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LINEAR FUNCTIONALS ON ORLICZ SPACES 1)
BY
M. M. RAO

0. Imtroduction. Let @(-) and ¥(-) be nonnegative convex
functions vanishing at the origin and complementary to each other
in the sense of Young. (Precise definitions will be given later.) If
L? and LY¥ are Orlicz (function) spaces, which include the usual
Lebesgue spaces L?, 1 < p < oo, defined on some measure space
(2, 2, u), then the representation of continuous linear functionals
on L2 (and L¥) is an important problem in their study. It has been
considered in the past and the solution was given if @(-) satisfies
some growth condition (e.g., ®(2x) < C®(x)) and the measure u is
at most o-finite (cf., [3], [10], [11]). Some improvement on the
growth of @(-) has been found if Q is a subset of the line and u is
the Lebesgue measure in [6]. However, the general representation
problem for the functionals has not been considered if ®(-) (or
¥(+)) is allowed to grow exponentially fast, and the measure is
not o-finite. These considerations are of interest for at least two
reasons. First, the corresponding results for L? spaces are known
for arbitrary measures and the analogous results for L? are of
interest for comparison and extension purposes. Second, the growth
restrictions of @(-) are not natural and seem dictated only by the
limitations of certain calculations, the general @(-) being of use in
applications (cf., last section). The study of the general problem is
moreover of interest in itself.

The purpose of the present paper is to present a global represen-
tation for bounded linear functionals on L? without any restrictions
on &(-), ¥(-) or the measure g (Theorem 3). From this various
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specialized results are then obtained when (i) @(-) is restricted but
wisnot, and (ii) both @(-) and x are restricted. These include all the
previously known cases. A brief summary of theresultsis asfollows.

The next section contains some preliminaries and needed lemmas.
In Section 2 the ‘“‘conjugate’” space of L? is introduced, and then
the general representation of bounded linear functionals on L¢ is
given in Section 3. Section 4 is devoted to various specializations
together with a discussion of reflexivity. The final section contains
an application to a problem in statistical theory extending an
earlier result in [7].

In the present work, the concept of “quasi-functions” (ct., [5],
also called “‘cross-sections” in [9]) and some consequences, as well
as the integration relative to finitely additive set functions, were
found useful in several places. It should be noted, however, that
the demonstrations sometimes take longer and are even more diffi-
cult than in the usual special situations, because of the generality
here. The generalization of the paper is suggested, in part, by a
study of [6], [11] and ([2], Chapters III and IV).

1. Some lemmas. In this section a few results, known for finite or
o-finite measures, will be extended for the non o-finite case as they
are needed for the later work. Let @(-) and ¥(-) be two non-
negative symmetric convex functions such that @(0) = 0 = ¥(0),
lim, ,, ,, @(x) = lim,_,, ., ¥(x) = +oo, and satisfying the (Young’s)
inequality

xy < O() + V), (1

for all x, y. Then @(-) and ¥(-) are termed complementary Young’s
functions. If (2, X, u) is a measure space, then (following [9]) u is
said to have the finite subset property (FSP) if every measurable
set of positive u measure contains a measurable subset of finite
positive measure. Let L? be the linear space of equivalence classes
of measurable functions on (2, X, u) such that fe L® implies
lfle < oo, where (ct., [11])

Iflle = supg fo |fgldu, with p(g) = fo ¥(g)du < 1. (2)

[Here and in what follows, f € L? means that /is any member of the
equivalence class to which it belongs.]

It is readily verified that |||l is a semi-norm in general and a
norm if x has the FSP and in the latter case L? is a Banach (or B-)
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space. (See also, [11], p.79.) Similarly L¥ is defined and L®, L¥
are called Orlicz spaces. In general, for f e L2, if

No(f) = int {K % o,fg @ <é> du < 1}, 3)

then Ng(-) is always a norm and with it L? becomes a B-space. If
w has the FSP, then (2) and (3) define the same topology for L? in
the sense that (cf., [8])

No(f) < |iflle <2No(f), felL2. (4)

In the following for any set B C 2, the symbol B’ stands for 2 — B.

Throughout this paper, the finite subset property of x will be
assumed without further comment. This assumption rather elimi-
nates the nuisance of sets of infinite measure without any subsets
of finite positive measure than really restricting the generality.
(See [5] for a discussion on this point.) In what follows, the norms
(2) and (3) and the relation (4) will be used according to con-
venience. Also, hereafter all the functions are taken to be real-
valued, but all the results hold for complex functions as well, with
simple (mostly notational) modifications.

The first lemma is proved for the o-finite i in ([11], p. 80), and
for localizable x in ([8], p. 44) where lim, ,  @'(x) = oo is also as-
sumed. [®’ and ¥’ stand in this paper for the derivatives of @ and
¥, which exist a.e., (Lebesgue).]

Lemma 1. Let &(-) be a Young’s function. Then for every

f(£0) in L2,
/
fe®(|1f||¢>d”£1' )
Proof. If p(g) is as in (2) and p’(g) = max (1, p(g)), one has
Jalfgldun < p'(9)lflo, (6)

which follows from the definition of norm in (2) if p(g) < 1 and
replacing g by g/p(g) if p(g) > 1. For any 4 in X, p(4) < oo, if
fa = [xa, then using (6) with f4, the first part of the classical proof
([11], p. 80) gives (5). This means (5) holds with Q = A there.

To prove the general case, let »(E) = /g @(f/|/f|lo) du for any E in
2. Then » is a measure and has the FSP. Let X} be the class of all
sets 4 in X' of finite u-measure. Then by the preceding paragraph
SUP 45, ¥(A) = o« < 1. Since »(-) is a measure there exists a sequence
{An} C 21, Ay C Apya, such that lim, v(4,) = «. If B = U2, A,,
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‘ then & = »(B) < 1. To complete the proof it remains to show that
»(B’) = 0. If Ey is the set on which @(f/||f|ls) = 0, then »(Eo) = 0,
so consider E* = B' N Ey. If F e Xy and F C E*, then w(F) =0
(and hence »(F) = 0) as otherwise

o <v(B) +»(F)=»BUF)=limy»(4,UF) < SUPpes, ¥(D) = «,

gives a contradiction. Thus u(E*) > 0is impossible and so w(E*) =0,
implying »(E*) = 0 or since B’ = E* U (B’ N E)y), it follows that

(Q) = »(B) + 3(B) = o« < 1,

completing the proof.

The following consequence of the lemma [with (3) and (4)] will
be needed: “Holder inequality’’: If f€L? ge LY then

Ja lfgldp < flle Ne(g) < [Iflo [lg]lw.

Remark. By the above lemma, Z® can also be characterized as
the set of measurable functions on (2, X, u) satisfying

Ja @(Kf)dp < oo

for some K > 0. Then the norm is given by (3) with the relation
(4). Note also that by the monotonicity of @(-) if |||l < 1,

IRIIEOK: (ﬁ) du, (< Ifle), )

and in any case (1) and (2) imply ||fs </[a D(f)du + 1.

Definition. The set L? denotes the class of measurable functions
on (2, 2, u) such that fo @(f)du < oo. (Hence L2 C L9

Lemma 2. Let M? denote the closed subspace of L? determined
by the set of all u-simple functions in L2. If @ is continuous then
M CL® (CL?®), and if further L® is linear, then M? = L2 je.,
the u-simple functions in L2 are everywhere dense.

Proof. Let fe M? be arbitrary. Given & > 0, there exists a -
simple function f, in M@, by definition, such that ||f — fello < e.
Since fg vanishes outside a set of finite u-measure and (being in
M?) is bounded it follows that a. fee L® for any constant a4 where
D(K) < oo for K < oo (a consequence of continuity of @ on the
line) is used. If 0 < & < 1, then (7) implies 2(f — f,) € L®. But L
is a convex set (since ®(-) is a convex function) so taking a = 2
above, it follows that f = 3[2fe] + 32(f — fe) is in Lo proving the
first part of the lemma.

¢
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For the second part, let L2 be linear. Since L® C L2, the reverse
inequality follows from (5) and the fact that /o @(K}‘) du < oo fg;
every K > 0 whenever /o @(f)du < oo, due to the linearity of L
(which fact in turn characterizes the linearity of L?). So L® = L?.
Also since M? C L?, the opposite inequality, and with it the lemma,
will be proved if the following steps (i), (ii) and (iii) are establisl.led.

Let f € L? be arbitrary. By the structure of measurable funct.lons
there exists an increasing sequence {f,} of measurable functions,
each taking a finite number of values such that 0 < f, — |f| every-
where. Then the following statements hold:

(i) fue€L?, for,
Il = SuPy<1 /o Ifgl di < SuPypy<1 fo Il gl A = lfle < oo

(ii) fn» — |f| in L?. For, given ¢ > 0, set K = 2/e. Since [, — /|
pointwise and @(-) is continuous, @ (K(] ]‘\- fx)) tends monotonely
to zero everywhere. But |f| — f, € L? = L2, and so

Jo PK(f| — fn)) du

exists for every 7, and by monotone convergence theorem tends to
zero. So choosing #g such that # > ng implies /o @(K(|f| — fn))du < 1,
one has on using (1) (and the fact that [|:||¢ is a norm),

— du <
IE(fl = fallle < suPyy<1/a l(Ifl — fo)gldp <
” < Jo OK(f| — fa))dp + 1 < 2.
Consequently, [||f| — falle < 2/K = e. Thus (ii) follows since ¢ > 0
is arbitrary. B
(iii) fe L? implies fe M?. Since L? = L2, [o D(Kf)dp < oo for
every K > 0. So, if K = 4/e since @(Kf) € L, by ([2]; II1.2.20(c))
there exists a set 4 € X1, u(4) < oo and [, ®(Kf)dp < 1. Conse-
quently,
IKfyalle < [o D(Kfya)du + 1 = [ar P(Kf)du 41 <2,
and hence ||fya'lle < 2/K = ¢/2. Since fy4 € L?, applying tl.le' results
of (i) and (ii) to the function fy4 (if necessary to the p951t1v§ and
negative parts separately), the resulting sequence f, is ,ujsnnl‘)le
(since u(4) < o0), fn € M®, and there is n, such that n > n, implies
/%4 — fulle < €/2. Thus for this % one has

— fullo < Ifxa — fulle + I — frallo <
If = flle < ifxa = fallo Zigade + o2 < ef2 + of2 = o

From the arbitrariness of ¢, it results that fe M2, as was to be
proved.
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Remark. If L2 is not linear, the inclusions between M o [o "
and L? can be proper as simple examples show. This is true even if |
1) < oo.

The following result is proved in ([11]; p. 136) for the o-finite 7

Lemma 3. Let f be a measurable function such that fg is inte-.
grable for every ge LY. Then f€L?, where @, ¥ are Young’s
complementary functions.

Proof. Let 21 be the class of sets in X of finite 4 measure, and
let f4 = fya for A € X;. Since /4| is measurable, there is a;1 in- 4
cre?asinfg sequence of measurable functions fn,a, 0 < fu,a — |fa
pomntwise. Define a family of linear functionals ln, 4 on L,Y’ as ,

In,a(8) = fo [n,ag du, geL¥.

This class of functionals is well defined on L¥ and by monotone
convergence theorem,

o, 4(@)l < fo Ifn, agldp < Jo |fallgldu < Ja |feldu < oco.

Thus {%n,A(g), n > 1, A € 21} is bounded for each g€ L¥. Hence by
the uniform boundedness principle ([2], p. 59), there is a positive

M (< o.o), such that |l 4(g)| < M|lg|le, for all n, and 4 (in Z7).
Then using ||g|ly < 2, for ple) < 1,

Ifalle = sup,)<1 /o Ifagldu = sup,, <, |/o fag du)
< SUP, <1 [limy |1y, 4(0)|] < 2M < co.
Hence f4 e L2, forall 4 e 2.
In the g.eneral case, consider a fixed but arbitrary g e L¥, with 1
p(g) < 1. Sinceby definition f4 — IB=/f4npomANB, A B éZl, if |
%0(E) =[x |ing|du = fu |fgldu, E e, |

then »4(-) is a measure on X;. The preceding proof implies

SUPgex, ¥g(E) < SUPgex, [fzlls] < 2M < oo.

Hence, as in the proof of Lemma 1, there is a sequence {4,} C X '
ApCApy1, such that if F — Ury 4n, vy(F) = lim, vg(An) _ ”~

= SUPgecx, vg(E) < 2M, and v4(F’) = 0. [The omitted detaj
lel those of Lemma 1.] Thus ’ : pitted detadls parel
iflle = SUp, <1 /e Ifgldu = SUP, <1 [79(R)] =

= SUP, <1 [¢(F)] < 2M < oco.
and so f € L?. This completes the proof.

Remark. The assumption that f be measurable may be dropped
in the above result if M® = L® or u is o-finite. This becomes evi-
dent after seeing the proof of Lemma 5 below. In any case, f will
be a “quasi-function” as defined there. (Compare with ([2],1V.13.7).)

Definition. Let (2,2, x) be an arbitrary measure space and
@(-) be a Young’s function. Then a real (or complex) set function ¢
on X, vanishing on u-null sets, is said to be of @-bounded variation
on E (relative to u), if E € X and {44} are finite disjoint measurable
collection of sets, of finite positive u-measure, contained in E, then

n .
16(G; ) = sup 3 0 (S00) ©)
=1\ p(dy)

exists, where the supremum is taken relative to all such sets {4} of
E. It I4(G) = Is(G; 2) < oo, G is said to be of D-bounded variation.
(If &(x) = |x|?, » > 1, this reduces to the well-known concept of
p-bounded variation. If G(-) is a real-valued point function with Q
as the line, this is called a generalized Hellinger integral, in [6].)

Lemma 4. If @(-) is a continuous Young’s function, g(-) € Le,
and G(E) = [g g(¥)du, E € 2 where (2,2, ) is a measure space,
then I(G) exists and moreover the following conclusions hold:

(a) Io(G; E) = [EDP(g)du, Eel.

(b) lim, 4o Ia(G; A) = 0; (0') Is(G) = O, if and only if g =0,
a.e., [u].

(c) For each & > 0, there is an 4 €2 such that u(4) < oo,
Is(G; A < e.

The proof of this result is parallel to that of III1.2.20 of [2], and
will be omitted. The following difference may, however, be noted.
First, the proof that Io(G; E) < /g @(g)dp is the usual one and for
the reverse inequality, first the proof is obtained for the simple
functions g, (where g, — g, everywhere), as in ([2], p. 110). How-
ever, if g, determines g it is not necessarily true that @(g,) de-
termines @(g) in the sense of [2]. But here x is a measure, and
hence by Fatou’s lemma the opposite inequality can be proven
from the result already obtained for g,. The second part of (b)
utilizes the FSP of u and the proof of the other parts is similar to
that given in [2]. It is remarked that the lemma may not be true
if 41 is only finitely additive, but remains valid provided a growth
condition on @ is imposed. For instance, M? = L? may be stipu-
lated.



The next result provides a sort of converse to the preceding. For
this, the concept of “quasi-function’ is needed and is given in

Definition. A real (or complex) function fon (Q, % ) is said to
be a (measurable) quasi-function relative to u if for every E € X of
finite u-measure it is equivalent to a measurable function /£ vanish-
ing outside of E, and if £ and F are in X and of finite M-measure,
then the corresponding functions /z and /r, equivalent to f on E
and F, are themselves equivalent on £ N F. A quasi-function f
will be denoted by f*. [As usual, two functions are equivalent if
they differ on a set of measure zero. Thus quasi-functions are measur-
able if x4 is o-finite or ““localizable”, but need not be so in general.]

The term “‘quasi-function” is used in [5] and “cross-section” in
[9] for the same concept. The fact that the integrals are defined for
the quasi-functions with the usual properties will be used below.
(See [5] and [9], for further discussion.) The same symbols Le, LY
will be used even if they contain quasi-functions. As the context
shows, this causes no difficulty.

Lemma 5. If G(-) is a countably additive set function, on
(2, 2, ), of @-bounded variation, then there exists g quasi-function
g* such that

1(G) = /o (g") du.
If, in addition, either (i) x is o-finite (more generally “localizable™),
or (ii) L® = M®, in the notation of Lemma 2, g* can be chosen to be
measurable. [A measure p is localizable means: for each non-empty
class " C X, there is a measurable set Be Y — supremum - such
that (a) 4 € & implies (4 — B) = 0,and (b)ifC e 2, ud—C)=0
for every 4 € A", then u(B — €)= 0]

Proof. By hypothesis, G is countably additive and vanishes on
w null sets. Then by the general Radon-Nikodym theorem ([3],
p. 336; [9], p. 173) there is a unique quasi-function g* such that

GE)=/eg"(®)du, EecX.
The representation for I #(G) then follows from this and the @-
boundedness as in Lemma 4 (a), first proving it for sets E of finite
p-measure (since on such E, g* is equivalent to a measurable
function), and then extending it using the properties of quasi-
functions with a similar procedure used in the proof of Lemma 1.
If u is localizable, then (by [5] and [9]) g* can be taken to be
measurable. If, alternately, ¢ = M? since J #(G) < oo, it follows
that /o @(Kg*)du < oo for all K > 0. So (cf., Lemma 2) there

!
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exists a sequence of u-simple functions g, such that |lg, — g*||¢ — Q,
and hence g, tends in measure to g, a measurable function. This
implies g = g%, a.e., [u], as was to be shown.

Finally, even if G(-) is only additive there is another property
of interest:

Lemma 6. If G(-) is an additive set function of @-bounded
variation, and the complementary function ¥ of @ satisfies the
condition ¥(x) < co for |x| < oo, then G is u-continuous, i.e.,
lim,, 4y, G(4) = 0. o .

Proof. The proof is similar to the absolute continuity of p.omt
functions, as, for instance, given in [6] (see also [2], p. 115). Given
that I¢(G) < co. For any e > 0, choose an M > 1, such that
(Ia(G)/M) < €/2. Now let 4 € X be any set such that ,u(A)‘P({W) <
< ¢[2. This is possible since ¥(M) < coforall M < oco. If {4} is any
measurable dissection of 4, u(4;) > 0, denote by x; = G(4;)/u(4;)
and #(s) = x;, s€ Ay, ¢ =1, ..., n, and = O otherwise. Then,

G < B 16N = 3 mlu(d) =f M
i=1 A

i=1

x(s)

d
|

gf @(’;(;)>d,,¢+fA Y(M)du, by (1),

1 n

< D(x;)u(ds) + P(M)p(4), by convexity of @,

T M o

< ]lﬁ I5(G) + P (M)u(d) < &]2 + ¢/2 = e.
Since ¢ > 0 is arbitrary, the lemma is proved. .

Remark. If G(-) is not countably additive, then even with the
hypothesis of this lemma, the existence of g* of Lemma 5 cannot be
asserted. From the convexity of @ it follows that Ie(-) [cf. (8) for
definition] is also convex. If further @(-) is continuous, Gn(E).—>
— G(E) for all E € X1, as # — oo, and G is an additive set function
on 21, then it can be shown (as in [6], p. 599) that

limy, To(Gn) = I4(G).

2. A space of set functions. This section is devoted to the ‘intro-
duction of a linear space of set functions that will be useful in the

study of the conjugate space of L?.
Definition. If (2, 2, u) is a measure space, then 4¢(u) stands



for the class of finitely additive scalar set functions G on X that
vanish on w null sets and such that 4(G/K) < 1 for some K > 0.
The class Aw(u) is defined similarly. Here @, ¥ are as usual Young’s
complementary functions and 74(+) is the same symbol of (8).

It is clear that Ag(x) is linear. It is normed according to (3)
specialized as

Definition. Forany G € Ag(u), define ||-||¢ (which is a norm) by

|Gl = int {K >0, Is (—2—) < 1}. )

The space Ag(u) contains the Orlicz space L? in the following
sense. If the subclass of G’s in Ag(u) that are countably additive
are considered, then as in Lemma 5, G(E) = [g ¢* du and if u is
localizable or M? = L2, then g is measurable and then (g% 1s g)

w(8)-T, ().

gives by (3) the equation [|Glls = Ng(g). Conversely the G(-) defined
by a gin L? as above defines an element in the subclass of Ao(p).
Thus the subclass of 4 ¢ consisting of countably additive set functions
is isometrically isomorphic to L2, and the A4 itself is a much larger
set.

The normed linear space A¢(u) is actually a B-space. This follows
from the representation theorem of the next section where it is
shown that As(u) is isomorphic and (topologically) equivalent to
the conjugate space of L¥. From the discussion of the preceding
paragraph it follows that p(g) < 1 if and only if ||G|ly < 1 where
G(E) =/epgdu, E€X, geLY. (Cf. also [3], p.79 and [6].) This
observation gives a new definition of (2) as

Iflle = supges /o G, fe L@, (2)

where S C Ay (u) is a set of countably additive G’s with ||G]ly < 1.
The corresponding LY contains all quasi-functions on (2, X, u)
which are the usual functions under the hypothesis of Lemma 5.

3. Global representation theovem for functionals on L®. Let L® be
an Orlicz space on (2, X, u). In what follows integrals relative to
finitely additive set functions appear and their basic properties to
be utilized are those given in [1] and ([2], Chapters III and IV).

Theorem 1. Let @ and ¥ be complementary Young’s functions

&
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and L2, Ay(u) be the spaces on (2, X, u) introduced before. Then
the integral

*(f) =fofdG, felLe, ©)
exists and defines a continuous linear functional on L2 for each G
in Ay(pn). Moreover, ||Glly < [|x*]| < 4||Glly, and x*(f) = O for all
fin L2, if and only if G = 0.

Proof. Itisfirst noted that there is one special case in which (9)
follows immediately, and that is when G is countably additive. Since
then, as in Lemma 5, G(E) = [g ¢*du, E € X and g* is a quasi-
function in LY. The integral in (9) can be rewritten and the Holder
inequality (stated after Lemma 1) applied to obtain

(] = 1/ [ dG| = | [a fg" dul < |/llo]lg"]le- (10)

Consequently «* is a bounded linear functional on L2. There is no
other case for which the conclusion follows so easily. Even for the
case @(x) < oo for ¥ < x9(<< co0) and D(x) = oo for x > %o, so that
L® C L*, the known result on the representation of functionals on
L= (cf., [2], p. 296) is not directly applicable here. The trouble is
that ¥(x) < xo|x| and the ¥-bounded variation of G does not give
the usual bounded variation (due to the wrong inequality) unless
1(2) < oco. The result will now be established as follows.

It suffices to consider f > 0, and /e L®, since any f in L® can
be decomposed into positive and negative parts and this result is
then applicable, due to the linearity of the integral and that of the
space L?. Let 21 C X, be the class of all u-finite sets. If E € 27, let
fz be fyg. Then fge L?, and since it is measurable, there is an
increasing sequence {f,} of u-simple functions such that 0 < f,, — /.
Consequently this sequence converges to /g (by Egorov’s theorem)
u-almost uniformly as well, and this fact is used below. Since G
vanishes on u-null sets, it follows easily that f, are measurable
relative to G also. The proof of (9) will be completed in two stages.

Let o = X% anixg,, be a typical representation of f, on E.
Then one has, since, 0 < f, 1 /&,

s 461 = | Z anG(Ew)] < 3 aulGEn)| =

i=1
fn > h |G (E )|
=K f @( —— du, where A(x) = s
/£l AN (%) B
x€Ey, 1=1,...,m, = 0, otherwise,



< Kifsle| [, ( uffEqu» ) “ + fu W(%) d“]’by @,

< K|lfsllo [ f @ < i ffE j@ ) du + Iy (% E)]

< 2lfelle Kz < 2|lfllo|G|lw, with Kg = ||Ggllw,
and Lemma 1. [Gg is G restricted to E ] (11)

This shows that for any E € 21, [g fn dG exists and is bounded by
the right side constant of (11). Now two cases arise.

(a) If @(-) is continuous then, by Lemma 6, G is u-continuous,
and hence also is v(G), the variation of G. Thus the fn-sequence
which is p-almost uniformly convergent (shown in the preceding
paragraph) is also »(G), and so G, -almost uniformly convergent to
/e. Therefore by ([1], Theorem 8), /e [ dG = lim,, [g f, dG exists and
by (11) it follows that for all E e X1,

Ve fdG| < 2|fglsGelle < 2fll6]|Glw. (12)

(b) If @(+) is discontinuous, then the only possible form is that
D(x) < oo for ¥ < xg but ®(x) = oo for x > x, (0 < %9 < c0). But
then L? C L= and fis essentially bounded. Considering the subspace
of L? of functions restricted to E, say L?(E), one has L2(E) = L*(E),
since u(E) < co. But then however by definition, the ¥-bounded
variation of a set function reduces to the ordinary bounded vari-
ation on E, and that ”fE”(p = HfE”w, ”GE”T = ”GEHI = 'Z)(G, E) In
this case the result of ([2], p- 296) is applicable and yields,

/et 4Gl </ |f1dv(G) < |fallo|iGelle < 2flolGle.  (13)

Thus in all cases (12) holds for all E e 2. Note that the final bound
does not involve E.

Now it is to be shown that in (12) E may be replaced by Q. Let
ME) = [g f dG. Then 21is a bounded additive set function on X; and
vanishes on u- (and G-) null sets, and so is v(A) on Xy, Let o =
= SUPgey, [A(E)|, then 0 < a < 2|/f||s||G]lw. But by ([2], IV.9.11)
there is a measurable space (S,#7), where S is a (totally discon-
nected) compact Hausdorff space and .o is a o-field on S, and a
regular countably additive measure X on (S,«7) and an isometric
isomorphism 7' v(1) — X. If o7, corresponds to X4, then this im-
plies « = sup ., A(4). Since X is a measure there is a monotone

£

increaging sequence {4,}C./1 such that « = lim, 7\(/1 ) = AB);
where B = U, A,. Now applying the procedure used in :the proof
of Lemma 1, it can be concluded that A(B’) = 0, so that A(S) = a.
Using the isometry again, one has v(1; Q) = «. It thereforfa follows
that |A(2)| < o« < 2||f||l¢]|G|l¥. In other words (12) holds with E re-
placed by £. This completes the proof that (9) is a bounded hpe;ar
functional on L2, as well as [|x*]| < 4]/G|ly, taking the nonpositive
case into account.

The opposite inequality is obtained as follows. Wr.iting' K =
= ||G|lw, one has Iy(G/K) = 1. (The modifications required in ‘Fhe
following if there is inequality here will be obvious.) By definition
of Iy(+), for any ¢ > 0, there exists a partition Ejy, ..., E,, such
that (the trivial case K = O being excluded)

n G(Ei) )
Pl—E g = ] = O (14)
¢§1 <K#<E%) A
Define
[ G(Es) ) -
aGy=" (K,LL(Ez) , and fo i=21 2y 408

where ¥’ is the derivative of ¥. Since fo is a u-simple function it
isin L?, and o)
< i
* * e — . e E~
ollolla®ll = %*(fo) = fg foi6 =K 3 az< o )M( )
G(Eq)
Ku(E;)

> K[ /o D(fo)dn + 1 — 6/K], by (14),
> Kl||folle — 9, since |[flle < fo D(f)du + 1.

Since 6 > 0 is arbitrary, it follows that [|x*| > K = ||G|l¢. Com-
bining this with the previous inequality one has |G|y < |jx*|| <
< 4||G|lg. From this it also follows immediately that x*(f) = O for
all f in L? if and only if G = 0. This completes the proof of the
theorem.

Remark. If G is countably additive, using (2') in Section 2, one
has [2*(f)| = K /o] d(G/K)| < K|fla, so that x| < K. Thus in
this case |[x*|| = |G|y (= K) and the proof can also be simplified.
(The same is true if @ is discontinuous, by (13), even though G may
not be countably additive.) In general, however, only the ine-

=K % D(a;) + Y’( )],u(Ez), by equalityin (1),

=1



qualities given in the theorem can be proved. (If the functions are
allowed to take complex values also, then the right side inequality
will have 8 instead of 4.)

Theorem 2. If x*(+) is a continuous linear functional on ¢
then there exists a (additive) set function G in Ay(u) such that :

() = fa] dG, feLe. (15)

Proof. Let X C X be the sets of finite u-measure as before. So
x,'g.eL“’ for E € 2y, and if x*(xg) = G(E), then G is a finitely ad-
ditive set function, since «* is linear. Also since x4 =0, a.e., for u-
null sets 4, it follows that G vanishes on w-null sets. T(; sho’w cht
G € Ay(u), the boundedness of x* will be used. For any E €2, if
Ly, ..., Ey is a measurable disjoint collection of sets, E;CE a,nd
0 < u(E:) < oo; define f0 in [2 as ’

foznbin bi:gﬂﬂ
2 e, <Hx*llﬂ(Ez’) > (16

Since |[flle < fo @(f)du + 1, the following inequalities hold.

1 D(f0 M s G(Ey)
+ fﬂ (10 dp = [/%s > T —El b; <\—Hx*lm(Ei) )M(Ez')

o G(E)
=3 009 + T(m )] @, by equatity ot (1,

_ n G(Ey)
— | @94 T\ :
Jomant & ) 1
This implies, since Ee X is arbitrary, Iy(G/|x*) < 1, so that
IGlle < [#*]] < oo. Tt follows that G is in Ay(y).

It remains to show that (15) holds for this G. If f=2xm EcXy
then with this G, (15) is true. If f=3F ayz, Eie.}Z'l theI;
also (15) holds for such by the linearity of the {integral. in the
general case, let fg = fyp, E e X Again it suffices to consider
/ = 0. Then there is an Increasing sequence {fn} of p-simple functions
on E such‘ that 0 </, — /g, a.e., [u], and since u(E) < oo, the con-
vergence 1s also u-almost uniform. Here again two cases arise.

(a) @(-) is continuous. Then G is p-continuous by Lemma 6, and
s0 fa —fg, G-almost uniformly and, as in the proof of ,(12)
limy /5 fn dG = [z { dG is true. But L?(E) C LY(E) for E € X}. [This,
follows from the supporting line property of the convex D, ¢y +

-~
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+ c1x < @(x) for some constants co, c;. Hence there is a ¢ > 0,
with ||fl1 < c|lf|le.] However the linear space L?(E) is not in general
closed in Ll-norm. So, let (L?(E))1 be the L1-closure of L2?(E) and
considering x* as bounded operator in L! with domain L?(E), let
y* be its (norm-preserving) extension to (L?(E));. Thus y*(f) = x*(f)
for all f in L2(E), and y* is a continuous linear functional on the
closed subspace (L?(E)); of L1. Hence

(fa. f € L2(E) C (L?(E))1 C LY),

ly*(fe) — ¥*(fa)l < Iy*llIife — fallr =
=yl /e (fe — fa)du -0,  (17)

as n — oo, by the Lebesgue monotone convergence theorem. But
y*(fg) = **(fg) and y*(fn) = x*(f4) since the fg, f» are in L2(E).
Hence from (17),
3(f5) = ¥*(f&) = limp y*(f) = limy 2*(fn) =

= limy, [ fndG = [EfdG, Eel;. (18)
It follows that (15) holds for fg, E € 21, when @(-) is continuous.

(b) If @(-) is discontinuous, then, as noted before, L?(E) =
= L*(E), for E € 2. In this case however, a result of ([2], p. 296)
is again applicable to yield x*(fg) = fg f dG. This means, if xg* is
the restriction of 4™ to E, then (15) takes the form, xg*(f) = /& f dG,
for all E € 2. Thus (15) is true in general if u(2) < oo.

It remains to show that the above result holds for general 2 (i.e.,
u(£2) = o0). For this, again the procedure of the paragraph following
(13) of Theorem 1 is applicable mutatis mutandis. So [qo f dG is well-
defined ,andify*(f) = /o f dG then y* is a continuous linear functional
on L? and xg* = yg* for all E in 2. By the FSP of g, this implies
that 4™ and y* agree everywhere and (15) holds as stated. The proof
is therefore complete.

The preceding results enable the presentation of the global repre-
sentation theorem for continuous linear functions on L2 as follows.

Theorem 3. Let (2, X, 1) be a measure space. If ® and ¥ are
complementary Young’s functions and L?, Ay(u) are the Orlicz
space and the space of Y-bounded additive set functions on
(2, X, u), then for every continuous linear functional x* on L2,
there is a unique G in Ay(u) such that

x*(f) = fo} dG, felL®, (19)

and moreover,
IGlle < 6™l < 411Gl (20)
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Proof. By Theorem 2, every x* of the theorem has the form (19),
and by Theorem 1, the norm inequalities (20) hold. Only uniqueness
needs to be proven. If G1, Gg are two elements in Ay for which (19)

holds, then
¥*(f) = fo]dG1L = [ofdGs, feL®.

So,
Jold(GL— Gg) =0, felLo. (21)

Since G1 — Gg € Aw(u), (21) represents a zero functional on L, by
Theorem 1. It follows by (20) that [|G1 — Ggl|lw = 0, so that G; = Go,
as was to be proved.

Remarks. 1. The result of this theorem asserts that there is an
isomorphism between (L?)* — the conjugate space of L% — and Ay,
and that the spaces (L?)*, Ay are (topologically) equivalent. As a
corollary, it follows that Ay is a B-space.

2. Without further hypothesis G may not be countably additive
and hence x*(f) = /o fg du, f € L?, g€ L¥, may not hold. The con-
ditions under which this special result holds, its falsity in the
general case, and the possibility [|G|ly = ||x*| in (20), are discussed
in the next section.

4. Special cases. Linear functionals on certain subspaces of L@
can be given a more specific form by specializing Theorem 3. Thus
the following result holds and it includes the corresponding known

results, (cf., [3], [6], [11]).

- Theorem 4. Let L? and Aw(u) be the B-spaces on (2, 2, u), @
be continuous, and @, ¥ be complementary Young’s functions. If x*
is a continuous linear functional on M?, the closed subspace de-
termined by the u-integrable simple functions in L®, then there is
a subspace 40 of Ay (u) containing countably additive set functions,
which is isometrically equivalent to (M), the conjugate space of
M®. Moreover,

) =/ofdG, (=[afg"du), feM?, Gedy®, (22
and
¥l = [|Gllw. (23)

In (22), ¢" is a quasi-function, g* € L¥, and it can be taken as a
measurable function in LY if and only if, either (i) u is localizable,
or (ii) M¥ = L¥. [(ii) implies that ¥ is continuous and M¥ = L¥]

Proof. Consider the set M? = {f € L?| /o ®(Kf)du < oo for all

K > o}. Following the proof of Lemma 2, it is readily verified that
this set is a closed subspace of L? and is determined by the u-
integrable simple functions in L2, that is, the same set as in the
statement of the theorem. Since, by Theorem 3, the representation
(22) holds, one only has to show that G € 40 if x* € (M?)*.

LetE, E; i =1,2, ..., E = U7_| E,, be sets of finite u-measure
and E; be disjoint. Then yg, yz, are in M?. Let Fy, = Uy, 1 En.
Also

% (1r) = Jr dG = X%, G(Eq) + G(Fm),

since G is finitely additive. To show that G € 49, it is enough to
establish |G(Fp)| = |%*(xz,)| — O as m — co. However, E; are dis-
joint and this implies that y, — 0 a.e. [x], and for any K, there
is an g, such that for m > mg one has

IEzplle < /[o P(Kyp,)dn + 1 <2, (xr., € M?).

So |lxg,ll < 2/K, and since K is arbitrary, ||yz,/le — 0, and this in
turn gives [G(Fm)| < [|4*[lxp,/le =0, as m —oo. Hence G is
countably additive. Therefore, by the remark following the proof
of Theorem 1, (23) holds. The remaining conclusions are immediate
consequences of Lemma 5. This completes the proof.

Corollary. If @(2x) < CP(x), x >0, and L2, LY are Orlicz
spaces on (2,2, u), a localizable measure space, (@, ¥ being
complementary Young’s functions) then for every x*e (L?)%,
there is a unique g € LY such that

x*(f) =Jafgdu, and |x*| = Nw(g). (24)

The condition on @ implies that M? = L2, and the result follows
from the theorem, and (3) and (3') defining Ny (g) (= ||G]¥).

Remarks. 1. It is to be noted that in these results, the norm
for L? is that of (2) while the one for L¥ is (3). Using (4) these
relations can be expressed in terms of the norm (2) itself. Thus one
gets for (24),

Higlle < 6™l < liglhe, (25)

a form given in [10], and all earlier studies on the subject. The
above corollary was originally proven in this form in ([10], and [11]).

2. The above formula (24) may not hold if M is a proper subset
of L? even if u(2) < oo and @(-) is continuous where x* is in
(L?)*. The following two sentences are well-known and are added
to make this point clearer: If 0 3 fo € L2 — M?, and (24) holds for
all fe L?, and all x* € (L?)*, then by a corollary to Hahn-Banach



theorem ([2], p. 64) there exists a functional x¢* € (L?)*, such that
x0*(M?) = 0, %0*(fo) = 1, and by (24) x0™(f) = /o fgo du, go€ L¥.
Then, if f, = go whenever |go| < n, = O otherwise, one has the
bounded functions f, € M? (since u(2) < o0), and 0 = xp*(f,) =
= fo g0 At = [{_n<go<n) £0% @u, so that go = 0, for all #, implying
go = 0 a.e. But this makes x¢* = 0 which is impossible since
%0*(fo) = 1. This shows Theorems 3 and 4 cannot be improved.
Theorem 5. Let L2, L¥ be Orlicz spaces on a measure space
(2, 2, p). If the complementary Young’s functions @, ¥ are such
that M® — L% and MY = L¥ hold  simultaneously, then L2(L¥) is
reflexive with (L?)* ((L¥)*) being topologically equivalent to LY(L9).
Proof. If #* € (L?)*, by Theorem 4, there is a g € L¥ such that
2(f) = Jafg dp = Jo gf du = x**(g) = x**(x*),
where x** € (L?)*™. In the notation of [2], writing x*(f) = fla*)
where f is the image of f in (L?)** under a natural embedding, the
above equation shows that (since x* < g, ™ ), L® and (Lo)**
are isomorphic. Since by (25), %|/flls < [+**|| < ||f/ls, the topological
equivalence of L? and (L?)** follows, and completes the proof, as
the remaining conclusions are immediate from the preceding result.
This result is proved, in ([11], p. 154), under the condition that
D(2x) < C19(x), P(2y) < C2¥(y), x,9 >0, (which imply that
M? = L®, MY = L¥) and the further assumption that u be o-
finite. All the previously known results on the reflexivity impose
this additional o-finiteness restriction on . No such restriction was
needed in the above theorem, and it thus generalizes these results.
If &(x) = |#]?, 1 < p < oo, then Theorems 4 and 5 reduce to the
usual results for Lebesgue spaces (cf., [2]). For p =1, Theorem 4
takes an interesting form, and in that form it was recently proved
in ([5], p. 337). This may be stated as,
Theorem 6. If @(x) = [x|, and ¥(-) is its complementary
function, then for every x* € (L?)*, one has

2(f) =JafdG, (=/afg*dp), felLe, (26)
where G is a bounded countably additive, u-continuous unique set
fur.lction, and (in the second form) g* is an essentially bounded
unique quasi-function. Moreover, g* is measurable if and only if
u is localizable.

This is a restatement of Theorem 4, where M? — [ holds, but
L¥ is in general a proper subset of L¥. The u-continuity of G is a
consequence of Lemma 6.
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Finally it may be noted that Theorem 3 reduces to the corre-
sponding result, if Y(x) = |x|, of ([2], p.296). In this case the
result coincides with [2], and of course is not really a generali-
zation as it is already in its general form.

5. Application to statistical theory. The preceding work enables a
clarification and extension of certain results in statistical theory.
More particularly, a result in ([7], Theorem 9) will be considered
here and a more general form of it can now be given.

Let {Py, 0 € ©} be a family of probability measures on (2, X),
with @ as a subset of the line. If X(+) on Q is a random variable with
the distribution determined by P, an important statistical problem
is to estimate 6 by a suitable measurable function 7" of X (called
an estimator of 6 based on an observation on X) in an “optimal”’
way. This last term means that if 0 is the true value, the discrepancy
|T — 6] (= |T'], say) or a nonnegative function W (-) of it, called a
loss function, has the minimum average value relative to P, for
0 € @. Much used examples of W(-) are W(x) = [x|?, p = 1, 2, or
$ > 1. Thus a general function to consider is that W () is a non-
negative symmetric convex function with W(0) = 0. Then the
quantity to be minimized is R(7, 0), called risk function, where

R(T, 6) = o W(T)dP,. (27)

It is clear that this problem is closely related to the Orlicz space
theory. By Lemma 5, R(T, 0) of (27) is the same as Iw(Gs) where
Go(E) = /g T dPy. To avoid notational confusion, hereafter WW(-)
will be denoted by @(-). The problem of statistical interest is
whether the subset of L2, containing the optimal 7' is nonempty and
then to characterize it. Since the measure x of the preceding work
is to be identified with Py, (Py(@2) = 1) it follows that L2 C L1,
LY C L1 (by the support line property and finiteness of measures,
as used before). Let {D;} C L¥ be a sequence of elements such that
(Do=1,TeL?),

@) foD;dPs =0, i=1,2, ..., (i) fo TD;dPs = as(0), (28)

where «; are known constants. Such elements D; exist. For instance,
if the family {Py, 0 € ©} is dominated by a fixed o-finite measure
2o, and p(x, 0) are the (Radon-Nikodym) densities of Py relative to
Ao, then let p(x, 0) be differentiable functions of 6. If D; = 9p/o6t,
D;e LY and p(x, 0) satisfies the standard conditions for the inter-
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change of the integral and the derivative, then D; satisfies the
conditions given in (28). Several other functions D; can be con-
structed with the properties of (28), even with 0 multidimensional.
(Cf., [7] for such constructions and related discussion on these
points.)

Instead of R(T, ), it is technically more convenient (and corre-
sponds naturally to the case @(x) = |x(?) to consider K(T, 0) (= K,
say) as the criterion for the optimality of 7, where K = N o(T),
ie., K =inf {k > 0, Is(Gs/k) < 1}, G being the set function of
the preceding paragraph. Let m(7) be the set of elements of Le,
such that K < Ko, where K = Ng(T), i.e., the “risk” associated
with the choice of 7. This set is characterized below. The result
generalizes ([7], Theorem 9) and the proof is similar to the special
case. It will be sketched here for completeness.

Theorem 7. Let @, ¥ be Young’s complementary functions, ¥
be Eontinuous, and L?, L¥ be the Orlicz spaces on (@2, 2, Py). T
m(T) C L2, {D;} C L¥ are as defined above, (T = T — ), then the
following conclusions hold:

(a) m(7) is nonempty if and only if (i) for the given Ko, every
finite set {Dy,, ..., Dy} of {D;}, and any scalars ay, ..., an,

|27=1 4y, (0)] < Kol 7y 45D, 1w, (29)

and (i) {D¢} C M¥. [M?Y is the subspace of L¥ as in Theorem 4.]

(b) For any T'e m(T), Ko > No(T) > Cy (=inf K > 0 satis-
fying (29)).

(c) It Toem(T), satisfies No(Tp) = Co, then it is essentially
unique.

Note. In the special result of [7] the condition Y(2x) < C¥P(x),
was imposed (so that M¥ = L¥ and (a) (i) above is implied). But
this is more restrictive than even the condition M¥? — [¥ (which is
not assumed here) since there are functions satisfying this but not
¥(2x) < C¥(x). (As pointed out in [6], B(x) = £ — 1, is such an
example.) From the preceding theory, it follows that the present
co.ndltions are the most general ones for this problem. (In [7], for
this condition, ¥ and & were interchanged due to a typographical
error.)

Proof. (a) If 7 € m(T), then it is immediate that (29) holds for
D;e LY and (ii) is not necessary, since (by Hélder inequality)

)

121 @ 0)1 = |/ T(Zj_y &sDy) dPo) < No(T) Sy ;D

]
|

1N

Thus if m(7") is nonempty, (29) holds, no matter what @ and ¥ are.
Conversely, if (29) holds for any finite set of D;’s in M¥ and the
scalars, a;’s, then by a result of Hahn (a consequence of Hahn-
Banach theorem, cf., [2], p.86), there exists a bounded linear
functional x* on M¥ such that x*(D;) = «; for all 7, considering the
closed subspace M¥ of L¥ as a B-space in its own right. Hence by
Theorem 4, (cf., (22)) there exists a unique Go in A49, such that

x*(DZ) :fg Di [ZG@ :fg DzT dPo (30)

(Here T is actually measurable, since Py is a finite measure. Note
that this statement would be impossible if D; are not in M¥, by
Theorem 4.) By (23) applied to (30), it results that ||x*|| = No(T)
(= |lGlls) < Ko. Since Do =1, x"(Do) = ap(f), it follows that
T e m(T), and Ko(T) < K. This proves (a).

Part (b) is clear, and (c) follows from the fact that if 7'y e m(7)
such that N@(To) = N(D(Tl) = Co,then Ty = aT —+ ﬂTz, at+p =1,
« >0, is also in m(T), and Co < Nq;(ocTo -+ ﬁTl) < ochj(To) -+
+ BN&(T1) = Cy gives Ty and T'; to be proportional. From this it
follows readily that 7'y = T, and completes the proof.

Final remarks. 1. When the existence of estimators is thus
settled in the above theorem, the actual construction of the best
estimators 7 (i.e., elements of m(7')) is an interesting, and in general
nontrivial, problem in statistical theory. [For a discussion on sta-
tistical implications, with @(x) = |x|?, see E. W. Barankin, Ann.
Math. Statist., 20 (1949), 477-501.]

2. As seen from the work of this paper, and motivated by the
study of [4], it would be interesting to work out the representation
theory, and other problems, of the B-spaces 4¢(u) and 4y (x) which
may be called the “Orlicz spaces of set functions”. This will both
generalize [4] and give a better understanding of the structure of
these spaces.

After the preparation of this paper, the author learned of a paper
by T. ANDO (Linear functionals on Orlicz spaces, Nieuw Arch. Wisk.,
8 (1960), 1-16) in which another special case of Theorem 3 was
proved. The relation between these results is as follows: Let u(2) <
< oo. Then (and only then) @ (or ¥)-bounded variation of a set
function implies bounded variation. So the function G of Theorem 3
will be a bounded additive set function and in this case, by Yosida-
Hewitt theorem ([2], II1.7.8), G can be uniquely decomposed as
G = G1 + Gg where G is (bounded) countably additive and G is
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purely finitely additive (bounded) set function on X. Since G; and
G vanish on g-null sets, Theorem 3 reduces to

() =Jafgdu + JafdGs, feL®, gelL¥, (*)

where the first integral is a consequence of the case (i) of Theorem 4.
The result (*) includes Andd’s theorem where, in addition to
u(2) < oo, it was also assumed that @, ¥ satisfy the conditions
D(x) ¥ (x)
_—

cQO, —> 00 as x¥ — oo.
X X .

It may be seen that the proofs of Theorems 1 and 2 simplify con-
siderably with these additional assumptions. It appears that all the
work of the present paper is needed to generalize Andé’s result to
that of Theorem 3, since the above menticned (simplifying) as-
sumptions were used in a crucial manner in his paper.
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