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Introduction.
=ltroduction

The main part of these notes (Chapter 11) jg devoted to a com-
plete and detailed exposition of the theory of abstract P Spaces
associated with von Neumann algebras. This theory was developed by
U. Haagerup some Seven years ago and outlined in a Preprint (which
now appears in [ 9 ]), Unfortunately, in spite of his intentions,
Haagerup has not yet had the time for writing down his theory in
full. This is our motivation for writing these notes.

The proofs that we give are (close to) those that Haagerup ori-
ginally had in mind and which he has told us at various occasions.

Essential for the construction of the P spaces is the theory
of measurable Operators with respect to a trace on a von Neumann

algebra (due to E. Nelson [13] and inspireq by [15] and [16]); we

extended positive part of a von Neumann algebra; we have not in-
cluded this in the text but we give detajled references, especially
to parts of [ % ] and [ 8], at the places where- it is needed,

Xfter the appearance of Haagerup's P Spaces, A. Connes pro-
pPosed a definition of_spatial LP spaces based on the notion of
spatial derivatives [1]. These spaces have been studied by M. Hi]l-
sum [1p]. We include a discussion of .them and show how their main
Properties follow easily from the corresponding Properties of
Haagerup's spaces (thus our Presentation is complementary to Hilsum's

work [10]) where the ocbjective is to develop the theory directly

based on Properties of spatial derivatives, avoiding as far ag
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possible the dependence of Haagerup's construction). This is con-
tained in Chapter IV.

Before this, we recall the main properties of spatial deriva-
tives (Chapter III). We profit from this occasion to present a de-
finition {due to U. Haagerup) of spatial derivatives that is slight-
ly different from that given in [1] and to show how certain pro-
perties (such as the sum property) of spatial derivatives are almost
immediate conseguences of this new definition.

The reader will notice that these notes do not contain a speqial
chapter on the - now classic - theory of P spaces with respect to
a trace, due - in various formulations - to J. Dixmier [3 ] and
R. A. Kunze [12] (see also [24] and [13]). Although this important
particular case has been motivating for the development of the more
gen;ral theory, we do not directly need it in our preliminaries.

For the sake of completeness, however, we give the definition of
P spaces with respect to a trace at the end of Chapter I, and in
the followin chapters, we point out how results concerning the
trace case are related to the general results.

Another omission in these notes is the recent definition of P

spaces as complex interpolation spaces. For this, we simply refer

to [11) and [20].

Copenhagen, April 1981

Marianne Terp
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MEASURABLE OPERATORS WITH RESPECT TO A TRACE

In this chapter, we define the notion of measurability with

respect to a trace 1 on a von Neumann algebra M and show that

the set M of t-measurable operators is a complete topological

*-algebra. Our presentation is a modified version of that gifen by

E. Nelson [13].

Let M be a - necessarily semifinite - von Neumann algebra
acting on a Hilbert space H and let T be a normal faithful

semifinite trace on M .

For the convenience of the reader, we immediately give the

definition of t-measurability and state the main theorem about

T-measurable operators.

Definition 14: A closed densely defined operator a affiliated

with M is called t-measurable if for all

& € KH_ there exists

a projection p € M such that

PH c D(a) and t(1=-p) < & .

For a characterization of t-measurabie operators in terms of the

spectral projections of their absolu-e value, see Proposition 21

below,

We denote by M the set of t-measurable closed densely defined

operators.
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Theorem 28. 1) M is a *-algebra with respect to strcng sum,
strong product, and adjoint operation.

2) 'The sets

E _— i 1= <8},
N(c,6) = {a € M | 3p € M 52 pi € D(@) olapl <e , 1(1-p) <8

" 'where form a basis for the ﬁeighbourhoods of 0 for

6,8 € R,
“~a topology on M that turns M into a topological vector space.
3) M is a complete Hausdorff topological *-algebra and M

is a dense subset of M.

Once this theorem has been proven, we can freely add and multiply
operators from M , the operations being understood in the strong
sense (see the definition below). Until then, we have to deal with
unbounded operators in the usual careful way.

Although we are mainly interested in closed densely defined
operators it will be convenient for us to work with more general
kinds of unbounded operators. We therefore start by recalling some
basic facts on arbitrary unbounded operators. Next, we recall some
After

properties of the lattice M of projections in M .

proj
this, we go on to develop the theory of T-measurability.

Preliminaries on unbounded operators.

Recall that for any (linear) operators a and b on H we can
define the sum a+b and the product .ab as operators on H with
domains

D(a) nD(b) , (1)

D(a+b)

D (ab) {£ € D(b) | bg € D(a)} . (2)

These operations are associative so that a+b+c and abc are

well-defined operators . Furthermore, for all a , b and ¢ we

have

(atb)c = ac+bc and c(a+b) 2 ca+cb (3)

(with equality if D(c) = H)

We shall use the following terminology: an operator a on H

is closed if its graph G(a) is closed in H @ H ; a 1is preclosed

if the closure G(a) of its graph is the graph of some - necessarily

closed -~ operator (the closure of a , denoted [a]) F a |is

densely defined if D(a) is dense in H .

If a, b and ab are densely defined, then
(ab)* = b*a* (4)

with equality if a is bounded and everywhere defined.

A closed densely defined operator a has a unique polar
decomposition
a = ulal (5)

where la| is a positive self-adjoint operator and u a partial

isometry with supp(a) as its initial projection and r(a) , the

projection onto the closure of the rarige of a , as its final

projection.

If the sum a+b of two closed densely defined operators a

and b is preclosed and densely defined, then the closure [a+b]

is called the strong sumof a and b . Similarly, the strong

product is the closure [ab] if ab is preclosed and densely

defined.



We shall write
lal = sup{lagl | 1&gl < 1)

for all everywhere defined operators a on H , bounded or not.

For all such operators, the usual norm estimates hold:
fa+bl < llal + libl . labl < §al 1bf .

Denote by M' the commutant of M .

pefinition 1.

with M (and we write a n M) if X
vy € M': yac ay .

Remark 2. Using (3), (4) and (5) one easily verifies that

(1) if a ,bnM, then a+bnM and abnM;

(i1) if a 4is preclosed, resp. densely defined, and a n M ,
[a) n H, resp. a*nM;

(11i) 4if a is a closed densely defined operator with polar
decomposition a = ulal , then an M if and only if u

and lal n M.

Notation. We denote by M the set of closed densely defined

operators affiliated with M .

Preliminaries on proijections.

we denote by the lattice of (orthogonal) projections

Mproj

A linear operator' a on H is said to be affiliated

(6)

then

EM

in

M . For a family (Pj)je; ©f projections in M, A py (resp.
I

i€
v pi) is the projection onto n
p,H (resp. u H .
i€1 s€1 & P* e Tt :
Recall that
A i _ 1 1
() = o pt e (et = 2w
G 03 ter 4 ter T4 o

L
where p~ = 1-p is the projection orthogonal to p .

Two projections p and q are equivalent if p = u*u and

= *
q uu for some u € M . We denote equivalence by ~ . Equivalent

projections have the same trace.

By the polar decomposition theorem, we have

Lemma 3. Let a be a closed densely defined operator affiliated

with M . Then

supp(a) ~ r(a)
where r(a) denotes the projection onto the closure of the range
of a .

For any projections p,qg € M we have

(pvg) =p ~ g - (paq) . (8)
It follows that

T(pva) < t(p) + 1(q) . (9)

More generally,

1A

il vp ) r tip,)
(161 1) = jeg T4 M

for any family of projections in M (if I

IpiliEI is finite.

this follows by induction from (9); for the general case, use the
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normality pf T)

Another consequence of (8) is this:

Yp.q € M :pag=0 = p<i1-g (11)

proj

Indeed ,

(where < means: "is equivalent to a subprojection of").

1

1.1 1
p= 1-pt = {pnq)l - pt = (pivgh) - pt ~ g - (plagh) < qt = 1- q -

The theory of 1-measurable operatecrs.

Then we denote by D(e,6) the set

Definition 4. Let ¢,6 € R, .

of all operators a n M for which there exists a projection

pEM such that

(1) pH € D(a) and lapl <t

and

(11) T(1-p) < & .

When pH c D(a) , the operator ap is everywhere defined. The

requirement llapl < ¢ in particular implies that ap is bounded.

Note that we do not require a to be densely defined, closed

or preclosed.

Proposition 5. Let 11,52.61,62 € R, . Then

"+

(i) Dleqr69) + Dleyi5,) © Dleg+e,, 6,+6,)

(11) Dt:1.b1}D{c2.62) € Dlegey,6,46,) .

Y e S T

Proof. (i) Let a € D(:1,61) and b € D{cz.ézl . Then there

exist projections p,3 € M such tha-

PH € D(a) , lapl <ty and

A
on

T(1-p) <
g c D(b) , lbal < €, + 2and 1(1-q) < 5, .

Put r = pag . Then

rH = pHNgH

In

D(a) nD(b) = D(a+b)

and

Il (a+b) rll = llar+brl < larl + Ibrl < lapl + Ubgi < B+ By

Furthermore,

1
T(1-r) = 1((paq)™) = 1(plvql) < t1-p) + 1(1-q) < 6y + 6, .
This proves (i).

To prove (ii), let a € D(:1,61) ¢ DE 0[52,52) and take

pP.q € Mproj

Denote by s

as above. Then bq , and hence (1-p)bg , 1is bounded.

the projection onto its null space:
sH = N((1-p)bg) .

Then bqgi € pH < D(a} for all £ € sH , so that sH c D(abqg)

and hence

(gas)H = Giab)

Also, abgs = apbgs so that

ab(gas) = abgs(gas) = apbg (gas)
and thus

Lab(gas)ll < llap! ibgl 2 eqe; .
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. llalpl < ¢ and 1(1- Y & &z
On the other hand, using that 3 '

r((1-p)bg) < 1-p ,

2

Let Jal = j A de
0

1-s = supp((1-p)bq)

we have ' for all £ € pH we have
]
i

5 be the spectral decomposition of lal . Now

- i - }
= )) = 1 ({(1-q)v(1-s)) < 1{1-q) + t(1-s
17(1-(gas)) l|alsl2 < :2 |EI2

1A

1(1-q) + 1(1-p) < 61 + 62 i

letes the proof. W and for all £ ¢ (1-et)H\lD} we have
This completes .

, IIaIEl2 > ;2 |E|2
Proposition 6. Let ¢,6 € BH =

(1) Let a be a preclosed operator. Then

since

2 = g 2
llalgl” = A d(e,ElE) =[ Ad(e,ElE) .
[o A £ el A

a € D(e,5) = [a] € D(e,8) .

Hence [1-e‘JHl1pH must be {0} , i.e. t1—e€)Ap =0 . By (11)

(11) Let . a be a closed densely defined operdtor with polar we conclude that 1-e= < 1-p, whence 1(1_ec} &8 [

decomposition a = ulal . Then

Proposition 8. Let a €M and £,6 € EH-' Then
a € D(e,6) » weEM and |al € D(e,8) .

ae€ Dic,é] * a* € D(¢,5)

Proof. (i): trivial. (ii): trivial, since a = ulal , lal = u*a , l
d Iul <1 | - Proof. Let a = ujal be the polar decomposition of a . Then u
an ul < 1. .
is an isometry of xlo’m[flall = supp(a) onto XJo [(Ia*lj =
oo
M - s5u a* =
Lemma 7. Let a € M and ¢,6 € R, . Then _ pp(a*) r(a)

- By uniqueness of the spectral decomposition, u

| induces for each A E Ih

an isometry of XJa m[(|a|) onto
a € D(g,d) = r(x]t'w{(lgllj < 6

5 x]A,m[t'a'|} + The result follows by Lemma 7. B
(where X [{Ia[J denotes the spectral projection of lal corre-
E,=
onding t; the interval Je,[) . ‘ Definition 9. A subspace E of H is called t-dense if for all
spon i

5 € IR, , there exists a pProjection p € M such that
SO0 | and
Proof. "«": Put p = x[D.a]{Ia]] - Then pH c D(lal)

H E nd 1- "
llalpl < ¢ . pH < a T(1-p) < &

"=": For some p € M + we have

proj
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Proposition 10. Let E be a t-dense subspace of H . Then there

" exists an increasing seguence {Pn]ngn

PHEE .

P, *1, tl1-p) -0, and n

s

n=1
Proof. Take projections q € M, k € N, such that

-k
qu c E and 1(1—qk) < 2 .

For each n € N, put

-]
P = A q .
R gentq K
Then
-]
p H = n qHlckE
L k=ntl *
and - o i
o - el 1}
= = 2 "
. - (1—q))5 I t(1l-gq)) < I 2
T1=py) T(k=;+1 £ k=n+1 K07 kent1
It follows that
P, M1

indeed, denoting by p the supremum of the increasing sequence
P, ﬁe have

vn € N: t(1-p) < t(1-p) < 27"

whence +t(1-p) = 0 and p =_1 i

Furthermore,

Corcllary 11. Let E be a t-dense subspace of H . Then E is

dense in H .

An important property of t-dense subspaces is the following:

of projections in M with

e i
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Proposition 12. Let a,b € M and let E be a 1-dense subspaze of

H contained in D(a) ND(b) . Suppose that

alg = b|g -

Then a=0b.

The proof is based on the following lemma:

Lemma 13. 1) Let Py EM

broj * Suppose that

Y6 € R, 3p € Hproj’ PoAP = 0 and 1(1-p) < &

Then po =0 .

2) Let Py:Py EM +» Suppose that

proj
Y6 € R, 3p € Mproj’ P4AP = ppap and 1(1-p) < & .

Then Py =Py -

Proof. 1) Let & € R, . Then 1(Py) < & (indeed, for some

p € Mproj we have PpAP = 0 and 1(1-p) < 6 , whence Py 2 1=p

and T(pol < 1(1-p) < 8) . Hence ttpol =0 and Py = 0.
2) Put pj =p, - (p1np2) Now p,Ap = p,ap implies
P4AP = (p,Ap,)ap and hence p,ap = 0 , so that 1) applies to .
1 1°P2 0 Pg
Hence Py = 0, i.e. Py = PyAP, - Similarly, Py = P4AP, - In
all, p, =p, . &

Proof of Proposition 12. Consider in the Hilbert space H, = H @ H

the von Neumann algebra M

M M
5 = (M H) equipped with the normal

faithful semifinite trace T, defined by
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x12)
X

X
12( 1 = 1lxy4) + Tlxy,) .
X

21 22

j h G(a and
Denote by P, and Py the projections onto the graphs (a)
G(b) of a and b . Since a and b are affiliated with M ,

G(a) and’ G(b) are invariant under all elements of Mz' =

y 0
{( ) | v E M'} and thus PPy E My .
0y
Let & € R, . Then there exists a projection p € M with

p 0 .Then 1,(1-p,) < &
picE and 1(1-p) < 6/2 . Put p, = i @l 2 )) <6,
Furthermore ,

PaAP, = PpAP,

since a and b agree on pH € E and thus

G(a) n (pudpH) = {(£,af) | £ € pH , af € pH)

n

{(E,bE) | E € pH , bE € pH)

By Lemma 13, we conclude that P, = Pp, whence a =b . |

Definition 14. An operator a € M is called t-measurable if D(a)

is t-dense, 1i.e. if for all 6 € R, there exists a projection

P € M such that

pH c D(a) and Tt(1-p) < & . (12)

The set of t-measurable operators a € M is denoted M .

Corollary 15. 1) Let a,b € M . 1If

then

G(b) n (pH®pH) .

——
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2) Let a€M. If a2 1is symmetric (in particular, if a is
positive), then a is self-adjoint.

Proof. Immediate from Definition 14 and Proposition 12 (for 2),

use that a c a*) . |

Note that when a 1is closed and pEM is such that

proj
PH c D(a) , then the everywhere defined operator ap is also closed
and hence - by the closed graph theorem - automatically bounded.

Therefore the following definition is a generalization of Definition
14.

Definition 16. Any operator

anM is called t-premeasurable if

for all & € R, there exists a projection P € M such that

PH c D(a) , lapl <= , and t(1-p) <6 . (13)

By definition of the D(¢,6) , this may be reformulated as:

Remark 17. Let an M

—_—

- Then a is t-premeasurable if and only if

¥6 € m4 Je € E+: a € D(e,d) .

Also note

Proposition 18. Let an M . If a is T-premeasurable, then a

is densely defined.

Proof. D{a) is t-dense. [
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proposition 19. Let a n M. Suppose that a 1is 1-premeasurable

ané preclosed. Then

la] € N .

proof. Trivial. B

" Proposition 20. Let a,bnM be t1-premeasurable. Then a+b and

ab are also 1-premeasurable.

Proof. Combine Remark 17 and proposition 5. B

We have the following characterization of T-measurable operators:

Proposition 21. Let a € M with polar decomposition a = ulal .

Then the gollowing assertions are equivalent:
(1) a is 1—méasurable,

(141) lal is t-measurable,

(1i1) v6 € B, 3¢ € R.: a € D(e,8) .

(iv) ¥6 € R, 3e € I3 Ttx]c'nllial)! <6,
(v) Tlx]k,-[(lal)} 20 as )\ —» = ,

Y a-
(vi) VX € IR.: tlx]k;wltla‘)) < = .

Proof. The equivalence of (i), (ii), and (iii), follows from Lemma
7. Now note that

Xya,er 12 > @ as -

so that, by the normality of =1 .

Tlx]x,w[tiah)} ~0 as ) a4«

oy i

if T(x]iotw[tlali < = for some )0 . Tne equivalence of (iii),

(iv), (v}, and (vi) follows. W

Corollary 22. We have M ¢ M.

Proof.

I
(=]

If a is bounded, then X1tal _[(Ial)

Proposition 23. Let a € M . Then also a* € M.

Proof. Combine Proposition 8 and Proposition 21, (i) = (ii1). §

Proposition 24. 1) Let a,b € M. Then a+b and ab are densély

defined and preclosed, and [a+b] € M, [ab) € M

2) M is a *-algebra with respect to strong sum and strong

product.

Proof. 1) Let a,b € M . Then also a*,b* € M By Proposition 20,

a+b and a*+b* are t1-premeasurable. In particular, they are
densely defined. Hence (a*+b*)* exists and a+b c (a*tb*)*

whence a+b is also preclosed. By Proposition 19, [a+b] € M.

A gquite analogous reasoning gives the result on ab .

2) Let a,b,c € M . Then by Proposition 20 the operators

a+b+c , abc , ac+bc , ca+cb , a*+b* , b*a*

are all t-premeasurable. Hence by Proposition 12, ezch of them

admits at most one extension im M . It follows thaz

[[a+b)+c] = [e+[b+c]] , [labjc] = [albcl] ,
[fatblc] = [[ac)+[be]] , [cla-b]] = [[cal+[cb]] ,

[a+b)* = [a*+5*] , labl® = (z*a*] . 1
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Notation. From now on; we will omit the [ ] in the notation for
strong sum and strong product.
For all

Definition 25.

¢.6 € R, we put

N(c,8) = MnDI(e,6)

“j.e. Nle,6) 1is the set of t-measurable a € M for which there

exists a projection p € M such that

lapl < ¢ and Tt{1-p) < & .

Lemma 26. For all c,cq,t5:8:84,6, € R, and X € ¢ we have

(1) N(e.6)* = N(e,8)
(11)  N(IAlg,8) = M{e,68)
(111) ey <63+ 84 < 6, = N(eys64) € N(n2:62) ’
(iv) N{c1.61)IlN(czr52) > N(:1a:2.61A62) ’

(v) N(z1.61) + Nltzaéz) c N(c1+52.61+62} ’

(vi) N(£1.61}N(cz.62) c N[:152,61+621 -

Proof.
‘gition 8 and }v}, (vi) follow from Proposition 5 and Propositién
6, (1) ((v) and (vi) are to be understood in the strong sense). N
Proposition 27. The

N(e,6) » e,6 € R, form a basis for the

neighbourhoods of 0 for a topological vector space topology en M .

Proof. This follows from Lemma 26, (ii), (iii), (iv) and (v). §

(ii),- (1ii), (iv) are easily verified. (i) follows from Propo-

| Theorem 28.
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which M 1is dense.

Proof. 1) To show that ﬁ

& cs e

Since 1t 4is faithful, this implies that all x]c‘_[llal) =0,

Let a € n

n N(e,6) = {0} .
c.aerg

Nlhé] . Then

e,aenu

¥6 € R, Ve € R: 1(x]£'m[{]al)l <6 .

i whence a =0 .

2) Next let us prove that M is a topological *-algebra. By

Lemma 26, (1), the adjoint operation is continuous. Now let

aO'bO € M and let

Then for all

£,6 € IH_. Take

M. E IR+
ap € N(u,6) , b, € N(X,6)

a,b € E such that a- a, € N(e,6) and

b- bu € N(e,6) , we have

It

is

ab - aobEI (a—aollb-boj + aU(b—bc) + {a-ao}bD

€ N(g,6)N(e,8) + N(p,58)N(e,6) + N(c,6)N(X,8)

N(c?,25) + Nluc,28) + N(\e,26)

n

n

N(g(c+)+p),65) .

follows that

(a,b) » ab

continuous.

M is a complete Hausdorff topological *-algebra in

is Hausdorff, we shall prove that

such that
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3) M is dense in M . Indeed, let a € M and take projec- ' Then
ticns € M such that .y . &= o © it _
_ Pn - : 1(1-q ) = 1( v t1—p}_}}5 I t(1-p) < I 2 k _n |
, l k=n-1 E k=n+1 k=n+1 g
- -+ U = Hc D(a)
Pn r ol Rl o O P,) 0 , and nEl:en c ‘ | anid
ssible by Proposition 10). Then ap_ € M and _
-{pO ¥ P Py l vm > nt1 ¥L € N: Ia  ,-aal <2 " (14)

ap_-a in M 5
Py since q < p, for all k > m > nt1 and hence

~ since |l(ap -a)p l = 0 for all m>n and t(l-p,) - 0 as

mE-1
m = . |(am£ = am)qnll < kF—-m Illak_'_,l - ak)qnl
4) Finally, we shall prove that the topological vector space ﬁ
; m+2-1 m+i-1 - (k1) B
" is complete. <= T Mg, ,-adpl< 1 2 &2 T,
. = k=m k=m
Since M has a countable basis for the neighbourhoods of 0
(use e.g. the N(1/n,1/m) , n,m € N) , we just have to show that Let £ € gn q,H - Then £ € q,H for some n € N and hence
n
_every Cauchy sequence (an}nElN in M converges. So let (aanEN by (14), the sequence {amE)mE:N is Cauchy. Put
be a Cauchy sequence in ﬁ i
{ ~ : af = lim a_g .
Since M 1is dense in M , we may assume that all a 6 €M (if . Mo W
not, replace each a by a; € M such that a -af € N(1/n,1/n), :
' We have now defined an operator a with D(a) = U g H (note
L}
and observe that lan)nE:N converges if and only if (an]nGN E neny M b
converges). Furthermore, we may assume that that D(a) is a linear subspace because (@ )penw 1S an increasing
. . sequence of projections).
vn € N: a .. -a € n2= M ¥ ol
n n By construction, a is T-premeasurable: for all n € N, we
(since a subsequence of the given sequence has this property). 1" have q H c D(a) anc T(1-q,) < 2"" . We claim that a is also
Now take projections Py € M such that preclosed. To see this, apply the preceding arcuments to (an‘}nel" .
L}
~ (n+4] n Hence there exists a t-premeasurable operator b sucn that
Mla  q-adp,l <2 and t(1-p ) < 2 .
' bn = lim a *n , n € D(b) .
For each n € N, put ] s M-seo
@ Then
g, = % -
N k=n+1 K

YE € Dla) vn € D(b): (aglm) = lim(a Elr) = lim(gla_*n) = (£1br) |
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whence

Hence a is preclosed. By Proposition 19 we then have [a]l € M .
Write a, = [a]) .

Finally we shall prove that actually

a ~a; in M. (15)
=(ng+1)
Let ¢.,5 € R, . Take n, € N such that 2 < ¢ and
-n
z Y < & . Then for all m > ny+1 we have
= (ng*+1)
H[ao-am)qnoi <2 <€
and
gy
t(1-q, ) <2 <6
0
since
VE € H: (a,-a_ ) E = lim(a -alg E
& 0 ™m qn0 form mEl TmoCng
and
= -tn0+1}
- ' <t -
Ita . am)qnou <2 " <2 <t
Hence

vm > ng+1: ag-a, € N(e,b) .

This proves (15). |

Examples. 1) If 1 4is finite, then M

M, i.e. all closed densely
defined operators affiliated with M are 1-measurable (by Proposi-
tion 21, (vi)).

lelf M = B(H) and 1 is the usual trace Tr , then M=y
(by Proposition 21, (iv), and the fact that Tr({x) <1, x>0,

implies x = 0)

-23_

3) 1If (X,u) 1is a measure space, M = L”(x;u) and T = I «dp 4

then M 1is the closture of L”(X,u) for the topology of convergence

in measure.

LP spaces with respect to a trace. For any positive self-adjoint

operator a affiliated with M , we put

n
1(a) = sup 1(] A dex)
neEN 0

where
a= [ A de
0 A

is the spectral representation of a . Then for each p € [1,=[ ,

we can define

P, =laem |l t(1alP) < =)

and

tat, = ta®VP | a e tPu,) .

The (LP(M, ),I-Ip) are Banach spaces in which

I ={x €M) 1(Ix]) <=} is dense, and they are all contained in

(and even continuously embedded in) M (for this and further results,

see [13]; see also (3], [12], [21], ané Chapter 1IV).

Notes and comments.

The notion of measurable operators was introduced
by I. E. Segal [15] and formed the basis for investigations in non-
commutative integration theory, i.e. a theory of "integration"

where Lmtx,u} {(corresponding to a measure space (X,y)) is re-

placed by a more general von Neumann algebra. Among other things,
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this theory provided a framework for constructing P Spaces
associated with (semifinite) von Neumann algebras as concrete Sp.CQ:,
of (closed densely defined) operators ([12], (21D (isomorphic 4
J. Dixmier's "abstract" LP spaces [ 31]).

In [13], E. Nelson gave a new approach - requiring lessg
'Iknowledge of von Neumann algebra technigues - to the theory, based
on the notion of measurability with respect to a trace (inspireqy by
the notion of convergence in measure introduced by W. F. Stinesprinq
in [16]). Any t-measurable operator is also measurable jip the sengg
of [15, Definition 2.1],whereas the cenverse is not in general tryg,
The set of 1-measurable operators is, however, big enough to contajp
the LP Spaces with respect to 1 .

In our presentation, we have followed [13) with some modiflca-
tions. In [1}], M is defined as the (abstract) completion of M
with respect to a certain (measure) topology on M (given by the
0-neighbourhoods N{(¢,8) nM + there simply called W(g,5)) ;
afterwards, M is identified with a subset of the closed densely
defined opefators affiliated with M . as a tool, the completion of
the Hilbert space H with respect to a certain (measure) topology
is considered. - We have preferred to work with operators on i
right from the beginning and to introduce the measure topology

directly on the whole of M . When doing so, we do not need a new

topology on H .

In this chapter,

- 25 -

11

LP SPACES ,‘.\SSOCI?\TED WITH A VON NEUMANN ALGEBRA

assaclated with a von Neumann algebra.

Let M be a von Neumann algebra and let ¢, be a normal
faithful semifinite weight on
We denote by N the crossed product

modular automorphism group o

[18, Section 3; & , Section 5] that 1£

ppace H

apace T..2 (IR, H)

M.

P

then N

Al(s). , s € R, defined by

(m(x)g) () =
€ L(R,H) , t € R
(A(s)E) (t) = g(t-s) , £ +H) 5
We ldentify M with its image n(M) in N (recall that g
normal faithful representation of M)
R in N . The g

We denote by @ the dual action of

s € IR,

By (3),

Actually

a

M

re automorphisms of N characterized by

= xEM
Bsx X
o A(t) = e 1%50(t) , t € WM.

is contained in the set of [ixed points under

M={y€l~l|\f1;€m:95)'=yl

o mﬂ{x}{(t] ' EELZ(]R:H): tE]R,
-t

]

assoclated with ¥y - Recall

is the von Neumann algebra on the Hilbert

' P
we present Haajerup s theory of L spaces

%o
R(M;a 7) of M by tne
M 1is given on a Hilbert

generated by the operators w(x) , X € M, and

(1)
(2)

is é‘
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(see e.g. [ 5, Lemma 3.6])).

The 6, + s € R, naturally extend to automorphisms, still
denoted 6_ , of ﬁ+ + the extended positive part of N [ 7%,
Section 1].

Recall [ #, Lemma 5.2] that the formula

Tx = Jmeslx)ds ) X EN, (6)

defines a normal faithful semifinite operator valued weight T
from N to M 1in the following sense: for each x € N, » Tx s

the element of ﬁ+ characterized by

[

<TX, x> = | <8, (x),x> ds (7)

R

for all y € N,+ . Note that
- VSEJR:BSQT=T. (b)

In view of (5), this formula implies that the values of T are

actually in ﬂ+ :

For each normal weight ¢ on M, we put

~

©=0orT (9)

where ¢ denotes the extension of ¢ to a normal weight on ﬁ+ as
described in [ 3, Proposition 1.10]. Then @ 4is a normal weight on
N [T, Proposition 2.3]; © is called the dual weight of ¢ (see

. [ b, Introduction + Section 1]). Note that (8) and (9) imply
Vs € R: 900, =3 . (10)

If v and ¢ are normal faithful semifinite weights, then so are

© and E, and we have [ 7, Theorem 4.7):
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~

Yt € R Vx € M: ut"’(xJ = ot"’(xj . (1)

Yt € R: (w'f:n'i?}t = (Do:DY), . (12)

Lemma 1. 1) The mapping

~

)

is a bijection of the set of all normal semifinite weights on M

onto the set of normal semifinite weights ¥ on N satisfying
VsGIR:;.oas=¢._ (13)

2) For all normal weights ¢ and ¢y on M and all x € M ;

we have

(@) (p+p)™ = G+y ,

(b) (Xeex*)™ = x 0 po x* )

(e) supp ¢ = supp o .

Proof. That G is semifinite if ¢ is follows from the proof of
[?, Proposition 2.3]. That ¢~ ® is injective follows from the

formula

o(Tx) = $(x) , x¢€ My

and the fact that T{mTJ is g-weakly dense in M [ %, Proposition
By

Now let us prove 2). First observe that (o)™ = o+ § since
O+ P ﬁ+ = [0/=] obviously satisfies the properties that characterize
lo+¥)™ ([ ?F, Proposition 1.10]); (a) follows trivially. Similarly,

-~

{X'm-xflh = X+9-XxX*, whence (b).



To prove (c), put Py = 1-supp ¢ . Then Hpo is the o-weak
closure in M of N¢ = {x €M | @(x*x) = 0} . similarly, the
o-weak closure in N of NE ={y €N | E{y*y} = 0} is Nqo where

9, = 1-supp @ . Now

since
YY € np VX € Not 9(xtytyx) = @(T(x4y*yx))
= @(X*T(y*y)x) < IT(y*y)l @ix*x) = 0 .
‘As np is o-weakly dense in N , it follows that
s
: N c Nm
whence

PU£QO‘

Note that we must have 9y € M since ©® , and hence supp © , is

O-invariant. Thus to conclude that Py = 9y Wwe need only show that

w(gy) = 0 . This follows from
¥X € mT: q}(qoi'(x]qo} = gp('i'[qoan}) = G{qoxqo} = 0
and the fact that tmy)  is o-weakly dense in M [7, Proposition

2.5]).

We now return to 1). Let ¥ be a normal semifinite weight on
N satisfying (13). First suppose that ¢ is also faithful. Then by
[5, (broof of) Theorem 3.7], it follows that ¢ = § for some
hormal faithful semifinite ® on M.

In the general case, Put g, = 1-supp ¢ . Then by (13) and (5),

we have dp € M . Now take any normal semifinite weight Xp ©on M

- £y -

such that supp Xg = 9y - Then ;5 is a normal faithful semifinite
@-invariant weight on N with Sugn ;0 = gy - Hence ;0 + ¢ is

fa}thful and thus, as above,

for some normal faithful semifinite weight ¢ on M . Finally,

using (b), we find ihat
v = (1=gg) - (xg*+¥) - (1-q,)

= (1-qp) - &+ (1-q,)

n

((1-qp) + @+ (1-gg))™ . 1

Denote by 1t the normal faithful semifinite trace on N

characterized by

Yt € R: {b?;osnz)t = ) (t) (14)
(for the existence, see [ 8, Lemma 5.2]); 1 satisfies
-5
Vsem:toeswe o (15)

With each h € ﬁ+ we associate the normal weight t(h :) on N as
in [ &, remarks preceding Proposition 1.11]. When k is simply a
poslt;ve self~adjoint operator affiliatec with N (see [ 3, Example 1
1.2]), this definition agrees with that given in [1Y4, Section 4}.

We recall some facts about the mapping h = t(h :) (see [ 7,

Theorem 1.12 (and its proof) and Prcposition 1.11, (4) 1) :

Lemma 2. 1) The mapping

h~ 1t(h )
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is a bijection of ﬁ+ onto the set of normal weights on N . 1In
particular, it is a bijection of the positive self-adjoint operators
affiliated with N onto the normal semifinite weights on N .

2) For all h,k € ﬁ+ and all x € N, we have

(a)  t(th+k) ) = t(h ) + t(k ) ,
(b) T(({x-hx*) +) = x-1(h «) » x* ,

(c) supp t1(h +) = supp h .

-~

Here, h + k and x- h-.x* denote the operations in N,
introduced in [?, Definition 1.3]. If h and k are positive
self-adjoint operators such that D(hE}!\D{k%j is dense, then

h + X 4is the simply the form sum of h and k (2, Corollary
4.13]). If h is a positive self-adjoint operator and x a bounded

operator such that D(hxx‘) is dense, then x:+h-.x* = Ihax*l2

Definition 3. For each normal weight ¢ on M we define htp as

the unique element of ﬁ+ given by

¢ = tih, <) . (16)

Proposition 4. 1) The mapping

&k
P N

is a bijection of the set of all normal semifinite weights on M

onto the set of all positive self-adjoint operators h affiliated
with N satisfying

vs € R: 0 h = e °h . (17)

- #H

2) For all normal weights:- ¢ and ¥ on M and all x € M,

we have

(a) h¢+ﬁ = h@ + hW i

(b) = x 'hw S Ll

hx.w.x‘

(c) supp hw = supp ¢ .

Proof. This proposition is an immediate consequence of Lemma 1 and
2. ﬁe just need to prove that a positive self-adjoint operator h
affiliated with N satisfies (17) if and only if the corresponding
weight 1t(h +) 4is @-invariant. This follows easily from (15).

Indeed, for all s € R we have

e®(108,) (hO__(-)) = t(he__(+)) = t(h ) o0_ ,

s
(e Gs(h) )
whence

e®8_(h) =h e 1(ep (h) :) = t(h )

« t(h ) =1(h-)ob_g -

The equivalence of (17) and

¥s € R: t(th ) = 1(h ) 08
follows. W

The next lemma is essential. It will permit us apply results on
T-measurable operators.

As usual, X1y [ denotes the characteristic function for the
= .

interval Jy,=[
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Lemma 5. Let ¢ be a normal semifinite weight on M . Then for T(X)1,ep (By)) T(hgk(hw' X11,ef (Bl D7)

all y € ng,, we have

~ =1
= w(hw £]1,m[(hwll

1
X}y, wp (R =3 oM.

o] - _ =
w([ ﬁs(hw X}1,m{thw1}d5) = p(supp ¥) w(1) .

_Broof. First let us prove the formula in the case y=1. L This completes the proof in the case y =1 . In the general case,
Let s € R. Then since 8, 1is an automorphism and 8 htp = , write vy =e° , s € R. Then by (15)

-s
- h we hav
3 © e

= ~s
-1 3 g - T(x]es D[(hwl) = T(x]1,w[(e hw}}
esthw x]“,ei (hgp)} =i hw X]-"n{ (e hw) .
' = T(05(X)q,0p (hy)))
Now let hw = ]A de1 be the spectral decomposition of hw . Then
= e Xy, thy)) =e S o) .
for any vector functional W g where £ is a unit vector, we 1.0 Py

have

By Chapter I, Piopoéition 21, we have

-1
W =

clnlﬂs(hw xl1nw[(hw}}ds' o

defined operators affiliated with N . Recall (Chapter I) that N

J s
IR
- ! Corollary 6. Let ¢ be a normal semifinite weight on M . Then S
s.-1 -s -

F [ J A 1]1,m[te k}d{elglﬁ} ds h, 1s t1-measurable if and only if ¢ € M, .
R ]0:“’[ . v

_ -1 gy 5

- I]O m[l ([]_ Idg l[e ds)d{elzlg) We denote by N the set of all t-measurable closed densely

i dle,£1E)

10, ef is a topological *-algebra with respect to strong sum and product.
’

[ Sums and products of elements in N will always be understood to be
2 .
= I (supp hy) gl ! in the strong sense although we do not emphasize it in the notation. -
50 Shnt We denote by N, the subset of all positive self-adjoint
-1 elements of N z
8_(h = p :
IIR s( S x]1’m{(h¢)}ds = supp hw supp ¢ .

Note that the 6 + s € R, extend to continuous *-automorphisms,
Finally, since § = t(hy +) we have

still denoted 6, , of N . We have

Vs € R ve, 8 € R.:0_(N(c,8)) = N(¢,e %) (18)
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~

since for all 2 €N,

Xy mf (02)) = TMOSXg, (@) = e STlx), ,op (@)

(for the definition and properties of the 0-neighbourhoods N{t¢,6) ,

we refer to Chapter 1).

Thecrem 7. 1) The mapping

h
“"’q;

extends to a linear bijection, still denoted ¢ » hw , of M,
onte the subsPaCé
e . . =8
{h eN| ¥s € IR: Bsh = e "h} (19)
of N .
~y Forall w €M, and x,y € M, we have
By geys = X hy ¥ (20)

and

hos = Bt : (21)

3) If ¢ =ulel is the polar decomposition of ¢ , then

K uhl@l is the polar decomposition of hw . In particular,

byl = By - (22)

the proof will be based on Corollary 6, Proposition 4, and the

following lerma.

Lemma S. 1) Let h and k be positive self-adjoint operators

such that D{hkln Dtka} is dense. Then

35

h+k c h+k .

1f h+k is essentially self-adjoint, then its unigue self-adjoint
extension is precisely h+k .
2) Let h be a positive self-adjoint operator and x a bounded

operator such tnat D[h%xﬂ is dense. Then
xhx* € x - h:x* .

If xhx* is essentially self-adjoint, then its unique self-adjoint

extension is precisely x -h - x* .

Proof. 1)} Recall that by definition h+k is the unique positive
self-adjoint operator characterized by D(thik)gj = D(hk)l1D{k¥]
and

ve € D(hY nokh): nik) ben? = ¥ ? + axten? . (23)
By polarization, it follows that

vE,n € D(h%) np(kh: ((hik) 5El(hix) ) = (h3Ein¥n) + (k¥g1xin)

. Now let £ € D(h+k) = D(h)nD(k) and n € D(h+k) . Then also

EeDth®)npkx® and n e p(hik)¥) = p(h%) np(k¥) so that

((h+x)&In) = (hEln) + (k3In)
= (h¥Intn) + (k%E1kn)
= (thikl"zuhix}“nl
= (£l (hix)n)
It follows that
h+k c (h#k)* = h+k .



- 3=

Hence h+k 1is preclosed and [h+k] c h+k . If [h+k] is

self-adjoint, we must have [h+k] = h+k .
2) Recall that x+h-x* = [h'x*{2 . Now let £ € D(xhx*) =
D (hx*)

and n € D(x-h:.x*) Then also £ € D{hkx') and

n € D{{x-h-x’lkl D(h%x‘} so that 1

(xhx*E1n)

n

(hx*E1x*n) = (h¥x*Elh x*7) = (£l (x-h-x*)n) . ;
It follows that

xhx* c (x-h-x*)* = x-h- x*

‘Hence xhx* is preclosed and [xhx*] € x-h-.x* . If [xhx*] is
self-adjoint, we must have [xhx*] =x-h-x* . R
Proof of Theorem 7. Let o,y € H,+ . Then hw and h* are

positive self-adjoint and t1-measurable so that their strong sum
exists and is again a positive self—édjoint T-measurable operator.

By Lemma B, this sum then coincides with hm + h¢ - Then Proposition
4 yields

h = hm + h

Py v !

vwhere the sum at the right hand side is now the sum in E

Similarly for all ¢ € M.+ and X EM we get

h = xh x* . (24)

Now the additive and homogeneocus mapping ¢ = hm of M,+ onto

{henN, | vs € IR: bh e 5h) extends by linearity to a linear

mapping ¢ ~ hlD of M, onto the subspace of N spanned by

e °h} , i.e.

i}

(henN | vs € R: 8.h onto the subspace (19)

(evidently, (19) is stable under h = h* and h =~ Ilhl and hence

spanned by its positive elements).

By linearity, we must have (21) for gll v €E My . Also by

linearity, (24) holds for all ¢ € My and x € M ; by polarization

the equation (20) follows for all ¢ € M, and x,y € M .

In particular, if ¢ = ulpl is the polar decomposition of v ,

we have

h = uh

0 = Pl lol

That this relation is the polar decomposition of hw follows from
the fact that the initial projection for the partial isometry u

is supp l¢l = supp h

el

P - hw is injective: if hw =0,

lg) =0 and 9op=0 . 1

Finally, then hlwi =

Ihwl = 0, whence
Motivated by Theorem 7, we now give the following definition:

Definition 9. For each p € [1,=] , we let

tPM) ={a€N I Vs € R: 8.2 = e_s/pa} -

Note that the LP(M) are linear subspaces of N and that they
are linearly spanned by their positive part LPIM}+ = l..l:'(l-l.'lﬂﬁ‘t .
By Theorem 7, we know that L1(HJ ~ M, . And:

Proposition 10. We have L™(M) = M .

Proof. In view of (5), we just need to show that every a € L7 (M)

is bounded. Let a € L”(M) . Then for all s € R and all




A E R, we have

t{x]A,,I(Ialn = t(x]A’w[{aslaIJJ

= _ "B
rlﬁslx”'w[lialil) = e-'r(xn'm[(lalll .

Hence for all ) € Ig' we must have

t(x]l'w[llal}) =0 or t{xll'm[{laljj = e .

Since a 1is t-measurable, we have T(X]A,w[(‘all, < = for some

A . Hence t[x]A'w[(lal)) = 0 and thus X)a enIl{IaI) =0 since

T 4is faithful. This means that a is bounded. W

Remark 11. We have seen that all elements of L™ (M) are boﬁnded.

In contrast to this, all non-zero elements of LP(M) , where

P < = , are unbounded. To see this, let a € LP(M) and suppose

th a . :
at a + 0 Then for some 1) € R, 'we have x]l'm[(lal) + 0

and hence r(x]A’m[llaI}} #+ 0 . Then for all y € R, we have

T(x]u'mlflali} +# 0

since for all s € R

Ty (lal))

~-s/p
1e5/Py, Tx)y,erte T laln)

o
= tlx]l'mltislnlii
= T(BS xll‘w[(laill

= e tlxyy,Lrlal)) ¢ 0.

It follows that Jal must be unbounded.

proposition 12. Let a
affiliated with N

p € [1,=[ . Then

a € P
if and only if

e and (2P enlon .

Proof. Recall that a € N if and only if lal € N .

with polar decomposition a = ulal

be a closeé densely defined operator

. Let

Furthermore,

lal € N if and only if 1alP € N since ttx]l,m[(lalj, =

() (1al®))
]lp,wi

we have

_s/pa

ﬁsa = e - Bsu =u and

lealp = e-slalp .

The result follows by Definition 9 and Proposition 10. B

A similar result holds for the right polar decomposition.

Definition 13. We define a linear functional

trthwl =op(1) , v € M, .

Note that

tr[lhol) = tr(hl$|} = lpl (1) = Iyl

for all ¢ € M, . Tris implies that

ltr(a)l < tr(lal)

for all a € L1(M) and that the mapping a » tr(lal)

on L1[M)

tr on L1lHl by

for all X € Ih_. For all such a and all s € R

" (26)

is a norm



v

‘pefinition 14. Let p € [1,=[ .

Then we define -1, on LP (M)
by

5 llall

o =te1aiP VP, ae tPuy .

For p=o, we put

lal , a € LM .

.We shall see that for all p, u-up is a norm on LP(M) .

By (26), we have

. Proposition 15. The mapping

torbhw: M, -0L1(M)

is an isometry of M, onto L1IM} .

Lemma 16. Let p € [1,o[ and ¢,6 € R, . Then
N(e,8) NLP () = (a € LP1) 1 Hal < e8'/P) .

Proof. Let a € LP(M) . Then lal® € L'(M), and hence laIP = h,

for some oy € H,+ .  Now

TX),, e (121)) = q(x]:p w[tlalp))
1
= = (1)
P
1 p 1
= llalfy, = = P
P 1 &P "alp *

Using this we get

a € N(c,8) « lal € N(t,6)

- 'r(x]h,[(lall) <6

B Pe<s
- ;P |ﬂ|p <

1/p 1

< eb P
- Ialp <

Corollary 17. On L1lH} the norm topology is exactly the topology

induced from N .

We denote by ¢, the closed half-plane {a € ¢ | Re a > 0}

and by ¢+° the corresponding open half-plane.

Lemma 18. Let h € ﬁ+ . Then the mapping

is differentiable. . i

Proof. First note that all h® , a € ¢+° , are actually
r-measurable since h 1is t-measurable.

1) Suppose that h 4is bounded, i.e. henN, . Then the mapping

awh®: ¢° N

is differentiable with respect to the norm topology on N and

d ,a _,a
= h h” log h (27)

(note that the expression at the right hand side is defined for any
positive h € N since the function A = 2% log A is continuous

on the closed half-plane ¢+] . This follows from spectral theory
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using the fact that for all a, € ¢+° we have

1 a %0 G, 3 a. log A a, log A
a-a, (A"=2 7) =2 logl:u_ao (e8 1092 _ 0 ' Yeet i ?

-0 as a - a, uniformly in X € ]0,1hl)]

2) Now let h be any element of §+ . We claim that
a o |
a~» h: ¢+ - N |1is differentiab;e with respect to the topology on
N and that (27) still holds (as above, h° log h is a well-defined

positive self-adjoint operator and, by spectral theory, it is

T-measurable). Now let c,6r € R+ . Take X € ‘R+ such that

t(xllrm[(hJ)i 6 . Put p = X{o,2]h) . Then hp is bounded and

- by the first part of the proof

1 a_, %0 %0 o
l(u_uo.{h b 7) =k ? Yoo h)p"

1 a
((hp)"zl - (hp) -0) - (hj,::-)‘:I log(hp)ll < ¢

= |
- a-a,

for all a €C 0_ sufficiently close to a Thus

+ 0-'
a (o 2
L % Py i O

s log h € N(¢c,6)

0

for a .sufficiently close to Oy - This provés the lemma. W

We denote by S the closed complex strip {a € ¢ | 0 < Re a < 1)

— —..

and by s the corresponding open strip.

: )
Lemma 19. Let h,k € L' (M), . Then for a € S° we have
h® k7% ¢ 1) ;
and the mapping
a . 1= ;
avwh® k'™, €24 Llm (28)

is analytic.

P *MMM

1-0

 Proof. That hu k € L1(H) follows from Defipitidn 9 since

+ a.1-a, _ « 1-a
vs € IR: Es(h K ) (Esh) (-sk)i .

o0S 10 o LS LA

—

We want to prove that the mapping (28) 1is differentiable. In view

of Corollary 17 we may as well prove that (28) is differentiable

P

as a mapping into N . Now by the preceding lemma, the functions

1-a

@ and g(a) =k are

F.q: s® + N defined by £(o) = h

O

differentiable; It follows that for all a, € S we have

1

(f(u)g(u)—f(ao)g(ao))

U“ﬂo

1 | |
- ““1“0 £ (o) (g(a) -glag)) + gog— (£(e)=£(ag))glop)
- fl(uo}g'(ﬂo) + f'(uo)g{ug) as a - a,

so that also f . g: s° + N is differentiable. B

i Lemma 20. Let t € R and put

' N N L dire (29)
— - — a !
| N%+it {a € N | ¥s € Iz.esa e a)

; Fing . 1
s Let a,b € N%+it . Tnen b*a , ab* € L (M) and
. , | _

tr(b*a) = tr(abﬂ By (30)

Proof. That b*a , ab* € L'(M) follows from Definition 9 and (29).

To prove (30), suppose first that a = b Then by Pefinition

g 13 and Lemma 5

tr (a*a) = r(x]1'm{(a*a}) = t(x]1'm[(aa*)) = tr(aa*)



A ek ;5+it s The proof of the next lemma is based on the 3 lines theoren
1 3 k k k for analytic functions (see e.g. [13, p. 93]). The 3 lines theorem
* = » ‘
i : k§01 A also holds for analytic functions F with values in a Banach
3k k space (to see this, apply it to the scalar-valued functions
1 k T
»im +
t : kﬁni ol a = v(F(a)) where v is in the dual of the given Banach space).
The result follows since tr is linear. _ i} 5
. ) ’ Lemma 22. Let h,k € L1(M]+ and suppose that Ihl1 Ik.l1 1
1 Then for all a € s° , we have
‘Proposition 21. Let p,q € [1,w»] with + 4+ 1 = 1. Let
¢ 1q uk1—u| < 1
a €-LtP(M) and b€ LI(M) . Then ab,ba € L'(M) and Ih o i i

1

. 4 s 1/s
tr(ab) = tr(ba) . Proof. Write s =Rea , t=Ima . Then h” €L (M) with

. 1h*%) =1=s>.5°, whence by Lemma 16
Proof. If p=1, we have a = h, for some ¢ € M, and the 1/s

s -s
result follows by Theorem 7: h™ € N(s ,s) .
j . _ Similarly,
trshéb} = tr(hw-b) = (p:b) (1) = (b-w) (1) = tr(hb.wl = tr{bhw) . | K1°5 ¢ N((1—s)_(1'5),1—s} .
Now suppose that p,q € J1,»[ . As usual, we easily see that i It follows that
i i - -s “{1=8) .-
ab and ba are in L1(H) - By linearity, we may assume that ; ne Ve N(s “,s) + N((1-s) 1 1-8)
ae€ LP(M}+ and b € Lq(M}+ . Now ap.bq € L1{H}+ and by Lemma 19 : c N(s_s(1—s}_(1-5},5+[1~s))
o & po, q(1-a) ;
the functions F and G on S° defined by F(a) = tr(a®b ) i T -,
and G(a) = tr[bq(1-°}ap°} are analytic. For all t € R, we have ' RO k170 o it s 1S g mit o sS4 TU17S) g
ap[5+it} € ﬁk+1t and bq(5+it) € ﬁ5+it so that by Lemma 20 ?
' Again by Lemma 16,
F(htit) = er(@P(3Hit)pali-1t), _ ) cp(hin) (qit), o 1m0 - -
‘ 2%k %, < 87T (1-8) ‘
= tr((pd(5+it) 2aPbHit)) _ o palh-it) p(h+it), _ Gik+it) . | _
} ~3 ' ) L ! ! Since s w 5_5{1—5}_{1 s) is boundec¢, the function
We conclude that F =G . 1In particular, i a = h® k1"“= o L1[M) is bounded. It is analytic by Lemma 19.

Hence we can apply the 3 lines theorem on each closed strip
tr(ab) = F(1/p) = G(1/p) = tr(ba) . N
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3 A
Proposition 24. Let p,q € [1,=] with ptg=1- let

{a€¢iec<pea < 1-¢} and we obtain | !
: a € Lp(a) . Then

sup Ih°k1-°'1 < C_[ ‘1_£)-{1"5’ .
t<Rea<1-¢ .

Nl = suplitr(ab)| | b€ L), Ibl, < 1) .

Hence for fixed q € s° ¢+ the inequality

Proof. If p=1 or p== s this is well-known (since
[h°k1'““1 < e‘t[1_;)—(1-tl tr (c hw} = tr(hwc) =w¢lc) for all w €M, and c € M) . Suppose

£t 1< < ® . We may assume that lal_= 1 . Then putting
holds for al1 . ¢ R, such that tha P p

t <Rea<1=¢ . Since

b = Ialp/qu‘, where a = ulal 4is the polar decomposition of a ,

. el 3 KL & 1

e f(1-¢g)"(1me) _ e"¢ 109 e ~(1-c)log(1-¢) -1 as ¢ 40, we have b € 190 with lblq o Ilalp/qu’lq = tr(1a1?) 179 - 4

: and
it follows that y k
15 : tr(ab) = tr(ulal l1al®P/%u*) = tr(1aIP) =1 .
1h%k °|1 <1. :

Hence

This proves the lemma. § |a|p =1< sup{itr(ab)| | b € Lq(Hl, ";:,|q < £ s

Theorem 23. (HBlder's inequality) .

Let p,q € [1,o] with
Top ) o 1

with (26)). U
b - Let a € LP(M) ana beLYM . Then :

The converse inequality follows from Hdlder's inequality (together

lably 2 Ia'p lb]q T Corollary 25. I-Ip is a norm on LP(M) .

Proof. If p =1 + We have a = hw for some ¢ ¢ M, and Proof. The inequality

Ihwb|1 = “‘q;.b'1 = lo-bll < Iyl bl = 'hw'1 - b1 |a+b|p < |a|p + []blp

for all b e L™ (M)

It

M . The case g =1 js quite similar to this. follows immediately from Proposition 24. W

. p=1- Iblq =1 . Let
be the (usual) polar decomposition of a and b

Now assume Prq € J1,] , ang 1al

a = uja| .

= |b*|v Proposition 26. on LP(M) , the norm topology is exactly the
the right polar decomposition of b .. Then Ialp'|b.|q € L‘(M) topology dndused Erom b
with lIaIP|1 = Illbt|rq||1 = 1 and Lemma 22 applies: y

Proof. HNow that we know that I-lp is a norm, this is a corollary
Iabl1 = lluja] Ib*lv|1 < llal |b¢||1 of Lemma 16. 0



5 ;
Corollary 27. (L (M), I-1;) is a Banach space. Remark 30. Let p € [1,=[ . Then we have a natural identification

- Proof. From the definition of LP(M) it follows that it is a . ' LP (veM) ~ LP (M) x LP(n) (31)

closed subspace of the complete topological vector space N

Hence it is complete for the uniform structure induced from N . e

i

By Lemma 16, this is simply the uniform structure coming from the : v(a,b) € LP(M) x LF(M) ~ Lp[HGMJ:I{a.b)Ip = (|a|pP+ IblpP}1/P . (32)

norm. Hence LP(M) 15 a complete normed space. l
. To see this, write th] =M ®M and define the normal faithful

) (2) (2) (2) _ 3
=orollary <5 2 ifinite weight o on M by w =y, 89, , i.e.
Corollary 28. (L (M),Inlzj is a Hilbert space with the inner ) semifin g 0 0 0 0
product X 0
%12)( ) =@y(x) + 05ly) » X,y €M .
0
(alb) = tr(b*a) (= tr(ab*)) b 2 Y
L2[M) » a,b € L"(M) .
Let us denote by Ntz) ' 1{2} etc: the objects associated with
Proof. That (a,b) » (alb) is an inner produc i
TR t d
Lz{M] 4 : Eindog; the {M(Z)'wO(ZI) analogous to N , T etc. associated with (M,9;,) .
norm |- .
or ] I2 is easily verified. By Corollary 27, LZIM} is complete. Then one easily verifies that N(Z) ~N®N, 1‘2} ~18® 1,
< (2) (2) - (2)
~ M )‘:M‘QH‘,hww :hwahw.f-s __83035; |
Remark 29. ~ =R
Let t € R. Define Nyyit 2@s in Lemma 20, Then - n(2) o Ned and finally (31). Furthermore, t_r(2J ~ tr @ tr
(a:;b) = tr(b*a) so that
; P 0
is an inner product N - (@bl P = tr(z}('(a o)lp) B tr‘z)(lal )
P on ¥, and P 0 b 0 IbiP
5
8 i keleia) = tr(1alP) + tr(1bIP) = ral P + 161 P
is a norm which w hal . '
~ : e shall denote by | l2 (as in the case t = 0 for all a,b € LP(M) . This proves (32).
where N, = L%(M)) . Note that )
Itr(b*a)| < |a|2 Iblz : Proposition 31. (Clarkson's inequality.) Let p € {2,«=[ . Then )
and . for all a,b € LP(M) we have
2 2 2 @ :
la*bl,™ + Ta-bi,® = 2121, + 2101, tatbl P + la-bl P < 2P (1at P+ 1b1_P) .
: P | P P
for all a,b € N, ... .
' Srit Proof. Using Remark 30 we may reformulate the inequality to be

proved as
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I (ash,a-b)1 ) < 2'/a Ha,b

where we have put 1/q = 1 - 1/p .

Let (a,b) € LP(MeM) and (c,d) € 19(M8M) such that

I(a,bllp =1 and I{c,d)lq =1.
Let

a=u'P, = vk!/Py

o
t

be the polar decompositions of a and b , ana
c=£7% , a=g'a,

the right polar decompositions of ¢ and 4
h,k,f,g € L1(H]+ and

H{h;k”.l =1 P | (f:g)l1 =1.

“For each a € 5° , put

F (o) tr{{uhu+vku}f1-uw + IUhn‘Vku’91_62}

Then
F(1/p) = tr((a+b)c + (a-b)d) .

For all g € s° + we have

(2) u 0, ,h® 0 0 w (VI
L (N G '
0 -v/\o x%\g g' "%\
I R L

ce(C )6 WG )

By Lemma 19-and 22 applied to (h,k) € L1(M$M) and

(f,9) € L1[M9H] we conclude that F is analytic and

(33)

(34)

e o e o i e s i S g

_51_

va € s°: IF(a)] < 2 . (35)
We claim that
vVt € R: |F(4+it)] < V2 . (36)
For the proof we apply first the Cauchy-Schwarz inequality in
Eézit ., next the parallelogram law in Nk+it (cf. Remark 29):
I (F(y+it) 12
y-it
- uh ittt 0 ) 571, o ))lz
= |“ (( 5 an¥Hit bt 6 gi-it,
uh ¥t it 0 l 2 "(fl"itw 0 )." 2
-1t
5|I( 5 uh5+it_vka+1t) 5 o it/
- -1t _, 2
= (untHtdt Y 2t gty 2) g5ty Zagh Tt 2)
' 2 b 2.5 2 .
= " 202 at,2agtt) = 20mi ki) = 2

Finally, by the 3 lines theorem applied to each strip
{c €¢ 1 ¢ <Rea<k) where 0 <c¢ < 1/p, (35) and (36) give
ltr((at+b)c+(a-b)d) | = IF(1/p) |
< 21/R)/ (5me) | (3 ((1/p)-e) / (hme)
2 2172/P VP 2 V9 35 paw .

Hence =
a+b 0 c 0 1/
Itrt2)(( )( ))[ < 2'/a
0 a-b’ ‘0 4d :

for all (a,b) € tP(MeM) and (c,d) € L9 (MoM) satisfying (34).



By Proposition 24 applied to LP(MeM) thjc implies that

. ' l{a+b,a-b]ﬂp < 2V/a

for all (a,b) € LP(MOM) with u(a,b)np =1 . (33) follows. [

"

By Clarkson's inequality, the Banach space LP(M) , where

2<p<>, is uniformly convex. Hence it is reflexive (see e.q.

" t3Ls pe 127, Theorem 2]).

" Theorem 32. Let PE[1,o[ and 1/p + 1/q =1 .

1) Let a € L9M) . Then T

, defined by

©,(b) = tr(ab) , be P ,

.

is a bounded linear functional on LP(H)

2) The mapping

a»;pa

is an isometr;c isomorphism of 19 (M)
of LP() .

Proof. By Proposition 24, a w 9, is an isometry of 1L9(mM) onto

3 subspace of the dual LP(M)+ of LP(n) Since 19(M) is

complete, this subspace is closed. It follows from Proposition 24

that it is w*-dense (its orthogonal in LP (M) vanishes).

Now if p > 2 , ‘the space LP(M) is reflexive. Hence LP(p)»

is also reflexive and thus the w*-closure of the subspace Lq(M)
is equal to its norm closure. Hence 19(M) = LPys |
If p<2, wehave g > 2 and thus LP(M) ~LiMe via tr .

It follows that LPmn* ~ L9 ee ~ L9M)  (via er) | |

onto the dual Banach Space

- .7

+—-=1. Let

proposition 33. Let p,q € [1,o] with

ol
=

a€L¥M . Then a >0 if and only if
37}
vb € LP(M), : tr(ab) > 0 . (

Proof. If p,q € (1,2} , the result is well-known. Now assume
- 5, % 1 = s
that p,q € 11,»[ . If a€ LM, , then a'ba’ € L' (M) NN,

L‘(M]+ and hence
tr(ab) = tr(akakb} = tr{akbaki >0 .

. - g
Conversely, suppose that a € L9(M) satisfies (37). Then a

. . i
tr(ab) = EX(abJ = tr((ab)*) = tr(ba*) = tr(a*b) i

since

4 [P
K al) = (a-lal)/2 € L7{H), -
for all b e 1P, . Put a, = (aal)/2 .2 = (a 3

e a=a = a aI'ld a, a =0 . Put = a . Then
Then " '

b€ LP(M), sothat tr(ab) > 0 . Now
b) = -tr(a_%) . .
tr(ab) = tr(a,b) - tr(a_b) = -tr(a_ S

It follows that tr[a_q) =0 whence a_ =0 and

a=a+eLq{M}+- I

For each p € [1,»] we define left and right actions A and

Pp oOn tP(M) by

Alx)a=xa, actPm , (38)
P

ax , a € Lp“‘”. ' g (39)

pp(x}a

P(M) into itself
for all x e M. That Ap{x) and pplx) map LY (M)

t
follows immediately from Definition 9. From Lemma 16 and the fac
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h
that xN(¢,8) < N(lIxle,8) for all x € M and ¢,6 € m Wi
3 + !

get

VX € M va € LP(M): 1xal_ < Ix1 lal
P = = p -
Since ax = (x*as)* | e also have

¥Yx € M va € LP(y): laxlp < Ixt_1an

Hence .
lp(x) and pp{x} are bounded linear operators on LP (m)

Proposition 34.

Let p € [1,m] .

1
) xp (resp. ppl is a faithful Tepresentation (resp.

ant;-representation) of M on the Banach space LptHJ

2) For all x ¢ M , we have

Jp AP{XJJP = pp (X*J v

where J j
; P denotes the conjugate linear isometric involution
awa*t of Py .

3) Let 2z bpe an element of the center of M Then

Ap(z) = pp{z) .
Proof. 1) su
PPose that Ap(x) =0 . Then

P
Ya € L7(M) vb € LI(M): tr(xab) = tr(,(x)a)b) = o

3
Since L'(M) = LP(y) . L9 (M) X must be 0

2) For all a € Lp[M) + we have

(Jpxp(xJJpl(aJ = (xa*)* = gx+ = pp(x'}a .

3
) Clearly, A(z) = p_(z) It follows that

(40)

(41)

- §5 &

va € L1(M) Vb € L®(M): tr(zab) = tr(abz) = tr(azb)

whence In particular

11(21 = 91{21 4
Ya € L1(H)+: za = az ,
whence by spectral theory

va € L1(H}+= 231/9 - é1/pz 2

Thus A (z) and p (z) coincide on P (M), . Hence 1\ (z) =

pp(2) - 1
Proposition 35. For all p € [1,=] , we have
= ! = M) (42)

XP(H) pp(H) and pp(H) lp( )
(where pp{M]' ., Tresp. lp(H}' , denotes the set of bounded
linear operators on LP(H) commuting with all pp{x) s X EM,
resp. all xp(x} s X E M) . )
Proof. Obviously

’ M)' .

IP(M) c pp(M) and pp(M)_E lp( )
To show (42) we need only prove either RP{M] =) pp(H}' or
pP(M) =) IPIM)' . Then the other one follows by Proposition 34, 2).

(i) First suppose that p = = - Let T € A_(M)' . Then

va € L™(M): T(a) = T(a1) = aT(1)

whence T = p (T(1)) € p_(M) .

(ii) Next we consider the case p =1 . Let S E 11(Ml' a

Denote by T: L”(M) - L™ (M) the transpose of S given by



tr(T(a)b) = tr(as(b)) , a € L") , b € L' (M)

Now

VX €M vVaEL™M) vboe L (m: tr(r(anb)

Thus T € p_(M)' and hence T = A ly) for s

follows that

va € L”(M) vb € LV (M): tr(as(p))

whence 5§ = pq(y) € 91(M) 5

(11i) Now let PE MM, . Let TE¢ l M.

define a linear mapping s: L M) - 1! (M) by

tr(axs (b))

= tr(as(xb))

tr(T(a)xb)

ome yeEM. It

tr (T (a)b)

tr(yab) = tr(aby) ,

We want to

% n n
s( r ba ) = I b, T, ' (43
img 2 gy i )
for al) a,,...,a € LP(M) and bireeosb, € LIM) . Pirst let us
show that
n ' n
Iba, =0 -1Ib, T(a ) (44
1= 174 =1 1 "4 )
so that § is well-defined.

n

Suppose that biai =0. Put a= ( b
i=

z
i=1
Then all a;%a; < a?

1
- Hence there exist X
that

Then

a *ai) € LP{M}

....,xn € M such

. e . e e — A
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\i=1 i1 1
and
upp( x bixi) = BUEP-R
whence
n
T b.x, =D .
{=1 i1
1t follows that
n 1 . =
z b, Tla,) = I b, T(x;a) = I byx; T(a) = (i§1blxi)T(a} 0
1=1 =1 VR '

as wanted.

We have shown that S: L1{H} - L1(Hl is a well-defined linear

1
map. It is also bounded. Indeed, any c € L (M) may be written as

a product c¢ = ba where a € tPM) , be LM , and fel, =

all . . Then
Iblq 1 p

IS(e)ly = IbT(a)l, < Ibl IT{a}lp < Iblq 1Tl IalP = 1Tl lely .

Finally, since
vx € M vb € LI(M) va € LP(M): S(xba) = xb T(a) = x S(ba)

we have S € 111M}' . Hence S = p1{y] for some y € M .

Now

b T(a) = S(ba) = bay = b pply)a

for all b€ L9(M) and a € LP(M) . It follows that

= M as wanted. §
T pp(y) € pp( )

We shall denote 12 and ¢, simply by A and p , ané J,

2
by J (i.e. Ja = 2* for all a € L"(M)) .



The . |
orem 36. 1) X (resp. p) is a normal faithful representation

(resp. anti-representation) of M on the Hilbert space thnj

2) The von Neumann algebras A(M) and p(M) are commutants

of each other, and
plM) = J A(M)J

3 2 2
) (M) ,L°(M),J,L (M),) 1is a standard form of M in the
sense of [ 4, Definition 211

Proof. For all x € M and a,b € LZ(H] we have

(A (x)alb) = B - :
2y " EEBT) = trixen)a) = (amx*:b}Lzm

so that 1 is a *-representation.

Cyye
Suppose that x, » x in M . Then for all a ¢ LZ(M)
r
have

we

“(A(x,)a =
i Ia}L2 tr(a'xia] = tr(xiaa‘) = <xy,aa%>

(M)

7 <x,aa*> = tr(xaa*) = tr(a*xa) = (A (x)ala)
L% )

2
) follows immediately from Proposition 35 and Proposition 34 2)

3) o .
hat L (M)+ is a self-dual cone follows from Proposition

33. Now

(1) JAMI =p(M) = A(M)"' ;

ii =
(i1) I x(z)a p(x*) = X(z*) = x(z)* for all z in the center

of M ;

(i11) for all a ¢ LZ(H}+ + We have a* = 3

(iv) for all 2
aeEL {H)+ and X € M , we have (A(x)J x(x)J)a =

AMx)p(x*)a = * 2
= xax* € LT(M), . H
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Independence of the choice of 9 * The spaces LtP(M) and their

relations are independent of the choice of ¥y (and hence canonical-
ly associated with M) . This is a consequence of the following
theorem and its corollary when we recall that the spaces

(LPIM}.I-IIPI are defined in terms of N , (6 ) ge + 2nd T -

Let o, and ¢, be normal faithful semifinite weights on

T
M . We view the crossed products N0 = R(M,0 01 and N1 =

P
R(M,0 1} as von Neumann algebras on thruu} . They are generated

by my(x) , x €M, (resp. my(x) , x € M) and Me) v & &R
where
g 04
(g (x)E) (£) =0_ "(E(E) , (myGIE)(E) = 0y "ELE)

(A(s)E) (£) = E(t-s)

for all £ € L2(R,H) , t € R.
Denote by s » B the dual action of R in N and N1 :

Recall [18, Section 4] that each 6/ has the form

(u5) 4

= -1
8, (y) = U Yug

where is the unitary on Lzlnhln given by
(ugk) (t) = eistey) L eeti(mE), te R, ()W
Denote by Tg ¢ respl Ty o the trace on “0-' resp. N, ,

given by (14).

Theorem 37. There exists an isomorphism

such that
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- (47)
and

-1
Ty = Tp0k . (4b)

Proof (cf. [1¢, Proposition 3.5)]). We define a unitary u on

L2 (R,H) by
(WE) (£) = (Dpy:Doy) _ E(t) , E € L2(RH) , t € R.
Now
¥X € M: u nO{x)u‘ = n1(x} (49)
and '
¥s € R: u A(s)u* = u1<{w1=m0}s*n{s} (50)
Since
®
= H 0
(um, (x)u*g) (t) {Dw1.Dwo)_tu_t (x)(Dw1=D¢0)_t*Ett)
94
=o_, (XE®) , teER,
and .

(uXS)urE) () = (Dwy:Dwg) _y (Dog:Dog) _ (\ o *E(ts)

®
(D94 :D0g) _ ((D01:D0y)_yo_, " ((Dwy:Dwy) ) *E (k=)

P

= L4 0
(Dto1.DtpD)_tu_t {{Dw1:ptpols‘) (Dw1:Dwol_t‘E(t-s}
94

lo_p (Do :De) *)A(s)E)(t) , te R

for all x €M, s € R, and £ € L2(m,u) .

Hence « = u(:)u* maps N0 into N1 - Similarly, u*(:)u

maps N; into Ny - In all, we have shown that

K: N0 - N1

in an isomorphism of N, onto Ny -

o ——— 1 o | ——
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Obviously, u commutes with each bg (see (46}, and hence

¢ commutes with each Bs ' Ii.e. (47, .
A
Denote by T0 » resp. Ty . the operator valued weights

introduced as in (6). Then for all x € {H0)+ , We have

(s ds) = my T xfe kT (x))ds)

Ty 2= Ty
e n Vs nds) = Tk )
-0 ’s 0
i.e.
'I‘1 = T0 cn—1 '
whence
;(1} = ;{0] OK-‘i
: 1
for all normal weights on M (here, (0) , resp. L ;, denotes
dual weight construction w.r.t. N, , resp. N4) . In particular,
s () o (0) -1 -
1 L
whence
~ -1 ~ (0) =1, | ool -1
le1t1}=D[1ocx }}t = (D{m1 ok ) @ D(.Oox ))t
~ (0
= r(tDm1{ ]=DTG)t}
~ ~ ~ (0)
= x{(Dwito)=Dw0{0}}t)n(l000{ :Dro)t)
= nlno(iDc‘:DwU)t)}x(R{t}}
= n,((Dw1=awu)t}n1tlDw1=Doo)t')h(t}
= A(t)
for all t . Hence T on—1 =T - |
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Corollary 38. :The mapping x: N, - N, extends to a topological

*-isomorphism

For all ¢,6 € R, , we have

(0)

x' e,80) = N (g .

Proof. We can define x by

~

. ?(y) = uyu* , y € ND S

Since 1y = 150 k! %K (y)  is T,-measurable when y is

Ty-measurable. [

The semifinite case. Suppose that M is semifinite. Then there

exists a normal faithful semifinite trace Top ©on M, and for the

construction of the Lp{M} » We may assume that 0 = 10'_ In

this case, we have (when identifying LZ{IR} with thnu

via 3
Fourjier transformation) ;
R(M.qu) ~ M@ L™(R) ;
for all x €M, £ €L”(R), and s € R we have
05 (x0f) '~ x 8 1(s) (f) , ;
where §(s) denotes translation by s in LZKBU - Fipally,

Tx>1, @ e ® as .

Now one can show that for al) pE[1,=],

where LP (M, Tol
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Py ~ LP(M,7y) @ exp((+)/p)

is the

L?

space with respect to the trace @,

as defined at thée encé of Chapter I.



III

SPATIAL DERIVATIVES

Spatial derivatives were introduced by A. ¢vnnes in [1]. In
this chapter, we give an alternative definition (equivalent to that
given in [1]) suggested to us bj U. Haagerup, i+1sed on the notion of
the extended positive part of a von Neumann al-ebra. This definition
permits us to obtain very easily some elementaiy properties of
spatial derivatives. After this, we recall thelr main modular

properties and the characterization as (-1)-homogeneous operators.

Definition and elementary properties of spatia!_derivatives.

Let M be a von Neumann algebra acting on 4 Hilbert space H ,
and let ¢ be a normal faithful semifinite weldght on the commutant

M' of M.

We shall use the following standard notat lon: hw =
{y € M'" | ply*y) < =), H, the Hilbert spac completion of ng
with respect to the inner product (y1,y2) - wle*Y1) ’ hﬁ the

éanonical injection of n into H n th» canonical

v y '
representation of M' on H

¢ "
Definition 1. For eéch £ € H, we denote by R¢{g) the (densely

defined) operator from H¢ to H defined by

¥
RUOA W) =yE, yen . o
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Proposition 2. For all 5,51,52 EH, x€EM, and y € ¥' we

have
0 rYEey) = ’¥p + ¥y
(i) rRYxg) = xr¥(e) ,

(114) yr¥(f) < n*(g}nwty} i
and

(e ’¥ipe + R¥ g, RV (g ey
10+ ’RVxe)s = RY(g)axe ,

(1i1)+* nw(y}R¢(£)‘ c R*tﬁ)‘y .

Proof. (i) and (ii) are immediate from Definition 1. (iii) : For
2l z €ny . we have yRY(E)A,(2) = yzg = RY(0)A (y2) =
Rw{sruw{y)ﬂw{z) :

(1)*, (1i)*, and (iii)* follow from (i), (ii), and (iii) using
g + g0 e ¥ e 4% (6,00 L r¥ie))e = R¥(E)oxe . ana
(y*r¥(£))% = RV (g) ey . 1§ '

Definition 3. A vector £ € H is called Y-bounded if the operator

Rlel is bounded. The set of y-bounded vectors is denoted D(H,y)

Notation. If £ € D(H,y) , R*{g} extends to a bounded operator

Hﬁ‘a H which we shall also denote thE} .

Proposition 4. The set D(H,y) 4is an M-invariant dense subspace
of H.
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Proof. That D(H,¥y) is an M~invariant subspace of H follows
from Proposition 2, (i) ané (i1i). Denote by e the projection
onto D(H,¥) ; then e € M' ., Suppose that e *# 1 . Then

Y(1-e) > 0 . We can write § = I <o
: T3 ST AT

Then for at least one T, + we have {(1_E)Cil:1, #+ 0 so that

for certain ‘1 € H .

l‘l-e)ci # 0 . On the other hand, we have
2 i 2
Yy € ny: Iyg 17 < yly*y) = Ihw(y)l

so that t; € D(H,¥) and hence et;, = &t; . This is a contradic-

tion. Hence we must have e = 1 and D(H,y) is dense in H. 1

Let £ € H . .By Proposition 2, (iii)s*, D{Rwlgl'] is invariant
under the action of M' . Hence thé projection p onto ETEwTET:T
is in M . Considered as an operator from pH to H* ' Rw[E)*
is closed and denseiy defined and hence IRw(E)‘I2 exists as a
positive self-adjoint operator on pH which by Proposition 2,
(1ii)*, is affiliated with pMp . We denote by 8Y(£,E) the
element of M

L (the extended positive part of M) associated with

the couple (pH,IRw(Q‘Iz) as in [ "}, Example 1.2 and Lemma 1.4],
i.e.

Definition 5. For each £ € H , we denote by

8¥(z,6)

the element of M, _ characterized by

. IR () *r12 it n e p(RY(6)%)
Vo € H: <u 0¥(g,0)> = {

o otherwise
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Remark 6. If £ € D(H,y), we simply have

8% (,6) = RV (e)rV () * .

Proposition 7. For all £ € H and x € M ; we have

0V (xE,xE) = x . 0%(E,E) - x* .

Proof. For all n € H , we have, using Proposition 2, (ii)*,

and Definition 5

<w

<u, o8¥ (xg,xE)> oY (E,E)>

n x*n,x*n

= cx*-mn'n-x,aw(£,5}>

- .oV :
= <mnm,x 0V (E,E)x*>

where the last equality simply follows from the definition of the

operation mw x.m.x* in M _. [

(3)

Recall that by [ "%, Proposition 1.10], every normal weight ¢

. has a unique extension, also denoted ¥ , to a normal weight on

~
H+i

Definition 8. Let ¢ be a norma; weight on M . We define

q¢= H -+ [Or““]

by

9,(8) = <o,8%(6,8)> , cen |

Proposition 9. Let ¢ be a normal welght on M . Then 9 is

1.s.c. quadratic form on W i.e

(4)

a
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(1) YE /6, € H: 9, lE4+Ey) + g (E4-6)) = 29,(84) + 29,(55)
(11) VE € H VA € € g (AE) = a2 q,(8)

(111) qw is lower semi-continuous.

Proof. (ii) is immediate. For the proof of (i) and (iii), first

suppose that ¢ = p " for some n € H . Then

n:m
IRV (£)*n12 if n € D(RY(E)*)

v =
= 8 (E.E)> = { - (5)
qwlg) “nin e - otherwise

Let €406y € H . We shall prove that

9 E4+Ex) + 9, (647E,) < 2q,(E,) + 29, (E,) - (6)

If either 1 ¢ DlR*{;i}') or n ¢ D(R*(Ezl‘} + the right hand side
of (6) is += and hence (6) holds. Now suppose that 7 € D(R*(£1l’j
and n € D(R*(EZ)*) - Then by Proposition 2,(i)*, also

n € D(Rw(£1+521‘) and n € D(R¢{E1—£2}‘] . Furthermore,
1RV (£ 4,0 1% + 1RV (g ,-£ ) *mi 2
= IRV (g ) #n+r¥ (g ) *n1 % + 1RV () #n-RY (£,) #ni 2
= 2r¥ (g, em? + 21RY (g *m 2 .

Thus we have proved (6) in all cases.

By (6) applied to €4+ & and g, - g, we get

In all, we have shown (i).

By (5), we have
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<mn,n.e*{s.c}> sup{1 (R (£) *n1 )12 ‘ ¢ € p(RY(E)), ngr < 1}

sup{1 (nIR¥(E) A

]

ty)}tzl y € ngs IAWE < 1)

v v

sup{llnlyEH2 | y €n,, i, T < 1}

for all E£E € H . Since each § = |(n|y£H2 is continuous, this

implies (iii).

Now let ¢ be an arbitrary normal weight. Then we can write

= I w
ier Mi'My

and thus (cf. the proof of [ 7, Proposition 1.10])

VE € H: q (§) = <0,8Y(E,E)> = I <uw Ve .

iex Ni'Ny

Now “(i) and (iii) follow by the first part of the proof. N -

Remark 10. Let ¢ be a normal weight on M . Write
Dom(qw] = {EeH | qw(E} < w} . (7)
Then for all x € Ny and E € D(H,¢) , we have
X*E € Dom[qw) . (8)

Indeed,

qw(X*E) «w,ew{X*E,x*£l>

<w:x‘-ﬂ"; (E,8) x>

16V (E,E)0 <0, x%%> < = .

1A

In particular, if ¢ is semifinite then

Dom(qw} is dense in H

(since nw‘ is strongly dense in M)

Forwr

-3
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Definition 11. For each normal weight ¢ on M,

spatial derivative g%

we define the

as the unique element of B?HJ+ such that

VE € H: <uw do, . <¢fﬁvl5r§1>

£.5"dy ' )

The existence of g% follows from Proposition 9 and [ #, proof

of Lemma 1.4].

Remark 12. If ¢ 4is semifinite, %% is simply a positive self-

adjoint operator on H (since in this case,

g__'f w} =
(; € H I <Wg pray” < } Dom(g,) is dense in H) . Note that
dg\ ¥, 2 dg\*
1(8) @ 1 e e((3))
VE € H: qw{ﬁ) = { . (10)

w otherwise

We shall see below (Proposition 22) that the definition of %%

given here agrees with that given in [1 ). (This is not quite
obvious. Note that in [ 41, Lemma 6], the quadratic form gq 4is only

defined on the subspace D(H,y) , and then extended by [41 , Lemma

5] to the whole of H .)

Lemma 13. Let

W05 4 {w1}1€1 , and ¢ be normal weights on M

and let x € M . Then

(1) vm € ﬁ+: <Oty Mm> = <@ m> 4 <y M,
(ii) wvm € ﬁ+: <Xe@eX*,M> = <ip,X*amex> ,

(1ii) 4if 0y v, then vmeE ﬁ+= <wi,m> } <p,m> .

Proof. (i) and (ii) are immediate consequences of [ 7, Proposition

1.10] (or its proof). As fer (iii), we have by the proof of [ 7,
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Proposition 1.10], using the notation from there,

n
<, ,m> = SUp<y ,I A de.> + «=-p. {p)
; n 3 0 % *

n
P sup<m,l A de,> + w.p(p) = <9,m> . h
n 0
Theorem 14. For all normal weights ¢, ., @, and ¢ on M and
all x € M we have

d(¢1+®2) doy do,

et 4 Wni B
(b) _L*L_d X+ x*) = x.gg.xt 4

dy dy

Remark 15. The sums and products occurring at the right hand side
of (a) and (b) are to be understood in the sense of the operations
in B}H)+ . In particular, if ©q ¢ 0y v 90, +e, are senifinite,

ﬂw1 dwz
—a;-+ e is the form sum of the positive self-adjoint operators

du, d¢2 -
- and = similarly, if x.@-x* is semifinite, X B . X*

is the form product.

Remark 16. In [ 11, the sum property is simply stated without
i proof. It seems to be difficult to give a proof using only the
methods of [ 1] (one only gets ">") .= The product property is

stated (and proved) only for invertible x € M .
Proof of Theorem 14. Let £ € H . Then, using successively
pefinition 11, Lemma 13, Definition 11 again, and the definition of

the sum in B{H), , we get

Similarly,
d(x-p-x*)
<Wp g ay >
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<w1+w2.8wl£.£l>

<w1.6${E.E}> + <w2.8*l£:E}>

dy - dwz
Seg ME T 6 6T
dw1 de

+ —=>

£, ay = day

<w

<x-9-x*,8Y(£,£)> = <o, x*-0¥ (£, ) x>

do

<0,8% (x*£,x%€)> = <Uyxp,x*E’ Ay

. - d_f.D = -g-"-p-. »
<X mE'E X, d'p)- “Cl'.llg'a; X ay xX*>

where we have used Lemma 13 and Proposition 7. | |

Theorem 17. Let

Suppose that

Then’

(wi}iEI and ¢ be normal weights on M .

Remark 18. In particular, if ¢ is semifinite, we have

do
i d .
v r E* ip the usual sense of positive self-adjoint operators.
Proof of Theorem 17. For all ¢ E'H , we have by Lemma 13
dy
s g v
e p @Y T <y, 07 (£, E)>

} <w,E¢IE.E)> = ‘”5,5' %%> . |
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Lemma 19. Let ¢ be a normal semifinite weight on M . Write

P =supp © . Then for all m € ﬁ+ , we have
<pm>=0 &« p-m-p=20.

Proof. Let m = j; Ade, + @ - (1-r) be the spectral

m . Put xn'= IE Ade, , n € N. Then

<p,m> = 0 & ¥Yn € N: (m,xn> =0 and <y,

« ¥n E_N:p-xn-p=0 and p -

o. 1

L}

# p.m-+p

resolution of

1-r> =0

(1-r) - p =0

Theorem 20. Let ¢ be a normal semifinite weight on M . Then

supp(%%) = supp(y) .
In particular, %$ is injective if and only if ¢ i

Proof. Put p = supp wy € M . Now for all EEH,
Lemma 19 and Proposition 7:
dy do_
£ € ker(dw) W S FuF 0
« <0,0%(,6)> =0
« p-o¥,8) -p=o0
. Bw(PﬁrpE] =0
- p[—: =0

# EE (1-p)H .

Since ker(%%) = supp(gﬁ)l . the result follows. W

(11)
s faithful.

we have, using
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Proposition 21. Let £ € H . Then there exists a sequence
) nen 1in Dtﬂﬂﬁl satisfying

ﬁn-oE 45 N+ o
and such that

qwtgn) - qw(g} as n + = (12)
for all normal weights ¢ on M .

Proof. Let

B*(£,€) = I’ ldel + e+« (1-p)
0

“be the spectral resolution of ﬂ*(E,E] - Then p 1is the projection

onto D{RE{EJ') - FPor each n € N, the operator R*[enzj* . being
closed and everywhere defined (since Rw[enil' = R‘{E)‘en) , must be
bounded; hence RY(e £) is bounded and e £ € D(H,}) .

Take a sequence (cn)nEIG in D(H,y) such that i £
(possible by Proposition 4). Then also {1—p}cn € D(H,y) .

Now for each n € N, put

G e £+ (1—p)cn € D(H,y) .
Then

Ea=PE+ (1-P)E = as n o .

We claim that {En}nEIG satisfies (12).

Hence, let ¢ be a normal weight on M . We consider two

cases. If <w.0w{£,zi> =, (12) is trivially true; indeed, by the

lower semicontinuity of qIp + we have

oS qwtﬁi < lim inf qw(En)

N+
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Now suppose that <w,8¢[£.£}> < o . We can write

= I w
cdex MieMy

for certain n; € H . Then all

] v
<w 107 (E,E)> ¢ = -
T'Iirfli

so that n, € D{thﬁ)‘} c pH, whence

mninni 5 p.wﬂiiﬂiop :
Hence
& w:p.wnp.
Now using

P -ewlan,sn} 'p = 0¢lp§n.p£n}
= o¥(e Ere )
-0 Bw(E,E) .

rp-0¥,8) - p
it follows that

<w.8len.£n}> <m,p-8w(£n.sn)-p>

b <m.p-9w{E.E)-p>

= <w,BwIE.EJ> . |

Using Proposition 21, we can now prove that our definition of
g% agrees with Connes' [ 1 ]. Note that we also prove the existence
of a biggest positive self-adjoint operator satisfying (13) below

so that we do not need [4, Lemma 5).
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Proposition 22. Let ¢ be a normal semifinite weight on M .
1) The operator %$ is the biggest positive self-adjoint opera-

tor d satisfying

1a%12 1f £ e pah
i { (13)

) vE € D(H,y): qwtﬁ} g .
o otherwise

2) The operator %% is the unique positive self-adjoint opera-
tor satisfying (13) and

d* = I_clls . (14)

% 1
D(H,y) nD(d’?)
Proof. 1) The operator %% is characterized by (10). Hence, in
particular, (13) holds. .
Now let d be any pésitive self-adjoint operator satisfying
(13). We shall prove that d <

2ig

. Let E € nl(%flgl . By

Proposition 21, there exist £, € D(H,y) such that £, =& and
qw(En) - qw(E) g
On the other hand, the mapping p: H + [0,»] defined by

ld”gl2 if £ € D(dkl :
plg) = { (15)
o otherwise

is lower semi-continuous (since p(f) = J; ld(exEIE) =

sup IS AdleyE1g) , where d = J: 2de, is the spectral resolution

of d) , whence

Y 2
P(8) < lim tnf q (g = q (0 = |(§)7]" .

N=weco

This shows that d < g% )
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2) First, let us show that d = satisfies (14). Let

d
dy

£ E D(dg) . Take a sequence -({n)nEN in D(H,y) as in Proposi-

ticen 21. Since qwtgn] - qw(E] = ld!’gl2 < ® , Wwe may assume that
all q () <=, i.e.all £ €D(H,§) ND@") . Now £ = and
1dgzn12 - 1a%0% . 1t follows that d*gn - d% . Indeed,

0 lim sup Id!i E-dkanl 2

N—bco

A

lin sup(21a*g1 2218 1 2-1a%grad 1 ?)

N L]

21a%1% + 2 Lmia®ena? - 1 infrairate 0% <o .

N-+o n-woa

Next, assume that d is a positive self-adjoint operator
satisfying (13) and (14). We shall prove that then d is the
maximal positive self-adjoint operator satisfying (13). Define
p:"H = [0,=) as above (15). Then

, I
VE € H: q () < p(E) .. (16)
Indeed, if £ ¢ D[d%] » this is trivially true; if [ € D(dkl 3

take, by (14), En € D{H,$II1D{dE} such that
S = and dggn - dhg 5
Then qwlﬁn) = IIdgi:nIl2 - ld;’EI2 = p(f) so that
4p(E) < lim inf qw{gn1'= plE) .

N0

Finally, (16) implies that g% < d, whence %% =d by1). H

We recall [ ; vrocl of Theorem 9):
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Example 23. Let M be the left algebra associated with a left
Hilbert algebra QU in H . Let ¢, , resp. y, , be the
canonical weight on M , resp. M' , associated with a=- ,

resp. (' . Then
deg .
—3 = 4,
dﬁo

where A 1is the modular operator associated with 0 -

Spatial derivatives are preserved by spatial isomorphisms:

Proposition 24. Let M1 be a von Neumann algebra acting on a

Hilbert space H1 . Suppose that

u:H-B1

is a unitary such that

* = .
uMu H1

Then for all normal semifinite weights ¢ on M and all normal
faithful semifinite weights ¢ on M' , u.9.+u* and u-.y.ut

are weights on M, and H1' respectively, and we have
dlu-geut) _ do
d(u-yp-u*) dy ‘

The proof is left to the reader.

Modular properties of spatial derivatives.

Here, we first recall, without proof, some main results from
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[ 1] and then state some immediate corollaries. For the first

theorems, recall that the spatial derivatives occurring in them are

injective by Theorem 20.

 Theorem 25. Let 0y and 9, be normal faithful semifinite weights

on M, and let ¢y be a normal faithful semifinite weight on M' .
. Then . -

dpyyit d) it v
Yt € IR: {D(p.l:bwz)t = (_(ﬁ;_) \‘UTF) .
Theorem 26. Let @ and ¢ be normal faithful semifinite weights

on M and M' respectively. Then

-1t
. & 9 . d \ dj
(1) vxEeEMVYEER: 0,°(x) = (_‘Edw (d*) 2
& -1t it
1 i ¥ - (8¢ d
(14) vy eM vt € R: o, Y(y) (dw) (6'3) )

Corollary 27. Let ¢ and ¢ be normal faithful semifinite weights

on M and M' , respectively. Then

(1) %% n M' if and only if ¢ 1is a trace,
(11) %% nM if and only if ¢ is a trace,
(111) %% n 2(M) 4if and only if both @ and ¢ are traces.

Theorem 28. Let ¢ and § be normal faithful semifinite weights

on M and M' , respectively. Thén
-1 -
dg = 2%
(dw) dp °

Property (ii) ir Thecrem 26 charactcrizes operators having the

d
form E% :

-au_

Theorem 29. Let ¢ be a normal faithful semifinite weight on M' ,

and let a be a positive self-adjoint operator on H . Then the

following are equivalent:

(1) a= %% for some (necessarily unique) normal semifinite

weight ¢ on M,

(14) Vy € M' Vt € R: u_t"(y;ait =ttty ,

Note that © v %‘1’7 is injective by (9) combined with [1,

Proposition 3].

Corollary 30. There is a bijective correspondencé, characterized by

the equation

dt

at’ = 1 g 17)

between the sets of normal faithful semifinite traces = and 1t'
on M and M' , respectively. (In particular, M is semifinite

if and only if M' is semifinite.)

Proof. Given 1 , there exists by Theorem 26 and 29 a welght 1’
on M' such that é?r =1 ., By Corollary 27, t' is a trace.

Conversély, given 1' , by the same arguments, we can define t - W

In case of algebras on standard form, this correspondence

reduces to the usual correspondence given by J :

Corollary 31. Suppose that (M,H,J,P) 1is a standard form of M in
the sense of [ Y4, Definition 2.1]. Then for all normal faithful

semifinite traces 1 on M we have

' =23-J

Y )

————
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Proof. Let u be the (unique) unitary carrying (M,H,J,P) onto

lH,H_;JT,PT) - In H_ we have by Example 23

dt -
dr(J - J) T

Hence, by Proposition 24, also

dt -
drt(J - J)

in H, whence t'=1(J-J3) . B

Corollary 32. Suppose that M is semifinite and that t and 7'
are normal faithful semifinite traces on M and M' related

by (17). Then for all normal semifinite weights p on M , we

have

do 't
Yt € IR: (dr‘) = (Dtp:DtJt .

Otherwise stated, for all positive self-adjoint oper&tors hnM,
we have

drt(h -)

dt’ =h.

Finally, we recall the notion of Y-homogeneity.

Definition 33. Let ¢ be a normal faithful semifinite weight on '
M' , and let y € R. A closed densely defined operator a on H

with polar decomposition a = ulal is called y-homogeneous with

respect to ¢ if

u€EM and Vy € M' vt E_IR:oTtw(;:Jla{it = lalit y . (18)
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One can show (see [ 20, Proposition (1.1.6)]) that (18) is

equivalent to requiring
yacac w{y) (19)

for all y € M' analytic with respect to 0? 5
Note that the 0-homogeneous operators are precisely the opera-
tors affiljated with M , and the (-1)-homogeneous positive

self-adjoint operators are precisely the dy

ay As a corollary of

Theorem 29, we have

Corollary 34. Let ¥ be a normal faithful semifinite weight on
M' , and let p € [1,»] . Let a be a closed densely defined
operator on H with polar decomposition a = ulal . Then the

following are equivalent:

(1) u€M and lalP = %% for some normal semifinite weight ¢

on M,

(1i) a 1s (-1/p)-homogeneous.
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'SPATIAL LP SPACES

In this chapter, we describe the Connes/Hilsum construction of
spatial. LP spaces.

Let M be a von Neumann algebra acting on a Hilbert space H
and let ¢0 be a normal faithful cemifinite weight on the commutant
M' of M.

The notation is as in Chapter II and III.

Definition 1. For each positive self-adjoint (-1)-homogeneous

operator a we define the integral with respect to ‘0 by

. Ja dp, = o(1) , (1)
wnere u is the (unigue) normal semifinite weight on M such that
& Jo.
a d¢0 -

Notation. For each p € [1,=] , we denote by

M_1/p

the set of closed densely defined (-1/p)-homogeneous operators on H .

Definition 2. Let p € [1,o[ . We put

LP(yy) = LP (M, 90 = (a € E_1/p | [Ialp dyy < =) (2)

and

1/1:' iie
tal, = (]mi’ diao) ca e Pryy) . (3)

For p = , we put

L?l¢0} =M : (4)

and write #-:1_ for the usual operator norm on M.

Note that when a is (-1/p)-homogeneous, the operator lalp is
(-1) ~homogeneous so that the integral occurring at the right hand
side of (2) is defined.

The spaces Lp(vo} are called spatial LP spaces (as opposed
to the abstract LP spaces of Haagerup). .

We now follow the first part of [40] to describe £ha relationship
between the Lp{wu} and Haagerup's PM) .

Let w, be a normal faithful semnifinite weight on M . Put

dwo
‘30=Ea : (5)
Then
LY -
vt € RV € M: 0, Ox) = dgit x 4, it . (6)

We define a unitary operator ug, on the Hilbert space LZ(EhH)
by
_ a it 2
(ugf) (t) = dy""E(t) » E €L (R,H) , t € R . (n

P
Recall that the crossed product N = R(M,0 0y is generated by the
elements n(x) , x € M, and A(s) , s € R, as described in the
beginning of Chapter II. We shall describe the action of uot-)uu'

on these generating elements.
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By (s) , s € R, we denote the operator of translation by
s in -thnu :

(2(s)£) (t) = f(t-s) , £ € L’(R), t € .

We identify LZ(R,H) with H @ LZ(R) (so that v @ f

r

veH, feL?(R, is identified with £ € L2(R,H) given by
E(t) = f(t)v , t € R) .
Proposition 3. 1) For all ‘x € M + Wwe have
u0 u(x}uﬂ‘ =xe 1.
2) For all s € IR, we have
u, Als)u,* = a5 g g (s)
0 0 0 .
Proof. Let E € L®(R,H) . Then

Iuo n(x}uU‘E) (t)

]
="

o s oy Ctma, e

x E(t) , t € R,
and

(ug A(s)ug*d) (&) = do*®(ugae) (e-s)

doltdo-i(t—s)“t_Sl

a,*%ct-s) , te R.

This proves the result since for E=veOof,veEH, f¢e Lzlnﬂ ’

we have

- BE =

n

((xe1) (vef)) (t) = (xv®f) (t) f(t)xv = xf(t)v = x £(t) +t € R,

and

i

((d, @i is)) (v8f)) (t)

(g 5ver (s) £) (t)

((s)£) (0 dy Sy

_ is
f(t SJdO_ v

dois E(t-s) , teRr. R

We denote by T the unique positive self-adjoint operator in

LZ(BU characterized by

Vs € R: TS = g(s) . (8)

For the definition and properties of tensor products of closed

operators we refer to [4%, Section 9.33).

Proposition 4. For all normal semifinite weights ¢ on M we
have
u, h uo‘ = S T

e @

Proof. First suppose that ¢ is faithful. Then

0y

i, -1t ol s T o & -
h"p h¢0 (Dm.DT]t(D1.Dw0)t (Dw.Dmo}t nHDu-D@O)t}

and

it ,de =it
; - (8o (._0)
(Do:Dw,) o (d%) v,

for all t € R, so that by Proposition 3 and the fact that

= A(t) for all t € R, we get
“0
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it -4t 1t .
U By Y (ughy thwo uo‘}luchtpu ug*)

(GANE IR (CRCEE)

. (_di)“ o pit
av,

for all t € R, and (9) follows.

In the general case, choose a normal semifinite weight x with

supp X = 1-p where p = supp w . Then ¢+ 1is a normal faithful

semifinite weight and hence, by the first part of the proof,

h u * = dlgtx) @ T .

Yo Tprx Yo av,

Since p = supp %% and w(p) = supp hw , this implies that

) u, hw uo* uotn(p)-hm+x'ﬂlpliun*

]

u, nlp}uo*- u, hm+x uo* ‘< Uy n{p]uo*

(p®1) -(M ® 'r)- (p®1)
d¢0

= [p.8lerx) | - do
(p dv, p)er d%eT. §

Corollary 5. The mapping
a - uo‘(a@T]uD

is a bijection of the set of positive self-adjoint (-1)-homogeneous
operators a on H onto the set of positive self-adjoint operators

P
h affiliated with R(M,o0 0) satisfying

Vs € R: 6_ h = & °h . (10)
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Furthermore,

ja dwo = tr(uo'(aaTluO} (11
for all such a .

dy
Proof. Since the mapping in gquestion is nothing but EEE » hIp '

it is a bijection by Proposition 4 in Chapter I1. By definition, we

Se » = . 8
have den dwn w(1) trlhwl

Corollary 6. Let p € [1,o]l . Let a be a closed densely defined

operator on H . Then

1) a € E'1/P if and only if
P
u ‘la@T1/p)u n R(M,0 0} 1
0 0
2) a€ Lp[¢0) if and only if

un*{a0T1/p}u0 € 1Pm) .

¥Yor all a € Lptﬁol , we have

& /Py, 4
ﬂalp = Huo‘(aaT )uULp -
corollary 7. Let p € [1,=[ . Then the mapping
ar uo*{a@T1/pluo o

is a bijection of ﬁ_1/p orito the set of closed densely defined

v
0
operators h affiliated with R(M,0 ) satisfying
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Proof of Corollary 6 and 7 . Let a be a closed densely defined

operator on H with polar decomposition a = ulal . Then

h = uo.*(uaﬂuo(uo‘(IaIO‘I‘)uu)VP

is-the polar decomposition of h = uD*(aoT1/p]u0 . Corollary 6, 1),
and Corollary 7 now follow from Corollary 5 and Proposition 3, 1)
(and the fact that aw a0 i1/p is injective). The rest af
Corollary 6 follows from the equation llalp dwo =
tr(lug¥laler/Pyu iP) . 1§

Proposition 8. Let p € [1,o] . Then for all a € Lp[wu) . wWe
have a* € Lp($0) and

lla* = Jla A
a Ip 1 lP

Proof. Let a € Lplvni . Then a @ T1/p € ug LP(H}uO* . Hence
also a* @ T1/p = (aeT1/p}‘ € u, Lp{Mon* - Thus a* € Lpiwﬂ) by
. 1/p 1/p
* = m |
Corollary 6 and la lp Muy* (a*eT )uoﬂp Iuo*(aBT )uollP
Ialp . |

1f we identify L?(R) with L2(mR)

via Fourier transformation,
T is simply the multiplication operator in LZ{IR) given by
multiplication by t w et + and similarly, for each p € [1,=[ ,
T1/p is simply multiplication by t et/p - This observation will
permit us to obtain information about operators a on H from

information about the tensor products a ® '1‘1/p . First we have:

Lerma 9. Let a be a closed densely defined operator on H and

f a Borel function on IR, and denote by m. the corresponding
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multiplication operator on LZIIR). Write

p=1{:¢€Ld(®Hu I £(t) €pla) for a.a. t € R

and .Ilflt}agttiﬂzdt < w} .-
Then D(aemf) = D and
l{aﬂmf}E}(t) = £(t)aE(t) , EED, tE€ R.

2
Proof. Denote by m(2,f) the operator in L"(IR,H) given by

D(m(a,f)) = D
and

lm;a:f)&)tt) = f{t}aE{t—} v E €ED, tE R.

Then m{a,f) is a closed operator and

m(a',?) c ma,f)*
(in fact, eguality holds). Now evidently

f
a e Il'lf E ﬂ\atf}

where a @ m_. denotes the algebraic tensor product of a and

£
and hence

a®om = [aGm¢] € m(a,£) .

Applying this to a* and f , we get

at @z c m(a*,f) .

Combining this, and using that (A®E)* = A* @ B* , we find that

m(a,f) € m(a*,f)* (a*gmz)* = a @ mg .

In all, we have showr that a & my Sm(a,f) . B

( a®m = o (a,4) )

!'flf [
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Lemma 10. Let p € [1,»] and a,b € Lp(¢u) ’

Then a+b is densely defined and preclosed, and
[a+b) € LP(yy) .

Proof. 1) Denote by e the projection onto D(a) nD{(b) . Then

(e81) L% (IR, H)

n

(£ € L2(R,H) | E(t) = e E(t) for a.a. t € W)

(g € LleR,H} | E(t) € D(a) NnD(b) for a.a. t € W}

1]

By Lemma 9, this set contains
p(aeT'/P) np(ber'/P)

Now since a & T1/p, b @ T1/§ € uo Lp{w}uo‘ y their sum is densely
‘defined. Hence D(a6T /P) npD(ber'/P) is dense in LZ(m,H) . It
follows that e = 1 . Hence D(atb) = D(a) ND(b) is dense in H .

'2) Now let us show that a+b is preclosed. By Proposition 8,
a* and b* are in Lp($0} and hence by the first part of proof,
Ia{ + b* 1is densely defined. Since a+b c (a*+b*)* , a+b |is
precloéed.

3) Finally, let us show that
[a+b) @ T/P = [(a0T/P) + (beT'/P)] . (14)

First, by the characterization of a ® TWp given in Lemma 9 we

obviously'have

(aer'/P) + (bor'/P) c [a+b] @ T'/P

whence

{(287"/P) + (per'/P)) c [a+b] © /P,
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on the other hand, asain by that characterization,

la0] ® T'/% ¢ ((a*67"/P) + (boar'/P))*,
and finally
((arer'/P) + (b*61'P))* = ((a07'/P) + (boT'/P)]

since * 1s &n involution in LP(M) (and hence respects the strong
sum). In all, we have proved (14). Now the right hand side of (14)

is in u, LP(H)uo* . Hence by Corollary 6, [atb] € Lplwol . l

e e

Lemma 11. Let p,pysp, € [1,=] such that 1/p = V/py + /P, -

P . P
Let a € L 1(¢0) and b E L ztwol . Then ab is densely defined
and preclosed and '

(ab) € LP(y,) .

Proof. 1) Denote by e the projection onto D(ab) . Then, using

|
Lemma 9, we have ]

p((aeT/P) (ber'/P))

(¢ € p(ber'/P) | bE(t) € D(a) for a.a. t € W}

c

c (£ € L2im,H) | E(t) € D(b) for a.a. t € R
and bg(t) € D(a) for a.a. t € R)

c (¢ € L2(®,H) | E(t) € D(ab)  for a.a. t € W)

c {g € L2 ®,H) | E(t) = eE(t) for a.a. t € R}

(e®1) L2 (R, H) .

Hence e =1 and at is densely defined.

2) By 1) applied to b* and a* , b*a* is densely defined.

Since ab c (b*a*)* , ab is preclosed.
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3) Finally let us show that
[ab) @ TV/P - [ (ae1'/P) (ber!/P) ] .

First, by Lemma 9,

(a07'/P) (ber'/P) < [ab) 0 2'/P

whence

[(aer'/P) (ber'/P) ) c [ab] 0 7/P |
On the other hand,

tab] ® T'/P c ((bver'/P) (aser'/P))» = [(a6r/P) wer'/P)]

The result follows as in the proof of Lemma 10. N

Now we are ready to transform the results on the spaces LP{M}
obtained in Chapter II into results on the Lp{wo) (for an

alternative, see [10]).

From Corollary 7, Corollary 6, 2), and Lemma 10 we now get:

Theorem 12. Let p € [1,»] . Then {Lpiwol,l-ﬂp} is a Banach
space with respect to strong sum.

The mapping a = uo*ta0T1/p)uo is an isometric isomorphism of
Lp(wol onto LP (M)

Notation. From now on, the strong product [ab] of operators

and b will be denoted a-.b .

Proposition 13. Let p,q € [1,»] with 1/p + 1/9 = 1 . Then for

all a € Lp(¢0) and b € quwui we have
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]a -b dpo = ]b +adyg .

1
Proof. We have a-.b € L1l¢01 and b-a € L (yg) , and

la +b dy, tr[uo'{(asT1/p) -{b0T1/pl]u01

1
tr(ua‘{aaT1/p)uD -uo‘{bOT /pJual

"

1
trluo'(ba’l‘vp)u0 -uo‘(aST /p}uol

= tr{uU*((beT1/pl -{aBT1/pl)u0}

]b +a d¢o . 1

The following results are now immediate corollaries of the

corresponding results in Chapter II.

Proposition 14 (HSlder's inequality). Let p,q € [1,»] with

1/p + 1/9 = 1 . Then for all a € Lpiwnl and b € Lq(wul we have

Ha-b]1 < Ialp Iblq 5

Theorem 15. Let p € [1,=[ and define q by 1/9q=1-1/p .

1) For each b € th¢0]  the mapping 9 defined by
wb[a] = Ja « b dlpo r A € Lp{"-l'o} '

is a bounded linear functional on quwul

2) For all b e L¥(y)) we have

Wbl = sup{lfa-b dygl | a € Lp[woJ, lal _ < 1}

P
3) The mapping

b~ Py
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is an isometric isomorphism of thwol onto the dual Banach space

P
«of L ("JO} .

Proposition 16. Lzlwol is a Hilbert space with the inner product

(a,b) = Ib‘ -a ay, -

We define left and right actions of M on Lz(wo) by

A(x)a = x-a , ac€ Ly ,

plx)a=a-x, acte€ thwo) "

for all x € M (as usual, ":" means "strong product”).

Proposition 17. The gquadruple [l,Lzlwo}.*.L2(¢0]+l is a standard

form of M 4n the sense of [§].

LP spaces with respect to a trace.
Suppose that 1 is a normal faithful semifinite trace on M .
Denote by t' the trace on M' associated with <t via - . 1

dr'
Now for each p € [1,«] , the (-1/p)-homogeneous operators with

respect to 1' are precisely the operators affiliated with M .

Let a be a positive self-adjoint operator affiliated with M .

Then

t(a) = [a dr' , (15)

since 1t(a) = 1(a +) (1) and (by Chabter III, Corollary 32)

- 9§ -

dtla +)

AT B (16;

It follows that for 2ll p € [1,=] , we have
P(x) = tPim,1) (17)

where LP(1') is a spatial LP space as discussed in this chapter
and LP(M,1) is as éefined at the end of Chapter I. Hence LP
spaces as defined in this chapter are generalizations of the
well-known LP spaces with respect to a trace. On the other hand,
all the results on LP spaces that we have proved in particular
P

apply to spaces with respect to a trace, so that we have

reproved the well-known properties of such spaces.

Change of weight.

Let wu and ¢1 be two normal faithful semifinite weights on

M' . Then by Theorem 12, there exists an isometric isomorphism

o: LP(yy) = LP(y,) (18)

characterized by

1 1 y
va € LP(yg): u *(0(a)eT' /Pru, = ug*(aer /Py, (19;
2 dog
where wu, is the unitary on L (IR,H) constructed from 61 3 o
ki
in analogy with (7).
For positive injective a € Lp[;OJ , we have @®(a) = b , where

b is the positive self-adjoint operator on H characterized by

vt € m: bPit . diitdo'itap & . (20}
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Indeed, if ¢ 1s the normal faithful semifinite weight given by

aP = d_‘?b{ » then for all t € R we have
- 0

it it dg.\it,dyp.\-it
dy LU de ” 0 ( 0 pit _ , it. -it pit
(dw1) (D%4:D¥y) -t(d%) (d¢1 &, ° di7dg Ta

and

u1-((é%%)1/pﬂT1/P)u1 = (u1=(é%% ® T)u1)1/p

n
F o
=
(=]
*
F A
o
45#%
(=]
@
—
=
o
—
—
~
o

1
e
*
M
@
e
—
~
g
e
£

Note. The operators hlp from Chapter I1 are themselves spatial

derivatives of ¢ with respect to a certain weight Xg ©on the

)
commutant u,*(M' @ B(LZ(BH]}UO of n(M) (where w(M) < R(M,0 0) is

acting on Lz(]R,H)). Indeed, by Chapter III, Theorem 29, there

exists a unique normal faithful semifinite weight Xg ©n this

commutant such that
dyp,\ it
vt € R: (—2) = A(t) = h 1t (21)
dxo i)
It follows by Chapter III, Theorem 25, that
it
vt € IR: (Jﬂ&) = h it
dxu P

for all normal faithful semifinite weights @ on M , and hence

d
h. = (22
P dxo )

B
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for all such © . By the usual methods (cf. the proofs of Chapter
I1, Lemma 1, and this chapter, Proposition 4), this also holds for
all normal semifinite not necessarily fajthful weights.

One can show that if (M,H,J,P) is a standard form of M ,

then

-1
Xg = uo‘-lwotJ -J) @ Tr(T *)) cuy

where Tr is the usual trace on B(Lz(nﬂ} =
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