIH'(’k ;L-;é’) A H(vk.)
<H (k, J‘-')) / ,H.,(‘k 1- o) (5.46)

2 AT
- an (p**s)& A
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ok b) = 2000 £ (gm) e~ 55 (547

- b (R L (B y%r_»«_ @%(@_)

Zﬁm

The steady s;cate heat energy maintained in the mode k by the source

5 ]/
strength AH(k) is therefore —¢~ ﬁ?—im——A H(uk), while the steady

state density is 180° out of phase with ‘the heat energy density and

differs by a factor —25- /3m .

Case ITI. Sinusoidal Heating.

Suppose we heat the k mode sinusoidally from i‘ = - o with

3.,(}@'1) = A R(R) toe wt . Then (5.48)

< | t Ky, IUQ i‘-i') /
H'(R, 1)) = WRT s AH (k) covuwzt
(wekdy- [ o (e £=0)

o° /Je_ ,,)
A H (k) / Kuw WR27) 0, w(-2")
- ’ KH'H’ (f, 4=0)

I

2 +
A uk) Bemn, (Bm)” /K”'H’ [J('w>/c“’(wi— ?9

7

with the phase lag ¢ given by

0 4, Ky (Ryw) (5.k9)
- Fan W |
¢ Iei. KHI H’ (.k,w)
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Smilarly ( 5. 50)

(D = — AR 3mi( el [K* () | o (w-0)

o - JE1AA— I .JQ,n, F(:;}}/<CRLJO)
R.e_ H+V)H’ (')Qr“»

The imaginary time Laplace transforms appearing here are

with

(5.51)

K+H’H'(k'w) =?()—;';,),_E 5~ 1,(8/ -’.H%’)Knn (Jg w')
v o 4(E-3Ye2mn,

v
w (5.52)

[/'L z)Kﬂm(Ja,w)-— fg:_’_’:'_'k]

KHH’UQ w) = — l

and

K;n(k’@ = vn, VT T 3 o “PE ("
“ R{% (5 53)

= ﬁm w?> . .
where z-/ -~ \/-:}: is the ratio of phase velocity to thermal

velocity. (For the collision dominated gas, ﬂ, = ‘,-f(?;— ). Using

these functions, the phase lags are
(5.5%)

g~ fou (V"/’Jd? ' ??yg%.qi,q)\[ﬁ 3,)

k>

o o (i [Ty /o 7

(5.55)
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In addition to finding the amplitude and phase lag of the density
and heat energy, we can also calculate the entropy transfer. To

second order, the rate of change of information entropy is

~ 2 2 (5.56)
33, - APNE KHF“)(*)Q+3573)<F(/@>¢ >+

Thus if we drive the system at frequency &0 , the rate of informstion

entropy change is

& = -5k W) (14855 ) W(k,w)

£ 2 ’ . (5.57)

[ Ky (i) | e 20 £-8)+ RuKfp ko)

From this, the minimum average entropy increase of the reservoirs

driving the system at frequency & must be

S5, \(k,wxuga—a—ﬁ) Ak w) K oy (e, )
M%- (5.58)

= (A W) Bm)” \f; (& - 173,+172L"—‘1‘5)-)‘izf

mn, =

3. Covariance Functions in the Hydrodynamic Limit

The phenomenological theory of linear hydrodynamics affords
an excellent description of non-equilibrium behavior in the collision
dominated (many collisions per cycle and many collisions per wavelength)
region. Therefore, the equations of hydrodynamics determine a limiting
form for the covariance functions. The derivation of this form was
essentially carried out in Chapter III, in the inverse problem of

expressing transport coefficients in terms of covariance functions.
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Equations (3.93) - (3.98) give the imaginary time Laplace transforms
of the covariance functions in the hydrodynamic limit. The general

form is

Kee k) =

wr+tbw e (5.59)

cu3 + dw* ¢ 2w FF

The corresponding expression in the wave number - time representation

Keg(hk,t) = Aem(wt+e)a” C"/‘H,L B~ ikl (s

Physically, this covariance function represents the decay of a pulsed

spatial wave. To lowest order in the transport coefficients,

Vs k

Voe S
Cfv»na k(7—

N
F

Note that these covariance functions have a discontinuity in their

and

R

first derivative at ;f = () , whereas the ideal gas covariance functions
are analytic. Since discontinuity in a derivative leads to discontin-
uous prediction of some physical variable it seems probdble that the
exact form should be analytic, with sharp but slightly rounded peaks.

In the hydrodynamic limit the covariance functions are essenti-
ally the Green's functions of the hydrodynamic equations. The

expressions for the response of a single variable initially in equili-
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orium are

t+ —t vl ° 2
SRR LY, - [t 08 C(33R14) 6, (214)

(5.62)

for the Green's function and

(5.6%)
t y, -/ N ay )
<F(§‘,;&)>K=/‘6¢€/¢¢ KER 4) B L) AF®"+)
with

. - o Ny . (e
7 —.444’ Ke (%, D E(RH) NF 2

for the covariance function. While the content is the same, and the
form is similar, there are two important differences.
In the first place, it is the usual convention to define Green's

functions so that they go to zero at the upper limit of integration.

Hence w1th G(Y\,Jé, 7\”))(,') = 0, A >k

S |
%lL—t <F(x,;t)>6 =fo At (5.65)

On the other hand the K functions are continuous symmetric functions

‘of time, with a non-zero value at the upper limit of integration.

Hence (5.66)

g R , - e NS Sy
fé_ <,=(,¢)>G= [dééa’G(x,t,-x,t)O?(x,i’)

whereas

(5.67)

L by = P+ [ o Keto oG M)
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which is conveniently used to determine N in terms of the source
strength %.

A second difference is that the Green's function itself includes
the boundary conditions. The covariance functions could also be
derived separately for each new boundary imposed on the system. It
seems more consistent formally, however, since the covariance functions
represent solutions of the many body problem, to define the covariance
functions once and for all for the infinite medium. The boundary
conditions are then incorporated by introducing additional source
strengths. For instance, suppose the boundaries of a system prevent
the flow of F through them. This case may-be treated with the infinite
medium covariance functions by including the additional variable Jp,

—
with its associated A determined by the condition <J'F (z‘)i)> =0

Nnovm
along the boundary. al

Hence in the covariance function treatment microscopic and geo-
metrical effects are separated: the K's contain the fundamental
microscopic nature of the system, while the A's contain the geometri-

cal effects of boundaries.

k. Covariance Functions From Experimental Information

As one example of a physical system where the covariance function
analysis should prove useful, consider the'propagation of heat pulses
in liquid Helt, At temperatures ;3 J° K the propagation of heat pulses
is well described by the phenomenological equations of superfluid
hydrodynamics. As the temperature falls below this, the hydrodynam-
ic descriptién becomes inadequate. In fact, for very low tg@peratures

)

one might expect the response of liquid He" to approach that of an
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ideal gas of gquasi particles.

Robert Guernsey, in K. ILuszczynski's group at Washington University
has been carrying out experiments with heat pulses in liquid HelL at
temperatures down to 0.160 K. His apparatus consists essentially of
a small (A | mm.) carbon film heater with a similar carbon film
detector at a distance -~ 1 cm. The heater is pulsed with a square
pulse of duration ~~ 100 ¥ seconds, and the resultant heating ob=
served at the detector.

Our equations for the linear response of the system are

(5.68)
e - k ’ __s 7
LR = [ 98 [t Ky (R-RI2EDN @ 4)
and (5.69)

il

S (Rot) f”"_f’ Ky (=55 4-2) )y (& 2)

where the integration is over the space of the heater, and H' is the
part of the energy decoupled from the density. In the approximation

that spatial variation of the source terms is slow relative to the

equal time covariance function, these equations reduce to

<H (x _t)) /ow / Y KH’H' (X -X 5 k- i.’) (5.70)

Ky 'H’
X O’;J/(Y‘, £)

L T E[MKHH(K}@ .

Hence the covariance function may in principle be obtained from
knowledge of the source and response terms, and the geometry. Actually,
of course, the experimental imprecision in our knowledge of these

terms complicates the problem and reduces the obtainable information.
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So far only data for temperatures around l° has been analyzed in terms
of the covariance functions; in this region the linear response 1is
described by hydrodynamics to within the precision of the experiment.

An interesting question is the relation between this experiment
with a small source and remote walls, and those performed in closed
tubes. In the hydrodynamic limit there is a striking qualitative
difference. Assume specular refiection from the walls. Then the

closed tube system corresponds mathematically to an infinite plane

heater. Hence

- (5.71)
Ly, - z -4/
<H'(x—-o,‘a'—’°;/211)> = [ c& KH'H.I (Jex‘oxka o;?:t t’)
K
- X &-;‘(x,t’) ,
where (5.72)

Ky Ch 70, Ry =0, 3 £) = [ fdyK oy Gyt ).

On the other hand the signal from a small disc of radius 'a' with remote

walls is (5.73)
{H Cxmo gm0, 30> = IW4ﬁ%KJ°wMﬂ
Kpw:
x &, (1)
withh R = V /2_14. 2 . Spatial isotropy was used to write the

covariance function in this form. Furthermore

i-ﬂx KH!HI (kxzo, k‘é‘d) Qj. *";t,)
9 9

(5.74)

=ad=s p:d)= — L
KHH(X—O, ?‘6,9;1"} 27
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as 1s easily checked by integration. Thus the response along the

axis of the disc is (5.75)
4 K., (%o Ry=gn){-1")
{ H' (x=o, 0,9,;6))__/ 666/343 Koy J
VP ¥<}J'H’
X 0y (2)

= Ki'dt/ &H(’é’) [KHIH, (Qx--o, kgm) ?) *’1’)

- Ky tho k050 t-z)]

This is almost the same as the response for the closed tube
geometry except for the addition of a "eut - off". The effect of the

"eut - off" is clearly seen in the hydrodynamic region where

K“H(x'—'o) &:0J93f) J(Q-C"é) (5.76)

K

For a step function pulse of duration u@: the response is then

L H/ (0,4 =0 9)1:)> [(e(x ) G(}:—\C—?Z—’—:—a‘z))
-(e(t-%'-%)-e(i-?—g;_”_.&)]

. (5.77)

Hence the response is a positive pulse of duration 4 gF followed

A
by a symmetric negative pulse. Though this is merely a geometrical

effect easily obtained from the hydrodynamic equations, the production
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of a negative heat pulse from a positive driving seems at first thought
surprising.
The covariance function formulation should find useful application
in any system where the combination of low interaction densities and

high frequencies and wave numbers results in a breakdown of hydrodynamics.
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