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Prefacg

heee notes ére bésed on lectures given at Queen’s
niversity during the period Qetober-December 1872 and in
August 1873, Their nmain aim is to show what monads and
their algebras mean for categorieé important in functional
analysis. Specisl emphasis is put on Banach spaces and
compact convex sets,

The reader is supposed to be familiar with rudiments
of functional analysis. For understanding the cafegorical
core of these notes the knowledge of +the conecept of an
adjoint functoer is needed, Some r*esul*té5 hewever, are stated
in the lénguage of functional analysis and are of intersst
independent of category theory.

These lecture notes are essentially gelf-contained.
Proofs are presented at a pedestrian pace, with all details
inecluded. Each section is Followed by a set of exercises
and bibliographic comments.

§2 contains an exposition of basic facts concerning monads

als next sections deal with applications to other

e
i
D
]
@
2]

theories, The overall intent is to trancslate categorical
problems into the language of the specific theory in question;
this means that for each given pair of adjoint functors the
general form of é T-algebra should bé found and the monadieity
should be proved (or dispraved) by methods of this theory
rather than by applying a general monadicity criterion.

Une such ecriterion is stated (in $6), namely Linton's

ceriterion, which appears to be the most convenient in applications,

i



Still, it *turns out that in each caée considered in these notes,
a direct proof is not longer than a verification of
Linton's conditions,

The topic discussed in these notes is relatively new.
All known results concerning monads in functional analysis
seem te have been proved in last three years and only one
paper has been published by now.

1 take pleasure in acknowledging my debt of gratitude
to several mathematicians. At a conference in Oberwolfach
in July 1972 Professors John Gray, F.E.J. Linton and F.W.
Lawvere directed my attention to monads and encouraged me to
work in the topic presented below. During my visit to
Wesleyan University in December 1972 Professor Linton generocusly
made his unpublished results available to me, pinpointed an
error in an early draft of a part oi the notes and
helped me greatly with his advice. I am indebted to the
audience of my lectures at Queen's University for several
valuable comments, especially to Professor Peter Taylor for
his new proof of Propesition 7.3 . I also wish to express
my gratitude to Professor A.J. Coleman for the invitation
to Kingston and to the Department of Mathematics of Queen's
University for the hospitality and help while pireparing

these notes.,

Kingston, August 1973 ' Zbipgniew Semadenl

ii



TABLE OF CONTENTS

Pz‘efaCE R R T L I T R B N I I T

Preliminaries suiucesneneionnocess
Monads and their algebras

Vezctor spaces and countably absolutely

convex subsets of Banach spaces

Conjugéte Banach spaces

Compact spaces ......
Linton's criterion ..
Compact convex sets ,
Index of categories

Bibliography .......

LI N N

* 9 4 @ 9

-

L A L T I R S

n

22
55
66
74
84
36

97



§1. Preliminaries., Al1l undefined.concepts can be
found in Semadeni [1971] unless another reference is explicitly
stated; a reference of the type #12.2.1 will always refer
to that book, Yet, in order to make these note self-contained

we recall the terminclogy and notation,

1.1. R is the set of reals, € is the set of complex

numbers, F is either R or g . A linear contraction

is a lineab operator of norm < 1 . .If B 1is a Ranach
space, B* is its conjugate space; g{B,B*) is the weak
topology and o{(B*_ B) is the *weak topoiogy; Ky 1s the
canonical map from B into B#*

If X 1s a topologiéal space, C{X) is the_spage
ef bounded continuous scalar-valuéd functions on X with the
Supremun norm. If ¢: X + Y is'azcontiﬁuous map, C{¢) 1is
the induced linear operator from C(Y) into C(X) ., If
the scalar field is to be specified, we may write C{X,R) ,
CiX,o) , C(¢?RJ eté, If X is compact, M(X) is thergpace

of regular Borel scalar-valued measures on X .

1.2. Arbitrary categories will be denoted by capital

CGerman letters '\ and Iy {in §3 , k denotes a fixed,

0
specific category). An index of frequently used categories

is at the end of these notes. i?_ is the class of obijects
of &
H ¥ )
The symbol <Aa,A %& or <A,A Y will denote the set

T
of all (W—morphisms from A to A .

5 &* is the dual category.

The letter ¢ will always denote a covariant functor



from U 1o .Q which is a left adjoint of a functor 4

from & to ML 3 this means that:

(1) there exists a natural transformation

3 : H . 4 \? ¢ .
(1.1) " ICﬁ |
called the unit of the adjunction, such that for every
morphism £: A+ ¥B in (L there is a unique morphism

%: ¢A + B in & such that the diagram

A

A Yoa

(1.23

|

:w

v
YR

is commutative.

{ii) there exists a natural transformation
(1.3 P : ¢?—f IL .

called the counit of the adjunction, such that for avery
morphism £: A - B in there is a unique morphism

3: A+ ¥8 in UL such that the diagram

$YB fe

A

N
o

{(2.4)

is commutative,

(iii) the natural transformations n and p satisfy



vp D %) =g,
{iv) there is a natural equivalence

(1,63 <¢>A,B‘>& E(A,‘i‘B}w

of bifunctors from % =4, to Ens given by

(1.7 B+ ¥(B)n, for B in {ea B,

43
and Ry the inverse correspondence

{1.8) o b pBéia) for o  in '<A,?B}% .

Each of the conditions (i) and (ii) may be assumed to

be an equivalent dafinition of ¢ being a left adjoint of

¥ ; the existence of two natural transformations (l1.1) and

£1.3% satisfying (1,5) is also an equivalent definition of
adjointness; and the etistence of a natural equivalence
{1.8) is still another formulation of the same concept,

If % is a left adjoint of ¥ sy Y is a right adjoint of

g

-
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£2. Monads and their algebras. Let Ul be any categorv.

2.1 DETINITION. A menad in U is a covariant functor

(2.1 T : (—

together with two natural transformations

(2.2) n 1. —a T and p Tt — T
- R :
satisfving the following conditions:
(2.3) Y TCu,) = ppp ,
A Hattla Fabr(a)
(2.1) v | = TT(A) = p,T(n)
. wo  Talrea)y © = Attt -
AelX
The svmbol T2 stands for the composition of T with itgelf.

The conditions (2.3) and (2.4) mean that the diagrams

TS Ty T? v _.nt hwﬁlj
! ! SN lp N
T F m; N~
L4 b L b
o2 - 2 A n :

are commutative, TH is the natural transformation
TCu,) : TO(A)Y —» T2(A)
Ha’ -

obtained from



(2.5} Pa T2¢n) ~3 T(A)

by acting with T ', while

PT is the natural transformation

3
Mreay ¢ T (A) = 72¢a)

obtained from (2.5) by substituting T(A) instead of A

2

Similarly, T and T are obtained from
1

(2.6) Ny ¢ A — T(A)

by acting with T ang substituting T(a) > respectively,

In order to Simplify the notation we shall often wrlts

4

T insteagd of (qu'y)

Remark. Monads Hﬁ,T,q,P) have been also called "dual

standard construction" "triple™ , "tpiad" The term

"monad' ig due to formal resemblence of the definition of a

monad to that of a monoid (i.e., a4 semigroup with unit):

4 monoid may be regarded as a set T with twe maps q:ﬁ -

such that the diagrams

]

and H :TxXT 5 7T

_ wxa (qsl
TxTxT e © 5 TxT _ T > Tx7
‘ i ! '|_r11
b XU {1p,n)
" i F _ _ 7> i a\‘ iP
TxT ““““Z““"9 T TXT-*M_—h—m*~—> T

tl

are commutative. Thus, if we call N the unit of the monad



and p the multiplication then(2.2) and (2.4) are to interpreted

2% the associative law for By the left-unit law, and the

right-unit law, respectively.

2.2 Proposition. Let a functor ¢:(L — b be a left

adioint of ¥ :'ﬁswa A and let
£2,7) nat A = ¥e(A) gp: P¥(B) — B

be the corresponding natural transformations. Denote

{2.8> T = ¥&
and-
{2.92 Bp = W{QQA) .

Then T +together with N and P is a monad in X
Proof. T is clearly a functor from (h to (h Ha
18 a morphism from VYO¥O(A) +to &Y(A) , 1.e., from TZ(A)

to T(A)? ohtalined from

b

o -2 % /’—\iq—-——ﬁcn_

)

. 2 U . -
Therefore I T% —» T 1is a natural transformation.

Condition (2.3) follows from naturality of p o, Indeed, for

3
cach B: B -3 B in ib we have



4 . R E — 3 t o A" - N
substituting B o= @{AY , B o= dWe(A)Y , 4 = opp » and acting

with Y we get {7,3), The two conditicns in (7.4} mean +hat

. and i Wo (n,) = 1, .
Y9A (0pn Ya YDA
and *they are immediate consequences of the equalities

(2.11» ?(QB)QWB = lyp and QQAQ{WA} S tea

which hold for every adjunction (2,¥,n.p) . B

2,3 DEFINITION. The monad constructed above is the

monac determined {(or generated) by the adjunction (8. ¥.n,0) .
We shall show that, conversely, every mornad is determined

by some adiunction; this adiunction is not unique but one can

distinguish twe canonical weys of assigning an adjunction o

A given monad and these two adiunctions are extreme in Lhe sense

=

which will be explained below.

We begin with the "largest" of all adjuncticns deter-

mining the given monad.

2.4 DEFINITION. Let (T,n,u) be a monad in {J . an

Filenberg-Moore algebra of T , chortly: a T-algebra, is

a pair

(A,v)



wheve A485° and Y: TA — A is a movphism in {§ su
£2.22) YpaE YTOY)

and

A = 1

AAIVN

-l T
T A-_Jmawm—% TA
;

1:'1 *f_-&; ;| : Y
e ¥
TH o £

A is the und cf the”

erlving cbject

Ayy) and y 1s a T-algebra structure on A

Conditions (2.12) and (2.13) may be regarded as
law" and the "unit law'" for v .

2.5 Example. Let 5 be a fixed semigroup with
The formulas

T(X) = G=xX , qx(x) = (e,x) , yy(gjjig9jx3)

determine a monad

T: Ens -» Ens , n X =3 TN , uo: TN - T

that

T-alcebra

Tagenolative
A unit e .

<g1-g9 » %)



Indeed, let (ng(gQ,(g3,x)))€'T3X . Then

(gl,(g2,(g3,x))) 3 (gl,(gzga,x)) —_— (gl(g2g3),x)

Ty Py
while

(g5(2,,(g5,x0)) »—?;;~9 (818,5(g,,%)) TV ((gq8,)84,5%)

This means that the condition pXTPX=pXPTX is équivalent to
the associativity of the multiplication in 6 . If

(g,x)€TX , then

(g,%x) —-3 (e,(g,x)) ——3 (eg,x)
X ¥x

and

(g,x) ——mm (g,{e,x)) —3 (ge ,x)
Ty Py

Thus, the conditon Uyl © 'ryx m™means that eg = g for all
£ 1in G whereas the condition Py Tlny) = lpy Means that
ge¢ = g for all g in G .

Now, a T-algebra is a set X together with a nao
v GxX 45 X

satisfying the conditions



y{gﬁgqu) = Yielgy, (g,,%x3) = yT(y) (g

A ’ v X

1

and y{e,x} = x . If +v{(g,x) 1is denoted as Z2*x 5 then

*he above conditions can be written in a more familiar form:
(g182)°x = gl-(gz-x) and e'x = x

Such a map vy is called an action of the semigroup G on

the set X

2.5 DEFINITIONS, A morphism

v,

] I
(2.14) A (Ayy) ——— (A ,v )

' T . 1
of T-algebras is a triple (A,(A,y),(A v >} - where . A:A-3A

is any Qﬂ—morphism such that
L
(2.15) CAY = oy T(A)

i.¢.,; *the diagram

TA .

> _'..gm_wm.._

= -

N

is sommutative. QhT will denote the category of T-algebras
end thelr morphisms; it is the Eilenberg-Moore category of

ot . _
the monad T . The morphism A: A — A will be called the



iyl ’T‘ - ~
(A~ -morphism (2.14).

We ghall now show that for each A  the morphism (2.5)

determines a2 T-algebra structure on the object TA
o u : 0 . -
2.7 Proposition. If As(R » then (TA,FA) is a
1

T-algebra. Moreover, if o:A A igs a morphism in h s
“hen Ta: TA — TA  is the underlying Cﬁ—morphism of the
mornhizsm

)V

(2.18) (To (TA,11,) ——) (TA 3, )

of T-algebras.

Proof. Let vy = Hp o oo Then {2.12) becomes the associativi

condition (2.3) whereas (2.13) becomes the left-hand side of

(2.4}, Naturality of 1y implies that Ta satisfies (2.15).

2.8 DEPINITIONS. (TA’FA) is a free T-algebra with the

o]

obiject TA .

2

i

underlyin

4

2

The full subcategory of {ﬁT consisting of all free

gebras and T-algebra morphisms iz calied the Xleisli

]
'}
[

i

catecory of the monad T and is denoted by (O . Thus, the
. v

underlying {f-morphism of an (i,-morphism

. v ] 1 1
A (TA’HA> —3 (TA ,yAg)

a ?
15 & morphism  A: TA -+ TA  such that

(2.17) AU

Ma pA,T(A) .



(2.18) o (0—201;

assigns to each A in (}® the free T-algebra (TA )

’PA
L] . .
and to each o: A-23A in Ul tne morphism (2.16}. The

covariant functor

0
e

»
1
F

@Ti(ﬁ *—ﬁ(m?

g the composition of (2.18) with the embedding functcr

b

)

ag T
bsT —~§th* . The forgetful functor
(2.20) wT. 00T ,tn

assigns to each T-algebra (A,v) its underlving object
T . o . :
A and to each (A" -morphism (2.14) its underlying {(M-morphism

X: A= A . The forgetful functor
{ 3 oy .
(2.21) Yoty — R

is the restriction of (2.20) to the subcategory ﬁ}T .

2.9. Theorem. Let (T,q,p) be any monad. Then the
functor (2,19) is a left adjoint of (2.20) and the monad
determined by this pair of adjoint functors is just the
given monad T .

The functor (2.18) is a left adjoeint of (2.21) and these

functors also determine the same monad T
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.= ) R
Turthermors, if @®: fh—dh and v:H 0

adioint functors determining the monad. 7T

vnicus coviant funciors

-
(2.221 ﬂ:é——}{}'{"

£2.2v) ¥dp = T yret = T,

T 4
(2»25) 1"1 ®T - (I) L] I}‘Jﬂl :LPT 3
(2.28) AG = 87 yTh = v

b

is any pair of

then there are

. . . ll\
and  AA is the identical embedding of CRT inte (& .



-1

from the

L]
=
T
Fh
o]
e
}_.J
°
iJ
5
i)
o
’_.!
atl
‘—f
]
|_,..J
Lt

Che +tiag (92

!-J-

e

dent
definitions of the functors (2.18) - (2.213,

. . T il ;
Dafine an ] -morphism ure » ¥URTA as np oF o, .

-

I+ is clear that q* is a natural transformation from Y on
Eaa]

to YO . If (A,v) is any T-algebra, then vy: TA -— A

m,m

. . . T -
is the undarlying {i-morphism of an {&" --morphism

87wl (ALy) ———a (A,7)

Ll
]
®

™3
[a)
L

e A,y) :

|2l
. T : . . .
indeed, & ¥ (A,y) = (TA,pA) and if we substitutes Sl TN
W '
1

Y —> v 4, A e vy in (2.152) we get (2.12). The naturality

of

(2.29) o alvt 3y T

4 €T

- . . - - » - . .[‘ + KA
follows From (2.15) and from the definiticns of V¥ and @

These two natural transformations satisfy the conditons

2] oy lan)

i1

i T
P e 9T () =1 4 and Y (g AN g =14 .
TatA o &'A (Aoyd ey T ) ¥ (AL Y)
which arve, in fact, the conditions p&T(qﬂ) = 1., and
YN, * V5 » guaranteed hy (2.4) and (2.12). T7hus, " is a
rm ek | Ll
left adjoint of wt , and ql and p°  are the vorraszponding

jmt

natural transformations. Sinca CﬁT L8 a full subwatepory of

AL . . <L -
& containing the rangs of the functor o » The same

identities show that o, is a left adjoint of ¥, .
A



T e TN s eewee

"“3.5—

Now, suppose that ¢:0f1—f is a left adjoint of
v: % L% and this pair of functors determine the monad T
We have to prove the existence and the uniqueness of the
functors (2.22) and (2.23) satisfying (2.25) and (2.26}
We begin with the ﬁniqueness of A

Let A:é}~@£ﬂT be any covariant functor satisfying
(2.26). Let B be any object in X&° . Then A(B) must
be of the form <AB’YB) with Yyt TAB-ﬁ AB satisfying (2.12)
and (2.13). By (2.28),

T

Y(B) = YT A(B) = YT(A..v.) = A

B>Yp B

and hence Ag=¥(B) . We shall now compute 7, . The C&Tn
morphism

T T,T | . .
Q(w{B)aYB) 1 @ ly (\P(B),YB) —‘% (‘F(B),YB)

{obtained from (2.28) by letting A = ¥(B) ,y = Yp) satisfies

the following equations

l'il

p oL, T - wi
(2.30) Yg % ¥ (QCWB,Y ) =¥ CQHB) .

R)

Naturality of the canonical transformation p: Y =1

{the counit of the adjoint pair o, ¥ ) implies that the

diagram
Oy |
, 2YPYB O 5 evn
$2.21) I l
L) _ 'lPB
DYB > B

193]



w 15 =

is commutative., Applying the functor A we get the

commutative diagram

Aoy
ADYOYE LA 5 AOYE
1 2.321 ! !
ﬂ@?QB ApB
\Z
A®YB ¥ AB
AQB

In turn, the naturality of (2.28) gives rise to a similar

commutative diagram

T
Pr0vB |
(2.33) 2Ty  povB y AOYB
! _
7, T |
T
o vl AR - > AB
Pag
o o TyT, . 2Ty -
From (2.26) it follows that. " ¥Y'A = $°¥ = A®Y . Therefore

*he objects and vertical morphisms of the diagrams (2.32) and
Qe

{2.32) *the same. Moreover, for each A in {A° , by (2.3)
and (2.262,
T T T T 5 T
w = = = =
oy T Ptma,uy T Ma T HlRen) T ¥ AlRgs)

The functor ?T is obviously faithful. Hence P?T = ﬁ(PQA)
: ®TA

Substituting A = ¥B we get

Ap . = T _ T
PoyR P¢Tw3 = Phovn
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This meane that The upper horizontal meorvhisms in (2.32) and
{72,223 are also identical. Thus,
T T T.T T .
{ . i 1 = o = 1] - ly'
gAY oL Ao A 0aunTh0p0 asypT0ap? ¥ AP 0 ARy
T:inas g?BnWB T lyp o the morphism ?gB 1s a retraction and

A2¥p, is also a retraction. Consequently, ﬁ@?ps may be

cancelled on the right and we get
N
Agg = Ppp 3

Therefore the equality (2.30) may be written as YB:WTA?BszB

and

T
i~
LY
i)
b

/\ ACBY = (¥(B),¥(p.))
Beke £

Now, from the condition ?Tﬁ(B) = ¥(B8) and the definition of
T :

‘%’T if follows that for every f: B— B in :ﬁ:: the

merphism  ¥Y(8} is the underlying l-morphism of the @1—

morphism
(2.35) ACBY: (¥(B),¥(py)) —3 (¥(B),¥(p D) .
' B

We have shown that if A is a functor satisfying (2.26),
it must of the form described above; therefore there is at most
one such functor.

The last paragraph gives us a method of defining the

desired funetor A . The morphism ¥(py) is a T-algebra
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structure on Y3 because W(QB} is an $t-morphism from
T{¥B) +to ¥YB and the conditions (2.12) and ¢2.13) follow
by applying ¥ to the diagram (2.31) and from (2.11).

If we apply the functor VY +o the naturality condition for
o we get an equality which ig just the condition (2.15) in

1
the case where 8: B B , X = A(B) , v = W(QB) and

1
Y = ¥(ggy? . This means that (2.35) is a morphism in CRT
v
It is obvious that A is a covariant functor from £ to
o5" satisfying (2.26)

We shall now deal with the funetor ﬂtzc%feaijand
again begin with the uniqueness. Suppose that h! is a
functor satisfving (2.25). Since A’QT = ¢, for any free
T-algebra (TA,uA) we get

(2.38) ﬁ'(TA,uA) z ﬂ'@T(A)_= $(A) .

1 '
Let A: TA - TA be the underlying {n—morphism of any (ﬁT-

morphism
V i
(2.37) ' A (TA,UA) ——3 (TA ’HA')
Let B = A'(Av) . By (2.36), 8 is a morphism from oA
T

to QA . Moreover,
w{ = "y -
V{R) = YA (A7) = WT(A

The naturalitv of ¢ and (2.11) imply that



{9,283 a = SP@A @(nA) T Dapr @W(B)@(QA) = E@A'QCAQA) .

k)
Thus, the functor A must satisfy (2.36) and (2.38),.

Conversely, it 18 clear that the conditions (2.38) and

i

{2.38) define a functor A satisfving (2.25).

T
Finally, we shall show that AA is the inclusion functor
o mﬂ{ﬁT . By (2.36) for every {RT—object (TA,p,)
i
. ¥
A (TALp,) = AR 8,0A) = ABCA) = 8T(A) = (TA,p,) .

If Av is any Cﬂm—morphism (2.,37), then, in virtue of (2.26),

(2.38), (2.15), (2.4),

vl ")

¥ APy a 8O0 = Yo I¥D AT,

par TOOTn,) = Ap,Tln,) = Aig, =4 =wq}i?) .

. 1
Since the functor WT i1s falthful, we get AAf (lv) = Av . B

2.10. DEFINITIONS. If o:(1—% is a left adjoint of

T:h 0% , then the functor (2.22) is the Eilenberg-Moore

comparison functor , or shortly, a comparison functor. The

functor (2.23) is the Kleisli comparison functor.

& functor ¥:%H - is monadic (or tripleable) iff it has

a left adjoint @:{[-5b and the corresponding comparison
functor A:f- ' is an isomorphism. Thus, ¥:fh—s{h

is monadic iff % is isomorphic to the catepory of T-algebras
for some monad T and, under this isomorphism, ¥ becomes

The forgetful functor ?T:(ﬂT~§Ck .
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A functor ¥:HeQl is quasie-monadic iff it has a left
adjoint &:%+5 and the corresponding comparison functor
fﬂ:ﬁb—aﬂﬁr is a quasi-isomorphism (i.e., an equivalence) of
caregories,

A category L is monadic [quasi-monadic] over CAL iff

there exists a monadie [quasi-monadic] funetor Y: 60l .

2.11. Exercises. (A) Let Ol be an ordered set regarded
as a category (#9.2.3). (a) Show that for a given functor
T:A-08 there exist natural transformations 1 and ¢
such that (T,n,u} is a monad if
and only if T is a closure operation on Ul , i.e., an
increasing function satisfying A € T(A) and TI{TA) = T(A) .
(b) Show that T-algebras may be identified with closed
elements of Ch. | i.e., such that T(A) = A .

(B} Generalize the example 2.5 considering topological
spaces rather than sets; what should be assumed about the
continuity of the semigroup operation? |

{C) Wnhich functors in Theorem 2.9 are faithful for any
adjoint pair &, ¥ ?

{D} Let (T,n,u) be a monad in N . Construct a
category ML in which objecfs are adjunctions (@,¥,n,p) , with
fixed (ﬁ; and b varying, such that the EilenberngOQPe

T

adijunction (@T,? ) is terminal and the Kleisii adjunction

¥, ) is initial in W .

(8q ¥y



i
b}
!

Z.12. dotez. The notion of a comopad s dusl to that

nof a menad: a2 comeonad czonsists of 2 covariant {1) functor 3
from 43 te =3 together with two natural transformaticons,

? . . .
cne from 5 to S and the cother from § +o the ldentity,

subﬁect'to axioms dual to {7.3) ang (2.0 o TF 2B i
is a left adjcint of ¥:5H 04 s then £ = @¥ together with
suitable natural transformations is a cemonad,

Comonads were introduced earlier than monads; they were
explicitly defined by R. Godement [19531 under the nare
"standard construction”, P.J. Huber [18861] proved that any
pair of adioint functors generates a eomonad. The question
whether any comonad can be obtained in this way was solved
by ¢ Eilenberg and J.C. Moore [1965%] and H. ¥lsisli {is8s8] .

The ‘material above is based mestly on MaclLane [19713,
Chapter VI Exercise (D) is from Kleisli [1973].

Monadicity of Y¥:%-U is a measure of "algebraicity”

£ : . _ .
of X over UL } 8t any rate it says that 3 can be defined

. - . R i) . . . . .
“n Termz of gertain data in or < For more informetior in
thiz line, ses Linten {29661, [196%8a, Gohubertf1972], and

papers guoated therae,



3. Vecteor spaces and countably absolutely convex
subsets of RBanach spaces. The core of this subsection

is a discussion of T-algebras determined by the free-
Banach~sp&ce monad. As an introduction to this topic we
shall discuss a simple and well-known example: vector spaces

over a field ¥ , where either T =R or F = ¢ .,

a.l. If X 3is a set, V(X)) will dencte *the vector
space freely generated by X , i.e., the set of all formal

Jinear combinations of elements of X . By formal linear

combination

{where 8:> »»e5 8. € F -and Ris 2oy X € X ) we mean

the function f: X - F defined as

(3.2) F= 3 og,elX)
. 1 .
1=l i
where 6f<x>(y) =0 for y in X~ {x} ana 5;:’“(){) = 1.

Let us note that if x. # xj for 1 # 3 , then

= F

b =8, for i=1, ..., n and f(x) = 0 for all

other x in X 3 if x vees X oare not different from

1?

eacnh other, the numbers S5 should be added accordingiy,



V{¥} may be described as the space of all functions

o ¥ =¥ aguch that

0} is finite;

S
i
n
x
el
i3

thus, ViX) = CGO(X) where X 1s regarded as a locally
coﬁpact space with discrete topology (#7.2.5). The
asterisk in (3.1) indicates thet The summation does

not refer to & group structure on X ; in fact, the formal
sum  {(3.1) dis mot an element of X . On the other hand,
the zsum {3.2) vrefers to the natural vector-space

_5ix)

structure on ¥¢{¥) . The function is called the

x-th unit vector of V(X) . The map

(X)

(2.,3) § X = V(X}

azsigning to each x in ¥ +the function 6ix}

has the
following significant property: for any vector space W
and any map £&: X > W there is a unique linear map

$roVIX) - W such that the diagram

5 X2

o
12
=
Vet
 d



iz commutative. This unique-factorization property makes
Vv 2 functor from Ins to Veet; specifically, if ¢: X~ ¥
33 any map, then V(¢) is the unique linear map rendering

commutative the diagram

)
% S 2 V(X)
}
|
b
(2.5) ¢ 1V (e
H
W A4
¥ gy » V{Y)
I+ is clear that
n n
; , S B2 .
€3.5% Vo . ( iél 5;%;) = izl s,0(x.) 5

thie means that Vé.f = g (f ¢ VX2 , g e V{Y}) iff

fix)

o
L8]
-
3
S
59
Cain Y
<
o
it

xed+{y)

The summation in (3.7) 1is alhays finite; if .¢+(yi
is empty, then the corresponding sum is G . |

Thus, the fusctor V: Ens— Vect is a left adjoint
of the forgetful functor U: Vect— Ens. We shall

consider the monad (T,8,y) determined by the pair

P
(%]
o
s
T
o
l47]
e
T
0
vt
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Thus, T: Ens —Ens e defined as 7T = UV ane T(X) ig
+the set of all fermal linear combinations {3,1) without

any vector-space structure on it. The unit of the adjunction
{2.8) is given by the maps (3.3) ; It is easy to

verify that the counit
oy V(UW) — W

sends formal linear combinations to actual linear combinations

in the vector space W , i.e.,
*
(3.9) PW(Z’ Siwi) —Zsiwi .

Consequently, the map Py T2(X)'+ T(X) , defined as
By T U{?Vfi)} » also sends formal linear combinations
in UVUV(X) +to actual linear combinations in uvixy .

A T-algebra is a pair (X,Y) , where ‘X is a set

(3.10) Yt UV(X) = X

is a map such that

(x)
(3.11) 'S

il
e

and
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Ay

AR S ( :' = +
R | ARG YUy,

P
b

£y

Any wvector space W may be regarded as a T-algebra; in

this case vy is the map (3.9) regarded as a map from

H

&
the formal linear combinations L Siwi to the

n
I+

et o

underlying set of W . Technically, in virtue of (2,34}

[
v
97

and £2.35), the comparison functor

A Vect — EnST

o
[#%]

|
42
o

satisfies A(W) = (U(W),U(pw)) and if 8: W-— W' is a

oy

morphism in Vect, then ACE) 1is the same map regarded

i

23 a T-algebra morphism.

3.2, Thecorem. The functer (3.13) is an isomorphism
cate

Before proving the theorem we shall first.formulateit
in the language of vector spaces. We shall simplify the
notation by omitting the letter U in most places; in
other words, we will follow the common practice of using
the same symbol for a vector space and for its underlving
set.

The standard approach is to define a vector space as

a pair (X,@ﬁ} . © is here the vector-space structure
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vnderstocd as 5= (@51,652) where G5i is the addition
of elements f(a certain functioﬁ'from Xx¥X to X )} and
QBQ is the multiplication by scalars {(a function from
FxX  to X ), 551 and <52 being subject to well-known
axioms. |

The theorem gives another, equivalent definition of
a vector space as a pair (X,y) , where X is the under-
lying set and ¥y is an axiomatically given structure of
linear combinations. Thus, instead.of-dealing with

sSums  X,+*x, and products sx we give at once all linear

1l

combinations as

(3.14%3 ' Zsixi = Y(z*sixi)-.
The formal sum (3.1) has a meaning for any set X ;
therefore, whenever a map (3,10) is given, lineaf
combinations are well defined by (3.14) . The point is
That the axioms (3.11) and (3.12) are stroﬁg enough
to guarantee that the linear combinations (3.14) are,
in fact, determined by a vector—spacé structure on X .
Let us examine thesé axioms. Condition -(3,11).'has

a clear meaning:

{(3.15) I« x=x .,
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Indeed, in virtue of {(3.14) , 1.% = 1(3£X)) = Lx(x) = X .
We are to show that all other axioms of a vector space
{associativity and commutativity of addition, distributivity

etc.) can be derived from the assumption that the diagram

YV (X) viy) > V{X)
ty Y
L 4 v

V{X) 3 » X

is commutative. A generic element of VV(X) can be

written as

=

n
(3.18) DR .gi S14%13 (tjéF, sijeE, xijex)

t
"
’,_,..l
1
-
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The element (3.16) 1is a function defined on the set

Y)Y of funct

Pa

ons from X to ¥ ; the asterisks simplify
the notetion censiderably but we should he aware of the

actual meaning of (3.1} . Now; fy sends (3.18) to

E |
et

b o]
43
[N
LJs
b
[
[

. (x>
= t. .. 8
§ ] % 15

it

A
[AW]

Z t.s..s(X)

17177

1

3%

E tjsijxij
1,3

The above change of an iterated sum to a double sum is

iegitimate because it is performed in the vector space

VIX} . In turn, in virtue of (3,1u4) Yy sends (3.17) 1o

3

) tjsijxij
P& |
On the other hand, by (3.8), V(y) sends (3.18} +to

' ¥ (X)
18y T n T sxa. = T tes
S A B E LT

-
[F5]
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: - %
{Hote that (3.,18) is not equal to e.g. y

Finaily v seends (23.18) %o
yoots ) PP
3 33 ] 1]

~hus the condition (3.12) means that

-~
[ ]
Joud
[e]
ot

[y |

rt
1
]
pda
Cde
»
.P'
s
]
=1
1G]
-+
(]
e
[
i

It can easily be verified that from (3.13) and

(3.15) one can derive all standard axioms of a vector

space. For instance, substituting m=1l, n=2, sll=821-l

we get

t(xl+x2) = otxy ok,

substituting m=2, n=zl, 511=1 we get

(t1+t2)x = tlx + tzx

This concludes the proof of the theorem
3.3, The free-Banach-space monad. If B,B' are
Ranach spaces over the field F, where T is either R or

£, and B:B -+ B' dis a linear contraction, let

Op:OB - OB’
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be the resiriction of 8§ to the closed unit ball OB,
X s a set, let 1(X) be the free Banach space

generated Dy X, i.e., the space of all functions f£:X — T

such that

(2,25 bel =7 £ < =
|

(this means that the set {xeX:£(x)40} is countable angd

the series is absolutely convergent; in other words,

£{X) is the space of Ffunctions integrable on X with respect
to the counting measure). The Kroneckep G(X,y) regarded

a8 a function of y  (with x fixed) determines the canonical
AT

(3.21) 5 X)

X~ (X))

£
#e ghall write 5‘X}(x,y) rather than 6(x,y) if the set X
i to be siressed; §(x) will mean the funetion 6(x,?) of
The second variable, i.e., the x-th unit vector in A(X). Any

function £ in 28} can be uniquely represented as

£ 7 re0s® o
ek

P

a0
%
W]
[
e

&

the serips being absolutely convergent in the norm {(3.20).,1If

oY, -
VA~ Y g any map, thean

20@) (XY > 2(¥)
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will denote the induced 1inear contraction

0
Q(Q){ ¥ f(x)é(X)(x{lg; Ez §(¢)§ (Tiiﬁ

xeX Aef ,

3 [ f(x)j} s (¥ ¢y)
ye@(X) Lxeg {y)

It is well known (cf. #11.u.3 and #12.1.2) that

+he covariant functor

(3.23) %:Ens = Bany

is a left adjoint of thg closed-unit-ball functor
(3.24) C):Ban1-+ Ens

and the maps (3.21)yield the unit of this adjunction (i.e..
the front adjunction, the first canonical natural trans-
formation). Imn nénncﬁtegorical terms the last sentence means
+hat for any Banach space B and any map &:X OB there 1is
a unigue linear contraction 6:2(X) - B such that the diagram

G(X)
X » OLXD
i

§
S~ o
A4
4 B
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iz commutative; of course, O0(Zf(x)6{(x)) = f(xJ)E(x) .

The counit of this adjunction is the canonical map
{3.251} vB:E(CB)~+ B

defined as vy( ] £ = T Fmb . 1t ic
EOB 6€0B

convenient to think of the sum (3.22)as the formal sum
I¥f(xj-x . Then the map(3,25) assigns to each formal sum
£#£(b)+b in 2(OB) the actual sum If(b)b in B. The
natural transfobmation (3.25)is uniquely characterized by the
condition: for every set ¥ and every linear contraction
£:2{X) >~ B there is a unique map 6:X~ OB such that the

diagram

is commutative; here 0(x) = E(8(x)) for x in X .

The free—Banach-épace monad is the triple

(3.28) T = (08,8,

“Nere (R:Ens + Ens is the composition of (3 paywith (3 9y,
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5§ is the natural transformation (3.21) and
pX:C&Cm(X)-* 0L(X)
is the natural transformatibn defined as iy =(3(v£(x));
A T-algebra or an Eilenberg-Moore algebra of the 111::.3115;1.&:!{'é
(3.26)is any pair (X,y} where X is a set (the underlying

set of the algebra) and

(3.27) y:Ou(X) ~ X

iz a map (a T-algebra structure on ¥) such that
(Xj .
(3,28 ?g = Ly i.8., y(8(x)) = x for x in X
and
R3.29) Yy = YOR{YD .

This last condition means that the diagram

0008 (X) 2 S ()
Px o Y
N/
0L (X) 5 X
ki

igs commutative.




&
<2

e Pe the category in which an object means a pair

2.4, Let

(B, where B is a Banach space and X 1is a distinguished

< a

subset of B satisfying the following conditions:
i
OB e X< OB,

where R = {beB} ip] <1} ang QiB = intOB = {beB: Jpf <1},

{3.31) V \v/ ¥ |Sn|f_1 = ) s X, € X .
8] n=0

XO,Xl,..-ﬁx Bogsl"n&cﬁ n=

Any X satisfying {3.31)will be called countably absolutely

convex; examples of such sets are: - OB, OlB, OB without

some exposed peints, etc.

A nmorphism in ﬁnﬁ
(3.32) B: (B,X) -~ (B',x")

means a linear operator 8: B =+ B' satisfying B(X) C X'

(such an operator must be a contraction).



IT is clear that if B is a Banach space

and. X i3 a subset of B satisfying (3,3g)and ¢3.31)

then the map vy which assigns to each f in OL(X) the
element
(3.33) Y(£) = § f(x) x

XEX
is a Tualgebra structure on X; in virtue of (3.31) the sum

in {3,33) belongs to X.

According to a general definition, a T-algebra morphism

s y
from X to a countably absolutely convex set X < B

is any map 4: X = X' such that the diagram

OL(X) 0tle) o emacx')
1
¥ ¥
X! v
X = X
$

a a i n
is commutative, where v 1s the structure map on X .

If Jls !l =1 ana X, € X , then
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-

pvl;s

H

@(ES:{ykj ﬁgg}(xk)} = YE{QE.@(ESké(K)(Xk))}

X

¥ 86X (o030 = Ispo(x) .

Thus there is a linear contraction £: B o B such that
B{x) = ¢{x} for x in X and BX) x' . Conversely,
any such B8 obviously determines a T-algebra morphism

g: X+ X,

3.5 Proposition. The forgetful functor
(3,34 u: 359-+ Ban, )

which aesigns to each ﬁ%;object (B,X) its underlying
Banach space B and to each “.f‘)e-'morphism (3.32) the same
# regarded as a morphism in Ban, has both a left
adjoint and a right édjointo

A left édjoint of (3.34) is *he funetor
¢ Ran, - i% which assigne to each Banach space B ;ﬁhe
pair (BaCéB) .

A right adioint of (3.34) 1ig the funotyr

B Bang = L whien assigns to each B the pair (B,OB) .
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Proof. The proof is straightforward; for the
firat mentioned adjunction the unit is the identity y
regarded as a Ban{-morphism from B to U{H(BI) = B
while the counit is Lty regarded as a £%=morphism
from. FUL{B,X) = (B;CﬁB) to (B,X) . For the second
adjunction the unit is again ‘g » now regarded as a
ﬁ%fmorphism from (B,X) teo JU(B,X) = (B,0B) , while the
counit is tg regarded as a Banlmmorphism from
Ufi{B) = B to B . @B

3.6, Corollary. The functor {3.34) preserves produc{s,

coproducts, equalizers and coequalizers.

3.7. Proposition. Let (Bt’xt)tsT be any family of .

i%wobjects . Then the pair

o
(N B,8R %),
teT T +eT t

g

where Eqéﬁt is the £_ -product, i.e., Banlmproductﬁ of

Ed | 3 . > -0
(Byd, ¢ and ?Xt is the Cartesian product of (X or o

. £ ' il
is a ﬁémproduct of (Bt’xt)tsT . Moreover, let B =1 Bt
be the Bang-coproduct of (Bt)teT . Let Y  De the image

of X, under the canonical injection Bt-+ B and let

X be the set of all b in B which are of the form

b= I f{tix, with X, Yt . T e OL(T) .
teT t



pt’
3

3
AN

il

¢
}..J .
k]

a
R

7
f

T 9-coproduct of (B,_,X, )

teT °
. Let o,8 be any '£%mmorphisms from

2) . Let

BO = {b ¢ Bl: a{b) = R(b)} and XD = Bofﬁ X
Then (Bg,XO) together with the inclusion map B, - By
ig a i%wequalizer of o and B .

Furthermore, let A be the closed linear span
of {n{bli-8(b): b ¢ Bl} in B, let = be the quotient
map from B, onto By = BQ/A and let Xa z W(XZJ .

Then (Bagxa) together with the map 7 is a i%—coequalizer
cf o and B8 .

o

The proofs of Pfopositions 3.7 and 3.8

are straightforward and we omit them.

3., Let (B,X) and (B',X') be iéfobjects, Define

£2.35) (B,X) & (B',x") = B&B ,x®x)

3

A L] . N . . ’
wWhere B & B is the (projective) tensor product of Banach

“~ f
*Paces B and B' (see, e.g., #20.1.10) and Y = ¥ & x

18 the set of all y in B & B' which can be represented
as



b4 ? . ' o
yo= o] sn(xh<@ Kn) with x_ € X, x; g X, E ]snl < 1.
n=l n=0
t t - + -
since iyl < Iis 1 Hx |l I ll < Jlx ] <1, Y is contained
in (% B') . On the other hand, if a ¢ B &B' and

D .
fall « ¥ |, then a can be represented in the form

nip P n
s 1
with Q# b5 e B, ©Of b e B, IZD -an“ ||bn!| < 1,
1=
., | o -2
There is an e > 0 such that § ilbn|||gbnn < (1+8) \
Denote
b b,
¥y * N L osy = el Ll e’
B Hp i (1) Do e ] (1eed d n n
: ?‘:‘.H 1 n'

- ! 1 . T )
Then X_ € O*B e X, L O's'c X and

a

a = E S (X @ X?) e ¥ . Thus Y contains Oi(B t‘%Ba}' o
o n\. n n g —
We have shown that (3.35) is a dg-object. A straight-
forward verification shows that if

¥ v ¢ ¥
{3.258) A (Bl’xi) - (Bzgxz} and 8 : (Bﬁsxl) - (529x2>

are any ﬁ%umorphismsg *+hen *the tensor product of operators

(3,37 g@e . B, & Bi-«a» B, & B, .



R . t . “f :
mang Ao 8 X, Into X, & X? and yields a «%nmorphlsm°

T+ iz eleay that (3.38) and (2.37) vyield a bifunctor
~ : )

£33 : -Xfﬁ)wJa.

£3,38) & ﬁi@ 0 s

Yor any iﬂ-object (B,X) there are obvious
i

canonical isomorphisms

(3.39) (F, OF) & (B,X) & (B,X)
and
(2.40) F, O'F) ® (B,X) ¥ (B, O'p) .

Now, the i:a—objec't
(3.42)  Hom{(B,X),(B',x"))

s defined as the Banach.gpace L(B,B') of all bounded
linear operators g: B » B' with the get Ly (X,X7)
of those R which are i%—morphisms, i.e., satisfy
BTy, Any Z&;morphism is a linear contraction;

Mereover, if |{8]] < 1 , then

B(X) = BLOR) € OYr'c x!
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Consequently, (UL{(B,B')C LO(X,XV)iz OL(B,B ) and {(3.4)
is a i%wobjact.

If (3.38) are i%—morphisms, then
¥ H H
(3.u2)  Hom(B,8 ): Hom((stxz),(Bi,Xi))ﬂa- Hom((gl,xly,(szgxz))

is defined as Hom(B,8 )¢ = B'¢B  for ¢: (B,,X,)= (B),X;).
'
It is clear that Hom(B,f )} is a linsar contraction from
t t . oot .
L(BQ?Bl) to L(819B2) which maps Lz(xzsxl) into

‘ - o L3
Ll(xl,Xz) y 1.e., (3.82) 1is a ihwmorphlsm, Thus
(3.43) Hom: £H* xfb - £

is a bifunctor.
3.10, Proposition. There is a natural equivalence
(2.44) Hom{(B),X,) ® (By,%p) 5 (B, ) =
Hom({Blgxl),Hom((Bzaxg),(833X33>)

%
of functors from zf;;; X 3&:0 X ioo To géc

Al

Proof. If ¢: Blsg B, + B, is a bounded linear

operator, let ¢ be the operator which assigns to each

bl- in Bl the functhn
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by 4(by & by)

then @ & L(Bl,L(BZ,BS)) . This yields the classical

natural equivalence

2

A
L(Bltg B?’B )

3 L(Bl’L(BZ’B3)) >

7
It is clear that ¢ ¢ L1(X) @ X,,X;) if and only if
\/ \/ 'ﬁa(x & X,) £ X, :
1 2 3’
xlexl xzsxz

this, in turn, means that if X) € Xy then ¢(x; @ 7)
maps ¥ into ng, i.e., o belongs to the get

(X23X3)) . &

E
P

L
"1

I
3ed
H

3.11.Corollary, :go is a closed category,

{By a closed category we mean a symmetric, monoidal closed
categoery in the sense of Eilenberg and Kelly [1966] ; see

21so MaclLane {19711, p,180, and Dubuc [19701.)
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. 4 .
%.17. We have studied the category 9, which may be

- - T
regarded ag a full subcategory of the category Ins of

T

o

i

-y

18 for the {ree-Panach-space monad {3.26) . A

[
¥

=L

I3

T

natural gquestion arises whether any T-algebra may be identified

x]

with an obiject of i% .

The following example (due to F.E.J. Linton) shows that
there are T-algebras for which the structure of absolutely
convex combinations are not induced by any vector-space
structure.

Let X denote the three~element set {-1,0,1} . We shall

consider two maps
: OR— X and v: QUX)— X

gefined as follows:

-1 if -lgwed |
{3.45) _ m{x) = o if x=0

if O<xgl

and '

1 {'wi if sy*0 and Sml“alzl .

{3.85) v{ 846§X)) =4 +1 if s.20 and sg,=8 ;=1
0 otherwise

u1=(~¢) ¥ SO“D +

i

1
y = 2:? s,*1 onto the ordinaﬁy sum z = 8

7z belongs to X ; if Jz| « 1 , y(y) is assumed

fod
b
n

to be 0,
We shall show that (¥X,vy} is a T-algebra.  Observe fipst

that if R is identified with 2(4) , where 4 = {0} ., then



R iz the cloged interwval I-%,1] and
- | By
(2,470 LIOR) ——3 OR

iz 2 free T-algebra (T(ﬁ),pi} (in the sense of Definition

.81,

A

Let us consider the following diagram:

OROR(OR) _ 5 OL(OR)
g H
g
? HO? of () 1
|
QP08 L) E _
5 CL(OR) s —3OR
A i ' W
Q208 (X) OY) § onen -
O i) \
N
sy L
k4 \\M‘/
4109 3 > X

The top face of the above cube is commutative because (3,47)
i5 & T-algebra. The four side faces are also commutative,

indeed,

Py
Lt
5

£
280
L

ﬁyﬂ = v L{%w)
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follows by immediate computation of the value cof either side
at a generic element of OfL({OR) ; the equality
G&(ﬁ)Oﬁ(yﬂ} = OL{¥)O0L(n)} follows from {3.48) by applying

the functor ©OL 3 moreover
?XC&GQ(W) 2 Ox<ﬁ)p0m

follows from naturality of (3.25) applied to the morphism
2{w¥) . Thus, five sides of the cube are commutative and
therefore thé bottom face is commutative as well, as
OLOoL(®) is a surjection. We have shown that the map {3.486)
satisfies condition (3.29) ; condition (3.28) is immediate.
0f course, the set X cannotlba made a convex subset of
a real vector space, The peculiar definition (3.46) satisfies
all conditions imposed on T-algebras for the monad (3.28)

and yet it fails to satiéfy the following cone:
{3.49) ifF xeX & x#0 & sef & s*0 , then sx%F0

here 0 means the image of the zero element of O2{(X) under
(2

the map ¥ and sx = T(séx) . Conseguently, X cannot be

embedded into any real vector space E so that ¥ be induced

by the linear combinations in E .
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2,23, We shall need some lemmas. By a
structure of acgolutely convex combinations on a set X we
funection which assigns to each pair of finite

shall mean any

ZQuences

§(xl,..,,xn), (sl,,..,sn))

»+»8 €F  and Zfskf < 1, an element

wners xj,g,.,xnax, Sqse

of X dencted by

£3,50) Z Skgk o Slxl+“°°+snxn s

subject ©0(3,49) and the following conditions:

£3.51) sqx1+...+snxn+0-x = slxl+,..+snxn s
3,523 lox = x for any =x in X,
{2,523} if w:{dl,...,n}- {1,...,n} is any permutation,
- n
then | syx = E S Xk
k=1 z
e = I
(3,5u4) v sk(E Chem® e ) (s, t, /%
k k,m :
whenever 7§ | [ <1 for k=1,...,n and ¥ Isk
i



Thus., a structure of absolutely convex combinations on X

ig a Function

L x™<00(n)3 - x
n=l

where 2{(n) is the space of sequences s = (sl,oa.,sn) with

s = zis, | .

3.1%. By a balloon in a vector space B we shall
mean an absclutely convex {(i,e., convex balanced) absorbing
subset of B , Obviously, any balloon has a natural structure
of absolutely convex gombinations.

By an w-balloon in a normed vector space B e shall
mean any countably absolutely convex balloon, i.e., a balloon
£ satisfying (3.31) ; if B -ig not complete, then {(3.31)
ig to be understood as follows: if E%sn[ < 1, then the series
Xsnxn is convergent and its sum belongs to X .

3.15, Lémma, Let X Dbe a set with a structuve of
absolutely convex combinations. Then there is a vector space
B with a (homogeneous) pseudo-norm || J such that X is
2 balloon in B satisfying (3,30) .

This lemma is probably well known : yet, for the

reader's convenience we will outline the proof. For n = }
{3.80)gives an aetion (s,x) -+ s.X of the multiplicetive

semigroup OF on the set X and the condition



3.58) se{t-x) = (st)'x for s.t in OF, =x in X

special case of (3,.54). Let B be the set of formal

.
g

b}

il

uet sex with s in ¥, %2 din X . Technically,

£

SEQ

L]

B is the quotient of XxF with respect to the equivalence
relation ~ defined as follows: if wu = max(|s|,|t]|) % o,
then {(x,8)~ (y,t) 1ff (rs)ex = {(rtdev Ffor some {(and
henne, by (3.38) for all) r such that 8 < rp <u Ty if

g =t =0, the (x,0)~ (y,0). Let =n(x,s) denote %he
squivalence class of (x,s) . The set X may be regarded
as a subset of B 1if x is identified with wi{x,1). The
action of the semigroup OF on X is now extended to an
action of the multiplicative semigroup F on B. Indeed,
the product of t in ¥ with the equivalence class w{x,s)
is defined as the -equivalence class Tm(x,ts); +this
definition does not depend on the choice of {(x,5) in
Tthe =quivalence class. Arbiitrary linear combinaticons are
defined as

T, 5

Ik n
+ - k™k
g r,.k"rr(xk,sk) -= 7 { gl 5

xkg?) 5
where fi,...,t e F, » > Eétkskﬁ . A routine inspection shows
that B is a vector space over F; moreover,

n

n
if ¥ it | <1, then tomix, 4,13 = o §
k51 K= 7 k=1 © K K=1

L[l e o

thk,i)

i.e., the new structure of linear combinations iz an extension

of the given structure of absolutely convex combinations.
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2ince X is a balloon in B s it determines a pseudo-norm

satisfying (3.30) (see, e.g., Wilansky [19641] | D.58)., B

23.16. Lemma. If a normed vector space B contains an

w-balloon X satisfying (3.30) » then B 1is complete,

Precof. It is enough to show that any absolutely

convergent series in convergent in B ( 5€€,; €.F.,

#3.1.2). Let #an € B, b $0 (n=0,1,...) anad

[}

nZO Ebnﬁ -

it

Denote s = fb § , 5= ke, t, = s /s, a b /2s_ . Then

n i

1]

1, the sepries

B =

fa d = and hence a_ € X . Since it

It @, = Ib /28 1is convergent and so is the series I . B

3.17. Proposition. Let (X,y) be a T-algebra fer the monad
(3.28) satisfying (3.49) . Then X can be embedded into an
(essentially unique) Banach space so that (3.39)9 (3.31) and

{3.33) hoid.

Proof. Suppcse that v iz a map (3.27) satisfying
(3.28), (3.29) and (3.49) , A structure of abaclutely convesx
combinations on X can be defined as

n .

7]
=
w
A
Q’u
_.<
o,
i 1
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The conditions (2.51) and (2.53) are obviously satisfied ang
(3,522 Follows from (3.28) ., We shall show that (3.54)

ows from £3.29) ., Assume that fl

iy
Q

ot
ot

e | <1 for kx =1,...,n

and ZI:s. ! £ 1 apd consider the element

% * - - 5(02,}()( z t G(X (x, )
-21 le km"km kgl k m=1 o

of OWOL(X) . Applying By to 2z ‘'erases the first

- T = (X)
yx(z) = g Sy é CemBien = g Sy g T e (ka)

(XD '

n
[

k.m

and hence Y¥y{z} is the right-hand side of {3.54%) . On
th

1]

other hand, applying Cmfy) to =z ’erases the second

asterisk”, i.e.,

3 % =

%,; 3}8}'(% f}@nka3 = z Sk %ﬂ t}tmka

COL.v.z

£3.57)

i

(X) )
% Sy § (g tkmka)

Consequently, +{0f.y.z) is the left-hand side of (3.54}),



- L2 -

note that we cannot write {3.57) as

s }(t km}( Ky

Aree]
8 rn

Thus, by Lemma 3.15,X1is a subset of a pseudonormed vector
space B satisfying - (3.80) Moreover, by (3.58) tnere

iz a linear operator

(3.383 r: 2(X)-— B

such that vy is the.restriction of T to OR{X) . We

are to show that B is actually a normed vector space,
i.e., Hx|] = ¢ dimplies =x = 0 ; this means that X does
nct contain any linear subsét of positive dimension. We
shall need a version of (3.5%) for infinite series; still,
some care is needed because if || || is not a norm, the
convergence of a series has no meaning. Therefore we shall

use the identity

(3.59) Y(kZ 53,87 ¢ El temd G2} = 10 L sy 80ne))

o L=

where =} [t | <1 for k = 1,2,... and s | < 1.
tap foe el
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© rhis idemtity (3.89) is, in fact, a restatement of (3.29)
{note That vé 1is an identity but 6y is not). Suppose

that there is an N in X and that Kys Xps w0s € X

n

where X, = 2 Xy - Denote

y = ¥
n

TN |

1
0 ém G(Xn)>

'fIn virtuye of (3,59} we may write

1 1 L1 > 1 1

= #®_+ b = — -
y = 5%, v{nsl ;ﬁ?f G(Xn)) 5 xO+Y{;§l T chn~1)> = 3 xpty,
:fiﬁenge %y = 0 . Thus, || || is a norm. Since (3.58)

”_a linear ceontraction transforming QLX) onto X , X is

:an  w-balloon. Consequently, by Lemma 3,16, B is complete. B

5.18. Any T-algebra for the monad (3.25) with F = R

‘may be degscribed as a set X with a distinguished element 0

?%nd the following additional structures: an involution x =+ -x ,

igﬁti@n of the multiplicative semigroup [0,1] , and a structure

-2f countable convex combinations

£3.50) I8.X
i

}..la

are nonnegative numbers satisfying

1]
[

Ls.
i
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and Frafasess  are elements of X . One of the axioms to
we satisfiad iu\that convex combinations of convex combinations
are 2gain convex combinations according to usual formulas

{for & Physicist it means that the centre of gravity (3.60)

can be computed by splitting the mass in any way and computing

the centre of gravity for each part separately).

3.1%. Free T-algebras for the monad (3.26) are closed
unit dallis of certain Banach spaces; indeed, in virtue of
Definition 2.8 a free T~algebra generated by a set X is
{3.82) ' {(OR{X), yt) .

3.20, Exercises. (A} Show that the set

Xo= {(2,0):=1g8glbuf{(~1,t) :=1¢tgl b (1, ¢) :nlgtgl}

vhose piloture is

(-31,1) ' £1,1)

] : ?

Py
i
}_l
P
o
L]
[
b,

(1,0)

ordinary sum 2z = Ee %, % (zy42,) if zeX

( (24,00 if 2 g X .
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for MysEgaess in X 5 89585500 in R , Z|sn| £1

{B) Show that the set X whose picture is

(-1,1) (-%—,1) (%,1) (1,1)

e —d P

——

(~1,0) (-E,o)(u,a)c%—,m (1,0)

L e ——r— At}

1 1 '
(-1,-1) (wf,-l) (5,-1) (1,-1)

can be made a T-algebra if Y(Esnéx ) is a suitable image
n '
of the ordinary sum Esnxn . Find =x,x in X such that

¥
0 <sup{fr € R: 20 & rx =z rx } <1

3,21, Notes, The examples in 3,12 and in Exercise (A)

are due to F,.E.J. Linton (unpublished).
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k. Conjugate Banach spaces. We shall consider

+he monad ‘T obtained by composing the conjugate=-space
sunctor with itself. The problem of what is the general
form of a T-algebra will be translated into the lanpuage

of functional analysis; this will yield a cﬁaraoterization
of those Banach spaces which are isometrically isomorphic

tc coniugate spaces. A reader not interested in categorical

argument may start to read this section at 4,7 .

*

4.1, Let 0&= Bani and jb= (Banl) - In this way,
by considering the dual category, we make the conjugate-space
functor a covariant functor from UL to 'i) , and from «é to

y PR .
A as wells; specifically, the functors

6 : MN— £ and ¥ o iJ—*C%

e . 53 ' b

defined as @(A) = A, o(a) = o , ¥(B) = B° ., w(g) = g

are both covariant. Since the contravariant conjugate-space
functor is adjoint on the right to itself (#l2.4.u4(a)),

s a left adjoint of ¥ 3 indeed,

Conp) = <B,A*>Bani &(AaB"?Bani : <As“B>>m :

: £ *
Denote T = wo ; thus T: Ol=0l and 7T(A)=A , T{a) = a .

The unit o gy T of the adjunction of ¢ and ¥ is

given by the canonical maps




- 88 -

The naturality of « means that for any Banach spaces

¥ 4. @ and any bounded linear operator A : F— G the diagram

T
E

KFi e
i

% EL
F

4
ad

v
a2

e

is commutative (#10.6.1) , i.e.,

(5.1 Kgh = X ®p .
Applying thds identity to the case where F=zA , G=A** and
A:KA we get

T

(4.2} K Kk, = (k,) «x .

Aﬁ: .'a’e A A A

The counit p : ¢¥ » \ of the adjunction of ¢ and V¥ is

o
also given by the canonical maps intc the second conjugate spaces,
¥ %
this time « being regarded as a lg-morphism from B to

B

B (!} . Each of the conditions (2.11) is now equivalent to

the well-known identity

&
(4.3) (kg) & 4 = 1, :
B B

{(#12.4%.4(a)). The monad in gquestion is (T,x,p) , Where
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chony ) )* CIIT: i &
LS 3N } %{A = (KA* : A - A . .
Trom (4,3) it follows that
®
{4.5) e aa = (K o) K g =4 44
A A A A

for any.BanaCh space A ; this is the left-hand side of
condition (2,4} ; the right-hand one and (2.3) can also be
easily verified,
_A T-algebra is now a pair (A,v¥} , where A is a
Banach space and vy ; A**-¢ A is a linear contraction satisfying

the conditions

{(4,6) | YK, = A
and
A%
(4.7) YYo=y,

the latter condition means that the diagram

e
AR d R Y . s
| > A
Pa | | Y
T 3 A
A s
¥

is commutative. According to (2.34%) and (2.35), the comparison

funetor

A (Banl)*-* (Bani)
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is determined by
% &
{4,8) A{BY = (B | (KB) )}

for any Banach space B § if B£<§1,Bé> s Le.@., if

Bani
B: B, = By is a linear confraction, then A(B) is the map
8* regarded és a morphism from _(Bi s (KBl)*) to
{Bi . {KB )*} . If we substitute A=B* and ?3(KB)* , then
(4.5) becgmes the identity (4.3} while (4.7) becomes the
condition |
(4.9) ' (KB)ﬁ(KB)**# N (KB)*(KB*ﬁ)*

which follows from (4%4.2) .
L) %,a * -
Thus, for any Banach space B the pair (B , (KB) } o is

a2 T-algebra. It will be shown in 4,2 below that every

T-algebra (A,y} is isomorphic to a T-algebra of the form

{L.8) . In other words, for:any pair {A,y} satisfying
(4,5} and (4.7} there is a Banach space B and a Ban, -

&
isomorphism ¢ : A <+ B such that the diagram

i -8 ¢** ARR
A y B
. .
(4,97 ¥ (ky)
*
A _ S B
o

is compmutative (in virtﬁe of (2.15%) this means that ¢ 1is the

underlying morphism of an isomorphism of T-algebras). Thus,
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i® a quasi-isomorphism {equivalence) of categories and
Yy ig guasi-mcnadie,

Pefore proving the above statement we shall show the
unzqueness of B : if such a B exists, it is unique up
to Bang-isomorphism (B* is obviously determined up to

e
isomerphism; yet, B  need not determine B s #21.5,14)

Denate
' dk
(4,210) K = Ker v = {aeA : yla) = 0} .,
. oL ' W
It is clear that ¢ maps K onto the kernel of fKBJ .
s & & )
Moreover, the annihilator of Ker(KB} in B ; l.2., the
set
_ L
# ®s _
(Ker(KB) ) = {BeB i \gﬁ E(B)=0 }
’ geKer(KBf
N N . . . oy . ]
18 just the canenical image B = ma{B) of B in B ;

& ) ) . £ L e
$ maps B onto the annihilater K& of X (K¢ca ) .

Consequently, B is Banlﬁisomorphic to X and hence it is

determined by A and vy uniguely up to isomorphism,

4.2. Proposition (Dixmier-Linton). Let A Dbe a Banach

EPace and let

e
Pe a linear contraction satiefying (4.6) . Let ¢ : K+ A

. & &
be the identical embedding of (4.10) into A . Then the

following conditions are equivalent:



{4} There is a Panach space B and an iscmetric

h

. .
Laomorphi

o)

i
mo B rom A onto B such that the diagram {4,10)
is commutative,
(1i} Condition (4.7) holds.

Bk k& _
(iii’ £ (K Y& K , where is given by (4.4 .
Ea Pa

. . fia  E% :
(iv) ¥, Maps the unit ball (Me (K ) onto QX .
. B4 . &
(v K 1is weakly closed in A .
Proof. (i) % (ii) . The isomerphism ¢ sends the

identity (%.9) to (4.7) ., Indeed, oonsider the diagram

aRAE fdsk NIRRT
PR sawwe KB akn (& T aa
A 3 B > B 3 A
# % :
(kpa) (kgan) - (KB>5 y
“;isw : ﬁéém ‘igﬁ \‘X
e -3 - %
alad (KBﬁ ¢1

The right~hand squafe igs commutative by {i) ; the middie

ons by (%.8) 3 the left-hand one by naturality of & {substitute
Ex % x5 ' : .

F=B s G=A , Azg in (4.1) and apply the conjugate-space

funetor). Consequently, the exterior rectangle is commutative

and hence - in virtue of (i) - we get (ii) .

.. L dek @k
(ii} = (iii} . Denote Ki =g (X 2} . Thus,

2T T . .
Klﬂz A . The definition of the map ¢ implies that

R R . .
vg=x0 . Hence vy = = 0 3 this means that Kj is contained

ko
in ¥Xer ¥ . On the other hand, from condition {(ii) it

LR
follows that Yha vanishes on Ker ¥ s l.e., P, maps

ak
Ker ¥ inte X . Thus, pA(Klﬁ < K .



rom {111} it follows that

Combining (4.8} with the naturality of x we get

%
2 5 glz) = FAKA*§Ei23 5 yE KK(Z} .

Since ¢ ﬁK(z}e Cjki s 2 Dbelongs to FAGDKID .
, o
(ivi=s (v) . The maps & and Y, are fweakly
continuous, i.2., continuous with respect to the topologies

a4 % REdkd Rad E T
g{K K} , oA WA Yo, olA LA ),

respactively. Therefore the compaétnens of i:ﬁ(K%} (i.e.,
of the set iﬁiK&*) equipped with %weak topeleogyl) implies
the compactness of X = K ﬂiﬁﬁﬁ& in the fiyeak topology of
Aﬁﬁ - Thus by the Kreinwémuly&n theorem {[DST].¥V.3.7) , K

i
ig ®weaklvy closed in A e

5 &%
(v)=p {31). Denocte Bk z={nea } kf #{b}=0} . Sinece

a1
K is ‘Tweakly clossed, the szet
s . 4./
B = {oea : Qﬁ albr=0}
b&3

coincides with K {deoublse annihilater propertv!.
Let us note that the condition Ve, T together with

¥l ¢ 1 may be restated as
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{4,101 A ig a direct sum of Azwx,{A} and K

fu,12) be Ca) + zff 2 lall forainhA , zin K .

A
Condition (¥.11) means that A+K = {KA(a}+zEaeA & zeK}
% ~
fills up all of A and A& MK s {0} ; put differently,

. %k . .
any o in A can be uniguely written as o = KA(a}+z

‘with a in A , 2z in K (of course, a=y(a) and zre-k,{al)),
If (4.11) is satisfied, then (4,12) means that
fall < Half , i.e., Hvll 21 .
' %
The desired isomorphism 6é: A <+ B ig defined as
$(a) = resty kalad 3 in other words, ¢a.b = bfla) for b in
B . Obviously, ¢ is linear and {l¢f} s1 .
We shall prove that ¢ 1is one-to-one., Suppose that
6(a) = 0 for some a in A . This means that bla) = 0
for b in B , Conseguently, KA(a) € KN A and, by (4,117,
a=0 .
&
We shall now prove that ¢ maps QA onto (B ) .
% ,
The inclusion ¢(OAYS QB follows from Jl¢ll ¢ 1 . Let
* +
g € OB . By the Hahn-Banach theorem there exists an o 1in
s . , .
A such that vesty & = 8 and - [alf = igf 231 . By

{4,11), & can be written as @« = KA(a) + 2 with a € A, z € K .

b

Ry (v.12) , lall ¢ Helf £12 , ie., aceQa . If bE I

R{b) = alb) = KAagb + z{b) = b{aé .

#
Thus, B = ¢{a) . We have shown that ¢ : A =~ B ig
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)
cne-te-one and maps CA onto OB i+ hence it is a linear

isometrical bijection.

.

ity

o

. 1] ’ o
maxns to be shown that diagram {(4%.9) is commutative,
T

]

- T a“‘ - - a r
Since & = T Ka o where T : B =+ A is the identical embedding,
the naturality of x and (4.3) imply that

] % K% %
(kg 0™ = (e e e (;KA)*KA*T>* =

% : * %
We shall show that T = ¢y . Let o € A . By (4.11) .,
o4 = KA(a) +2z forsome a in A , =z in K . Consequently,

by (4.8) and (4.10),

[

e(a) = T*KA(a}

n

by () ¢YKA(a) + ¢y(z)

1
it

T*KA(a) + T*(Z) T*(a) .

T
Thus, (xg) ¢ =9y . B

4,3. EXERCISES
{A) Prove a statement analogous to the Proposition above
assuming that Y**_: A** + A 1is any bounded linear operator
and inserting vk, = 1, and v g.i into those of the
conditions (i)-(v) where vk, = 1,. and [|lv} 5.1 are essential;
use equivalent conditions (4.11) and (&.12) whenever appropriate,

S

(B) Show that the subspace Bzkt of A" in the proof of

(v) =% (i) above coinecides with

o, Nk
(4,13 (b€ A ! au€A = old) = byla)} .



(©Y  Show +hat the space (%.13) is a Bans-equalizer of
Ed '
% . and Y .
EEY
(D) Shew +that a Banach space A 1s topologically iscmorphic

& .
{i.28., Banmuisomorphic) to some B if and only if there is
: %
2 ‘*wesakly closed subspace XK of A satisfying (¢.11) .
{E) Show that the space A = CUCNO) of sequences convergent
i
to 0 is not topolegically isomorphic to any B « {Hint:

apply (D) and Phillips's theorem or non-existence of projections

L (N) = ColNg) , #17.7.8) .

4,4. Notes. The equivalence (i}€® (v} is due to
Dixmier [1948] who stated it in the following form

: %
A Banach space A 1is isometrically isomorphic o some B

® %
if and only if there is a #weakly closed subspace K of A
satisfying (4, 11) and (#.12) . He also proved (D} and
several,rel&fed results; let us guote some of Them. Suppose

_ . |
that B is a linear subset of A and consider the real

numbers r.5,t defined as follows:
_ . ) %
r = sup{u i c2 OB :}Ouh Yoo,

& % . . g
where Cguﬂ = {gea i J|gl ¢ r} and ci  stands for the

%
#weak closure in A,

g = ingl ”aHE5 i ag A & hall = 41} .

where l|aHB =z sup{ib(a)] : be OB} .
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< = inf inf | Kpfa)ez H o= p(X,s5)
AEA ZZ K *
all =1
where § = {KA(a}E lfall = 1} . Note that cendition {4.12)

means that t = 1 . Dixmier proved that r&s=t and p

may be any number in [0,1] . He also proved that if B

is norm~closed and separates A then X N g = {0} always holds,
but condition (4,11) is satisfied if and only if B is minimal
in the sense that no proper norm-closed subspace of B

separates A

The [ -algebras over the monad (T,x,u) were considered

by F.E.J. Linton [1971] (unpublished); he proved the

equivalences (i) (ii) & (iii) < (iv) in the setting of
Exercisé (A and“ebserved that a theorem of Beck [13867]

yields (C) .

See also the nbtes after §7 .
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§5, Compact spaces. We begin with & aiscussion of

+he case of general topological spaces.

5.1. Let us consider the monad generated DY the pair

(5,13 Ens _4.D.__ —> Top »

U
where U is the underlying-set functor ("forgetting’ the
topology) and D assigns to each set X the same set
with the discrete topology .- I+ is obvious that D is a
1eft adjoint of U with the unit 1g4¢ X — UD(X) and the
counit Q! pu(yY) = ¥ , where Qy is the identity regarded
as a continuous map from pu(y) to ¥ . In this case
an alsebra for the monad in question is a pair (Z,¥)
where ¥ is a set of ¥: Unp(xy » ¥ is a map satisfying
£2.,12) and (2.13) . Condition (2.13) means that
Yig T g o i.edy; YT lgoe Consequently, {X,y) must be
of the form (X,lx) and no non-trivial topology can be
reconstructed from Y - The functor U in (5.1) is
therefore not quasiemonadic. The Eilenberg-toore comparison
functor A sends some non—isomor?hic objects of Top
{specifically, non—homeomorphic spaces with the same
cardinal number) o isomorﬁhic algebras; vet, it maps

Top onto the corresponding Eilenberg-Moore catepory.
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Much the same argument is valid for many important

full subcategories of Top (e.g., for categories of

Hausdorff spaces, of metrizable spaces, etc.)

5.2, The rest of this subsection will be devoted to

the meonad (T,q,p) generated by the pair

{5.2) Ens.g;::§:::? Comp.
U .

where £ 1is the Stone-Cech functor, a left radjoint of the

;: forgetful functor U . 1In order to gimplify the notation

we shall not distinguish between a set X and the same

set with the discrete topology. The symbol BX will

denote the_Stone-Eech compactification of X ; UBX will

denote either the underlying set of BX or BX with the

discrete Topology. The unit of the adjunction (5.2) is
. given by the canonical injections

- i .
(5.3) Nyi X = UBX

%hile the counit is given by the canocnical surjections
: g 3

5Ly Pyt BUY > Y

de ined as follows: given any compact space Y , we considerp

the identity map UY = Y and extended it to a unique
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continuous map from pUY onto Y . Consequently,
(5.5 Uy ! UsURY — URX

is the map Uy = U(pBX) and  Pgy is the unique continuous

extension of the identity map from UBX to BX . Thus,

(5.8) o Weygx T tusx

If ¢: X %' is any map, then F(#): ﬁx-%-px’
is defined as the unique continuous map rendering commutative
the diagram

X___L_-a)\

(5.?} Ny N ' Ny

W v
X —ggy > B¥

A T-algebra is now & pair (X,y) , where X is a

set and
(5.8) v: UBX =+ X

is a map satisfying the conditions



P
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s

{5,102

The last equality means

My

YHy
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b

YUB ()

that the diagram

UBUSK UBLY) s ypx
Py Y
N v
UBY - > X

is commutative, We recall that

pUBX o

continuous map from

ﬁ(]) is the uninue

PX such that the diagram

UgX

ugx

W

UBUBX

Ug(y)
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is commu*ative. In virtue of (72.34) , the comparison
functor
Lo by T
(5.123 A: Comp + Ens

assigns to each compact space Y the pair (UY,y) where

the structure map Y is obtained from (5.4} by

(5.13) Y = U(QY) .

5.3. Theorem (Linton). _The functor (5.12) _is an

isomorphism of categories. In other words, suppose that

¥ is a set and a map (5.8) satisfies (5.9) and (5.10)
Then there is a unigque compact topology on X such that

v satisfies (5,13)

Proof. Condition (5.8%) implies that y 1is a

surjection, We shall show that for any set A contained

o

in 8X +the following crucial identity holds:
(5.18) y(ciﬁquy(A)) s Y(CEBXA)_,

where cf

BX

stands for the closure operation in BX .

Indeed,
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E[cﬁgquy(A)} = chﬂBX(B(Y)nUBX(A))E

YB(y){cﬂsusquBX(A)] = YPXECRBUBXWUBX(A)]
= Y[cﬁgxpquBX(A)] z Y(cRBXA)

The above equalities follow from the commutativity of
(5.11), from the continuity and the closedness (#7.1.14%)
of 8(y) , from (5.10), from the continuity and the
closedness of Pax (which, regarded merely as a map, is
the same as Ey }, and from ({5.6), respectively.

1f B« X , define
b = :
(S'ISf CEXB Y(cisqu(B)) .

it is obvious that cEXG =0, CRX(BUB') = csz 9 C£XB' 5

and B & ot B, Substituting A = ci (B din (5.1u)

X ax ¥

c&xcixB = Y{cisquy{cisqu(B))] z Y[cEBXCEBXQX(B)] = CEXB .

Thus, ¢y cl B = ciyB . We have shown that (5.15)

determines a closure operation for a topology on ¥ .

Making use of (5.1Lu) again, we infer that
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vl XA) = Eckﬁquy(A)} = cixy(A) .

g
This means that the map ¥ is both closed and continuous.
Consequéntly, the topology of X 1s the quotient topology
(determined by BX and vy ) ; X is compact (#5.2.4,
#7.5.4) , and the topology of X 1is uniquely determined
vy the assumptions of the Theorem. This concludes the

proof. B

5.4, Exercises. (A&) In the above theorem, condition
(5.10) is necessary and sufficientuin-order that the quotient
topology of X determined by the map (5.8) satisfving
{5,9) be a Hausdorff tqpology.

(B) Assuming (5.8) prove that (5.10) 1is equivalenf
to (5.14)

{C) Let X,X' be compact spaces. Show that & map
d: X x' is continuous if and only if it is a T-algebra

morphism, i.e,, in virtue of {2.15 the.diagram

RUX 8U(e) > 8UX'
1 \
Y Y
Y
X X
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" 3
i commutative, where vy and vy are the T-algebra

T o
- structuraes on X and ¥ |, respectively.

(D} Let Comp, denote the category of compact

g-dimensional spaces and continuous maps. Show that the

- forgetful functor U: Compo-* Ens has a left adjoint

i-;3,; Ens -+ CompG but is not monadic.
(E} What is the Kleisli comparison funector in the

;cases conzidered in 5.1 and 5.2 ?

5.5 Neotes. Theorem 5.3 is due to Linton {1965]

‘who proved it using the criterion of monadicity stated in §6.
;EﬁiManes [1369]1 gave é direct topologlcal proof. Paré
:f197l] (see also MacLane [1972], p. 153) found a simple
fproof applying a.ériterion based on the concept of |
'split forks" and '"absolute coequalizers". The above

;proof (taken from Semadeni [1972]) is in fact, Pavré's

proof applied to the split fork determined by Y
.Lhié made the proof still simpler, purely topological,

nd not making use of any specific construction of BX .
Linton's theorem may be laconically stated as "compact
P§¢es are algebras" (for more details in this line see
nton [1865) and Schubert [19721). Herrlich and Strecker
19723 proved that under some additional assumptions the

Oq?erse statement holds as well; roughly speaking, among

usdorff Spaces the only "reasonable" algebras are compact
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§6 ., Linton's criterion.” One of the basic questions

in the *theory of monads is whether the category 5 can be
reconstructed from the monad T generated by a palr of

adjeint functors

Technically, the question is whether the Eilenberg-Moore
comparison funetor (2.22) is an isomorphism or a quasi-
isomorphism of categories. Many necessary and sufficient
conditions for monadicity or quasi-monadicity of ¥ have been
proved; one of the most significant and most useful for
applications in other theories is Linton's critericn which is

the subiect of this section.

8.1. Definitions, Let j; be any fixed category. A

parallel pair in g is a pair of morphisms with common domain

and common codemain, i.e., a pair of the form

P

6.2) By: By * By , B,: By > By .

A kernel pair of a morphism 5:31~¢ BQ. is a pullback of.

the pair 8,8 (if it exists), i.e., a pair (5.2) such that the

souare
By .
By By
§
(8.3) Bo i 8
By > B,
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ies commutative and for any object X and any pair

S¢f X > By, £,: X+ By such that £y = BE, there is a

unigque morphism }ox - BO making commutative the diagram

ey
n
+
$=
st

If a kernel peir exists, it is unique up to commuting,

isomorphism (#11.58.2) .

2

Suppose that « 15 cne of the categories Ens, Comp,

s

Veet, Ban, and let B: B,-—+ B be any morphism in s

k) 2
Denote
B {
{5.5) BD-: {(L,b J:laeBl &laaBl & BQH} = SHQ)}

It is clear that By 1s a {closed] subset [subspacel of
B,xBy (in the respective category) and the maps

¥

3 t : t
(5.5) By(by,b ) = b, B,(b,b ) = b

(restrictions of coordinate projections) form a kernel palr of

B . Note thet [the underlying set of] By is the equivalence

- relation on Bl- determined by R .



5.2, Lemma. Let By 82= be a kernel pair of

B: B, = 82 - Then B 1is a monomorphism if and only if
s % 1f this is the case, then 1, 5 1, 1is also a
& . -Jl Bl

kernel pair of B .

Proof. Suppose that B is a monomorphism. Denote

B, = 8, = Y » Then (6.3} is commutative. Suppose that
1

ggl = 852 .« Since B 1is left-cancellable, El = £2 .
Denote = El « Then (8.4) is commutative; moreover,
3 is uﬁique. |

Assume now that Bl = B, . We have to show that B is
a monomorphism. Let El s Ez' be any morphisms such that
BZ, = BZ, . Then there exists a 9 such that g, = 8%

and &, = 8,%= 8,5 ., Thus, s,l =E, . @

5.3, Definitien. A morphism B8: Bl--> B, is said

to be a coequalizer iff there exists a parallel pair By 5 B

2
such that 8 1is a coequalizer of Bl and 82

We recall (#11.5.7 , #7.5.1) that the coequalizers in
Ens, Comp and Vect are characterized as surjections in the _
respective categories. The c¢oequalizers in Bany ‘ave the same
as linear contractions @§: By » Bé such that the open unit
ball of Bl is mapped onto the open unit ball of By s thié

is equivalent to saying that in the canonical factorization

| —>B,
{(6.7) : y/
. . J/ s

. Bl/Her B
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(where ® dis the canonical quotient map}) ¢

bijection.

6.4, Definition. A paréllel'pair Bl9 R

9 1s said to

be a kernel pair iff there exists a morphism B guch that

8,5 8, is a kernel pair of B .

8.5, Proposition. If 8: B; * B, is a coequalizer of

- the parallel pair (8.2) and B{s» B, 1is a kernel pair, then

819 g, "is a kernel pair of B .

Proof. By assumption, Blg 82' is a kernel pair of a
r 1
morphism £ : B, » B . We have to show that it is a kernel

pair of its coequalizer.Since B 1is a coequalizer of Bl’ 62 s

X 3 F
the diagram (6.3) is commutative. Moreover, B8 Bi = B 82
§

t
implies the existence of a_tS: B, + B such that 98 = B .
Suppose that Bty = BE, . Then 38E1 = %BEQ s l.e.,
J 5
g il = B EZ . Since 51 . 82 is a kernel pair of 8
r

: s ' g -
there exists a unigue -9 such that the diagram
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is commutetive. We have shown. that Bl’ 82 is a kernel pair

£.6. Proposition. If (6§.2) is a kernel pair of

g: B, =+ B, and B is a coequalizer, then B is a coequalizer

of By, By o

-

Proof. Let B be a coequalizer of a parallel pair
H T 1] .
g ,8 : B — B1 . We have to show that it is a coegualizer
of its kernel pair 81, 82 + Since Bls 82 is a kernel pair

of 8 , the diagram (6.3) is commutative and, in virtue of

¥
38

it 7
£8 s there exists a unique 3:8 = B0 such that

T

613 8 823= g, Suppose that €8, = E8, for some

k1]

T
morphism  £: Bl-¢ X . Then EBisz 5823= s 1.8., EB = EB

1 " 7
Since B is a coequalizer of B , B , there is a unique >

making commutative the diagram

We shall now formulate Swirszcz's generalization of

Linton's theorem; the proof will be omitted.
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4.7. Theorem, Let 7T be the monad determined by functors

oint

.
8

£ ¥ . Assume that

(8.5 , where @& ig a laft ad

2Ry retraction gg L nas a Xernel pair |, any parallel pair

kKernel pairn,

if

(i} X§X IB is a coequalizer inbJes[¥(8) is a coequalizer in
fe i

(i1} for every parallel pair 81; B, in L

{8198? is a kxernel pairl%&[?(ﬁlﬁsy(sz} is a kernel pairl ,

. . | _ T . . -
then the comparison funeotor ia-“bQﬂ 1$ 2 guasi=-igomorphism

{i.2., an equivalence of categories).

A converse thecrem holds under stronger assumptions.

€.8, Theorem. Let 7T be as above. Assume that both

. i 4 . .
in o and -7 all morphisme have kernel pairs and all

paralliel pairs have cocegualizers. Assume also that

£6.82 any epimorphism in O is & retraction in U |

. syl \
the comparison functop A Lol is_ a quasgi=-

isomorphism, then conditions (i) and (ii) hold.

5.9. Remarks. Condition (i) does not mean “hat y

is coequalizer-preserving in the sense that

ey



r 3 :
L.ﬂ 18 a coequalizer of 81982]

(5.8
=» [¥8 is a coequalizer of ?319W623 .

In faect (6.9) is not satisfied in typical cases where (i)
works. E.g. in the case considered in 5.2 ¥ satisfies (i)
because B is a surjection iff V¥B is a surjection but
coequalizers in Comp are constructed in a way different from
that for coequalizers in Ens (#11.5.7) ,

The functor ¥ , a right adjoint of ¢ , is pullback-
preserving (#12.5.2) ; therefore it is the implication £=
which weally matters in condition (ii) .

The assumptions concerning R ana b in.se? and 6,8
are mild except of condition {5.8) which is so strong that
among categories discussed in this booklet only Ehs and Vect
satisfy it (note that Ens and Vect have the property that
all objects are free). E.g., the category of Abelian group

does not satisfy (6.8) .,

5,10, We shall now apply fheorem 8.7 to the case

Ens __MEf“_% Bany
4‘“z§——“
considered in §3 . Condition (i) obviously fails because
it is not true that if a linear contraction B: Bl = B,
is a coequalizer in Banl then 8 maps OBI onto %332 .
We can only claim that the interior of €351 is mapped onto
the interior of QB2 -{and hence By is mapped onto B,)

Let ue consider the following example. Let & be &



linear functional on a Banach space 'B  which does not attain

its norm on OB , i.e., such that

{6.10) fell = 1 and |£(B)] <1 for each b in On

3

®.g.; B may be C{[0,1] R} and

1/2 1
ECEY = f f(x)dx - [ F{x)dx
Q 1/2

&

(#19.6.7(A), #24.5.4(b)) . Denote H = {b€B ! £(b) = 0}

Then the canonical surjection
T § B— B/H

is a coequalizer in Ban, and yet Qn does not map OB
. 1 P

onto ©XB/H) . Indeed, the norm in B/H is given by
: T . ' I
Eb+HY = inf{ffb !}  » -DEH} = inf{ b §| ib & be+H}

i.2,, 1t is the distance between the set b+H and 0 .

be any elemeni of B such that gibﬁ} = 1 . Then
) : (A 7 I i i )
beH = {b :g(b )=E(b,)} = {b :&(b =1} .

The quotient space B/H is Banlvisomorphic to R and the unit
sphere of B/H consists of two elements: bo*H and  -btH
and none of them belongs to

T(OB) = {b +H: b €n}
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bacause, in virtue of (6.10), fb0+H is disjeint with OB .
In §3 we have shown that replacing the category Ban1
by ¢he category of #-balloons can save condition (1)

of 5.7 . Yet, it cannot save condition (ii) .

£.11. Netes. Linton [1966), [1969b] proved 6.7 and 6.8
under the assumption (6.8); in fact, the theorem was mostly
used in the case where Utz Ens . For a discussion of this
thecrem, see Duskin [1969] .

iiéwirszcz {1373al, [1973b] found anﬁther proof of 5.7
and observed that in this case {B.é) was superfluous. This
enabled him to apply 6.7 to 7.3 below.

J. Wick-Negrepontis [1971] considered the monad generated
by the pair

oL .

(6.11) Ens ¥ Bef

TO

€

here Befy, may be described as the category of commutative
C*-algebras with units and unit=-preserving C%-algebra
homomorphisms. {J is the closed-unit-bhall functor and CO* e
iz its left adioint
COFLIX,0)) & ClOL_(X,€)) = ¢(0X)
where X is any set,

D =0C = {ze€@ ilzigl}

D is the preoduct of copies of D indexed by X with the
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. X
product topology, i.e., D

is the unit ball O _(X,0)
with the #weak topology, naturally =quivalent to OFL{X,Cy .

Using Linton's ceiterion . Wick=-Negrepontis showed that

ot
=5
it

functor € in (6.11) is quasi-monadic. She also used

th

113

theorem (proved by Duskin [1969], Section 5) that the

covariant functor

(6.12) Comp* uzqmmumé Ens
2,0}
9

obtained from the principal contravariant functor on Comp ,

X and is also

has a left adjoint determined by X+ D
qﬁasiamomadice It turns out that the monads determined by
(6.11) and (5.12) are identical; therafore their categories

of algebras are identical and this yields the
quaszi-isomorphism of Comp* and Bcfc » Wwhich is just the
Gelfand duality between compact spaces and computative
C*-algebras with units. In this way J.Wick=-Negrepontis found
a new proof of the Gelfand duality theorem; vet. the proof

is techniecally tedious and even the purely functional-analyties
part of it takes more time than the classical proofs ef

| the Seifand duality. .

A similar proof of the Kakutani duality betwean compact
spaces and MI-spaces was found by John Gray and one of his
students {(unpublished),

Linton [1970al] outlined such a proof for the Stone
duality between compact Q-dimensional spaces and Boolean
algebras; in this case the proof is technically simpler because

Boolean algebras are eguationably definable algebras and one

may apply general theorems about monadicity of such a sategovry.
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37. Compact convex sets. We shall first discuss convex

gubsets of real vector spaces and then compact convex subsets

c¢f loecally convex Hansdorff spaces.

7.1, Let us consider the monad determined by

(7.1) Ens Conv

A

where G(X) is the set of formal convex combinations of

elements of X , i.e., the set

S

LI : '
G(X) = {_§j sgx; * 8:20 for i=1,...,n and Ejsi=1}

It is clear that 6 is a left adjoint of the forgetful

functor U . Applying Linton's criteriom 6.8 , T. Swirszcz

£1973b] proved that the functor U in (7.1) is not monadic.
This can alsec be proved directly: the set X in

3.32 is an algebra for the monad generated by (7.1) and vyet

X is not a convex set.

7.2, We shall now consider the monad determined by

(7.2 Comp > Compeonv .
o

An object of Compconv is a cdmpact convex subset X of
& locally convex Hausdorff SPQFE {(understood as a set K

with a compact tnpolopy and a ctrueture of convex comblnatlons
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such that K can be embedded inte a locally convex Hausdorff

topological vector space E ; the elements of E ™ X dn
not matter). A morphism in Compconv is any continucus

affine map. If X dis a compact space, then
S(X) = {peli(X):ipz0 & Hlle) = 1}

{the set of regular Rorel probability measures on X with
the *weak topology) is the Choquet simplex whose extreme
boundary aPS(XB. is (homeomorphic to) the given space X

(#22.7.%) . If ¢: X = X’ is a morphism in Compeonv, then
¥
S{¢) : S{X) =>sS{X )
iz the induced transformation of measures., The unit of

the adjunction (7.2) is

(7,3) %), v sus

{*he Dirac measures). From #12.2.1, #4.5.4% and #23.7.2 it

follows that the_counit

(7.4%) B SU(K) = K



asgigne to each regular Borel probability measure u on UK

{i.e., on K} its centroid (center of gravity). Indeed,

. (UK)
(7.5} e ® 8 WK
i.e.
(7.8} QK(SX) = x for x in X ,
Since (7.4} is affine,
@K(81527+°°‘+s xn) z slxl+.,,+sn S

whenever SyseesS, e {0,131, sl+,..+sn = 1, and XyseaarX € K .

Thus, for each measure of the form

(7.7 | Moo= Slﬁx +°"+Sn5x

1 n
?K(y} is the centroid of ¥ . By the Krein-Milmam theorem
measures (7.7} are dense in S5(X) and Py is continuocus;
therefore QK(g} is a centroid of p for each K in
S{Ki = s{uxy .

The monad in gquestion is {T,§, U(ps)) N where

T: Comp + Comp
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iz given by T(X) = US(X) |, § is given by (7.,3) andg
Ulpg yy? © USUSIX) = US(X)

is the map assigning to each probability measure on US(X}
its centroid in US(X) . 1In the sequel we 5héll often
simplify the notation omitting the letter U . i.e., using
the same symbol for a compact convex set and its underlying

compact space.

7.3. Proposition (Swirszecz). The functor U in

(7.2) is monadic.

3 mon

In other words, let X be any compact space and let
¥ S(X) = X

be a continuous map satisfying the following conditions:

(7.8) 7(623 = x for % in ¥ |
and
{7.9) _ yS§y) = Y25(x)

i.2., the diagram

5(y)
S8(X) —— -3 3(X)

8s(x) T
S(X) > ¥




- 88 -

i commurtative, Then there is a homeomorphism ¢ from X
ocnto a compact convex set K such that vy Dbecomes the
centroid overation,; i.e., the following diagram is commutative:

S(4)
(7.10) 8(X » S(K)

Y £y

!
¥
> K '

>

Proof, (P. Taylor)}. Step(l). Define convex

combinations of elements of X as
{7.11) s¥ + (l-zl)y = V(séx+(i—s)6 )
where x , y&€ X , 0%s8¢1 . From (7.8) it follows that
lex + 0y = x and sx + {i-s)x = x ,
but we still have to show that (7.11) is really a structure
of convex combinations induced by a vector-space structure.
Step (II). Define
A= {feC(R) PO Y ) = ECyip)
: BES(X)

Then A is a clesed linear subspace of C{X,R} and

Step (IJI}. The elements of A are affine, i.e.,

Flsx+{l-8ly) = sf{x) + {(1-s8)f(y)
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for w,y in X , 0gs<i , and £ in A . indeed, by

flsx+(1l-5)y)

it

f(y(sﬁx+(1=s)6y))

(sﬁx+(lés)6y)€f) = SFix)+(Ies)ELy)

Step{IVy. Condition (7.9 implies that y 13 affine,

i.e.,
(7.12) | (sy1+(1=s)y2) = sy(ul) + (l»s)y(pz}

for u,, Ko in S{¥) , O0gsgl . Endee&9 denote

{
9 6foX)> . (l-s}éiS‘X))
éi L)
Then ¥ &€ SS{¥) and
) S{v) N (¥} . {¥)
in 2 sﬁ$(¥1)+ {£?S)5v(p23

Ps(x) |

sY(g1)+(1ws}V(u23
Ry 7

b > ylsp,+({l-sdy,)

Thus, (7.9) yields (7.1u}

Step (V). The set
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Pz {u-v: p,YESX) A& y(u) = y(v)}
iz convex and symmetric in  M{X,R}

Step (VI). P iz ‘*weakly compact in M(X,R). Indeed

denote

Q= {(u,w) i pWesSOd 8 v(u = y{M}
Then Q iz a closed subget of S(X)} x S{X) and hence it
iz compact; the function (p:¥)+= p-v maps Q@ onte P and

is continuous.

Step {(VII)J. The set

is a linear subset of MIX,R) .

Step (VIII)., Let A€L and {IAfl =z 2 . Then
A €P . Indeed, from (7.18) it follows that there exizt

t t
¥ and ¥ in 8(X) and ¢ > 0 such that

Aoz c(y°»vi) and Y(Pl} = y(v'}

Kt

Since Hy'ﬁ ﬂ?aﬂ =1 and

ﬂc(p?nvq)ﬂ < 2¢

B
1]



full + Gvll = A= 2 .

By formula (12} in #3.5.,2 ,

8 fos X § :
{cp -cv }° = au = {ou Arcv }

13

s

7 §
c-c uavil . Similarly,

1]

and hence Jull

! ! ¥ ! L
fov =(ep nav 3l = cecllu »v

Ivi

ot

k]

Hence fud = Hwvll = 1 and yu,ves(X) . 1If o=
L} H ’ t . T
them ¥y A ¥ =0 and u =y , v =v . Thus, we may

agssume that ¢ » 1 . Denote
1

c ' f ~—
w = e {y av } and m=zeo

o-1

L]

14
Then p = sp + (l=s8), v = sw+(l-s)e, weS(X) amd O<sz<l

Consequently,

?

H .
yip 7 o= ylv 3 = sy{vit{l-sdv{as .

]

sy{pd+ (Lesiyéul
Hence «y{u) = y{(¥) . We have shown that A © F .

. L]
Step (IX). Denote P = {ieL: ||A}l g2} . Then P=p

T v
Indeed, the inclusion P P ig obvicus., Let A < P



Then A €L and [IAl =2 . By (VIII) , A€P

F ¢

Since A = tx and Ogtsl , X belongs to P as well.

Stepi{X}. L is *weakly clesed in M{X,R) . This
AYd
follows from (YIII) and the Krein-Smulyan theorem

{({D81l}, v.5.7) .

Step (XI), If x,y€ X and x ¥y , then 6X_6yééb
Indeed, suppose that ﬁxwéyGiL . Since u5x*5y” = 2 , by
{(VITI} we get 6X~§y&§P and {8 ) = Y(éy) ; hence, by

(7.8 , x=vy .,

. : i .
Step (XII). Denote L~ = {feC(X;R): Y v(f)=p}
3 n CyEl, .
Then L™€CA ., Indeed, let fel and W €8S(X) . We are to
show that pl(f) = £(y(u)) . Denote x = y{u)} and

v o= p=8, . Then, by (7.8), yi{p) = y¢d ) and v & F

Consequently, V(f) = 0 , di.e., p(f) = £(x) .,

Step (XIII). Denote A"L = {WEM(XQER)E\@/ vif)=0}

n fep L
Then A = L, Indeed, from (XII) it follows that L " o5 A
, . _ e
Since L iz ®yeakly closed, L = L . Hence L D p"

On the other hand, if A 2F | then )\ = p=v¥ with

Vv € 5(X) and v{y) = ¥{(¥} ; hence, for each .f in A .



- 93 .

Tyt
e
h
s

il
g
-~
]
ot

t
=
e
y
L

i
h
o

-
LY

-
ot
S

H
Hh
PN
2
ity
<
oo
B,

H
o3

L*L)

Step (XIV). A separates X s l.2., % ¢y implies
the existence of an f in A such that Flx) = £y}
A

Indeed, otherwise 6x - Gy would belong to A in spite

of (X)) and (XII) .

Step (XV). Denote ¢{x) = rest, &Y and XK = ¢{X} ,
By (XIII) , ¢ is one=to-one. By (III}, 6 is affine and
K is convex. Since X is compact, 4 is a homeomorphic

injection from X into O%A and X is *weakly compact,

Step (XVI). The diagram (7.10) is commutative. Indeed,

let w &3{(X) . Then for each f in A

1]

ly(u). £ = £(y{p))

whereags, by #18.3.3 , .

(Sewd.£ = wolgvd = [ wkodv = | (woogidy = plf)
P01 £ 8k seky f sy £ CF
where () = E(f) for & din A% and v = Sé y ., B

7.4. Exercises. (A) What is the counit of the monad
congidered in 7.1 ? How is it related to the map (7.4) 72

{B} Show that vy{(u} need not coineide with v{u'} in



- Gk .

{¥IT) . Hint: Find two probability measures Wy, ¥ on the

interval I = {0,131 s=such that
prlp) = o (¥}
2 + - -
and yet pr&unVD ;o= pI((pbv) ) I

7.5. Notes. The original proof of 7.3, due to
T. Swirszez [1973b] » used the generalized Linton Theorem
6.7 . In August 1973 Peter Taylor was challenged to find a
direct proof of 7,3 not asing theorems of category theory
and produced the proof presented above. Both proofs are of
approximately the same 1engfh and both use the Kreinu§mulyan
theorem, |
In Taylor's proof, (7.%8) was used'only to show that
¥ 1is affine; note that (7,12} appears much weaker thapn (7.9) .
Comparing 7.1 with 7.3 one may say that "convexity is not
an algebraic property but compactness make it algebraic®,

0f course, the continuity of ¥ 1in 7.3 is crucial.

Swirszez also proved that the forgetful functors
Compeconv — Ins and Compsaks - Ens
{cf. Semadeni [1970]) are quasi-menadic. The last statement
means that (Banl)*5 -is quasi-monadic over Ens 2 result which

should -be compared with 4.2 ,

7.2 may be interpreted as a statement that "wherever we
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have a reasonable concept of the centroid of a probability measure
A & compact space X, the space X must be not only

convex but also lecally convex", Here "reascnabla" refers +o
{7.9) which is a broperty of iterated integrals related to

the analogous properties for the monads for the categories

Veot, Ban1 and Conv.

Using the notation

(7.13) J xaypx)
_ X
for the centroid of a measure U in S(X) , one may write

{7.9) in the form

(7.14) I xd( vdk(?))(x} = [ [fxdv{x)Jdr(v)
X S(X2 S{X) X

for any A in SS(X) ., A formula of.the form (7.1%)

can be deduced from a more general formula in Bourbaki [1955 ] s

§3 , N%2 ; in Bourbaki's book such a formula, however , hag

2 somewhat different meaning: the definition of the integral

(7.13) uses any continuous affine function on X pather than

any continuous function or K . This is ?erhaps the reason

why a formula of the type (7.14) may imply the local convexity,



Syvmbol Obiect Morphism
8an1 Banach space llnear contraction,
- i.e., linear operator
of norm z I

Bcf@ commutative C*~algebra homomor-
C¥*-zlgebra with -phismgunitnpreserving
unit

Comp compact continuous map
(Hausdorff) space

Conv convex subset of affine map (i.e.,
a real vector preserving convex
space combinations )}

Caompoonv compact convex continuous affine map
Subset of 2 real
locally convex
Hausdorff vector
space

Ens set 2Ny map

Top topoiogical continuocus map
sSpace

Veot vector space over linear map

F {vwhere aither

F=zR or F = €3
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