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The notion of an infinite-dimensional simplex has been introduced by G. Choquet
(for the definition and main properties see [6]) and it turns out to be quite adequate
in certain problems, particularly in those concerning the uniqueness of various
integral representations like the Riesz— Herglotz—Martin representation of positive
harmonic functions, [5], or the Lévy—Khintchine representation of logarithms
of non-zero infinitely divisible Laplace transforms of probabilistic Borel measures
on the compactified half-line [0, co], [14].

The purpose of this Note is to show that general arguments concerning the
category of compact convex sets and continuous affine transformations yield some
new information about simplexes. We shall show, in particular, that the free objects
in this category are just the simplexes whose extreme boundaries are compact and
extremally disconnected, and affine retracts and free joins of simplexes are simplexes.
Combining our Theorem 5 with a theorem of Lindenstrauss ([16], p. 62) we get 17
new conditions necessary and sufficient in order that a compact convex set be a sim-
plex. Proofs are outlined.

1. Preliminaries on categories. The terminology follows that of [15] and [18].
Two morphisms « and 8 in a category R are called isomorphic if there exist isomor-
phisms y and § in & such that a = ypd. Two categories & and will be called
almost isomorphic (almost dual) if there exist one-one covariant (contravariant)
functors @ : & — $ and ¥ : $ — K such that every morphism £ in § is isomorphic
to @Y (f) and every morphism « in  is isomorphic to @ ().

E.g., the category of Abelian groups and homomorphisms is almost dual to
the category of compact Abelian groups and continuous homomorphisms (Pon-
triagin’s theory does not give a duality in the strict sense, because the second dual
of a group G is not identical with G but is merely isomorphic to G). Similarly,
Stone’s representation theorem states that the category of Boolean algebras and
h cmomorphisms is almost dual to the category of 0-dimensional compact spaces
and continuous maps.

[141]



142 Z. Semadeni

THEOREM 1. Let & and $ be almost dual with @ and ¥ as above. Then (i) « is an
epimorphism in R iff D (a) is a monomorphism in $, (ii) F is a basic free object in &
iff @ (F) is a basic direct object in $, (iil) given a family o; : A — A of morphisms
in & (t € T), the pair (A, {o¢}) is a free join of {At}y.r (in K) iff the pair (D (A), {D (61)})
is a direct join of {(4¢)}s.r (in 9), (iv) A is a retract of B in & iff @ (A) is a retract
of ©(B) in 9, and a morphism 3 : A—B is a cross-section of a retraction o : B— A
iff @(a):D(A)—D(B) is a cross-section of D (f) : D (B) — D (A).

2. Preliminaries on compact convex sets. By a compact convex set we mean
a compact convex subset K of a locally convex Hausdorff real linear topological
space; 0K denotes the set of extreme points of K. A function « from a convex set
K into a convex set K; is called affine iff a (¢; x+c2 ) = ¢; a (x)-+¢5 a (y) when-
ever xe Ky, yeKy, ¢c; =20, cp=1—c;>0. If Kis a convex subset of a linear
topological space, then &2 (K) will denote the space of all continuous affine func-
tionals on K. If K is convex and compact, then &2 (K) is a closed linear subspace
of the space @ (K) of all continuous real-valued functions on K (provided with the
supremum norm) and satisfies the following condition in which X = K and H
= A (K):

(%) H separates the points of X and 1eH.

We recall several known facts which will be needed in the sequel.

(D. Let ¥ be an Archimedean ordered vector space with a (strong) order unit e
and with the norm [jo|| =inf {¢ :v < ce, —v < ce}. Then V is linearly, isometri-
cally and isotonically equivalent to a subspace H of a space @ (X) satisfying (%)
such that e corresponds to 1 in H ([12], p. 7).

(II). Let H be any linear subspace of @ (X) satisfying (x) and let

K=®H)={EcH*: &E>0,[f=¢&() =1}

Then K is convex and compact in the *-weak topology of the space H* conjugate
to H. If he H, let h" (§) = & (h) for £e K. Then the function h—A” is a linear
order-preserving isometry from H onto the set &2 (H*)|K of all restrictions (to K)
of continuous affine functionals on H*, which is dense in the space & (K). If H
is closed in @ (X), then the function 4z — h" maps H onto & (K). (Isometry is due
to Kadison, [12]; the fact that this map is onto & (H*) | K is due to Alfsen, [1]).

(IIT). Let K be any compact convex set, let H = #& (K) and let KN = X (H).
If x € K, let x (h) = h (x) for k in H. Then the function x —x” is an affine homeo-
morphism from K onto K" (cf. [2], p. 122 and [1]).

(IV). Let X be compact, let H be a closed linear subspace of @ (X) satisfying (*)
and let X, be the Silov boundary of H, [2]. If H is a vector lattice in the ordering
induced by € (X) (but not necessarily a sublattice of € (X )), and if His an M-space
with unit in the sense of Kakutani [13], then (f v g) (x) = max [f(x), g (x)] for
every fand g in H and x in Xj, where f v g denotes the relative supremum of f
and g in H. This means that the restriction f— f| Xj is a lattice isomorphism from
H onto a sublattice Hy of @ (X;), and hence Hy must be identical with @ (X;) by
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the Stone— Weierstrass theorem. (This theorem has been proved by Geba and
Semadeni [8], [9] and, independently and in a quite different form, by H. Bauer [2]).

(V). Let H be a linear subspace of a vector lattice E, and let § : E — H be a non-
negative projection onto H. Then H is also a vector lattice; if £ = € (X), and H
satisfies (x), then H satisfies the assumptions of (IV) ([9], p. 314).

(VI). Let K be compact and convex. Then &£ (K) is a vector lattice iff K is a sim-
plex and 0K is closed ([2], p. 120, [3], [6], [7]).

(VID). Let X be any compact space and let &y = X (@ (X)), i.e., Syis the set
of all probabilistic Radon measures on X. Then &4 is a simplex, the extreme points
of &y are precisely the Dirac measures on X, and 04 y is closed and homeomorphic
to X. Moreover, if S is any simplex and oS is closed, then S can be obtained in the
way described above, and & (S) may be identified with @ (0S). For every compact
convex set K and every continuous map a : 08 y— K there exists a unique extension
of a to a continuous affine map from Jy into K, [3].

3. Results. We shall deal with the category in which the class of objects is the
class K of compact convex sets and the class of morphisms is the class & of con-
tinuous affine maps.

Let o be the class of all Archimedean ordered vector spaces with distinguished
order units and complete with respect to the norm described in (I). Let $ be the
category whose objects are the elements of $, and the morphisms are the non-
negative linear operators transforming the distinguished order units onto the
distinguished order units. This category is almost isomorphic to the category of all
closed subspaces H of spaces @ (X) satisfying (x) and linear operators a : H; — Hp
such that /> 0 implies a(f) = 0 and a (1) = 1.

We are now going to define two functors # : & — $ and X : § — K. The object
functions have been defined in (I), (I1) and (II1). If « : K; — K5 is a morphism in &,
then 8 = A (a) : # (Ky) — 4 (K)) is the linear operator f# adjoint to «, defined
as fhy (x)) = hy [a (x1)] for hy in A (K,) and x; in K. If § : H — H, is any non-
negative linear operator and (1) = 1, then a = X (B) : X (Hy) — X (H,) is the
continuous affine map adjoint to f3, defined as a&, (b)) = &, [f (hy)] for hy in Hy, &
in X (H,).

THEOREM 2. The categories ] and $ are almost dual and this relation is deter-
mined by the contravariant functors A andX. Moreover, each of functors RA : { — K
and AR : 9 — $ is naturally equivalent to the corresponding identity functor.

THEOREM 3. The Cartesian product K = IT K; of a family of compact convex
sets (together with the coordinate projections m; : K — Ky) is a direct join in the cate-

-gory K. The interval 1 = [0, 1] is a basic direct object, and the Tychonoff cubes 1™

are the direct objects in K.

THEOREM 4. Let H be a closed linear subspace of @ (X) satisfying (). Then every
continuous affine functional on X (H) can be extended to a continuous affine functional
on the whole space H*.

This follows immediately from (II).
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TueorEM 5. Let K be a compact convex set. Then the following conditions are
equivalent:

(i) K is a simplex.

(ii) The space H* conjugate to H = A (K) is a vector lattice.

(iii) H* is an L-space (in the sense of [13]).

(iv) H** has the property of Nachbin (cf. [11]).

(v) H has the Riesz decomposition property: if f,g,he H, f>0,g>0,h>0
and f+g = h, then there exist fy, gy in H such that 0 < fy < f, 0 < gy < g and
Jot+go=h. '

Proof. (i) < (ii) follows from Choquet’s theorem, because X (H) is a base of
the positive cone of H*. (iii) obviously implies (ii) and (iv); (iv) implies (iii) by
a theorem of Grothendieck [11], and (iii) is equivalent to (v) by a theorem of Lin-
denstrauss ([16], p. 62). Finally, assume (ii). Let & #, e H* and £ >0, n > 0.
There exists a Radon measure p on K such that p (h) = ¢ (h) for hin H and |ju|| =
= ||{]|. Since {4 < pu+|H and {_ < p_|H (by the minimality of the decomposition
§= 10— ¢ in H¥),

IS0 IE+ N8I < Do - Tlee— 1T = Nlpell = 1E 115

moreover, [E+n] = (&+n) (1) = &(D+n (1) = []+Iyl, and hence H* is an
L-space. (of [20]).

THEOREM 6. Let K be an affine retract of a simplex S (i.e., a retract in K). Then
K is also a simplex, and if 0S is closed, then so is OK.

Proof. Let f:K—S be a cross-section of a:S—K (aef, fef), ic.,
aff = ex (identity on K). Then & (f) # (a) = eqqxy, i.€., A (B) is a non-negative
linear projection from & (S) onto a subspace equivalent to &2 (K). If 0S is closed,
we apply (V) and (VI), if not, we pass to the conjugate spaces and apply (V) and
Theorem 5.

THEOREM 7. Every (indexed) family {Ki};,r of compact convex sets has a free
Jjoin in K.

Proof. If the family is finite, a free join can be constructed as follows. We may
assume that K; = H;, where H; is a hyperplane in a locally convex space E; and
0¢H; (i=1,..,n). Let E=E;+ ... +E, and let K be the convex hull of the
union of images of Kj, ..., K in E. Then K is compact and (together with the obvious
embeddings) is a free join of {Kj,..., K,} in K.

If the family is infinite, we can exploit Theorems 1 and 2. Let H be the direct
join of the spaces # (Ky) in the category of Banach spaces and linear contractions,
ie., let H be the set of all functions h = {hs};, with h;e A (K;) and [h] =
= sup {||is|| : 1€ T} < oo. Then H is also a direct join in the category £, hence
K= X (H) is a free join of {Ki};,r in K.
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THEOREM 8. A free join of any family of simplexes is a simplex.

Proof. Assume that the sets K; in the precéding proof are simplexes. Then,
by Theorem 5, each space & (K;) has the Riesz decomposition property, and
a straight-forward argument shows that H has also this property. Hence, K is
a simplex.

THEOREM 9. A one-point set is a basic free object in K. An object is free iff it is
a simplex whose extreme boundary is a free compact space. A compact convex set
is projective in R iff it is a simplex whose extreme boundary is a projective compact
space, l.e., is compact and extremally disconnected.

Proof. A free compact convex space K is a free join (in the sense of Theorem 7)
of a set of copies of a one-point set; moreover, # (K) is a direct Banach space
(i.e., the space of bounded functions on an isolated set 7) and K = Spr

An object is projective iff it is a retract of a free object (cf. [18] and [19]). If X
is extremally disconnected, then it is a retract of a space BT with 7 isolated, [10],
[17], and, by (VII), this retraction can be extended to a continuous affine retraction
from &g onto Sy. Conversely, if K is an affine retract of 347, then, by Theorem 6,
K= J for a certain compact X and there exists a non-negative projection « from
AR (Spr) = C(BT) onto A (Sy ) = € (X) such that a (1) = 1, hence [a| = 1 and
@ (X) has the property of Nachbin, and X is extremally disconnected.

The author wishes to acknowledge his obligation to Professors Erik Alfsen,
Heinz Bauer, Victor Klee and R. R. Phelps for several valuable suggestions.
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