Quantum Mechanics in View of Information *
Dénes Petz **

The inception of quantum theory was forced by observation of subtle discrepan-
cies between some experimantal facts and laws of classical physics. Today, without
quantum physics we could not explain the properties of superfluids, the action of
lasers or the color of stars.

At the Royal Institution of Great Britain, London, on April 27, 1900, Lord Kelvin
presented a talk entitled “Nineteenth Century Clouds over the Dynamical Theory of
Heat and Light”, in which he addressed himself to some difficulties of the otherwise
well-established theory (M® Atoms of a heated material emit light (electromagnetic
waves) with very specific discrete frequencies which are characteristic of the atom. In
October, 1900, as a first step towards quantum theory, the German physicist, Max
Planck proposed the idea that electromagnetic oscillations occur only in “quanta”.
Describing the energy distribution in the blackbody radiation, he made use of the
fundamental constant h. It is a very tiny quantity by everyday standard and nowa-
days h is known as Planck’s constant. The same constant played a crucial role in
the light-quantum hypothesis of Albert Pinstein which explained several peculiar
phenomena connected with the emission 11d absorption of light. He was awarded by
the Nobel Prize for this discovery. His s cesful application of the quantum concept
was followed by others. The rule of Niels 3ohr required that the angular momentum
of an electron orbitting about the nuc »us c¢an occur in integer multiples of h/27.
Quantum theory turned into one of th 1ozt revolutionary fields in physics in the
early twentieth century.

In the present form, quantum mecl:anics arose of two independent schemes ini-
tiated by Werner Heisenberg and Erwin Schrédinger in the “turbulent” years 1925
1927. Heisenberg’s “matrix mechanics” ..:d Schrodinger’s “wave mechanics” seemed
rather different at the first sight but the equivalence of the two schemes was soon
established as a result of the work of Paul Dirac, Pascual Jordan and several other ex-
cellent physicists. Subsequently, the Hungarian/American mathematician, John von
Neumann developed an axiomatic approach based on linear operators of abstract
Hilbert spaces.

Quantum mechanics is a statistical theory in great deal. As Max Born pointed out
in 1926: “The motion of particles conforms the law of probability but the probability
itself 1s propagated in accordance with causality.” Saying that the probability of a
certain outcome of an experiment is p, we mean that if the experiment is repeated
many times, the fraction of those which give this outcome is roughly p. For example,
assume that a beam of electrons is fired to a screen for observation. The sentence
“The probability that an electron hits a part of the screen is 10%” is understood in
a statistical way: 10% of all electrons hitting the screen are detected on the chosen
area. In order to show the probabilistic aspects of quantum theory more deeply,
an idealized experiment is descibed which helps to understand the “interference of
probabilities”.

* The Japanese translation is to be published in the journal “KAGAKU”.
#* Research Institute for Mathematical Sciences, I{yoto University, on leave from
the Technical University of Budapest.



A monochromatic light source S emits light (that is, photons) in all directions.
Many of the photons pass through the two slits of the sereen A and they are received
on the parallel screen B, which can be a photographic plate. What is observed when
one slit is open? The light bulb emits a huge number of photons, a portion of which
passes through the slit and yield a seemingly rather uniform illumination of screen
B. To have something more interesting, the light intensity should be reduced and
the slits should be small in width, 0.001 mm would do. The smooth distribution of
detected light intensity was a statistical effect, at smaller intensity of light emission
the illumination on the screen is made up of individual spots (in accordance with
our particle picture of photons)!”¢l, When both slits are open and they are cca. 0.15
mm apart, the illumination appears to be wavy, an iterference pattern consisting
of bands is observed. The pattern of illumination seems to be completely different
from what it was with a single open slit. It is not at all true that the illumination
doubles when the second slit is opened. At the bright places the intensity can be
three-four times what it was before and on the other hand, the intensity may go
down drastically at other places (see Figure 1). The photons behave like waves and
not like particles. Reinforcing and destructive interference are features of ordinary
wave propagation.
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Figure 1. The two-slit experiment: Wavy pattern of intensity is
observed on screen B when both slits are open.

Let H be a small part of screen B, and let ry, 1, r be the relative frequency of
photons hitting H when the upper, the lower and both slits are open. Let us try to
apply probability theory naively and let B, be the event that a photon issued by S
goes through the upper slit and it is detected afterwards on the chosen small area
H. Define the event Fj symmetrically: the photon passes through the lower slit and
is received on H. Finally, let I be the event that the photon hits H when both slits
are open. In this case we do not care which slit it goes through. Let us interpret the
relative frequencies r,, 1, and » as probabilities of the corresponding events. Since
any photon passes through only one of the two slits, the events E; and E, should
be considered as exclusive alternatives for a photon hitting H. Hence | + r, = »
should hold, which, however, is in contradiction with the experimental result. The
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way out of this contradiction is to reject the very classical particle picture that the
photon goes through one of the slits only and to use Hilbert space probability theory.
It is not suggested here that a single photon goes through both slits. In quantum
mechanics, to ask “Did the photon pass through the upper slit?” is Just not a right
question and in the logical structure of quantum mechanics we are not permitted to
assign a probability to the “histories” E, and E, (Om],

By the interference of the probabilities 1 and r,, we mean that both rm +r, <»
and r + 7, > r may happen (depending on the position of the area H). In quantum
mechanics probabilities are computed as the squared modulus of a state vector which
1s typically in an infinite dimensional complex Hilbert space, Nevertheless, the 2
dimensional Euclidean space (or rather the plain of complex numbers) is suitable for
explanation. When w, z and w + z are vectors, the familiar cosine rule tells us that

[w + 2| = |w|? + |2 + 2lw||z| cos b,

where 0 is the angle between w and z (see Figure 2).
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Figure 2. The cosine rule is responsible for the quantumn interfer-
ence of probabilities. The interference depends on the sign of the
correction term 2w/ |z| cos .

If the probabilities ry, », and r are thought of as [w|?, |2|? and |w + 2|2, then we have
=1+ ry + 2/717y cosf.

Here is the interference of probabilities. If w = —z or correspondingly cosf = —1,
then r = 0, and this is the case of destructive interference. At the brightest point in
the screen of the two-slit experiment (both slits are open), we have w = z, that is
cosf =1 and » = 4r,. This is in accordance with the observation that the mntensity
of the illumination can be four times the intensity observed when just the upper slit
is open.

State vectors have two representations in the Hilbert space of a quantum parti-
cle. One is associated with position and the other with monentum, for the sake of
simplicity these representations may be viewed as two different coordinate systems.
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The quantum mechanical particle is regarded as being spread out spatially, rather
than always concentrated at a definite point. When the state vector ¥ is viewed in
the position representation, then the probability density po = |¥|? desrcibes the
position distribution in the three dimensional space. (Actually, the state vector is a
function with complex values and it is often called state function, wave function or
wavepacket.) For graphical convenience, we constrain the particle to one degree of
freedom, so it moves along the 2-axis and its position distribution pg(z) is a func-
tion of a single variable (see Figure 3). If PQ() is sharply peaked, the particle is
well-localized, it stays with high probability in a small interval. The sharpness of a
probability distribution is expressed by the Boltzmann-Gibbs differential entropy
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which is close to 0 for a very peaked distribution (0P If  is the state vector in the
position representation then its Fourier transform describes the state in the momen-
tum representation. It is the peculiarity of the Fourier transform that it produces a
strongly non-localized state function in the momentum space from a sharp one in
the position space (Figure 3).
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Figure 3. The Fourier transform switches from the position rep-
resentation to the momentum representation and it increases un-
certainty of a localized position wavefunction.

Most readers guess that the uncertainty relation will follow soon. Yes, it will, but in
an unconventional form. The momentum-position uncertainty

H(pp) + H(pg) > 1+ logn

tells us, in terms of differential entropy, that there exists a positive lower bound for
the sum of uncertainties (called also entropies) which prevent them from being very
small at the same time [°”], The above entropic uncertainty relation was conjectured
in 1957 by Hirschmann but the exact proof came only in 1975 after-a thorough
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analysis of the Young inequality. Paul Dirac would be pleased: Fundamental physics
goes together with deep mathematics.

In the course of the two-slit experiment, a two-peaked wavefunction may develop,
the superpostion of two, spatially separated Gaussian wavepackets has this form

(Figure 4).
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Figure 4. A two-peaked wave function (the superposition of Gaus-
sianis without phase difference). A quantum particle with a doubly
peaked position wavefunction is apparently at two places.

A photon with a doubly peaked position wavefunction is apparently at two different
places, andi, while time is passing, it is apparently able to travel along different routes.
There are ~ecent investigations (or speculations?) that the abiuty of a quantum
system to ve at many places at the same time, may be used in a computer, to branch
out computations into many paths, at least in principle,. The difficulty is getting the
paths to interfere in a useful way at the end in order to bring out something with
reasonable probability. A theoretical quantum computer might be applied effectively
to problems whose solution depends on many computation paths (Bel.

The probabilistic formulation of quantum mechanics follows the point of view
of experimentalists. Many basic concepts are the same as in statistical mechanics
or in ordinary mathematical statistics. The quantum system under study should be
regarded as a particular sample drawn from a statistical ensemble of identically pre-
pared systems subject to possible individual variations in their measured properties.
A state specifies our information at a given time on the statistical ensemble. It does
not describe the properties of an individual system. Experimentalists are rarely able
to prepare pure states in their laboratories. A realistic state is nothing else but the
collection of expectation values of all relevant physical observables. As early as 1927
von Neumann introduced the concept of density matrix for the description of statis-
tical mixtures of pure states, the latter ones are given by state vectors in a Hilbert
space ("N Iy general a quantum measurement is incomplete in the sense that it fails
to provide an exhaustive determination of the state of the system. It is worthwile to
make a short stop here and to have a glance at the historical development of sciences.
Quantum mechanies had to cope with the problem of incomplete information at the
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end of the 1920’s. On the other hand, Kolmogorov’s fundamental work in probabil-
ity theory appeared years later. The break-through of rigorous statistical mechanics
followed only decades later.

Density matrices do not have direct physical meaning, they come from the sta-
tistical viewpoint. Manipulation with them is sophisticated mathematics but den-
sity matrices are really needed to deal with spins, quantum fields and H1ACroscopic
systems. Von Neumann attachediated an information quantity, called today “von
Neumman entropy”, to a density matrix. When pi's are the eigenvalues of the den-
sity matrix, the von Neumann entropy is

—Zp,-logpg.

This formula might be familiar as Shannon’s information measure. To tell the truth,
we have to say that von Neumann arrived at his formula by a thermodynamical con-
sideration. It was Shannon who initiated the interpretation as “uncertainty measure”
or “information measure”, The American electric engineer /scientist Claude Shannon
created communication theory in 1948. Many years later he told [TM]. “My greatest
concern was what to call it. I thought of calling it “nformation’, but the word was
overly used, so I decided to call it ‘uncertainty’. When I discussed it with John von
Neumann, he had o better id=a. Von Neumann told me, ‘You should call it entropy.
for two reasons. In the first ylace your uncertainty function has been used in statis-
tical mechanics under that nume, so 1t already has a name. In the second place, ar.:
more important, nobody knc s what entropy really is, so in a debate you will alwa,
have the advantage.”

Both the von Neumann and the Shannon entropies are informational/statistics!
quantities of the same kin¢. The von Neumann entropy concerns an ensemble i
quantum systems while the o' b er is the statistical uncertainty of the signal ensemble
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Figure 5. The von Neumann entropy of a 2-by-2 density matrix
D is a decreasing function of the parameter r. The value 1 — 1/2
corresponds to pure states, they have vanishing entropy.

It might be in order to note that the use of the notion of entropy does not assume al-
ways an explicit or virtual statistical ensemble. There are entropy quantities attached
to an individual object. Entropy is the amount of randomness present in a system
(independently if it is quantum or not). But why should information be measured
by randomness? The statement that a message has high information content is the
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same that it is extracted from a large class of alternatives, or it is very random. (The
information content is the number of digits (bits) of the number of alternatives.)
Since quantum mechanics is a statistical theory at a very basic level, entropy, a key
idea in dealing with incomplete information and randomness, must play a central
role i the tlmm'y[‘”“]. Does fundamental physics rely upon information theory in
this way? Or more strongly: Is the Planck constant h another name for the basic
information unit, bit? I do not think so. After all, quantization is not exactly and not
only discretization (as it might be suggested by the begining of quantum theory).

[nformation theory has had remarkable success in searching the performance
limits of communication channels. It has developed concepts and methods for the
study of randomness. The informational viewpoint may enter (but should not invade)
quantum physics. The entropic uncertainty relation of position and momentum is a
simple example of the utility of entropy but entropic methods have been applied to a
variety of problems. The collapse of the wavepacket, which is far from so dramatic as
it sounds, is the prototype of an irreversible process. In the reduced density matrix,
only the diagonal survives and the decay of the off-diagonal terms increases the
entropy. The reduction of the density matrix (or in particular, that of the wave
packet ) amounts to keeping the whole information about the observables compatible
with the measured one and getting rid of all the remaining information. This is an
example of maximization of uncertainty. Geoinetrie interpretation of the evolution
of a system as the motion of a point in the space of states has been a fruitful idea in
several contexts. It is tempting to endow the stote space with the geometric structure
deduced from entropy and watch the evolution of the system on a curve finding its
direction by a continuous minimization of the formation (F,

While information theory searches for the ultinate limits of information transfer,
we have in mind the capacity of a communicaticn channel,
is interested in the ultimate bounds of estimation. Analysing population statistic,
Ronald Aylmer Fisher made the observation that when one has two distinguish
between two populations, each of them giveri by a finite probability distribution,
not exactly the probabilities play the principal role but rather the square roots of
these probabilities [/?l. On the other hand, the probabilities are arising in quantum
mechanics as the squared modulus of the state vector. Is this an odd coincidence,
or, something more? We believe in the latter possibility but a fully satisfactory
explanation is difficult to give today. Here are some hints. Fisher found that the
natural parametrization of the probability simplex {(py,p2,p3) : pi > 0 and p; +pa+
p3 = 1} is given by z; = \/p;. In this way we can visualize the positive orthant portion
of the sphere of radius 1. When this parametrization is adequate, the correct (more
precisely, geodesic) distance between the probability distributions (pi, pg,p3) and
(P1,P5, py) is the angle between the vectors (\/p1, /P2, /P3) and (\/p—’, \/p_f, \/E)
There is something similar with density matrices. A 2-by-2 density matrix may be
parametrized by (z,, 29, x3) as in Figure 5. The state space (that is, the set of density
matrices) is wiewed as the part of a sphere (in the 4 dimensional space). The matrix
D in Figure 5 is just the point

mathematical statistics

(xy,29,23,24), where 24 = VdetD .

This 1s not alll The geodesic distance between two points is well-known distance,
called after Bures in the context of density matrices [Y", Quantum estimation theory
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‘will benefit from the understanding of the geometric analogy between the quantum
state space and Fisher’s old discovery in statistics.

Let me close this report from the vivid boundary of quantum mechanics, informa-
tion theory, statistics, and geometry with a very concise message. The curved “arena
of density matrices” (V4] will be busy place in the near future. It will be occupied by
researchers, rather than fighters, making interdisciplinary efforts to understand this
new area.
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