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PREFACE

The present paper consisis of two paris.

Part one is of purely categorical charascter. The core of it
is a generaligation of the well-known Iinton criterion stating
necessary and sufficient conditions of monadicity of a functor

q;; & —= 0Ol . In Theorem 2.1, giving sufficient conditions of

'monadicity, the assumption concerning the ocategory OL is es-

isentially weaker (specifically, it is not assumed that any

epimorphism is @ retraction), while in Theorem 2.4, giving ne-

cessary conditions, the assumptions are only slightly weaker.

‘The proofs of these theorems are different from, and at the sams

time simpler than; the originsl proof of Idinton.

Part two of the paper is devoied to the application of the a-
bove critenﬁ to certain problems of funotionsl analysis. They
have been employed to investigate monadicity of certain forgetful
functors in convexity theory. Some of the resulis can be ex-
pressed without using notions of the theory of categories. Thess
are, among others, an axiomatic definition of a convex siructure

on a set and an axiomatic definition of a probgbility measure on

\a compact space.

Numerous properties of a convex subset of a vector space are

fintrinsic in the sense that they depend merely on the way of

forming convex combinations of elements of fthe subset and they

do not depend on the vector space itself. That is why the paper
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discusses sets with convex structures, convex sets for short,
instend of oconvex subsets of vector spaces. It turns out ;*.hat
each oonvex struoture on a set X is induced by z family of
binary operstions ((® =I'I—-——_-x)o‘sd
lowing axioms

satisfying the fol-

(2) x@=x -xl
(3) x@73 =y@D=

© =@y@s ) (32)
5 e - )

(D)_ ::1, -12’ : 215 12

for all x,x.l,xa.y,s in X, 0<8<1, 0<t<1.

Thus a oonvex set can be regarded as an abstract algebra. The
axioms (A4)-(C) are of an equational type, whereas fhe axiom (D)
is not. It has been proved in the paper that the category Conv
of convex sets is not monadio over ihe category Ens of sets, and
therefore there is no system of axioms of an equationsl type de-
fining a aonve_x structure on a sei. The sn\lallest category of e-
quationally defined algebras over Ens contained the category of
convex sets (ireated as abstract algebras) is denoted by Sconv
and its objeots are talled sesmi-convex sets. It turns out that
semi-oonvex seis are the sets with structures satisfying the
axioms (A)-(C). Therefore these axioms constitutes sn "egquational
part® of the definition of a convex set. Technically, Sconv is
the Eilenbers—ﬁoorn category of the monad T determined by the
forgetful functor from Conv to Ens and its left adjoint ‘;; 4

e
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Unlike the forgetful functor Dt:Conv —=Ens, the forgstful
funotor ‘02 from the category Compconv of compact convex ssts
to the category Comp of compaot spaces is monadic. This result
can be expressed in the langnage of funotional analysis as
follows:

Let X be a compaot spacs and let J(x) be the set of proba-
bility megsures on X, convex and compact in the x¥-weak topology.
Tot & : f(X)—>X be & continnous map Batisfying the Tollowing
condifions: :

(1) L’(é:) = x for easch x im I,
whers cf‘i is the Dirac msasure at x,

(11) 12 2,2.,3, €f(X) and ¥ (2,)=¥(2,), then

y(1-t)2 o tl)za"((‘!-t)22+ 1) for O0<t€1.

Define ths convex combinstions of elemsnts of X as
B
X
= PG T aiSE
T=1 %5 =1 i xy

Then X becomss s compact convex set sﬁch that ¥ (A1) is the
centroid of 7 for each 2 in (X). :

Therefore the centroid of probability messure for a compect
space X can be defined exiomatically as a continuous function
¥ 1 S(X)—=X satisfying the conditions (i), (ii).

The monadicity of soms thiritsen forgetful functors aoting be-
twesn various categories of convex sets is investigated in the
paper.

The existence of the monsdic functor ¥ ids —=0L is a measure
of algebraicity of the category é- over the o;tagory Ol as ws

encounter then a situation similar to that in case of the
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forgetful funotor from the category of equationally defined al-
gebras to the category of sets. As we know, such a functor is
mongdic. In this case the monadicity is closely linked to the
faot that each set gensrates = free algebra and all algebras are
quotient algebras ef free algebras. Similgrly, i W:db —= OL.
is a monadic funotor, then each bhjeot of the category ot de-
termines 8 certain free object in & ., and any other objsot of
the category of 1s a "quotient® object of some free object.

Laconically, compactness ®"makes ths convex structure alge-
braic®.

4 simple $roof of a theorsm of Linton concerning the
monadicity of the funcior "'::Ba.n.l""1’-«-»!!@5.111 is one of appli-
cations of the oritarion‘2.1. Theorem 2.1 was also employed in
Semadeni‘s paper [11] to prove that the identical embedding of
the category of spaces of continuous funcitions into the category

‘Bany of Banaoh spaces and linear contractions is monadic.

I want to thank Professors Antoni Wiwseger and Zbigniew Semadeni
for sugestions many of the problems discussed on the present paper,
for their invaluable advices which helped me to solve the problems,
as well for their assistance in the preparing the final version of

the paper.

e T

-5 -

TABLE OF CONTIEES

sesescs 1

6

csssascesassaesdssonnsescsne

Pref800.ccssssvescss

s eus e e teteR RN ES eSS LN e e

1. Preliminsries... =
5. Strengthened versions of Iinton's TheOreM.cssssvecsvos

; casavsesses OO
5. Categories of convexX #8%S....ccoescccaccses

cmPees e msar B
4. Monsdic functors and conVeXityececoiosacae

S a G eicaeis s simm seies e 90

Bibliographyecssscscasccccnns



-6 TS — : j
| : e ? Ts et
':_E
§1 Preliminaries. :
: * 2 Tet B be an object of O . An squivalence relstion on B °
" 4is a momic pair AT-=B such that for every M in OL° the pair
fefe  Iet Ol be a category. We shall denote by ({° ‘the 3 = g >
( <My27o » <Myg75 ) 18 a kernel pair in-Ens.

claas of objeocts of Ol . - OL°® will denote the dusl category

k

K
of OL o ' An exaoct sequence in Ol is a diagram
Lst A,B be elements of (1° , {A,B)o,_ or shortly <A,B) ; : . s SR q '
will denote the set of all morphisms from A to B in 0L . Iru | di e B -
f &

is a fixed object of O 5 <y ?>Ot is the principal covariant |

functor OL— Bns correspondinz 4o ¥(e2.[9] , 10.2.3.). such that (£,g2) is a kernel pair of g is a coequalizer of (£,8)e

A morphism q 1s a split coegquaslizer of {£,g) if there exist

A lel pair in Ol is a pair (£48) of morphisms of
of the form: A—2= B, J Tl e s e
£ 4 2
Iet £ be | : 2 £ | ;
nmhiminﬂ. o A kernel pair of £ is a " ; B ; 4 B
pullback of the pair of equal morphisms : ' ol :
A : * e ; fet :
‘ ; [+ B - ¢
L i ] .
- ! a q
A———— ey e ¢

4 parallel pair (£,g) is a kernel pair\in Ol 1f there exists e e e
e S i e | of (£;8). A morphism q is a split coequalizer of soms parallel
Bvery kernel pair (2,g) is a monic pair, i.es, for any
morphisms x,y in Ol , the conditions #£x = £y and gx = gy

pair 1f and only if 1t is a retraction.

let ¥: & ——s (I be a covariant fumctor. ¥ crestes
isomorphisms if, given X in o+ ? and an isomorphimm f34 —= VX

imply x = y.
A morphism g is a Soequalizer in Ol if there exists a paraile; if OL , there exists a unique of —morphism g:X’ ——=X such
pair (f,g) 1n Ol such that q 1z a coequalizer of (£,g). . that ¢g = £ (which, of course, entails ¥X? = 4), and

this morphism g is av isomorphism in & o



— 8 TS—

X

@ will denote the olass of all parallel pairs (Zy2)idn =
dr such that (¥2, ¥g) has a split coequalizer in OfF .

o+ has Q— coequalizers ~ if each pair (f,g) in P has a
coequaliger in & 3 ¥ reflects @ - coequalizers 1f for
any diasgram

(1) S

Im——22 Y s’
g

in & with (£,8) in @ and ¥ q = coeq( V2, Pg) it follows

that q = coeq(f,g); _Y¥ preserves P - coequalizers if, given

& diagram (1) with (£,8) in P and g = ooeq(2,g), 1t follows
that  ¥q = ooeq( ¥z, V).

12, ILet OL be a category. 4 monad (= triple, of. [4],[6]
T = (=, 2 ,/—L) is a covariant functor

30l ot

together with two nattral transformations
2 H Im e T,

satisfying the following conditions

/"'AT/‘LA "'/“A/"‘TA ' /“A?TA =Ly =/¢A TZA

for each A in (L ° ,

Let T= (T, 7 s ) be amonad on Of « An Eilenberg-

Moore algetra of T , shortlys & T - algebra, is 2 pair (4, oL ),

where A is an element of (H° and ot TA—s4A isa morphism

ol
in(:uoh that

(o) = olpe, and

4 s the underlying object of the T'— algebra (A,ol) and « is
a T - algebrze siructure on A.

4 morphism 27 ¢ (A, ) —e= (&%, ') of T algebras is
a triple (£, & s’ )y Whers $£3A ——eA' is a morphism in oL
such that fo = «'%2, OLT will denote the ocatsgory of
T - algebras and their morphismsj 1t is the Eilenberg-Hoore

category of the monad T = (%, 9 ,/.:.).
(“’/’m) is a free I - algebra with the underlying object TA.

""—fa ]

4¢3 Tet Y : b —=0Ol be a functor baving a left .

adjoint O3 O — =% with canonical iransformations

n:Ia—-——Wd) - S-‘@‘P—-Iﬁ‘

Then Te= (¥, 7 Ye gy ) is the monad determined by the

adjunetion ! 0] 2 ‘P, 2 2 g !.

et Ta= (m,z,/u.} be a mopad on Of and let
¢T: 0t —oF , ¢T: 0" —ot

be functors defined by

HORRC AN )
m@l ] and
PT(e, ot yot' ) = £

¢ (a) = (m4, S
for & in Ol° and £:A —e A
Q’T(A. o ) =4,
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for (4,0) tn (OT)° and (f,0,u') 1o AT

« Then ‘tha
tunotor OT 15 & left sajoint or ¢T

by this pair of adjeint functors is the given momaa T .

Furthermore, if @ : f —=% ana Y B —s0t ’f“
. any pair of adjoint functors determining the monad T , then
there is & unigue covariant functor @ : B8 —s T suon
that the diagram :

O

is commtative. The functor @ 1s defined hy
03-(¥8.95,) , ©p=(vg, s, vs,)

for Bin o° ang B2 B——>B’ 1n £ ; 1t 15 called the

canonical gomparison functor, :

comparison functor @ : b —s T 35 an isomorphism
[ an equivalence ] of categories. A category & 1is monadic

[ uasi-monadio] over (f 1f there exists a momadio [quasi-
monsdic] fumotor ¥ i f —a

and the monad determined

T T e T T T i g Ll [

— 44 TS —

We shall use the following well-known resultss

1efe Lemma, If (f,o ,a'): (4yot ) ~— (a7, " )

- 48 & morphism in o™ s and

)
B A
E2)

| 18 & kernel pair of £ in OL , then there existis a unigque

morphism ¥ : B ——E in O such thet (8,4 ) is a T -
algebra and : 2
: (f1l f,d.‘)
(B, ¥ ) (a5 o )
(255 ¥ 5 0)

e T i '
" are mworphisms in Ol ., Moreover {(11, Vol (255 ¥y 0L )) 18

: T
& kernel'pair of (£, o ;') in OLT.

Proof. Thers is a uniqus morphism & : TR ——p B such
that the diagram

T. i
TA ———— = T4

ol
T,
4

d.'

£ §
¥ :
e = e n e =E

A (1)



e

is oomntative. Ie dull ahor that (3, &) ts a Tia alge'bra.
The diagran :

Ay

2a 1-. ot

]
L

is oomtatiw for i = 4,2. Hence :ti = :t s Q—B for 1 = 1,2,

and consequently 1p =
The diagram

£

TA
-

T : \

e A » A
TA
¥
LE7

TE : : ;

is oomn'ta.‘give for 1=1,2. Hemce £ ¥ T(¥) =2, ¥ i,
- for 1= 1,2, and oonsequen‘bly !"!(6") = l"/uE o Thus (B, ¥ )

STEE

ffzg (because (t.l, ..‘.2) 18 a monioc pair).

48 TS —

is a T = algebra and, by (1),

(£1’ r’ ol ) 5
(3 ¢ f—————a (A.d)
('-cav ¥y o)

are morphisms in 01 « It is easy to see, that
E ((11;3' o }y(25, & 50l )) 15 @ kernel pair in of (t, ol 4ol )
m of,

4e5. Beok’s Theorem (cfe [2] )o Zet ¥ th——a Of be
a functor heving a left adjoint. The ocorresponding comparisom
functor @ : & e aT:!.s an equivalence of categories
1f and only if & bas anda P precserves and reflects @ -

- cosqualizers.

1s6e Iemms (of. [3] )= The canonical comperison funotor
® is an isomorphism of categories if and only if it is an
equivalence of categories and g creates isomorphisms.

§ 2.

Strengthened versions otrI.inton' 8 Theorem

The following theorem has been proved by Linton [3] under
- an additional assumption that any epimerphism in oL ds a
We shall show that this assumption is

retraction in o .

superfluous.

2ais Let a category (v} have kernsl pairs u:

re'f;ra.ctions, and let a oa‘tegory QS- have kernel pairs and
be a funotor having a left

Theorems

soequalizers. Let P D e OL
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adjointe I j
- ® has a left adjoint

(1) for each morphism £ in & , £ is a coequalizer if
and only if Y2 1sa ocoequalizer, . Q{T A

(11) for each parallel pair (£4g) in & , (f,g) isa where :
kernsl pair 1f (and only if) (%2, ¥g) is a kernel pair, ot : S(a,0l) =
then the canonical ocomparison functor bboa S o4 - o A, e)

0:g OlT is & coequalizer in o , for (4, o ) in (Ol )e The unit of
; ‘ 3 the adjunction =

is an eguivalence of categories. 2

v
2 :1"1,...._....._._....@3
Proof. (z) ® is full and faithful. Indeed; for each : -
b is defined by

object Bin &°, ¥e, 1sa (split) coequalizer in Of , =

( o, Ve )

3 CAel) 1701 2(A=) :

hence, by (i), €p 18 a coequalizer in &5 « Therefors (& . ?m‘i th? = rph:# L e
where 8 the ue mo! su

is #ull and faithful (of. [6] , 21.8.6). : 2as ) t

~ the diagram

ol

'(D:)‘ ? preserves exact sequences. Indeed, let
i TA

: i
4 ‘q }
s — |
b & z 2 Z : I

'2(-5-391 )

el R

be an exact sequence in & . Since ¥ 1s a right adjoint, f YS@,a)
( P2, &) 1s a kernel pair of ¥q. By (1), Yq s a l

l
coequaliger in Ol , and therefore ‘Pq is a coegualizer of [ ?E(A,d)

1ts kernel pair ( Pz, ‘Pg)_. Thus the diagram ,‘
‘ is commtative (cf. [4], VI.7. Exercise 2., and [3] pe 56)e
; g - 4
(Iv) 1z (&, oo) 188 T- algebra, x_;___u
2

Yz :
Cgy s By

e

is an exact sequence. g

is a kernel pair of o in Ol and g = ‘Bmd’fi for 1 = 1,2, .

(III) It is well known that, since o Has coequalizers, then Z(4,0 ) is a coequalizer of (g, &) 1in & -
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Proof of (IV)s We shall show that for each morphism £
in & 5 fg =fg, ifandonly if £ dX =2 g,.

Iz £t = Ly, ‘thnn ‘the diagram

T pdaen oA
/' \ >

dvgA Sl i

Foa
is commutative. Hencs 131 = iga .

Aseume now that fg, = fg, » There exists; by Lemma 1.4.,

(2. X Aty -
and: (!, r)_.!___.....L ( ,711) are morphisms of T ~ aigebras.. -

(12! ’ /u'_a) ]
Thus we get two commutative diagrams

+ e e T
¢ ‘PS‘E Fa
lg :
- TA FEEN ;
ER ) v

for 1im 1,2, In partienlar, Y Ygy = “'“1' for 1 = 4,2.
It follows from fg, = fg, that s Pay = P Vgy, and

$££, . Sinoe o is a coequalizer of
its kermel pair (11, !2)', there exists a unique morphisw b in

oonsequently ‘«Ptt;l a

R

q’tsho.tq

Ol such that -

BT

{..‘.Henee W uy=hd foy =hd Te) = @2 . sinoe ¢ 1s
an r:n-——-—-xudt such that (B, ¥ ) isa T - algetra, | :
_faithfn.l, we have fgw-qu

() Tor sach obgest (4,0 of OLT the morphisa L, )
is an .isomorphism in o .

Proo:f of (V)e Let B 1——:: T4 be a kernel pair of o

in Ol , and 1e¥ §: TE ————o= B hetheuniquamrph:lanm_ﬂt
such that (8, §) 1z & T - algetra and (z,; x“,/ul), (259 8‘,/1‘)
ere morphisms of T ~ algebras. Let g, = §g, f; for 1=1,2.

Then the diagrams

<o

o i

- 12y i
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are commtative for i = 1,2. By (IV), 2(4,%) i1sa
“.qmil“ of {51’ 82) inﬁ o

We shall oonsider the following morphisms in o :

1—M_r gt M)
92 & :
: g PP
P

~ Wwhere ;

(pgsP5) 1is @ kernel pair of (A, o )

gisthanniquémhismin o such that PyP = & »
: ia= 1,2

(‘11 s‘lg)- is a kernel pair of p
q is a coequaliser of CPRLPY)
£ 4is the unigue morphism in &b such that p = f£q.

It is seay fo see that (a458,) 18 & limit of the dlagram

\

e g,
A\
da é4
34
bE

in B . Since ¥ 1a @ Tight adjoint functor, ( ¥Yayo Pap)
'1salu1torthad1agra.m

49 TS —

1 11 Ol 5 Since ng; =2, for 1=4,2, aud(f,,2,)

is a monic pair, (‘Pq1, Yq,) 1s also a 1imit of the diagram

B30, q)q_1, Vaq,) 15 & kernel pair oz § an O ,
Since ¢ is a coequalizer in Ol , it is a cosqualizer of
its kernel pair ( (Pq,’, $q,)s The diagram

Vq Yq

— TR > ¥y
wQ2

Vv

| isy by (II), an exact sequence. In pertiocular, $q is a

& coequalizer of ( Yq,, Waq,)s Henoe there exists a unigque

imomorphism h in Of sush that the diagram

TR ¥q ¢y

| L
I

: :

! E
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is commutative. Thus we get the following diagram in o

& = TA —— = A
fe
N ?C"FL)
3 . ) Pp. fcf ;
rQ‘/
Y3 (AR)
e ta I vB
L ¥p f

In particular we have 2;h = ¥p, P2 for 1= 1,2,
{becamee ' q is an epimorphism). Since h is an isomorphism
and (:1, £,) isa kernel peir; it follows that (£,hs250) =
= ‘P(pft}, q’(raf)) is & kernsl peir in Ol . Hence, by
(11)s (942s0,2) 15 & kernel pair in df o BSinee Z (a4, ol )
is a _coaqualizar of (51 ,52? . (p_l:q, pzrq)s it is a coequaliz
of (p1£, pot); to0e Thus (pif, Pt} 1s a kermel pair of

E (4, oL ) ' and therefore the dlagram

(s,
I% ¢‘A—§—(A—-)-- Slayot )
Py

is an exact sequence. Consequently the diagra.m

2.h PE(x, o )

h_?a‘r""'.‘"

Yo (4,0 )

e i amg

is an exact sequence (because iih =

B

- 24 78 -

&
‘P (Pir)! is= 1,2)0
In particular, ¥5(4, oL ) 1s a coequalizer of (f,h,f,h),
and consequently it is a coequalizer of (f., ,12). Sincedis

2(‘9 o )

also a coequalizer of its kernel pair (:I!i,:tz),

" 1s an isomorphism in Of .

(v1) ® 2 u equivalence of categories.
e F
Proof of (VI)s By (V), Doy = (?m.-u o, ngmﬂ‘u)

is an isomorphism in oL for each T = algebra (A, o ).
For each object B  of s the diagram

>
Jes -~ 0503

@3B

@3
tos B

@3B

is commutative, where g P T o is the counit

of the adjunction. Hence @gﬁ "is an isomorphism in OIT .
Since ® is full and faithful,

Henoe S ® =ana @5’ are naturally aquiv;alant to identities
'
on I" ana Ol respectively.

This completes the proof of Theorem 2.1s

€ p is an isomorphism in &
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202+ Remark,
of funotors satisfying the oonditions 2.1.(1), (ii), also
satisfies these conditions, and consequently is a monadic
functor. But it is known that the composition of two monadic
functors nsed not be monadic (cfe [6], 21.6410.(d))s This
shows that the condiflons 2.1.(i);(1i), are not necessary
for a functor to be monadic.

It is easy %o see that the composition

2.3+ We shall now give some necessary conditions for
a functor %o be monadic. Ihol following Theorem 2.4. has been
proved by Linton [3] under an assumption that every
epimorphism in Ol is & retraction. We shall prove the theoret
under an essentlaliy weaker assumption that every coequalizer
in OL 15 a retraction.

Por example in tHe category Conv {ct- 3e¢12.) there ars
epimorphisms which are not retractlons, but each coequalizer
in Conv is a retrastion. -

2¢4¢  Thecrem, Iat.s category Ol nave kernel pairs
and coequalizers of kernel pairs; and let every coegualizer
in 0L be a retraction, Iet Y : & ———= Ol be = functor
having a left adjoint. If the corresponding comparison functor

@:cﬁ-——-'-a'_r

(i) &5 has kernel pairs and @ ~ eoegqualizers,

is an equivalence of categories, then

7% 1§ -

(11) for each q in & , g isa eoequalmr ir md
only 12 ¥ g is a coequalizer,

(111) for each parallel pair (£;8) in & s (2,g) 1s
& kernel pair if (and only if) ( ¥z, ¥g) iaa
Xernsl pair. .

Proof of (1)« By Theorem 1+5., &) has @ -coequalizers,
e shall show that & has kernmel pairs. let q : Y — s 3

be & morphism in df and let 1—%@:4’1 be a kernel pair
of Pgq in Of

Then there exists a unique ol * TA ——e A4 in Of such
that

(Fat, Ve, )
(9|d‘|q’SY
is a kernel pair of @q

(&, o ) ®x

S
: @Y —————=@B in Ol (of.
I-emma 1.4:]]).. Since ® is an eguivalence, there is a Zunctor
+ Ot d> which is a right and a left adjoimt

'oz @ ¢ Hence

; o (£, Yey )
Sla,e) e @y
3(9‘«!"4’5?)

is a kernel pair of S@q:2@Y

S@B. The
functor T@ 1s paturally equivalent to the functor I &
Hence there exist isumrphispls A, /u. in o suoch that the
diagram
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=)
2
td

is commutative. Consequently the pair (L 36a "’s, 3(9,"‘."’53:’)

is a kernal pair of qge
Iat (£,g) be a parallel pair in b
is a kernel pair in ol

Proot of (iii).
euch that ( ¥z, ¥g)
Indeed, there is a coequalizer p of (W2, ¥g) in O which
1s a retraction, snd (¥£,¥g) is a kernel pair of D.

Conssquently p 1s =& split coequalizer of (¥£, ¥g) (ct. [e], &

240he24(b))s Leeey (£,8)ER o

Thus, by Theorem 1.5., there is a ccegqualizer g of (£,2)

and ' Yq 18 a ocequalizsr of ( V2, ¥g). Conseguently

( Y2, Pg) is a kernel pair Wq. Hence, by Iemma ek,

(@£, @g) is a kernel pair o @g 'u‘aﬁ' Eosie B nd

an equivalence of cstegories, (f,g) is a kermel pair of g.

The comverse implication 1s true for each right adjoint
functor ¥ T
Proof of (i1). = Let g be a coequalizer in &hH,
(f,8) be  kernsl pair of g. Since ¥ 1s & rignt adjoint
funotor, (P2, Pg) isa kernel pair of
(£s8)eR

P gs Hence

and thersfore, by 1.5y ¥ g is a coecuslizer

and let |

o Then  (£,)ef
| e define = g, b2,

Al Ll o,

. isa cosqualizer in Ol

I‘il' pair of Yq.
"~ in Ol such that

- 25 =8 -

of ( ¥z, ¥g). Consequently ¥ q 4s a coequalizer in O .

Iet g : A =————e=3 boamorphiaminnﬁ- such that ¥ gq

Let E Pr— ¥4 be a kernel

There is ﬁn:l.qu morphism Y: T8 ———— 2

(;'! a’-| q’gﬁ)
lg', 6" wga)

ey ( "PA., (pgA )'- @L ;

® ¥ )

is a kernel pair of ( Yaq, ‘PgA ‘Pg,B ) = @q_ in Ot (ot.i.a.).

g = §A ®g® (hence £ = ¢z Je

g = Yg e )
¢ | o5’ b
B = s
¢9'
£ Sa
7
A 4
‘I.ot us consider the diagram:
: :
= ¢PV¥a
l\ l“’s,‘
2 = $a — PB
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It 1s easy to see that Pq¥2 = Yq.¥Yg. Since ¥q is

& retraction and (£?, g') = ( q’ng s Wg QE> is & kernel
pair of (g, there sre 2 , £ in O such that the diagranm
> 4

Lys L
A e R 2 wgs
| .
'-("q lq’?
¥B L @4 3 ¢B
:

is commutative. Hence is a split coegualizer of ( ¥f, ¥g)
and (193)6@

q is a ocosgualiger of (£,2).

Yaq

\

2,5 A4s an application of Theorem 2,1. We shall give

& almple proof of a tﬁgore due to F.Bed.Linton (cf. [10}, a.z}.f

Ban, is the category of Banach spaces (over B or € )
and linear oontractions. (4 linear comtraction is z linear
operator of norm < f.)s If B is a Banach space, BT 1is
; A = B 18 a morphism in
Ban,, thea o"g B¥ ——s 4¥ gofined by ol¥(f) = £
for £ in B® is a morphism in Ban, .

1ts oconjugate space; 4f o

. Since ¥ reflacts ¥ - coequalizers (cfetabi

s

Ban, P if and only 12 o :

-

The cén‘bravariant conjugate-space functor % is ad:hint
on the right to itself (of. [9] , 12.4e4e(a))e If£ B 15 &

Banach space, ©€p is the canonical map from B into B.B

Tet Ol=3Ban, and b= Ban,°. Then the funotors
¢: 0L —s & and p: L5 —> Ot
defined as ¢(A)=Ai, P(L) = d*: \P-(B)'B!:.

] (ﬁ )= ﬁ* . are both covariant, and ¢ is a left
adjoint o2 ¥ (c2. [10], &.1).

Theorem (Linton).

2454 The funoctor ¥ is quasi-
" monadic.
Proofe A morphism o : A—B 1is a coequalizer in

B——=A 18 an equalizer in
an isomeirical embeddinge Similm,‘
15 a coegualizer in Ban, if and only if o is a quotient map
(cfs [9] 5 114545+ and 14.5.7.). Since od* 4s.a quotient map

if and only if£ o is an ‘isometry, the condition 2.14(1) is
satisfied.

Ban," ieCey ol 3 A ——eBR

Let o ,(3 : A——=3B be morphisms in Ban, such that

Cel™, F*) is a kernel pair in Ban,. Let £ be a coequalizer
of (d*’ F’)n
Then (ol*, @* ) 48 a kernel pair of £:

*
ol
- # 4
———————— ————
B = A D



e gus-

et x= fate i I g 0N K0T - of .
T% is olear that M = ker £ and consequently U is a closed
subspace of A%, We ahall show that M is € (4%, 4) - closed.
- Leat £ N — 2% be the identical embedding. Then £& = :\?0 =1
Hence there is a uniqre A3 M ———s B such that o¥2 = £
and ﬁ‘ﬁ. = 0'. |

: S £

o s
P
A frf
(o]
I
1
B

Sinoe <"1 4s an isometry (that is, an isometrical
embedding), ‘A and “il:t(ll) are isometries. Moreover,
2 (E) = hrﬁ' and hence d-likerﬁ :-mp* —_—

is an isomoeiry.
Consequently \

%|osen xerg” : 0% 0 ke i ———= "0 ¥
is an isometrical bijection. Thus, by Erein-Smulyan Theorem
(ar; 5] 11?, 6alte)s ‘Xis 6 (A%, L) ~ closed.
Let © -n{m & 1 a¥c M |, Since Mis 6 (4%, 4)-
closed, the polar €° is equal to B (ofe [2], 20,3,(2))e It 1s
_t»il‘u;to"u‘-_ihat-c- ,{aea to(a)= (5(3)}.

R

T T
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Let &t C— A be the cancnical embedding. We shall

_show that (o 3 )} 18 a kernel pair of £ in Ba.niop. Ve h.nvo

the following commutative diagram

‘3
Ai——---—-———..-.u.-'ci
L.
x
E 3
2

where T is the quotient map and i is an isomorphism in :Ba.n,'.
*

£ is a coequalizer of (o¥, F”) and consegnently

(¥, F*) 18 a kernel pair of £% .

Hence

~ Iet ¢, , 9, be morphisms in Ban, such that @, & = @£
le€ey £¢¢ = £, 1in Ban,°P. Hemoe £'¢p% = £*p*. Since

(d.',{_;“) is a kernel pair of £%, +there is a umigue

R ¢ B such that @ =a¥d e = gd
B*J:* A% £ -
e
D TRy
g
xﬁ

It is enought to prove that ‘hher,é is a morphism ¢: B +—1
¥ :
such that 1= @*. Iet a,, &, be elements of A and let
b= d.(si) + ﬁ(aa). Iet X* be an element of =, Then
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';Intuitively, a oonvéz sh’uctu.rei is a waythe convex -

binations are definede. A convex subset & _ﬁt a vector

B R 15 srovided with the obvious conves structure. The :
o8 E plays an nunlj.ary Tole hersy K may be sontained
1 many entirely di:t.f.ersnt veotor spaces and yet na.y have the
- convex. combinations., In this aectiqn wae shall give a i
3 cige definition of the convex structurs. ;

(aes(b)«ﬂ)(x*)- B () = BEEN o (24) + (3 (2))
- cd*dcx*))(a} + (D)) = |

o (G EN)(e)) + (BN (a) = 2 A(s)) + Gulap) =

- (R lay) + B (a0

£

1.1. Iet X be a sets A free yveotor space generated
X is the space <I/(X) of aJ.l real-valued functions :t :
on X cuoh thet the set  [x 3 :L'(:::) # o} is finite,
The canonical injsotion e

Hence 3Cg (x) & =g ¥ (ai) + ¢las))e It 18 sasy to
see that the set ol (4) + ﬁ(ﬁ) is dense in B. Thus o 1s

( 6 (% x), 6 (8% B)) - contimmous, and consequently there
18 @3 B———=I inBen, such that 8= P,

Therefors, by Theorem 2.1., the functor 4 is quasi~ . :
; : ‘ i e & e SRR, a4’ (z)
monadics < ] z ,
6 I(Y) - J'W (Zronecker d' )e The convexr subset

§ 3« Categories of convex setase.

e(x}u {ze?f’_(x)::;-o &ZI(&)-'&}‘
< xeX

By a vector space We shall alvays mean a real vector spacsl

of the free veotor space (intersectiom of the cone of

A subset K of a veotor space E is called convex if (i-%)x+ty 2 . i A = i
monnegative funot onsr:l.ththehyp lane f{x) = 1
an olement of K for all X,y 1M K, 0€ t<1. et Kana X’ f oTp Z

convex sibasets of vector . spaces E and E’respectively. A map
f § ¥ ——> K’ is called gffine, if

0alled the free comvex set generated by Xy (0fe Betfole)e

3+2e lLet K be a sete By a gonvex structurs on E ws

| f(ﬁ-*): +ty) = (1 = t)..f.(z) + t2(y) 1 mean & map

: ; k¢ () ——————aK
forall z,y in X, 0L t< 14

»
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such that tln:-o exist a ﬁotor_ spsce B and an injection

&€ k"3 '..tmym the following condition: P(1 - t)x + ty) = (;! ..t) e(x) + ¢ wﬁ)

W E(k(Z:t,_G D'Za,_e(x,‘) %y in K, 0 t€1.

X : o
for each :.16' in e(x). The condition (1) means that | ; ! _
= 3e4e A structure of s bounded convex set on a set E

ie & pair (x5, ) where k 42 = eemic structure o:S E and T
18 a topology on X such that there exist a locally convex
A

EX 3 6(X) - _
: ; X

Fhe slement k(Zais x,

combination of olmnt; x40 We shall also write > a4x;

instesd of k(2] l.i x, e |
- Por cnr: convex subset X of a ﬂotor space B there is | be regarded as a bounded convex subset of a 1905113 oonvsx

the matural ocomvex siructure induced by the vector space ,Hauador:f space (eegey B =Xv(E~ 5 (I)).

. structure of E. On the other hand, if k is a convex structure | é

on a set K, thgln there is & vector space B’ such that X is s | R Gase o it e

e e aanis t_wd il “‘,’tu i P(B X, %) such that < 1s o compaot topology.

structure of B’, In fact, 12 £3 E——F is an injectic ;

satisfying (1), then the set B’ =X U (B ™~ & (X)) becomes s

.

) of K is called a convex
| Bansdor?? space E and an affine homeomorphism £ : I-—---E(I}cl.

Every set wi‘th a structure of a boundad eonm set m

Bebe . A coggao't Saks space is a qua.ﬁ.'mple X X% 5 x,)s

he:r:e (X, 5, % ) is a compact convex set and ‘X

i

vsotor space in the obvious way.
Tet X be & set and let k be a convex structure on K.

The pair (K,k) will be called a set with = convex structure,
or shortly if thers is no danger 'ot confusion a convex set.

o iz an

;‘ emeut of E satisfying the following aond.:l.tiont for ssch
’ in X there exists an y in K such that %x +i-y=z° °

Such a point =x

s 18 unigue and is called the center of ths se: X,

3e3¢ Iet (X,k) and (X} k') be sets with convex

3e7e Iemms, (02 [7], 13.6.) Iet (X, x,€) be a
structures, A mep W3 K —~——e-K? 4g ealled a.f.:tine if it :

‘compact convex set, and let x, be an element of K. The

Pruoml the oconvex conb:lmt:lona, 1s00y ;aad:?uple .- zo) LT e
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only if there exisis a Banach space (X, ll*ll) and an aff ‘ Comp is the category of compaot (Hausdorff) tepol |
‘ i 3 cpolo,
(€ , 6(X X)) - contimuous bijection . Spaces and continuous mapse e
.. ' Ens :
£: :_.._._.-{ ste 1% fxhit} «O%x Bas is the category of sets and (a1l) maps.

snohthat E(:o)-O.

!ha suffioisnoy is obvicus. I2 (K, Xy ‘F, x, ) is a i Compaaks
compact Saks space, them X may be defined as the space of

all affine real valnen contimmous funchions on K vanishing
at x, with the supremum norm (for = proof, see also [13]

Proposition 1)e { ;
#hus each compact Saks space can be regarded as a quaa:i__ : o' o'¢p

(%, X, T, x,)s vhere K= OEF = {ye Bi:liyl<1} =and Compeony ==
(By Ul: Il ) 1is a Banaoh space ipometrically isomorphic t& |
the comjugate of a Banach space (X, H-ll ), T 1s the sopol
on X induced by & (85 X), Xk 1s induced by the vector |
space structure on B, and x, 18 the gero element in Bl

We can take BE=X U (XE E(X))s

£

\ i i

3.8 TWe shall oonsider the folloving categories and F

functors: :
i The. fun
Gonv 1is the oategory of convex sets and affine moDSe i otors  O,seee; Oy, are forgetful functorse
Bndeonv is the category of bounded comvex sets and ;l.la,ch of them has g 1éft adjoint. These left adjoint funot
J unotors

=
continnous affine mapse- fwill be desoribed in §k.

Compoonv 48 The category of compact convex sets and :
n{m

oontimou affine mapss It 1s & full subcategory of Bndeo Je9s  IEWMMA. Bach of the functors [ ig 5,6
< 153

reates i !
g_mngg_ ie the category o: ooupact Saks spaces and R crouiamn,

centerpreserving contimmous affine maps.

r k\
3
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Proof, !hia is obvious for the functor D 7 ‘It is
easy to ses that in each of the ca-begories Compsaks, Compcony, :
Gomp, Conv, rns a8 worpkism is an isomorphism if ang only if
it is g bijection, Hence, 1f £ : 4 —o g O,B) (12 5:657)
: is an dsomorphism, then £ is & bijection. Consequently the
. structure of B can be uniqnely transfered to A in such
& Way that £ becomss a morphism (and consaquently an
:I.lomrphism) in the desired oategory.

Tt f =‘ 4 —= B be a surjection, and lst (:1,1'2}
be a kernsl pair of £ in Ol , The forgetful funoier

O, : OL ———=Ens hes a left adjoint, hence (O,%,, 0,2,)
is a kernel pair of O 4£ in Ens, Since D,f is a surjeation,
it is & coequalizer of its kernel pair ( 04249 '-"1‘2) in Enss
let g : A ~—=C be a morphism in OL such that &ty =g, o
Then there exists a unigque map h: DiB R Uiﬂ' such that

0.2 = D48 It is enough to proof that h is a morphism

in o »
I ﬁf— is either Comp, Compconv or Gompaaks,.
2 continuous mape Indeed; the topologles ea 4 and on ‘B ere.

compact and £ 4is a continuous surjectlonj hence £ iz a

3010 IEMMA. . Lot Ol be any of the categories
Compsaks, Compoonv, Conv, Comp. A morphism ¢ is a
o]
equalizer in. Ol if and only if 3t 1s a surjection,
Proof, For every morphism £ 3 A =——eB in Of 4ne
‘oot 2(a) = f2(x) 1 xea} together with the induced
8%ruotures is an object in Ol . Woreover the maps
o : : 3
iia U st e ey defined by £, (x) = Az}

\

then h 18

" quotient map (cfe [9]s 5e2e)s
12 Ol is either Conv, Compoonv or Compsaks, than_ his

an affine mape Indeed, let ©b’, b®*e B, 0 £ % € 1, Thers

#or x in A and é(y)..y for y in 208 e
in A such that f£(a’) = b, 2(a¥) = bY

morph:l.ama in O such that &
f T exist a’, a®

Ie % Ty
t £ be a ooequa.lizer of the parallel pair (11’32) Thus

i.n Ot.. Since :1"" i !A:Ez' there exists a unique morphism BLSHE & ('14)"9“) % h'(tf(a') x5 (1-.'1_') I("))' %

h . 3___,:(‘) Euch WL i = h{ta? + (ﬁ-t)af:) = g(ta’ » (1-%)3-'} =
A

‘and conseguently lp= €h (because £ 1g an epimorphism)

‘But it 18 possibdle only if - B= e(x(a)) = 2(4), le., 1£ 2

is a mﬂeotion. !

- te(s’) » (+-t)g(a") = tr(a?) + (1=t)n2(et)
= th(b?) + (1=t)n(d").

is a center of an object B and

¢ Ol = Compseks, bo
n(b,) = nt{a,) = glay) = o, »

is a center of &; then
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where a, 1is a oenter of 4.

Thue we have shown that h is g2 morphism in Of ,
This completes the proof.

¢ 3
efle. IEMMA, There is a surjection in Bndconv which
is not a coequalizer, ;

Proof. let (®, l-ll) be an infinitely dimensional

Bana :
ol space, and let B, be the set {163 s Uxh < ¢}

with the induced convex structure and topélogy. Let B* be

the same cllonvex aét with the topology induced by & (2,2%).
Suppose that fhare' are morphisms £,z in Bndoonv .such that
id 3 B——B° defined 1y 1d(x) = x for x 4n 3; is

& ooequalizer of(f,g)s We have also tgf = Lpg, where
B )

S
g &§B——nB is the identity on B in Bndoonv, but the
unique map such that the diagram

.

1a
B ———=p

g

b = —

is commutative, is not contimuous, i
morphism in Bndoony. '

ey It 18 not a

3e12 : :
oi2e  LEMMA, lvary coequalizer in Conv is g retraction,

but not e
- | very epimorphism in Conv is o Tetraction,
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Proofe Iet £ ¢ A —B be a coequalizsr in Conve :
Hence, by Lemma 3,10y £ is a surjection, We may assume
that A,B are convex subsets of veotor spaces V,¥ such that
¥V = span 4y W = spanB and £ -=r|‘ , Where F 3 ¥V —=1W
is a linear map. Let X = kerF, and let T be a subspace
of ¥ such that VY= X@® Y. Then Fly 1 T—=F¥ isa
bijections Tet G= (Fly)! , amd g=6lg . Then Fe=ty,

and consequently fg = lg, is8e; T is a retraction.

Ve shall show that not every epimorphism in Conv is a
retraction. Let A = {IER 2 0_£ x<1 , B -l‘“ﬂ?: -'IC::£1}
and let ¢t A——eB be the inclusion map. It is easy to see
that &£ is an epimorphism, but it is not mdeot.tnn,' ;

' Comsequently & is not a retraotion (ofe 2¢3e)e

§ b, lMonadic functors and convexity

In this section we shall discuss the adjunctions sxhibited
4n the dlagram on pe 35. Our aim is o show that the funetors
o, are monadic for 2 £ 4 <4 and for 7 £1 £12, and

they are not monadic for i = 13956¢

o,
Lo4e The case Conv e 1 1]
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Kolets, Tab Tibe s sets Then. G(X) 1% a conver subiet o S T (k) syt

- of the free veotor space U'(X)e The convex struoture on G(X)
.induced by the vector space struoture of 9'(X) 1s called
the free convex struoture and is denmoted by A:e The set

with the free convex siructurs (e(x), /ax) enerated by X
—==0.200 iTee convex siructure S8nerated by X

¥ill be denoted by ¥ (X) and Will be also calleg the free

cSonvex set senerated Ly XL no confusion is possible,

If X? 4s another set and ¢ : I——=I’ 45 a map, then
So: L@ £(x2)

; b 4 : 8
defined by ‘g(p(z:,' .16':1 )i a; 6 :( ’li) is an

o set .
s (X,X) ig the convex struciure on the set K,

It is easy %o see that the fres ocuvex struciure /ﬂr
on G(X) is equal %o 0, §g(1) for sach sek X, leces
T = (¢, 6 ,/u), where /u",(/“x)xexmf » 18 the monad
determined by the sdjumotion (¥, O 2652

4ete2e Theorsms The category Conv is not monadis

over Ense
" Proofe Let A w

= {tx,yjeﬂxk 2 0¢x<1 & 0cye) Uql(o,o)}u{(‘.l,i)}and

let :Ba-{z_ém s.OG'xi'l_;. leahallmnaidar@emps

affine map, Thus we &et a oovariant functor

'gslns-—-_—--_.. Conv

which is a left zdjoint oz 0, (ote [97, 23.5.6.). A"t B aefined by Ty(x3) = 3, Tylm3) =y for

e demiote by G the composition o, 4. (z,3) 4n Ae It is easy to see that ths pair (‘E'.', ®,) 1s

The ﬁ.nit of the adjunction

AY

an equivalence relation in Conv. Hence the pail.'l.' (‘PT.‘. 'P?TQ)_

2 Irhﬂ . Y =6 is a kernel pair in Bns for every Tight adjoint functor

is d..ﬂ-nsdby 5'.. (6x)xemo s Where 6 I : I-——-G—(I) q, . conv______-_ Bns.- :
let g be & ocoequalirer of ( ®,, W,) in Conve It is

1s the canonical injeotion (efe341s)e The countt of the
clear that q 1s e constant map. We shall show that (9!’1, )

ad junetion

R
is not a kernel pair of g in Conv. Indeed, let :BXB_T.B

‘S’:"{af I cony

be the cancnical projections. Of course, they ars morphisms
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in Conv, We have Py = qp, 'hatthaniummnrphisnhn
. Conv such that Y4h = p, and ¥ oh = p, « Henoe (11, ,)
i8 2ot & katmal pair of q. Simos (F,, %,) s mota

kernsl pair of its oocequalizer, itumtnkmelpairin
Conve .
Zhus, by Theorem 2040, avery Tight adjoint Pfunctor

¥: Cony —— o Bns  1s not monadic,

In partioulsr the forgetful functor 01 2 Conv == Eng
is not monadio,

4e1e3s The Eilenberg-livore algebras of the monad
"II' -(G, ,/J-) will be called the semiconvex sets a.nd
the morphisms of T - algebras will be called the semiaffing
maps. The liienhexg-lnore' category of the monad, T= (6,6 ./u.)
will be denote by Sconv,

In other words, Seonv is the category of semiconvex
sets and semigffine maps.

Iet S be & set and Jet o 6(8) ——3 baa.map.
The pair (S,d.) 1aasem:loonmaet1:candon13:litho

diagram

i
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is comu‘hytife, i.8sy (Sy0L) iz a semiconvex set if and only

(1) ol (6:') = 8 for each s in 8,

8 )-

n
2} d(ﬁ;—? 316 Sy

s
o (23 b, 6.“ )

=1

n ni 3

- el 3111

i=1 J=1 Bgs

)
n

oh that 2. a, = 1
for 211 sij in S, ai;' ol ) 0 su 1=14 1 ‘

o
and ‘:Z:l hij- 1e

4ololte ILemma. ILet (E,k) be a convex set, and let
LR J
P: K =——=a5 be a map. Then the following conditions are

equivalents



iy A

1) ‘ o ‘
(1) 1r ¢(x.1- 2(G3), xlex and L 0Ctct it
3 en:

w((i -tz ¢ tx?) « ;a(('l -tly + tx’}

@) a2 "P(ﬁ)-qp(yi), 2,30 o ;-1 %, ana
: . Jeceslly; an

\ Zl LERa l B :
imq aj_ thﬂn ‘F(; a xi) = gp{%aiyi)-

N

Proot,
- of The :meuoation (2) = (1 ) is obvious,
oonverss implication will be Proved by induction
::'mz.g (2) 1s obvieusly valig 1 o= 1, lot ug as
% (2) 1a . -
. true for some aatura] numher By and let  g(x )=
i ‘1.}0 for 1-1,-.-,'314‘1 and mZ‘ .
a, = 4
4 ®

3‘!“‘-111?7 ( (=
q; ; 8%, ) = (p(% diri) ie obvious

£

A

‘P(Z a
L e
Snet '-‘“m-{ fanﬂ ‘n+1]‘ -

!1 it a'n+'! x]_u-j]

"P('.' “n,‘l) E -—.._..._ai
: i fandet L
n' 3

. s
plo - 51.1){:.1',-——-“_ ?i-n-a.m_‘ 1] ‘P{Z ey

~45 18 -

this completes the proofs

Let (K,k) be a convex set and let

4ele5e  Theorems
P: KE—s35 'be.a surjeotion satisfying heleke(4), Then

there exisis a unique map of: G(S) —— 8 such that

the disgram

&(x)

(1) e(yp)

: vV
7 S ——

e(s)

is commutative. Horeover (850 ) 1s & semiconvex set {ana
consequently @ is 2 semiaffine map).

On the other hand, for every semiconvex set (S, o )
there is a convex set (E,k) and a surjeotion @3 ————s3

atistying heteho(1) such that the diagram (1) is commitative.

" Proof. Iet > :31 6 g, Dbe an element of G(S), where
=9 > § ;

;20 and s, # si'e for 1, #1, (this representation
is unigue)e Since @ is a surjeotion, we infer that 8; = @(x;)

for 1= 450099 n; ieesy
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. n n
=M 6'1.. E ‘1 6?_(:1)--

Ve define -
H l :
5 n

e e e
_.?;";56,1) P o)

Z.'b

i E r,  bo another element of &(K) suoh that
2 &y 5

i=1

= E" sw(y)'e?(Zn 6 3
43

e {J:b -o} endlet = [y (p(y;}-s}
for :l- 1,“., B If clear that‘?ih sets B, Hi,...,!:
are pairwise disjoint, run1u...uxn 6. .,m} ang
LR for .‘.-1,...,1. ¥e have :

Z.'b 6 Z :
3 ‘P(r) -2

.h.
n

-je'i : 81_ %cﬁezli '5)3,165

Hence a; = Z: ‘b

: “..44 s -

for 1 = 1jeeesnie ‘Sinoe !P(:j) o
je My )

8p= @(x;) for § in My, We have, by heleks(2),

(P(ijyi)" ‘P(Z Z- hjyj) >

=19 i=1 :G li

”

. :
2 tpLZZ byxy ) = (] ayxg )e
dmd

1= JEW,

Thus ol 1is well=defined.

1)

2)

- We shall show that (S, o ) iz a semiconmex sete By
definition of ol

al8) = w6y )= Pl) = s

Q(Z B-iG . ) =
3 dczi','bn ,6511)

AT a6 : -
& “(Zhu v(xi ) )

ot(,Z: a.i

) = ‘Pt a ; ) =
%7 v(Z.' byy %13 Zi: 1211,”:“’)

(25 85 57 by G‘p(zﬁ)) = ol (282 0,6
1 = it
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1.8+, by 4.1.3,, (s,ot ) s & seniconvex set,

The converse essertion £ollows from the faot that ir

(3, 0¢) 18 g Semioonvex set, then the diagram

) /5 &(s)
e 1 : 1 ol
&(s) = 8

iz commutative, and (e(s), /-ts} is a convex set. Moreover

if oe(Z:aiS'xi) = G’.(Zas 6:5)’ Z:hk Gyk is on

element of G(S) ang 0€%<1, then
o (1~1 ;
(-( JZ‘1631+tZEk6?k) =

=a((1-v) 6 % :
*(Zay5, )" Baczbks,k) b

'-—‘-d((']--t)s. Rl
: ’ ) =
u(JZ:EJ st} ot(z:nksyk)

,=d( (1*-1:)2&56:31-1;2‘51{6‘?' Yis
i i Wil 0

Henoe we can #ake (k) = (G(S},/us) and @ =al, |
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4s1+6.  Corollary, Iet (E,k) be a convex set and
let B be an equivalence relation on I‘aat:lsfﬂ.ng‘th‘a :
following condition:
if xRx’, then ((1=t)x + tyB((4=t)x’ + ty) for
Tet S5 De a subset of K and let P K ———a 5 be
& map such that {ex)} = [x]1 N 8 for every x in %,

where [x] is the equivalence class of x. Then the pair (850 )5
where ot: G(S) S 1is defined by ;

& (e, Gxir-).' P(2 sz )

" for x in S, is a semiconvex set.

heda7s Exemples. ﬁa). let S ={(x,7)eR*R : x%3? .'1}
and let ot: G(S) ~——e5 be definsd by
(=>3) 2 27 515‘1-(.::?)5 8
ol (25163 )= ; o
: (x,V1x* ) 1z . 2oa48,=(x,5)¢ 8

Theny by #4elsbey; (Sy0L ) is a semiconvex set.

(b)e et S be 2 set and let 8, be an element of S¢

- Let ol: G(S) ———>5 be defined by e
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8 ir ' Zg'isgi. 62

.. s‘.
PL(Z%G’!). s, 1z Zﬁies 62
; ‘ 4

Then, by #.1.6., (B,C!. ) 18 a semiconvex set.

Ae1e8s  Thoorem, Iet § pe a set and let a 3G(5) ———e3

bs & map. The pair (8,0l ) 15 a semiconvex set 1y and only,
if o asatisfies the following conditions:

(1) o6 %) o v for anck 4 e 8
(1) s ot(t,') = a(s,), ses(sj and  0¢ tg 1,
then ot((1-t).f + tg) = ot((‘)-t) 2 + tg).

Broof, let o satisty the condttiops (1), (11),
mhan, by Lemte 4efele, o satisfies the nondition L] .a.(a).

Ist a;o, byg3 0, bosuoh‘l:hat .2:,;1 1, Eb“-i,

and Iet 854 be elements of Se We have, 'b:r (i),

d(G - Y d(z:: bijss )
: Jsi ; 85

for ia 1,.”,;1. Her.'oe, by ﬁ-‘n?oao,

Consequently; by Le.1e3.,

- 51 75 -

= ] = )n
A( 2 m,
i=1 ,.)
ol(%: ;63
n m, ’.s.' 3
Soll >0 e T g6 R D
=1 J=1 i3

(8,0t ) is a semiconvex sot..' :

Let (S, ot ) be a semiconvex set. Then at' utu_ﬂ.u :

'y’ and g
the condition (I). If o (11) = ol _(12)’ Gxiet . E

is an element of G(S), then, by #.1.3.(2),

.

’ s S
oL((1=t)2, + tg) = ot ((1-t) 6 azy) * t.er-*'ﬂ(g) =

2 e (=2, + ta).
= (et 60{(!2) £ G_d(s)) ‘ :

This completes the proof of the Theorem.

4e109. ILemma., Iet (E,k) be a _convex set and.

let @:E—=35 be a map satisfying the following

conditions: *
‘then

.

(11) 12 @(x) = ¢(x), YEX ema 0<t<H,



N
@ ((1=t)x, + t3) = Pl(1-t)x, + ty),
(113} 12 oc¢ t<l1‘ and qﬂ((1‘-~a)x1 +ty) = (4
then P (x) = @(x,).
I 0<t<d, @(vy) = ©(v,) ana (1-1:)::.1 - ‘ty“' =
(-t)%, + 47, , then Plxg) = w(x).
Proof. Iet us denote

”iﬁ?ih

5= (1=t)x, + Wy = (1=t)x, + ty,

B . 2%
lﬁ,l 'T%—+ .::1-0---‘]-;§-y1

. A=t :
s .2,

Then

fxz

(1oL )y o ‘, i 1 ]
ot e naah b on ] e a8

._lT-t 2%
o x1""‘iﬁ"‘y1-z1.

Similarly

(1" & )z.‘,. t 4t
F = — 2
o TRt aEn e . z,

Hence, by (11)3 ‘P(zal) - ‘P(ﬁa}-

-'t).Iz + ty).l : ";:

53128 -

We have also

1=t

g 2t s + % ‘
B P e e e S e e £ Pl e i

- ("*)’H*"’J * T -

e .

1=t -
+ ——y, +
b 2

yatlzg

v
e
Sincs tP(zi) = lp(zel, we obtain, by (1ii), ‘P(z )= \0(::2).

This completes the proof of 'l:ha Lemms,

4e1e10s Theorems Let X be a set and let ¢@: &(X) —-;_t'

be a map. The pair (X, ¢) is a convex set if and only if ®

satisfies the following conditions:
(1) ¢ (5§) =x for each x in X,

(41) 2 rp(zﬂ- c,o(ra), : g8 €G(X) and 0<t<1, then

e(1-t)z, + tg) = e ((1=t)2, + tg),
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= * -
1) 12 oct<t am ‘P((1—t)-.\!1 + tg) = qo(1_t)ga ),

epl{1-t)2, + tg) = £¢((1-t)£2 + tg)
then (P(t,) = ‘P(le. : ;

f‘ aed conseguently <
(=t eol(z, et e@le) = {1-%) f.qp(:z) +% EPQ (3,-

2 Since 0<t<ci, we have £g(f,) = £¢p(2,). Henoe 9(21) -:p(:a).

- In other words, (X, ¢) isa convex set if and only if
(Z; ) 18 & semiconvex set and @ satisfies the cond.ition (114), ]

Proof. Iet (x, #) be a convex sete. By de:tin:l.tinn (c1.3.1),

‘ Thus for each convex set (I,tp), the convex struc'tu‘
thers exist a veotor spece B and an injection :

satisfies the corditions (i) - (111).

: Iet I be s set and let cp 6F) —=1 be.nap ‘

¢ s=tisfying the conditioms (1) - (4i1). G(I) iz & convex anbset‘
| of the free vector space T (1) (62.3 1s ). We define subest L
of 9P(X) vy

&2 X —-R

suoh that e(ep(zae ))=Z:a1 e(x_,‘).

e(x) —=-

1= it(t_]— 25) : telR , Ll € s(x); tp(:;‘) = 9(22-)} -

It 1s clear that 0€L and tf€L for £ in L andtin R ,

iu.., mch that £ : iy
©® is an affine mp. 3 : . “let I,g Dbe elements of I, 1.€ep; L = t(t.i- .‘!2),

_'. muy - mm*m” (1) = (i:u). | £=s(g - 2), weere s,teR , 'P(t )= ¥(2,) anma

(1) l’ot- ‘that g(p (sx)) - é(x) ‘na’ £1s an injeotion, ¢(z,) = ¥(g;)» Ve can assume th.,t t}o and B30

- (11) et "(31) = (,(32)’ gee(x) Catka Beted s (vecause (2, ~2,) = (—t)(:: =-15)). ¥e ahau show that

®

¥+ g € L, This is obvious for %+ =0, I? %70, then
er((M)r +ts) = (1-t)ep(= Jrteo(e) :

24g = (t+8) (o2, + '-;_—-g)-(_i_, + =g, )

B, Slgo ety I= vl el o e

5 dwe ?’((1"1-‘31 + t‘s) = ?{(1—-’:): + 4g)e
- (411)  Tet petcy .and let _qo((1_~e)g1 +t2) = Hence f + g 1s an elemsnt of L. Thus L is a linear

= 2((=t)z, + tg). e .
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- subspace of T (x).
Iet £,, 2, be elements of G(X) such that L2, € L ,

By definition of L, there are + in R ana 84285 1n G(X)
such that !p(q) - (9(52) and 11-1!2 - 1:(,51-52). Without

_ loss of gunaralit_y We can assume that +2 0. Hence
and nonaeqmnth :
S :
.15.‘{"1"'_{'.&-52.' T+t Lo+ 1t+¥ & -
Henoe, by lemma hete9e, ©(2,) = p(z,).

Thus tp(z,}-_. :p(:_a) if and only if £y -2, €L, for

all £,,f, in G(X)s (The converse impiication is obvious).

Lot : T 9 (x) =9 (X)/L be the quotient map,

We dor.‘!.nal €3 X ——= V(X)L by E(x) = ‘E(Gf} e

X in X. It is olear that & 1is an in:}a(\:tion, and that the
diagram

oy~ — S o
n ] £
Utx) W’(x)/i

=57 78 =

is commutative. (herecdenotes the identiocal embedding.)
Consequently &£¢ 'WJG(I) is an affine map. Thus the pair

(X; ¢) 1s a convex eet,

This completes the proof of Theorem Refe¢10.

4eteiie Theorem. Conv is a full and reflsctive

subcategory of Sconve 2
Proof. It is clear that Conv is a full suboétogor:

of Sconve

Let (S,ol) be a semiconvex set, and let L be a subset
af 9 (8) defined by

T it(r1-£2) : teR , 2,2, € 6(8), o(2,) = ot (L,)
Then L 4s & linear subspace of L (8) (cf. the proof of

4.1410)s Conseguently there is a unigue map ?’ 5 —-*ﬂ'(s)ﬁ.]
such that the diagram : ' i ‘

a(s) 8
l o
n 5
: b
(s) I (s)/1

is commitative. It is olear that tg(s) is a convex subsel

of dlf’(é)/x..
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Ict us denote by @B(S) the set ’f(s), and by 7 ¢
the map S8 ——— P (S} defined by pgls) = '@'(s).
Iet (X,k) be s convex set and let ¢:8——sk

bs a semiaffine map. Then the diagram

ota)— L) 8(x)

o k

?
1s commtative. We shall show that there 18 a unigue affine
map B such that the dlagran

- s $(s)

| o [

is commutative. et

= {t(s.l-:sz)e‘if(x) : teR , &y28, € &(T), k(51)'. k(gg)j" I,

Then M is a linear subspace of V(x) ana k(g,) = k(g,)

if and only if 51 52e1 for all 8428, in G&(EK) (or.
the proof of 4.4.10). Conseguently /B x-——...gb(x)
is an isomorphism in Conv.

- 59 1§ -

“ Let ‘Lf"((p) :f_D"(s) -—---‘b‘(x) be defined by

S

b &
PN 216, )= 28,6 gy -

It is clear that ; ‘(f’((p) is a linear map, and ths composition
of (@) with the identical embedding @(kK) r (x)
is equal to #(‘P),G(S) : _

It is not aifficult to verify that If (rp)(r) is an

“element of M for each £ in I.. Consequently there is a unigue

linear map u such that the diagram

qp(s)—2) 7(x)
x K
‘V(S)/I--- = ; - =~ =P

1s commitative. Hence ‘there 1s a uniq_ua map w: 95(8) e ¢1(K) :
snoh +that the dlagram

Pla) = - &(x)
1 [
P (s)/z Y(x)/u
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Iz, in addition, the operations V . satisfy the axiom

1s commutatives The map w is affine and the diagram .
‘ . _ (2) 3 @i-n @1z 0

L
S— :
. for all ZysXos¥ in X, 0<s<1, then this unigque map
? 5 :
2’ e 3 12 is a convex siructure on the set X.
é(s) " —= P(x) On ‘the other hand, 1f (X, @) is a semiconvex set and

the binary operations + XXX =X are d.eﬁ.ned by
x ¥y o= cP(('I-a)Gi + 56‘5) :

- 1s commutative. Thus p - Yl: S
for x,y in X, 0<s<4, then the axioms (4) = (é) are

. detoi2. I‘heoran - Let
. X be a set and let satisfied. If (X, @) is & convex set, then the axiom (D)

(\7
is also satisfied.

Proof. From (B) and (C) we cobtain the identities
0 2@eE-cCEDN@s
(2) @ ®s= s):

for X9¥sZ in X, 0<$< e

= XX
I———-——I)o<s<1 beafamilyoibinary

_ operations in X5 we ahall n-:lta x . ¥ instead of (x T)e o

: ‘ $ ¥ . '.
m;ua,_ @, ((3) (.)o 4 1) A8 an abstract algebra. Let the

operatiuns (.)o <s<t satilry the folloving axioms

(‘) : X . Xmx ! ; :

- ® :@,.,., -

(© .r)@x-x@(y 2

.’°"' X¥5% in X, 0<syt< 1.

In this proof we shall write © instead of © X

det ()o cacH _ be a family of binary operations

!hen th.u'e 15 = unigue mep @: 6(x) B satisfying (A) —= (C)e We define the function P :6(X) =——eX

Ahas ’.Y' ?((1-5)611-:61) for x,y in X ana

0( <
8¢ 1, lloreom, the pair (X, ¢) is a semiconvex set.

by induction with respect to the number of terms in the

representation
n

(3) ; i"'%‘; 51611 ]
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n R i

n+d a

[ +Hoe. @
i=q
ifk

where x, # x; for 143, 8,20 for i = {,..e,0 ang
i Ly
Z 81'- 1.
=1 :
"I n=4, then £ = 6'z for some x and we define:
(a') ‘P(Gx) = X o

Some A i S e Ais 3 = This shows that Y is well-definsd. Our aim is %o show

n+d

1"‘ J and'. 25 ay = 4, then we define that ¢ is a semiconvex struciure on X,
! =g

We shall show that

: n+{ SN = e
6 = ) - ER 6- 1 . 2 3 e 5 =
(s) ?( é‘ a, € "1 ) !P(%:; o s ‘Ii@xn.|.1 B ‘P(ég' 5 6 :i) @ e ‘P(f?'("")'isx,_ +86.)

It is olear that, if ¥ exists, it is of this form,
l‘e &hall show that ¥ ig well—defined, 1se+, that the
deﬁn;l.tion (5) does not depend on the way the elements of

Zor yyx, in I, :1;l:t: for 143, 8,20, Jla, = 1.
If y#x; for 1= fyeeey ny, then the equality (6)
tho set { 1:1..--. xn.,.';} are arranged 1n1.-o a ssquence Zollows from the definition of ¢ o If 3 = x, for some

@(% ‘16::1)’ = ‘P(%_-; “1611)(9‘&"

- MM Zs @] @ -

(::1,..., zmr‘l)' Let us assume that P 13 well defined for
each £ of the form (3) with exeotly n elements!
:I'.f 1<k<n, then

o Y
= =

- -[“"§ T—«T--r 5u) ) ]G,
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S | -64 78 -
A = "

- P T e I _ B xk ‘T‘k_:.

@ ( %'%(1‘3(14}5)5‘1 - (akti -8) + 8) 6",1‘) =

o bjﬁ be sn element of G(X) and iet 0<s<1e
J=1
Then, by (7)s

n

. n
= (b )@ e(Z 0,0 ) -

@(%I‘i 61(1-8)'5,1“31”)6‘,1‘“6‘ ) =

= 1

m
- tp(g.: %6, )@ ‘p(%n:'s,;).
1 n

- ¢((1-s)41_-;| °k6£k + s% b36—31 Yo

Thus, by Theorem heleBe, the pair (X, P) is a semiconvex

b - S .
P {'.;_(1 - ')." 64, +26),)
Thus, (6) is true fqr each y in x;
Hence, Gy induction, we obtain the following property of :

sete
Let the family ()0 <s¢ 4 beve the properties (A) = (D)y

let 0<B<{1 and let

S ;
(? - *P(%‘: a_ic?,i)r@ ‘P(JZ_;‘bSGI’)..
m

- HUZO=0a6, + Zm6 v, )

m
P ((1~s) Z:-'ai e ij 71 =

1

The proof a:: (7) is similar to ‘arguments presented above
- (P((!‘_g)%:“okezk + BZh,Gxd).

and will be onit‘bod. :
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Henoe, by (7),
) n : n
: z .
«(Z %5,)@ 02 25, )

2 S
"-?F%:;' %6‘*)._ ?(;L:::bd 61’3)

3

: n -
and comsequently, by (D), lp(.ij.__;' stii) - tp(é‘ °k65k )e

Thus; by Theorem 4.1.10., ¥ 1is a comvex structure on
the set X.

The verification of the oconverse assertion is easy and
will beomitted.

420 The case  Compconv Comp

82,40 Iet I be a compact topdlogical spaca. By JL(X)
wa shall denote the Banach space of Radon measures on X and

by 4 (X) - the Bansoch space of all continuous real-valued
functions on X, The set

J@ -[/“J‘(I) P2 08 LX)y f

(the set of probability measures on X) with the comvex
s‘l::'qoturo determined by the vector—space structure of M (x) -

-67 T8 -

and with the relative topology induced by € (A (X), € (X))

is a compact convex set. 2
Tet (3 X =X’ be a morphism in Compe If (£ 18
an element of < (X) and B is a Borel subset of X’, define

J‘Pyu'gg - p (¢ '(B))
Th;n ‘;f(p/.te J(X) and oo 2 S(B)—— S(X) 15
Ia. morphism in Compconve Moreover

o ¢ Comp =it COmpCONY

is a covariant functor left adjoinmt of O, (ofs [9]s 23e7+2.)
. The unit a:l; the adjunction g

1 Toomp '_':'25_

' > &
= is the Dirac
is detined by O = (& )xecomp" , where J& =
measure for X in Comp® and x in X. The counit of the
adjunction is

Icompoonv,

= vy

where Sx( ) 1s the centrold of 4t for suy probability

measure /u on a compact convex set X (ofe [9], 2Behe20 )0
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42,2, Zemms. If (£,,2,) 15 & persllel pair iz
Goypoont such that (O ot O 212) i3 a kernel pair in

Comp, then (11,12) is a kernel pair in Compconv.

Proof
ofs Iet £ be a coequalizer of (11,1'2) in Comp. Then

(:1,12) iz & kermsl pair of f in Comp, is€s, the disgram
£ ;
~ 1 4
e -
£

is an exmct sequsncs in Comps

We can assume that B iz g compaot oonvex subset of
@ locally coavex Hausdorf? space (B, ) such that B = spanB
. and 0€B,. ;
We shall prove the Lemma in 8 steps:

(D)e IetB Ve ths vl - zelation on B defined by
bR, & £v,) = 2(by,)e

Then R is an equivalance relation on B and the equlvalence
olzzses oX R are compacts Morsover bEb, if and only if
there is a ue a in A

unig such that !1(3) =b; and f£,(a)= by o

Proof of (I)e Let I = [x f be a one-point compact convex
set and 1§t 8 3 X B be defined by 8y(x) = b, for
i= 1,2, Then 8438 &re morphisms in Compeonv and 231 = g5
Sinoce (ti,:z). is & kernel peir of £, there is a unique
morphism h

i~ 8 X eme——epe 4 guch that. f4h = L,he Hence a = h(x).

- 6918 -

(II)s The relation B is a closed ni:nt of BXB, i.8.)
if b*, b are elements of B and for cver: neighbourhood U
of zero in B there exist b, ia (b? + U)NB and b, in
(b" + U) N B such that bRb,, then b'RD".

This follows immediately from the well-known Theocrem of -
Alexandroff (cfe [1] ; Theorem 342.9 and Exercise 3.2.E)e

(IIT)s T bBby, bjanr' and osgs 1, then
((1=8)b, + sb;)R((1-8)Dy + sb,)s In pertioular
((1=8)By + 8b,)EL, for bRby, . Os851, 1eee,

the eguivalence classes of R are convex sebs.

Proof of (III)e Iet a, 2’ be elements of 4 such

that 24(6) % byy Tp(a) = By 2,(67) = by £(87) = By

Then ;
11((1—a)s'+ 8a’) = (1#3)‘&1 + sy

2,((1=8)a + 8a?) = (1-8)by + sy, .
Hence, by (I), ((4=8)p, + sba)n((hn)bz + sb‘).

(Iv)s I b, b, are elements of B and there exists

0<s<4 such that ((1-8)b, + sb,)Rb,, then DRD, .

Proot of (IV). Iet t=4nt {0<sct s ((1-8)p » sb )RD,
and let b= (1=t)b, + tb,, Since the equivalence elasses of R
are compaot, we have bR'b.'. Let 8,5 8y be elaments of A such
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-tha.t n;,(.o) = fla) =, 2(a)an, 25(s,) = b,
eud let g o {M)an + ta,e Then

£(e) « (160, 4 11, 2 p
(@) = (1t)y, + v = fi-ta')bo - tahi' -

" Henoe ((1-'#2)130 + ‘tal:1 Ed  ang conseguently

(1425 » +2 1y 2
o 1]3 3¢ Since t°c ¢ gop O<tct, 1%

follows from ths dsfinition of t

that =
2 bo : : t= 0 ang hence

(v). : :
- itJ el Nef XeB 1 there ure by b, in 3
in R suoh that bBb, and x = t(b1

~b,) isa
linear subspace of B,

ut x’ ” ha .lemta of "’ j'"" = t(h b, ) and
1 2

FTag ¥

(b?-ba): Ihore 'b,kba and b3lb4. We can assumg that
t30 : o

and g3 u‘ (because t(h1-ba) = ('*)(1'2"1’1))‘
show that x . ¥y € M.
then 5

We shall

m.uobuouair t=0, 1¢ t>0,

x+'f- 2 ( t .l
(¢ » Homr el ) - b, * o b))

-3 18 -

By (m{» (i b+ e 2Rl b+ i v,

Hence X+ y is an element of M,

(vI)e Iet b,yb, be olements of B. Them b,Rb, 1f
and only if b1-b2€I. In other words, the egquivalence class
of b is the set (b + M) N B <for eash b in B,

Proof of (VI)s Iet b, = by € Mo By definition of M
there are b’y b" in B such that by ~by = t(b? = b") and

b'Rb", Without loss of generality we can assums that 1 > O

" let 0<s< 1 and let

b} = (4=8)b, + ab?

b = (1-8)b, + sB¥

b = (4=8)b, + ab®
Since B’Eb", we have bED] (of. (III))e By definitions
-.‘b; = 8(b* = b*) '

b = b8 = (1=8)(by~b,) = (4=8)t(p*~b*) = -(152)3(1:; - bq).{

Hence

n. = b 1l_.stb,
by = “TEFET M) + el ™1
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Simoce t>0 and 0<8<1, we have

—-n—-)r' —y=s)t s 1-5 )
sHi=a)t 2 0 1&%)0"?1?&')'?*‘&:(7_);&—-1.

Han“’ b’ (n)l b;Rbi ]

Iet U be & neighbourhood of gero in B, Since
mltiplication by scalars is continnous, there exists
O<e<1 such that b;-s(h1 +U)NB ana b e (1:2 +U)N B,

Hence, by (II), we obtain bEDye

Zhe converse implication is obvious,

(VII)o The sets B -3 and (B=B)N M are compact,
Proof of (VII)e The W8P &2 BXB———sB =B defined
by g(b',b")_ = b’ b¥ for (B’,b") in BxE ia a continuous
surjection, (The topologles in B and B ~3B are induced by &
8ad the topology in BXB 1is the product topology). Hence
B=3 1; compaoct and g is 2 olosed m2p. Therefore it is
enough to prove that the set o

&= g-"_((n - B)n x)

i a olosed subset of BxB. Iet (22,5*) be an element of

the olosure of Ge For every neighbourhood U of Zero in B
. the set .

¥~ [_{b'. +U)AE] x [ +v)a 5]

Mis 6 (B,x) = uloged. :
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is a neighbourhood of (b?,b") in BxB. Thus there oxists
(bysby) 4n WNGe But the oomdition (byyb,) €€ is
equivelent to bRby. Hence, by (II), b’RDL™, and conseguently
(v?,b") € Go This completes the proof of (VII).

(vIII). (11,12) is a kernel pair in Compoonv.

Proof of (VIII)s It easy to see that the set K =B = B
is sbeolutely convex, absorbing and compact in “’.Q— Jo _ '
Iet |-l be the Minkowski functional of K. Then (B, U-lly)
is a Banach space and there exists a Banach space (X, Ji-il )
such that (B, Il -li x) 1is 1:0!31;1'165111 isomorphic to the

7 - conjugate of (X;|l'll ) (cfe Iemma 347.). 0f course (8, 6 (8,x))

is a locally convex Bausdorff space. The topologies T and

6 (®,X) ocoincide on X (and consequently on B). Since MAX
is compact in (B, ), 1t is compact in (B, 6 (B,X)). Hence,
by the 'eli-known Krein-Smulyan Theorem (c2+ [5]5 H.&Q&),

Let /A.'be the quotient topology on .l/l determinad by
6 (ByX)e Then M,/u) is a locally convex Hausdorff

Bpaces let

F B - —o B/M
be the guotient map. Then the map
pEB m—tn T (B)

defined by p(b) =X (b) for bin B is a Compoonv-norphisme
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It follows inmediately from the definition of p that there
8zisis a unique hﬁmeoqorphim {(a Comp-isomorphism)

h g w(n}-—-a-—--c such that £ = hp..l'e shall show
that (1‘,22) is a kernel pair of p dn Compcomve Let (84185)
be & parslisl pair in Gomoonv suoh that ’51 = pgao

A'_—"'—'—-. B.

; 'E(ZB)

Eoncn :g.l --:I!g2 and thereﬁnrs there n:d.stn a nnique
morphism u in Comp Buohtha.t ti“"gi for 1:1 2.
It is enough to prove tba.t u is an affine mape Let d’,d"’
be elements of D a.nd .'I.et 0 %< 1, !.'hen
ti(u(td’ + (1=t)a")) = 51(1:&’ v (4=t)a) + =
= tgi(d’ ) + (1-t)gi(d") + = ti'in(ﬂ’) + (1-%):!19.(&') -
:iu-a(a') » (=tha(an) |
for 1= 1,2. Sirce (11, :2) is & nonio pa.:u-,
u(‘l:d’ + (1—t)d") = tu(d') e (1-t)u(d')-

This completes the proof of (VIII) and the proof of
Lammg 5'20200 .

' and 1e60y Da is monadice.
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Ke2.3. Theorsm, The forgetful funotor
O, : Compeony —————= conp

is monadice
Proof. From Theorem 2¢1. and Lemmas 3¢90e; &e2¢2s it

follows immedistely that O o is quasimonadice Henoe, by 3¢9e
s

he2elte By Theorem 4e2.3¢; +the canonical comparison
functor :
T
® : Compoony —————— Comp
is an isomorphism of categories. Therefore, if X is a
compact space and

e (X)) -X
is a continnous map such that the diagram
LT z
Sl ) x
e T

¥

J(x) b

is commutative, then there is the unique compact convex set
(Eyky € ) such that

\
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@) = @@aT) = ( DEET), 5p) = (BT), S

detey L= (K, T), = Sg ¢ In other words, for any
compaoct space X and for any continuous map

_ | Fe o (x) x
: .mmgg the following oonuﬁon.
OF ¥ (d ez tor siax
.(u) | : TI) = ?"gscx}'

there is the unigue convex struoture k on I such that
(k) s 8 compact convex sét ( = is the given topology
onX), and ¥(1) s the ceniToid of 2 s for each 1 in

A o

It is olear that the set

xj _ B :
jZai 2 ga,}l, 12_;_"1:“1"1’ Aiejfx)}

1a ae_ixaq in S(S(X))s Hence the condition (11) is

equivalent ta ;
: o

(111) (E“r‘-‘r( )). !(Zﬁ

-3 28 -
fov' Q. dn Cf(x) and 8,70 such that s, = 1.

Thus we get the following theorem:

“

© 46245, Theorem. ILet (X,¥) be a compact space, and
let . :
X

Yoo (x)

be a continuous map satisfying the conditions 4e2e4e(1)
and (1ii). Then there is the unique oonvex structure konX
such that (Xsk, T ) is a compact convex set and & (21 )
s the centroid of 2 for each A in J(X).

This means. that the conditions 4e2e4.(1), (11i) give an

" axiomatic characterization of the centroid of measure on &

- ocompact spaces.

4s2.60 It is clear that the conditions 4e2.4.(1),
(1ii) ere equivalent to

W e

for x in X,

(1v) i ¥(2,)=¥(2,), A€ f(x) and
0<ts 1' then 3"((1-*)21-;1:,1)'-

= F((=4)2,+42) G:.m.a.). ‘
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4.3 The case M;ﬁ Bns

Tt is dmown that the fargetful fusctar Oy:Comp — Ezs
iz momadic (efs [12]).

The Stome-bech funcior [3 {restricted to discreie spaces)
is a left sdjoint of D3. Eecall that [3(:) is the Stone—
och compsctification of the set I with the Ziscrete icpelogys

and if 3 X ———eTI' iz a map, then
Ble) 2 fx) 2{Z?) 4s the unigue extension

o2 ¢ to & comtimous map.

She unit of the sdjunction is given by the camonical
injections : x

g, 1% — o e

¥e can Tegard I as a dense subset of ﬁ Xl

The counit of ths .a.djuncti.on 418 given by the cancnical
surjections R >
g e e
5:1 : pnsx . : 4
defined as follows: given any eain;pact space I, g v is
the unique extension of the idexmtity msp 0,7 — =T

t0 2 continuous map.

-29 6

a
felto  The cass: Gopoon‘rﬁ Ens.

7P
Geliet. Composing o with the Stone=Gsch functor B
(restricted to discrete spaces) we get the funoier

3"8: Eng = .v Compoony -

which assigns to sach set X the free ocompact convex set
A {3 (X)) generated by X. Jp 1s & left adjoint of [, .

(C2e [9] 5 23e7+2.)

" hele2, The forgetful functor

o 4 ¥ Compoonv ' - Ens

is monsdic.

Proof. The functor 0O g is the compositibn of the
functors : ‘

&) 2 ¢ Compoonv —— Comp

D3 s Comp ‘ Ens.

The functor 0O 5 is momadio (0feke3s)e Honce, by 2.4., 0O 3

satisfies conditions.2.1e(1); (i1)s Therefore O 5= 93 o 2
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alse satisfies these conditions and consequently, by Theorem
2¢10s 18 quasimonadioc. Thus, by Lemmas 3.9+ and 1.6e D“ is
monadice. 5

Os

(iz]

4.5. The case Bndoonv Conv

B#e5+1e VWe shall now consider the canonical injectlon
of a convex set (EK,k) into a pseudo-normed vector spacas

Iet (K,k) be a oconvex set. Let L be the subspace of the
free veotor space ‘U' (X) ‘defined by A

L= {t(:,- £,) 1 teR |, 2,f,ee(), k() =x(2)].

et 3(:,1:) = U(X)/L and let w12 V(&) —=E(KX) be
the quotient mape Then there is the unigue injection

&3 E = B(K,k) such that the diagram

G(i) : K-
n : £ :
I(x) B(X,Xk)

is comutative (o:.tha proof of hele10. Yo

st &3 I————-R be an affine map. Then

Zk 3 6(K) =———aR is affine and there exists the

- 34 78 -

unigue linear functional & on  9f(X) such that

Z|e(x) = Zx. By definition, 1 1is contained in xerS .
Hence thers is the unique linear funotionsal ,§ on EB(XK,k)
such that & -§‘E‘._ o It i clear that & =SE

. Thus the msp from the veotor space Iﬂ.‘(l’.,k) of all linear

functionals on B(E,k) omto the vector spsce of all affine
funotionals on K defined by

— x —

@) Z— =2

. 48 a Vect=isomorphisme

It is olear that the map

i PUKY R
defined by "Za’_ 6]:1" = 2. |a is & norm

in 494/ (E). Conseguently, the mep
D r(x.x) — R

defined by p(t-t-'L)'-m{Ilf-rgll :561.] is a pseudo=
norme It is easy to see that p( E(x)) = 1 for each x in K.

We shall show that for each :; in B (1,1:)

{é(f*’l') (f"'l-) 1} -m{gé(x)sxex}
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The inequality " > " is obvious. Let p(2+L) < %,
Thex there 1s an 5-2516§1 in £+ L such that

el =2, Iail < 1.' Hsnoce

| Sl - | Sxio] “|EX(Zey6,) | 20y Ee )l <

Se Iﬂillgﬁtxi)lsz '&1] ﬂup{] AL xel‘c} S

€ m{lé—e(x)l txexf.

Thus (a) is true,
Ist B%(E,k) ve the conjugate space of (E(X,k),p)
and let '
dﬂ(x,i:) .- {-; (E——eR : & is affine and E(x)
' 1s bounded | »

Then ﬁ‘(l;k), is & Banach space with the suppremum norm
and, by (2), the map of RB(E,k) omto of(K,k) definea vy (1)
is an isomorphism in Ban,,. :

It is clear that the following conditions are equivalents

(1) L is a olosed subspace of 1P (x),_
(11) p is ;mrn in B(K,X),

(411) 44 (K,x) separates x,
(1v)  there exists a topology & on XK such that (%%, )

- 83 !.5-

is a bounded convex set. :
If these conditlons are satisfied, then (X,k) is called

an affinely-bounded set.
.L&t M= {rﬂ,e B(E,k) = p(f+l) = o} e Iet P(K,k) = B(X,k)/x,

and let Wy & B{K,k) e P(E,k) be the quokient map. Then p

determines the quotient norm l-ll on P(X,k). The conjugate
space of (®(K,k), lI}) s isomorphic to B®(E,k), and
consegusntly, to ofy (K,k). X

We have canonical map *

é&‘(:.t)

‘aCK:I

defined by ‘aexz.g -,g(;) forxinKend & dn sﬁ(x,k).

Tet TV(K,k) = span2,(X})c of; (K,k) with the induced norm.

It is olear thet there is the unigue linear map
12 W(Kyk) ———mems- PB(K,k)
such that the diagram

i :
E X —= V(K,k)

E = L

i . |
" e F(E, k)

n(x,k)

' is commtative. Mcreover this map 1 is an isomorphism in Ban,e
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It is olear that the topology om F(E,k) induced by
the norm I-ll s the Mackey topology < (P(K,k), o (X,k)).

4s502e We shall prove that the functor (s has a left
adjoint. Let us demote by @B (K,k) the set Fol £(x))
with the induced convex structure and with induced topology.
Let us denots by Q(K,k) the map from k to  @B(E,k)
defined by Q(I,k)(x) = T(€(x)) for x in K.

Let B be & bounded convex set and let

be an affine map. We shall prove that there exists a unique
contimuous affine map (3 such that the diagram ‘

(X,x) (X,k) - 0,8 (K,k)
P o
o2

is commtative.

We can assume that B is a bounded convex subset of

; a locally convex Hausdorf? space
(I, Y )s There exist: a linear map £:B(E,k) ——= X and
2y inX such that @(x) = 2( £(x)) +y for x in X

(cfe [9] 5 23etele)s Iet X435 X, be elements of K such

P2 (k) =i OB
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that 9 (x,;) # @(x,)e Then there exists a continuous lineer
functional g on I such that gl @(x,)) # g( p(x,))s Sinse g
s bounded on B, gf is sn element of e (X,E) and
gr(s,) # ef(xy)e Comsoquemtly Dz p)(x) ¥ Dig,i)(x)e
Thus, there exists a unigue map i B(xx)——"8
ekt 0= B D (g, x)e Tt is olear that (3 is affine.
We shall show that ﬁ is contindous. Extending (3 to an
affine map from F(Kk) to X we get a linear map
h: P(X,k) ——=I and y in X such that B(x) = n(x)+y
for x in B (K,k). Iet F' denote the vector space of these
linear real-valued funciionals on ?(E,k) which are bounded on

@ (X,k), =and let X’ bé the vector space of ihose linear
functionsls on X which are bounded om Be It 1s clear that
gh € P' for each g in X’. Henoe h is continuoys with
respect %o the topologies € (P(E,k),#*) and - 6 (X,X*)e
Gonsequently, b is continuous with respect to the Maokey
topologies < (F(K,k),¥?) and < (X,X*) (cfe [5] yI¥eToktale
Since the fopology < (X,X?) is sironger then /u s b is
continuous with respect to T (F(E,k),?') and /J- -
Consequently, r} is a morphism in Bndconve.

Thus for every morphism p: E——>eK° in Conv there o

is the unique morphism (3 (@) in Bndoonv such that the
ddagran
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?ttvk) ;
1
1 2
e ! 058 (p)
i ; '
X — 0,8 (X?,k?)
?uv'p)

13 commutative,
We have shown that
@t Conv ———p Bndoony
is a convariant functor and is a left adjoint of Dy ,

2 = 2x,0))(@,x) € cony® being the unit of the sdjmmotion.

4e5¢3¢ ZTheorem, The :!nrsut!nll functor
o 5 & Bndoonv e Conv
48 not monadioc.

Eroofs By Lemma 3¢11e, there iz a surjection £ in
Bndoonv which is not% a ooequalizers By Lemma 3¢10es D5:£ ie
& cosqualizer im Conv, This shows that :

i 05 does not satisty
the condition 2.4.(11),

and oonse’queﬁtly is not monadic,

-8 %8 =

LeSe4e Iet B be G bounded convex sete Then B is &
bounded convex subset of a locally convex Hausdorff space (X, A4)
and B0 55 is the same oconvex set with the topology inducsd
by the Esckey topology T (Z,X'), whers IX* 1s the veotor
space of those linear functions on I which ars bounded cn‘B.
Hence the counit of the adjumction

(SB : 6653-—-r3!)36m”“0

is defined by §:(3) =3 for y in B. Noreover BU;B8=-8 .
Let T= (1;?,/&) be the monad determined by the
sdjunction (B, Oss D 3 §)e Then

Hx= Os Sg@ = lo.ew
for each X in Conv®
Iet ((X,x), ¢ ) bea T = algebra. Then POt = Luew
Eence ? k) is an injection and consequently, by defimition
o ik 05 B (Xk) = (X,k). Consequently,

2w = tciy = 9 -
It is sasy to see that Q(I,k) is an injection if and

only i &7, (X,k) separates K. ZThus ((K,k), ¢) isa
T - algebra if and only if % (X,k) separates X and -

P= L (x,x)* Consegquently the category comrT may be
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O,

‘ddentified with the full subéategory of Conve We obtain LeTe The azgd Compeony m———_———> Bandconv

the following commutative disgram

BeTots The funmotor T & Brdoonv e JORDOONT,
a left sdjoint of D7,, ie defined ss follows. I£ K is .

! ; Badoonv

any bounded convex sek, let % (K) be tke Banssh space of

all continuous affine real-valued functions on. K witk the

Conv SupTemnm LOYRy and

O; = 1dentical RE ={te o@Q(x) ;lg(-gx) x4}

embedding -
with the 6 ( eA7(K), eF(K)) topologye If (@3 K = E°

iz a worphism 1n Budeeny, then Ry W (K) memmmim B (X*)

case " ' : = - 7 elde)e
b B f;‘mm Og e ig definad by ®R@g.£.& (S} (ofe [8a], 2011s)

Composing B with ¥  (of.hets) we got & lofi
adjoint funotor of U_S‘ Similar ergumentesas in the proos
of Theorem 4.5¢2. show that:

boTe2e Theorems Ihe forgetful funotor

0 o ¢ Compoony mer et BRECORY

Al

iz monafic. |

hebots Zheorems The forgetful funotor Proofs It is olear that a morphism g is a coegualizer

of a parallel pair (24g) in Compoonv if and only if D.q I8
O, : Bna PR ’
6 BIRY s Srg a coequelizer of ( Unf, O,8) in Badcomve Honos, by Theorenm

is not monadic.

1654y I'_'!.z, is quasimcnadiocs Consequently, by 3.% and 1sb., O ?

is monadics
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O,
4.8 The case coupconv...._—_"—*'__i___ Conv.

4eBofo Theorem, The forgetful functor

Ds ¢ Compoony ———p Gonv

is lonad:lo.

Proofe The composition TR &3 (ofeke5ey keTe) 15 & loft
.ad;loi.:.rt of Oge Let (£.2) be a parallel pair in Compcony
such that ( O g2, Ogs) 1is a kernel pair in Conve Since [
is a right adjoint, ( O g O g2, a,a 88) = ( 0,z U,‘g)- is
& kernmel pai¥ in Ens, The funotor O 4 Satisfies condition
2.10(12) (ofs the proof of 40ke2.), hence (£,8) 45 & kernel
Pair in Compoconve By Lemms 3¢10ey & morphism q is a coequalizer
| in Compconv if and only if Daq is a coequalizer in Cony.

Fenu, by Theorem 2.1., the funotor UB' is qu#simonadio.
- Consequently, By 3.9. and 146, » DOg is monagie,

408e2s A left adjoint of I:]B can be also obtained
in a ¥ay similar to the construotion of B (c2e [8a] ,2411,):

I? (K,k) is any convex set, let e’&(x,k) be the Banach
space of all bounded affine Treal=valued funotions on K with
the supremum norm, Let .

. @ (&,x) = {zs O*e&fx,k) : rﬁx} =1/,

-94 7§ -

0f course @ (x,x) 1s a convex subset of ﬂ:(x,k)
and 1t is compact in the & ( of; (K,k), &% (K,k)) topologye

Ir Y: E—~—X' is an affine map, then
Q@¢: @ (xk)———n F(&*,k*)

defined by Q@£ =2(Zp) forzin & (k) ama

in gﬂ_(x’ +k’) is a continuous affine map. Consequently
@ : Conv ———e= Compcony

is a covariant funotor.

The space &% (K,k) 1is isometrically isomorphic té the
Banach space of (® (X;k)) of all contimous affine ‘real=
valued funotions on (B (X,k) with the supremum norm. Henmse
the functor & 1s naturally equivalent to R @B , and
therefore it is left adjoint o2 0 ge The unit of the
adjunction is given by the canonical maps

Pryi) P B0 @ (Kk) dofinea by Pz gz =S()

for x in XK and & 1n of4 (x,k).

Og
4¢Se¢ The case Compsaks o———_——*= Compoonvs
ot

46921s The forgetful functor 0O 9 has a left adjoint
O*e# where of(X) 4is the Banach space of all continuons
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affing roalmmlﬁet! :tunctioﬁ on the compact convex set K,
- ‘

OAE) = {2e(A )2 ¢ H20 ¢ 4]
vith the 6 ( o#'(X), & (X)) topology. 12 @ LE—aX’
iz & ﬁoapcommérphim, 'then

Q' ¢ O%eA (K} ——— o oRpg(K')

is defined by O*A Q2.5 = 2{E@) 2or £ in OPHE) sna
< 10 o (X'} (of. [8] ). o

® ko902 Zemms, I (fi,fa) is a parallel vair in
Compasks suck that ( Us 2,5 O 91'2) iz a kermel pair in

Cempoony, then (31,1’2} is & kormel pair in Compsaks,

Froeofs Eet # be & cogusalizer of (f.1 s¥5)  ia Compeony
and 1ot (Cyoy T ) be the codomain of £

:t.' £

Then £ is & gurjeotion (0£e30104)e Lot J, be the comier
of Be We mhall shpw thai (Cooy € ,:(yo)} is a compact Saks
apacag Imleed, Alat % be zu elcrent of C, There exist elemenis

V57" of B such that s = 2(y) and .Ey ,_%y, =7, o Hones
wa lave i-a +-§£(yt) = :(-%y +* %y’) - f(yo}. Thus #

(€ep T »2(3,)) 12 an objeot in Compsaks and £ in a Compsaka-

.
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-morphisme. Tt 18 easy o verify that (11,12) is a kernel
pair of £ in Compsaksa.

4a9e3e Theorem. The forgetful functor
Og 3 COmpBaks wer > (ORDCONV

is monadioce

Proof. Byr Lemma 3610¢; & morphism I is a. coequalizer
in Compsaks if and only if Ogp is a coequalizer in Compeonv,
lsee;, Oy satisfy the condition 2e1e(i)e BY 449424, Og also

‘sabisfies the condition 2,fe(il)s Henmoe, by Theorem 2edes g

is quasimonadic, and conseguently, by hemmas 3¢9y 1-50,‘ a 9

‘is monadic.

4e40s The case: Compsaks S:c; = Compe

4e40e1s The forgetful funetor O 40 hes a left adjoint
0¥« , where ‘6 (X) is the Bansoh space of all oontinnogs
real-valued functions on the compact spacs X, and O* £ (X) is

the unit ball in ( & (X))® (of. [8] ).

4e1002¢ Theorem. The forgeiful functor

0 4o ¢ Compsaks == Comp

is monadic.



Irtci. The functor D.w is the composition of the
functars O, avd Og. The functors O O satisty
‘the eonditions 2.14(1),(11)e (2.3, 100y &ete2sy 4a9.2.),
EHenee Bw satisfies thess conditions, and by 2.4, is
quasi-moradic. Coasequently, bY 3¢9 and fefey {J j0 1=
mozadie,

Oy
oF oA,

i-.ﬂ. The ocase: Compsaks —— —— Conve

m:mmm- D 44 htheoonpoaitianotthe:tnne‘hors a

axd Og 5 hense O is a left adjoint of 0 440

8o1lete  Theorem. The forgetful funotor

Uﬂ ¢ Compeaks —t= Conv
15 momadioe
Proct, S8imilar ag 44900200
- #092s The case: coqpnh_'_‘_—'——"'- Ens

o# {[3

The m.-hn- o 42 1= the euposition of the functors g 9

and - a‘,m o'c(ﬁ 18 2 left adjoint oz O,

4.12.1. J m ' The forgeitful functor

O s CoRPBaks e o
is ~onadie, 0 : "

S
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Proof. Similar as 4¢1062..

O
| Bndoonve

" 4e13.  The case: Compaaks AR

and

is

The functor [ 13 is the composition of the funoctors 09
henoe O®eA®R 1s a left adjoint of O3 13°

a 2
4.13‘-1; Theorem. The forgetful functor
EI13 1 Compsaks ——————————s Bndoonv
monadic,

Proof. Simila.‘:' 88 410200
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