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. What is diffeomorphism symmetry for discrete gravity?
. What is a perfect action?
. Coarse graining |d models
. Coarse graining higher dimensional models
Canonical formalism for discrete theories
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What is diffeomorphism symmetry in the
discrete!




Set up

etriangulation
elabels giving geometric data: variables
eprescription how to rebuild geometry

eaction as function of labels: encodes
dynamics/solutions

\ Regge calculus

*length variables associated to edges
edeficit angles: curvature
*Regge action

deficit angle




Regge action

eone choice of discretization:

Scont — /dDCIZ\/§(%R—

¥

Sdiscr — Z Fheh — A Z V

hinges h A simplices o f

/

4d:triangles
3d: edges volume of deficit angle volume of
triangle/edge 4-simplex/

tetrahedron




Gauge symmetries

egauge symmetries: given some fixed boundary conditions solutions (extrema of the
actions) are NOT unique

*for boundary conditions describing flat space: solutions are non-unique
*non-uniqueness described by vertex translations
=gauge symmetries for these configurations

*3d gravity: locally flat solutions (deficit angles vanishing)
*boundary: tetrahedron (surface) with fixed lengths
evariables: four inner edges

*3-parameter set of solutions given by choosing position of

vertex in the flat tetrahedron
*= vertex translations
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Gauge symmetries !

eassume we would have a discretization (discrete action) that would re-produce all the
continuum solutions in the following sense:

etake any continuum solution

* triangulate (choose positions of vertices) with godesics=edges

*label edges with geodesic lengths

eexpect that solutions just differing by vertex positions (in a given coordinate system) are
physically equivalent

*these solutions nevertheless generally differ in their edge lengths (see previous example)
e =gauge equivalence of these configurations




We will call such an amazing action a perfect action.

*do we have such a discretization (with such amazing properties)!?
=unfortunately not in 4d

=only for 3d without (Regge '61) and with (Bahr, BD ‘09) cosmological constant

Later: How could we become perfect!




How do we know!?

ecriterium: non-uniqueness of solutions for fixed boundary conditions

=0

(52535)
3 det STy
Ox' ) ‘Solution

*i.e. the Hessian of the action has zero eigenvalues (null modes=gauge modes)

eexistence of symmetries depends on dynamics (that is action)!
edifferent solutions might have gauge orbits of different size

einvariance of action not sufficient for gauge symmetry

ecriterium relevant for
»canonical analysis (only degenerate Lagrangians lead to constraints!)
»perturbative expansion
»counting of physical degrees of freedom




For (a) curved Regge solution: symmetries are broken.

[Bahr, BD 09]

lowest eigenvalues of Hessians as function of deviation
parameter from 4d flat solution (curvature)

Symmetry is broken, effect quadratic in curvature.




Why do we care?

ediffeomorphism symmetry very strong requirement: resolve (otherwise overwhelmingly
many) ambiguities
=we can show that explicitly in |d models

=>equivalence to triangulation / discretization independence

egauge symmetries reduce number of physical degrees of freedom
=if diffeomorphism symmetries are broken lattice acts as kind of aether

eimportant to understand structure of gauge symmetries, as these lead to divergencies in
path integral
=broken symmetries are complicated to deal with

ecanonical quantization: need closed constraint algebra (main problem)
=>can be obtained with a perfect action




| d models:

reparametrization invariant dynamics




|d reparametrization invariant systems

continuum:

take ¢ and t as variables

use auxilary parameter evolution
parameter s

solutions t(s), ¢(s) invariant
under reparametrizations in s

discretization

m (Qn—l—l _ Qn)2 (1 1

V_Qn_l__

2 (tpi1 — tn)? 2 2

e vertex translations symmetry for V =0
e symmetry broken for V' # (0  [Gamini Pullin 03, Marsden West 01]




Examples

vanishing potential quadratic potential
eposition of vertices arbitrary eposition of vertices fixed
*one gauge mode *one pseudo gauge mode
*refinement independent *refinement dependent

*Reparametrization symmetry (=vertex
translation symmetry) broken!
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vanishing potential quadratic potential
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*refinement independent *refinement dependent
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q(0),t©0)  q(l), (D) q(2), (2)




Vertex translation symmetry

q(0),t0)  q(1), (1) q(2), (2)

vertex translation symmetry is there, if there is a solution for arbitrary choice of t(I)
‘however for non-vanishing potential and generic discretizations: t(1) uniquely fixed

What would happen, if we would have a (quantum) model with vertex translation symmetry?




K (qo;to, q1:t1) K(qq,t1,q2,12)

discrete path integral:
eassociate amplitude (propagator) to edges
*integrate over (bulk) variables




|d quantum model

K (qo;to, q1:t1) K(qq,t1,q2,12)

q(0),t0)  q(1), (1) q(2),t(2)

discrete path integral:
eassociate amplitude (propagator) to edges
*integrate over (bulk) variables

(q0,tolq2,t2) := Z(qo, to, q2,12) = /dCI1dt1 K (qo,t0,q1,t1)K (q1,t1,q2,12)







Vertex translation symmetry =discretization independence

[Bahr, BD, Steinhaus 201 1]

O S S (90, t0|q2,t2) = Z(qo, %0, q2,t2) = /dqldt1 K (qo,t0,q1,t1)K(q1,t1,q2, t2)
q(0),t©0) q(1),t(1) q(2), t(2)

-assume amplitude is invariant under vertex translations
°gauge fix the t variable:

Z(QO7t07QQ7t2> = /dQI K(QOat(bQ17t{)K<Q17t{7QQ7t2)
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® oo f J
— 1o K(q1,t1,92,t2) — 0(q1 — q2
9(0), t(0) o). t(1) q2).12) 1 2 (q1,t1,q2,12) (@1 — g2)

Y

€ 2 K(qo,to0,q2,t2) = /dQ1 K(qo,to0,q1,t1)K (q1,t1,q2,12)
90). 1®) q(2), 12)

discretization independence!




Uniqueness: no discretization ambiguities

K (qo,to0,q2,t2) = /dql K (qo,to,q1,t1) K (q1,t1,q2,t2)

Assuming vertex translation symmetry (and local
amplitude) we derived discretization independence.

Transition amplitude can be computed with no
subdivisions at all:

<QO7 tO’Q% t2> — K(QO) th q2, tQ)

Discrete amplitude given by (continuum) transition
amplitude.

Therefore the amplitude is unique (if you want to
reproduce continuum physics in the continuum limit).

To obtain this amplitude requires to solve the dynamics.




Higher dimensions!?

Similar argument as in |d possible?

What are the conditions for these limits?
Non-local amplitudes (in 4d, 3d with matter)?




How to obtain perfect discretizations!?

*we have seen that perfect discretization coincides with the continuum propagator
*this can be obtained by solving the path integral, which usually involves discretization and

taking the continuum limit

ealternatively: consider iterative method
*integrate out every second vertex: obtain new "effective’ amplitude
eiterate, obtain lots of effective amplitudes
*|look for fixed points: continuum limit

othis is a version of Wilsonian Renormalization group method

*method allows to classify discretization choices (couplings) into relevant and irrelevant

ones




Iteration procedure

K™ (qo,t0,q1,t1) K™ (q1,t1, 02, t2)

° ° °
qo, to q1,t1 q2, t2

Integrate out g1, t1.

o
q2, t2

K™ (qo, to, g2, t2)

econverges to continuum propagator (as we just re-sorted integrations in the path integral)
*more convenient: do not start with specific discrete propagator but consider a family of
propagators, which closes under the iteration procedure

econsider fixed point equations for this family




Example: harmonic oscillator

K(xg,xz1,T) = n(T) exp —% (oq(T)(:c(Q) + z9) + ao(T)xox1)

edefines a family of propagators, that closes under iteration procedure

=»can obtain recursion relations for and eta, alpha coefficients:

K(n—H)(ZEQ,LUQ,ZT) — /dml K(n)(aﬁo,ZEl,T)K(n)(a?l,ZEQ,T)




Example: harmonic oscillator

/1
(0) 1/2
K = ( —2 T —+ ) exp [—

p p
o) z 1 (coh(T)(a + 5) ~ 2mpmr
h (\/Qﬂi Sinh(wT)> AP [ h ( 2w~ sinh(wT) *

unique propagator with reparametrization invariance = continuum propagator

einitial discretization not unique, but only lowest order terms in T are relevant
*behaviour of amplitude for large T is irrelevant

ecan show uniqueness of fixed point solutions

*only fixed point propagator satisfies (quantum) constraints (Schroedinger equation)




Can we guess perfect discretizations?







Can we guess: anharmonic oscillator?  eseo.seihus 201

Naive
discretization

1 (g1 —qo)?  w?
Snaiv(Q07t07Q17t1> 5( T ) + 4(Q(2)+Q%)T+

A
ﬁ(qé +q)T




Can we guess: anharmonic oscillator?  eeostishus 201

Naive ' | Discretization with vertex
discretization coarse graining procedure | translation symmetry

2 w cosh(Tw) (g3 + ¢%) — 2q0q

2 2 _ v
do + Q1)T + Sperf(QO7t0aQ1atl) — 9 sth(Tw) +

S+ T :
9. 410N 768w sinh*(Tw)

1(q1 —q0)* w
Snaiv(Q0>t07Q17t1) — 5( T ) + 4(

[(12Tw — 8sinh(2Tw) + sinh(4Tw)) (g6 +q1) +

( — 48Tw cosh(Tw) + 36 sinh(Tw) + 4 sinh(STw)) (9047 + qoq1) +

<24Tw(2 + cosh(2Tw)) — 36 sinh(27w) >q0q1] - O ()\2)

w
N Hperf = \/27Th sinh(7Tw) 8
f;'
(2 + cosh?(Tw) — 3Tw coth(Tw))
1+ A

e

- anomaly free path integral (a5 +a7) +

|
measure factor

[spin foams: Bojowald, Perez 04]

32w? sinh?(Tw)

<4Tw + 2Tw cosh(2Tw) — 3 sinh(2Tw)>

A
32w? sinh?(Tw)

doq1 +

A

e (3 coth(Tw) — Tw(2 + Smh23 Tw) ) -+ O ()\2)




Example: anharmonic oscillator

einitial discretization not unique, but only lowest order terms in T are relevant
ebehaviour of amplitude for large T is irrelevant (universality)
eget also fixed points describing Z%z% and i* terms in continuum Lagrangian

*only fixed point propagator satisfies (quantum) constraints (Schroedinger equation)

eiterative method / coare graining might be better suited for solving path integrals

(for instance in quantum cosmology)




Constructing perfect discretizations for interacting theories is non-trivial.

But can be obtained perturbatively.

Method allows to classify the relevance of discretization choices: is gravity renormalizable!?




Higher dimensions: 3d gravity with cosmological constant

Lpp ’

| 3d Regge with cosmological constant | 3d Regge with curved simplices
[Bahr, BD 09]

Sr=) leece =AY Vs, S5 =Y Lpey+2xYy V&
e o E o

action for simplices with curvature

kK=A\

action for flat simplices

broken symmetries, exact symmetries,
triangulation dependent triangulation independent




Higher dimensions: 3d gravity with cosmological constant

Lpp ’

~ 3d Regge with cosmological constant | 3d Regge with curved simplices

| [Bahr, BD 09]
e o

r simplices with curvature

el k= A

not known explicitly

action for flat simplices

broken symmetries, exact symmetries,
triangulation dependent triangulation independent




Higher dimensions: 3d gravity with cosmological constant

- 3d quantum gravity with cosmological m

| constant and flat simplices > Tuarev-Viro model

integrate out small
" edge lengths

Here it is ‘easier’ to guess the correct model (from invariance property).




Higher dimensions: free theories ot 2000,sat 80, He 2010

—Zcb ( (z,y) + p*6"N) (z, y)>¢(y)

>

integrate out

free scalar field
on regular lattice

~ free electromagnetic field

on regular lattice

free gravitons
on regular lattice




Higher dimensions: free theories ot 2000,sat 80, He 2010

_Z¢ ( ,y) —I—,LL25(N)(37 y)> (y) | free scalar ﬁe!d

on regular lattice

~ free electromagnetic field
on regular lattice

~ gauge S)fmmetrles for
| linearized theory

free gravitons
on regular lattice

>

integrate out




Coarse graining

>

integrate out

*have to choose a coarse graining map

ethis is an art (there are many choices which do not work)! Ap(X)N

ebut in order to regain diffeomorphism symmetry: might be very restricted
edetermined by geometric nature of field (scalar field, connection,...)

*should respect gauge symmetries

emore details in [Bahr,BD, He 2010]

eobtained coarse graining description for metric (averaging problem)




Coarse graining

S = extr S@)

extr extr S = extrS

¢ ¢,Bop=0 ¢




Coarse graining

S@X)] = extr S@)

() A

{

classically

| - microscopic
- coarse variables
grained

fields | coarse
graining
map

-coarse graining conditions can be implemented via Lagrange multipliers
-solve action with added Lagrange multiplier terms

extr extr S = extrS
& ¢, Bop=9> ¢

-solving in stages (allows for approximations at every stage)
-coarse grained solutions are solutions of coarse grained action




Coarse graining




Coarse graining

quantum mechanically

*summing in stages

*but not only re-organization of summation:
~eallows for approximations
‘ediscussion of relevant and irrelevant couplings
(without necessarily having to solve the theory)
econsider space of theories (space of effective
actions) and flow in this space instead of one
- specific model




Higher dimensions: free theories ot 2000,sat 80, He 2010

free scalar field
on regular lattice

coarse grained action
(Fourier space)

ky =1 — exp(2mipy/N)




Higher dimensions: free theories ot 2000,sat 80, He 2010

free scalar field
on regular lattice

coarse grained action
(Fourier space)

ky =1 — exp(2mipy/N)

ecoarse grained action can be explicitly obtained in the topological cases’: 2d EM, 3d gravity
(non-trivial calculation: action is invariant)

°and in 2d

~¢2d without mass: action is invariant (on regular square lattice)

ewith mass: results in non-local effective action

ralso in all other non-topological cases

|




Coarse graining field theories




Coarse graining field theories

eclassify coarse graining maps

eeven for free theories: diffeomorphism symmetry related to energy-momentum
conservation

‘enumerically: (energy preserving) integration methods

ephysically: is there microscopic energy-momentum conservation (Lorentz symmetry)?

*have to consider non-local actions: enlarged phase space!







Construct discrete - Construct canonical
actions / path integral | dynamics with
with exact —> anomaly free
diffeomorphism constraints.
symmetry.

[Gambini-Pullin 00s, Bahr, BD 09; BD, Hoehn 09, (classical)
Barrett, Crane 97, Bonzom, Freidel |1 (3d quantum);
Bonzom | | (4d topological, quantum)]




Canonical Frameworks

continuous action q discrete action

discretization

Legendre Legendre

discrete

q discrete WOnica
continuous canonical form. A

canonical form.
discretization A

continuous time, discrete time,
discrete space, discrete space,
(anomalous) constraints (pseudo) constraints




Canonical Framework

[Bahr, BD '09; BD, Hohn 09]

eevolve spatial hypersurfaces in discrete time steps
euse action as generating function for time evolution map

[consistent discretizations, Gambini & Pullin et al 03-05]

*reproduces (broken) symmetries exactly [gan, gD 09] :

symmetries exact = eom not independent =>constraints (first class)

broken= eom almost not independ. =pseudo-constraints

Obtaining anomaly free constraints is equivalent to constructing an
action with exact symmetries.




Boundary data for non-local actions [Banisch, BD: to appear]




Boundary data for non-local actions [Banisch, BD: to appear]

‘non-local action lead to enlarged phase space
interpretation?

data specifying solution (on finer lattice) are
‘distributed over ‘thicker’ boundaries

‘phase space = space of solutions

-on finer lattice there are more solutions (modes)
(exception: topological theories, 2d massless on
regular square lattice)

-anomaly-free Hamiltonian constraints will be
non-local

‘rethink concept of boundary (carrying boundary
data)
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*requiring diffeomorphism symmetry is a very strong principle

ediffeomorphism symmetry=triangulation independence = unique model’

ecan be constructed via renormalization/coarse graining, which also gives
information about large scale physics

*thus bring some of the main problems of the field together (discretization
independence, Hamiltonian constraints, large scale limit)

erenormalization group approach allows for approximations and classification of
relevant, irrelevant couplings

*have to understand better interplay between (broken/restored) diffeomorphism
invariance, renormalization group flow, fixed point conditions




Summary

*requiring diffeomorphism symmetry is a very strong principle

ediffeomorphism symmetry=triangulation independence = unique model’

ecan be constructed via renormalization/coarse graining, which also gives
information about large scale physics

*thus bring some of the main problems of the field together (discretization
independence, Hamiltonian constraints, large scale limit)

erenormalization group approach allows for approximations and classification of
relevant, irrelevant couplings

*have to understand better interplay between (broken/restored) diffeomorphism
invariance, renormalization group flow, fixed point conditions




edefine coarse graining maps for classical and quantum mechanical models, develop
approximations/ truncations

eperturbative improvement of actions and models: relation to numerical relativity
relation to Ward identities (in gft) [Aristide]
fixing ambiguities: path integral measure [BD, Steinhaus wip]

ecanonical formalism with non-local actions and parametrized field theories:
anomaly free Dirac (hypersurface deformation) algebra [Banisch, BD wip]

®coarse graining in spin foams [Bahr, BD, Eckert, Ryan wip]




Outlook

edefine coarse graining maps for classical and quantum mechanical models, develop
approximations/ truncations

eperturbative improvement of actions and models: relation to numerical relativity
relation to Ward identities (in gft) [Aristide]
fixing ambiguities: path integral measure [BD, Steinhaus wip]

ecanonical formalism with non-local actions and parametrized field theories:
anomaly free Dirac (hypersurface deformation) algebra [Banisch, BD wip]

®coarse graining in spin foams [Bahr, BD, Eckert, Ryan wip]




dziekuje!




