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SUFFICIENCY AND f-DIVERGENCES

by
D. MUSSMANN

0. Introduction and summary

We shall characterize sufficiency of a sub-o-field for two probability measures
by f-divergences, where fis a convex function which is not affine. This extends a
theorem of CSISZAR. As a corollary we obtain a criterion for sufficiency in terms
of total variations. This criterion may be applied to prove PFANZAGL’s characteriza-
tion of sufficiency by power functions. An essential tool is a result on the attainment
of equality in Jensen’s inequality for conditional expectations for convex functions
which are not necessarily strictly convex.

1. Preliminaries

The first part of this section is concerned with strict inequality in some well-
known inequalities for convex functions. In the second part we state Neyman’s
criterion for sufficiency in a form suitable for our purposes.

Let f be a convex (continuous) function defined on I:=]a, b[, where —=
=g<b=+oo. Furthermore we shall suppose f to be not affine, i.c. not of type
ax+p. We denote the right derivative of f at x€I by D*(f;x) and define
() :=(fx)—f(1)/(x—Y), where x, y€l such that x5y. If a, resp. b, is finite,
we define f(a):zlri‘rilf(r), resp. f(b)::lriﬂrjlf(r); f(a@), f(b) may be +-oo.

The assumption that f is not affine is equivalent to each of the following two-
conditions:

(1.1) There exists an x,€7 such that

flxg) < J;__);0f(x)—l—%’:—;;f(y) whenever x, y€I and x <Xx,<y.

(1.2) There exists an x,€7/ such that
fx+(1-0y) < fD)+1A-Df®)
x,y€I, x<xy<y, and t€]0, 1.

whenever

Otherwise every x,6/ would be contained in an open interval on which f is
affine (see [1], p. 232, Satz 2), hence f would be affine on /1.

By the same reasoning as in [1], p. 197, 8.3.4.3 Satz, we get from (1.2):

(1.3) [rx](f)<Dyx1()<[yrl(f) whenever x,y,r€l, x<x,<y, and x<r<y
same X, as in (1.2)).
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Again by the same reasoning as in [1], p. 198, Satz (3a), we obtain from (1.3):
(1.4) f(y)=D*(f: x)(y —x)+f(x) whenever X, y€I and x<x,<y or y<x,<x.
The strict inequality in (1.4) is even valid if q, resp. b, is finite and y=aq, resp.
y=b, because [yx](f) is isotone in ).
If b=, we have lim [r1(f)=lim &;) Combining this fact with (1.3)
y>oo y>oo

we have:

)

1.5 ) <f(x)+(r—x)ylirg% whenever r, x€7, x <x,, and x<r.

We close this section with a variant of Neyman’s criterion. Let P and QO be
probability measures defined on a measurable space (@, &) and let P=p,+pu, be
the Lebesgue decomposition of P with respect to Q, W<<Q and p, | Q.

A sub-o-field & of o7 is sufficient for P, Q iff

(1.6) there is an V-measurable% and a 7€ % such that Ue(T)=0and Q(T)=1.
This assertion seems to be known. Concerning the “if” part, observe that the

density with respect to H2t+Q of P, resp. Q, is (1— IT)+1T-%, resp. 1.

2. Equality in Jensen’s inequality

We employ the same notation as in 1; the point x, is of special importance. In
the following, expectations are understood with respect to the probability measure 0.
Let X be a Q-integrable function with values in I (closure of 7 in ]—o0, +oo|).

(2.1) THEOREM. If there is equality in Jensen’s inequality f(E(X [#))=
=E(f-X|£)[Q], then O {X<x,<EX]9)}=0 and Q{E(X|9)<xo<X}=O.

PROOF. It is known that there exists a Markoy kernel ¢ from (@, ) to (1, %,NI)
such that E(goX|%)= [ 8™ (-, dr)[Q] whenever [ goXdQ exists.

Define h(w):= f re(w, dr), we may SUppose —eo </ (w)<eo for all we Q. Our
premise can be rewritten in the form:

(2.2) There exists an N¢.oZ of Q-measure zero such that f| (h(w))= _/ S(r) o (o, dr)
unless wéEN.

Now suppose o to be not in N. We shall show

(2.3) @(w, Ixo, b))=0 whenever a=h(w)<x,, and ¢ (o, [a, x[)=0 whenever
Xo<h(w)=b.

First we assume h(w)¢ I, ie. —e<a=h(w) or h(w)=b< +oo, then ¢(w, +)
equals Dirac measure in g, resp. in b, hence (2.3) is valid.

Suppose next that 4(w)cl. Replacing x with % (w) in (1.4) we obtain f(y)>
=D*(f; h(w)) (¥ —h(w))+£(h(w)) whenever Y€l and h(w)<x,<y or y<xXo<h(w)
(= holds for every ye[). Integrating with respect to ¢ (o, -)the assertion (2.3) follows.
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To conclude the proof observe that for A€/ we have E(1,|%)=¢(-, 4)[0]
and then using (2.3) we infer

OX < X <EX|9)} = [1pmxg lix<xg 4@ = [ 1gmxy 0 (-, [a, %D dQ = 0.
In an analogous manner we get Q {E(X|¥)<x,<X}=0.

REMARK. Pfanzagl ([6], p. 493, Theorem 2) proved that for strictly convex
functions equality in Jensen’s inequality implies E(X|¥)=X[Q]. This is easily
obtained from (2.1). Indeed, for a strictly convex f the x,€7 is arbitrary, hence,
if M denotes the rational numbers of 7, then

o AE(X|9)} = > O({X < r < E(X|#)}U{E(X|¥) < r<X}) = 0.

(2.4) CorROLLARY. Suppose a=0 and b=+oo. Let D denote a countable dense
subset of I.

If f(EBX|9)=E(fo(BX)|Z)[Q] for all BED, then E(X|S)=X[Q].

PrOOF. If D is dense in I, so is {% BED}. Replacing X with X in (2.1)
we get .
O{E(X|¥) = X} = MZI')Q({E(XISP) < % = X}U{X< % = E(X|y)}) = 0!

REMARK. If X is bounded, X<M <<, then in (2.4) we only need {ﬁ: BED}

B
to be dense in ]0, M.

Now we shall investigate equality in another inequality. Suppose =0 and
b= 4o and let Y and Z be measurable functions on Q with values in [0, «[. Replacing
x with Y(w) and r with Y(w)+Z(w) in (1.5) we obtain:

2.5) Iff(Y+Z)=f(Y)+Zslim f—(:)—[Q], then Q{¥ <x,, Z=0}=0.

Furthermore, let D denote a countable subset of I with cluster point zero.

(2.6) If f(BY +BZ)=f(BY)+pZ lim @for all BeD, then Q{Z=0}=0.

This holds because of (2.5) and Q= (J {Y<x,}.

pED

REMARK. If f is strictly convex, x, is arbitrary, and therefore Q{Z=0}=0
follows even from the premise of (2.5). If ¥ is bounded, we need only one f in (2.6).

3. The main result and applications
In this section we present a condition in terms of f~divergences which is equiv-
alent to sufficiency. This is an extension of a result obtained by Csiszar for a strictly
convex f. Our condition is easily seen to be fulfilled if a certain condition for total

variations or Pfanzagl’s condition for power functions hold.
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We employ the same notation as in 1. We suppose =0 and b=eo. For p=0
the Lebesgue decomposition of SP with respect to Q is BP=Pu,+Bus.

dlh] LRS-
0 dO+Bu, (L) slirgT is called the

(3.1) DerinNiTION. I,(BP, Q)::ffo (,B

J-divergence of BP with respect to Q (see [2], [3], [4]).
Set P’:=P|% and in the same manner Q’, uj, and u}.

(3.2) THEOREM. Let D denote a countable dense subset of I. Suppose I.(BP’, Q)<

<co for every BeD. & is sufficient for P, Q if 1,(BP’, Q")=1I;(BP, Q) for every
peED.

PrOOF. The ““only if”” part is known (and follows at once from (1.6)), and the
“if”” part is known for strictly convex f with f=1 ([2], p. 90, Satz 1; [3], p. 310; [4],
p. 141, Satz 17.2).

By the same reasoning as in [4], p. 145, one shows:

(3:3) 1;(BP",Q)=1I;(BP,Q) iff foE( %9’)=E(f°( flig)

7 ) [O] and

dpy dmy | diy dmy .. f(s)
o)) s

where m; denotes with respect to Q” absolutely continuous part of uj.

Now, replacing X with At in (2.4) we get E [iﬂ_lly]— it [01, hence there

d0 do1” )~ 4o
- dp
exists an %-measurable —da
Replacing Y with E (ﬁ 5/)) attd 12, iwith (S0 v (3.6) we'obtain: AT [0]
ks do do 907

whence Q’ | pj, i.e. there exists a 7€ such that O(T)=0(T)=1 and p, (1=
=u3(T)=0. Then the sufficiency of & follows by (1.6).

(3.4) CorOLLARY. ¥ is sufficient for P, Q i |BP—Qll=|pP’'—Q’|| for all BcD
(D as in (3.2); || || denotes the total variation).

Proor. Take f(x)=|x—1|. Let p and g be densities of P, resp. 0, with respect
to vi=P+4 Q. It is straightforward to show that I +(BP, O)= f |fp—q|dv and

18P~01 = max {3 [ 1ol dv-3 (51, % [ Bp—ql dv—Ls-).
Hence | /P Q|| =1’ ~'| if
If(:BP’ Q) = If(:BP,ﬂ Q,)

In order to characterize sufficiency, Pfanzagl ([5], p. 197) presents the following
condition:

(3.5) For every A€/ there exists an &-measurable test ¢ such that P(4)=
zf(de and Q(A)é_/ @dQ.
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If (3.5) holds, then obviously for every A€« there exists an &-measurable test
y such that P(A)= [¥dP and Q(4)= [vdo.
The inequalities may be multiplied by f=>0. It follows that for every A€/
there exists an &-measurable test such that
IBP(4)—0( )] = |B [xdP— [ xdQ| = IBP'~ 2l

hence |fP—Q| =[P’ —Q’| and (3.4) can be applied.
The following example shows that (3.4) is not valid with D= {1}

ExampLE. Q={l, 2,3}, &/=2(Q). Let P, resp. O, be given by (p1, Pe, P3)=

=[—é—, %, —2—) , 1esp. (¢4, 92, g3) = l%, %, -é] Let & denote the o-field generated
dP 1 dP .
by {3). — takes the values —, 1, 5, whence —= 15 not %-measurable and & not
M 7o) 5 a0

sufficient for P, Q. But ||P—Q||=%=||P’—Q’|I and furthermore [|2—pu| =4 =

when A and u are in the convex hull of {P, 0}.
I wish to thank D. Pracuky who suggested Corollary 3.4 and its application
to Pfanzagl’s characterization of sufficiency by power functions.
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