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What is diffeomorphism symmetry in the 
discrete?



Set up

•triangulation
•labels giving geometric data: variables
•prescription how to rebuild geometry

•action as function of labels: encodes 
dynamics/solutions

Regge calculus
•length variables associated to edges
•deficit angles: curvature
•Regge action

deficit angle



Scont =
∫

dDx
√

g
(

1
2R− Λ

)

Sdiscr =
∑

hinges h

Fhεh − Λ
∑

simplices σ

Vσ

4d:triangles
3d: edges volume of 

triangle/edge
deficit angle volume of 

4-simplex/
tetrahedron

Regge action

•one choice of discretization:



Gauge symmetries

•gauge symmetries: given some fixed boundary conditions solutions (extrema of the 
actions) are NOT unique

•for boundary conditions describing flat space: solutions are non-unique
•non-uniqueness described by vertex translations
 ⇒gauge symmetries for these configurations

 

•3d gravity: locally flat solutions (deficit angles vanishing)
•boundary: tetrahedron (surface) with fixed lengths
•variables: four inner edges

•3-parameter set of solutions given by choosing position of 
vertex in the flat tetrahedron
•⇒ vertex translations
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Gauge symmetries ?

•assume we would have a discretization (discrete action) that would re-produce all the 
continuum solutions in the following sense:

•take any continuum solution
• triangulate (choose positions of vertices) with godesics=edges
•label edges with geodesic lengths

•expect that solutions just differing by vertex positions (in a given coordinate system) are 
physically equivalent
•these solutions nevertheless generally differ in their edge lengths (see previous example)
•⇒gauge equivalence  of these configurations

 



We will call such an amazing action a perfect action.

•do we have such a discretization (with such amazing properties)?
 ⇒unfortunately not in 4d

 ⇒only for 3d without (Regge ’61) and with (Bahr, BD ‘09) cosmological constant

                             Later: How could we become perfect?



How do we know?

•criterium: non-uniqueness of solutions for fixed boundary conditions

‣ 

•i.e. the Hessian of the action has zero eigenvalues (null modes=gauge modes)

•existence of symmetries depends on dynamics (that is action)!

•different solutions might have gauge orbits of different size

•invariance of action not sufficient for gauge symmetry
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•criterium relevant for 
‣canonical analysis (only degenerate Lagrangians lead to constraints!)
‣perturbative expansion
‣counting of physical degrees of freedom



 For (a) curved Regge solution: symmetries are broken. 

!0.01 0.01 0.02 0.03

!0.015

!0.010

!0.005

[Bahr, BD 09]

lowest eigenvalues of Hessians as function of deviation 
parameter from 4d flat solution (curvature)

Symmetry is broken, effect quadratic in curvature. 



  Why do we care? 

•diffeomorphism symmetry very strong requirement: resolve (otherwise overwhelmingly 
many) ambiguities
⇒we can show that explicitly in 1d models

⇒equivalence to triangulation / discretization independence

•gauge symmetries reduce number of physical degrees of freedom
 ⇒if diffeomorphism symmetries are broken lattice acts as kind of aether 

•important to understand structure of gauge symmetries, as these lead to divergencies in 
path integral 

 ⇒broken symmetries are complicated to deal with

•canonical quantization: need closed constraint algebra (main problem)
  ⇒can be obtained with a perfect action

 



1d models: 

reparametrization invariant dynamics



1d reparametrization invariant systems

s→ n

L(n, n + 1) = (tn+1 − tn)
(

m

2
(qn+1 − qn)2

(tn+1 − tn)2
− V (

1
2
qn +

1
2
qn+1)

)

L = t′
(

m

2
q′2

t′2
− V (q)

)
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• vertex translations symmetry for V = 0
• symmetry broken for V != 0 [Gamini Pullin 03, Marsden West 01]
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q(1), t(1) q(2), t(2)q(0), t(0)

•vertex translation symmetry is there,  if  there is a solution for arbitrary choice of t(1)
•however for non-vanishing potential and generic discretizations: t(1) uniquely fixed

Vertex translation symmetry

What would happen, if we would have a (quantum) model with vertex translation symmetry?



discrete path integral:
•associate amplitude (propagator) to edges
•integrate over (bulk) variables

otherwise one will obtain anomalies. Indeed only if the measure is invariant, can the path
integral serve as a projector onto the states satisfying the constraints (arising in a canonical
quantization) [13]. We will argue here that, similarly to having to solve the classical dynamics
to obtain the perfect action, one needs to solve the quantum dynamics to obtain the ‘perfect
measure’2 and with this a perfect discretization of the path integral:

Consider a discrete path integral with two time steps

〈q0, t0|q2, t2〉 := Z(q0, t0, q2, t2) :=

∫

dq1dt1 K(q0, t0, q1, t1)K(q1, t1, q2, t2) (2.5)

where we summarised amplitude and measure for one discretization step into the discrete prop-
agator K(qn, tn; qn+1, tn+1). (We term this the propagator as the perfect discretization is given
by the quantum propagator of the system.) Now assume that vertex translation invariance (2.4)
has been fully implemented into (2.5). As the gauge symmetry just translates the time variable

t1 we can gauge fix to an arbitrary value t1 = tf1 and drop the t1 integration. (The Fadeev-Popov
determinant is trivial in this case.) We obtain

Z(q0, t0, q2, t2) :=

∫

dq1 K(q0, t0, q1, t
f
1)K(q1, t

f
1 , q2, t2) . (2.6)

As tf1 is arbitrary we can consider the limit tf1 → t2. Now the interpretation of K(q1, t
f
1 , q2, t2) is

to give the amplitude for a particle to propagate from q1 to q2 during the time interval (t2 − tf1).

In the limit tf1 → t2 we should therefore have K(q1, t
f
1 , q2, t2) → δ(q1 − q2). Hence we will obtain

that the right hand side of (2.6) is equal to the discrete propagator K(q0, t0, q2, t2) and since tf1
can be chosen arbitrarily we have shown that

K(q0, t0, q2, t2) =

∫

dq1 K(q0, t0, q1, t1)K(q1, t1, q2, t2) . (2.7)

Starting from the assumption, that vertex translation invariance has been realized for the path
integral (2.5), we have shown that the discrete propagator K needs to satisfy (2.7), which is the
usual convolution property for the propagator kernel in quantum mechanics.

This actually proves that a path integral with vertex translation invariance is also discretiza-
tion invariant, i.e. it does not depend on the number of subdivisions. Having no subdivisions at
all – which gives just the discrete propagator K – should coincide with having infinitely many –
which gives the propagator in the continuum. Hence the discrete propagator K(qn, tn, qn+1, tn+1)
is given by the usual quantum mechanical propagator for the continuum system.

On the other hand, if we have a discrete propagator satisfying (2.7) (where we do not integrate
over t), then the corresponding path integral is invariant under vertex translations, as one can
integrate out and reinsert every discretization point (qn, tn). This shows that for one–dimensional
reparametrization invariant systems, finding a discretization which respects this invariance and
discretization independence3 are equivalent. We conjecture that this will also hold for discrete
gravity, i.e. discretized path integrals respecting diffeomorphism invariance (which in its discrete
form is also expected to be vertex translation invariance, see the discussion in [22]) should be
also discretization independent. Again, this also means that in order to construct such path
integrals one has to consider the dynamics of the discrete (quantum) models.

2The split of the path integral into amplitude and measure is ambiguous and we will not insist on one particular
splitting here.

3Where here we understand under discretization independence the property (2.7). There we do not integrate
over the time variable, that is we consider already a gauge fixed version of the path integral. Otherwise the
integral would be divergent, if vertex translation invariance is realized.
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form is also expected to be vertex translation invariance, see the discussion in [22]) should be
also discretization independent. Again, this also means that in order to construct such path
integrals one has to consider the dynamics of the discrete (quantum) models.

2The split of the path integral into amplitude and measure is ambiguous and we will not insist on one particular
splitting here.

3Where here we understand under discretization independence the property (2.7). There we do not integrate
over the time variable, that is we consider already a gauge fixed version of the path integral. Otherwise the
integral would be divergent, if vertex translation invariance is realized.
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Discrete amplitude given by (continuum) transition 
amplitude.

Therefore the amplitude is unique (if you want to 
reproduce continuum physics in the continuum limit).

To obtain this amplitude requires to solve the dynamics.



Higher dimensions?

What are the conditions for these limits?
Non-local amplitudes (in 4d, 3d with matter)?

Similar argument as in 1d possible?



How to obtain perfect discretizations?
•we have seen that perfect discretization coincides with the continuum propagator

•this can be obtained by solving the path integral, which usually involves discretization and 
taking the continuum limit

•alternatively: consider iterative method 

•integrate out every second vertex: obtain new `effective’ amplitude

•iterate, obtain lots of effective amplitudes

•look for fixed points: continuum limit

•this is a version of Wilsonian Renormalization group method

•method allows to classify discretization choices (couplings) into relevant and irrelevant 
ones



To summarize the discussion, a perfect discretization of the quantum mechanical path inte-
gral would be given by the (continuum) propagator. This would however not be very helpful
for systems in which this propagator is not known, such as quantum gravity. Therefore in this
article, we want to adopt the procedure of successively improving the action of a classical dis-
crete system to the quantized case, as this approach might also be helpful for more complicated
cases. This will also introduce a method to actually solve the path integral for the corresponding
continuum system iteratively.

To improve the discrete propagator iteratively we start from the propagator property (2.7)
with a ’naively discretized’ propagator K(0). This can be taken as

K(0)(qn, tn, qn+1, tn+1) = η(0)
n exp(−

1

!
S(0)

n ) (2.8)

where S(0) is the naive discretized action (2.2). We will see that the classical part of the iteration
equations (which is the part without ! dependence) leads to the perfect discretization for the

action. The initial measure factor η(0)
n should be chosen such that K(0) → δ(qn − qn−1) for

(tn−1 − tn) → 0.
Refining the discretization and integrating out the intermediate degrees of freedom will

result in the improved propagator K(1), and iterating the procedure will lead to the perfect
propagator satisfying (2.7). From the construction it should be clear that one subdivision step
will be sufficient, i.e. we define

K(n+1)(q0, t0, q2, t2) :=

∫

dq1dt1 K(n)(q0, t0, q1, t1)K
(n)(q1, t1, q2, t2) . (2.9)

Here we included the integration over t1. In section 3 we will perturb around the solution
qn ≡ 0 which is reparametrization invariant also in the naive discretization and introduce a
method such that the t1 integration can be dropped.

q0, t0

q0, t0 q1, t1

q2, t2

q2, t2

K(n)(q0, t0, q1, t1) K(n)(q1, t1, q2, t2)

K(n+1)(q0, t0, q2, t2)

Integrate out q1, t1. K(n) → K(n+1)

Figure 1: The refinement process of the propagator K(n) involves subdividing the discretization
intervals and integrating over the new variables, obtaining a new propagator K(n+1). This
process can be iterated, leading in the limit to the perfect propagator, which is in particular
invariant under refinement of the discretization.

In order to find the perfect propagator, we will parameterize (some part of) the space of
functions, allowing for arbitrary couplings in the action and measure factors. Equation (2.9)

7

Iteration procedure

•converges to continuum propagator (as we just re-sorted integrations in the path integral)

•more convenient: do not start with specific discrete propagator but consider a family of 
propagators, which closes under the iteration procedure

•consider fixed point equations for this family



Example: harmonic oscillator

•defines a family of propagators, that closes under iteration procedure
⇒can obtain recursion relations for and eta, alpha coefficients:

(eg(x) ! eg′)(x) = egg′(x) (0.56)

(Ei f̂) (x) = (xi ! f̂) (x) (0.57)

fγ2(g1, g2) = fγ1(g1g2) (0.58)

f̂γ2(x1, x2) = δx1 ! f̂γ1(x2) (0.59)

f̂(x1, x2, x3, x4) = δ(x1, x2, x3, x4) !xi f(x1, x2, x3, x4) (0.60)

Snaiv(q0, t0, q1, t1) =
1
2

(q1 − q0)2

T
+

ω2

4
(q2

0 + q2
1)T +

λ

2 · 4!
(q4

0 + q4
1)T

µ =
√

ω

2π! sinh(Tω)
×

(
1 + λ

(
2 + cosh2(Tω)− 3Tω coth(Tω)

)

32ω2 sinh2(Tω)
(q2

0 + q2
1) +

λ

(
4Tω + 2Tω cosh(2Tω)− 3 sinh(2Tω)

)

32ω2 sinh3(Tω)
q0q1 +

− λ!
64ω3

(
3 coth(Tω)− Tω(2 +

3
sinh2(Tω)

)

)
(0.61)

µ =
√

1
2π!T

(0.62)

S =
ad

2

∑

x,y

φ(x)
(

∆(x, y) + µ2δ(N)(x, y)
)

φ(y) (0.63)

S′ ∼ 1
2

∑

P

Φ(P )M(P ) Φ(−P ) (0.64)

where

M(P ) =

(
∑

r

(
1∑

b kbk̄b + a2µ2

)

|p=P+N ′r

)−1

, kb = 1− exp(2πipb/N) (0.65)

K(x0, x1, T ) = η(T ) exp
[
−1

!
(
α1(T )(x2

0 + x2
1) + α2(T )x0x1

)]
(0.66)

K(n+1)(x0, x2, 2T ) =
∫

dx1 K(n)(x0, x1, T )K(n)(x1, x2, T ) (0.67)
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puted. Choosing T := T01 = T12 for simplicity5, we obtain for the propagator

K(n+1)(x0, , x2, 2T ) = η(n)(T )2
∫

dx1 exp

[

−
1

!

(

α(n)
1 (T )(x2

0 + 2x2
1 + x2

2) + α(n)
2 (T )(x0x1 + x1x2)

)

]

=:η(n+1)(2T ) exp

[

−
1

!

(

α(n+1)
1 (2T ) (x2

0 + x2
2) + α(n+1)

2 (2T )x0x2

)

]

. (3.8)

This defines recursion relations for the coefficients α1, α2 and η given by

α(n+1)
1 (2T ) = α(n)

1 (T ) −
α(n)

2 (T )2

8α(n)
1 (T )

(3.9)

α(n+1)
2 (2T ) = −

α(n)
2 (T )2

4α(n)
1 (T )

(3.10)

η(n+1)(2T ) =

√

π!

2α(n)
1 (T )

η(n)(T )2 . (3.11)

To find the perfect propagator, one can iterate the equations (3.9) - (3.11), with initial values for

the α(0)
i (T ) taken from (3.5). Alternatively we can directly look for the fixed points. Considering

the first two equations involving only the α coefficients, a family of fixed points is given by6

S∗(x0, x1, T ):=α∗
1(T )(x2

0 + x2
1) + α∗

2(T )x0x1

=
ω̃

2g

cosh(ω̃T )(x2
0 + x2

1) − 2x0x1

sinh(ω̃T )
. (3.12)

Note that this action is Hamilton’s principal function for the harmonic oscillator with frequency
ω̃ and a coupling 1/g in front of the action. These constants are determined by the initial values
for the action, which for our choice (3.5) leads to ω̃ = ω, g = 1. Indeed [28], this initial action
converges to (3.12) under the iterations defined by (3.9). That there is at least a two–parameter
family of fixed points parametrized by ω̃, g can be easily deduced from the iteration equations
(3.9). These are invariant under a rescaling αk → g−1αk. Furthermore if αk(·) is a fixed point,
so is αk(ω̃× ·). In the appendix B we will show that the action (3.12) provides the most general
solution to the fixed point conditions.

For the fixed point equation of the measure factor η(T ) we can use the fixed point solution
α∗

1(T ). A solution is given by

η∗(T ) =

√

ω̃

2π!g sinh(ω̃T )
exp(ξ̃ T ) . (3.13)

where ξ̃ is a free parameter. Again we will show in the appendix B that this is the most general
fixed point solution. The free parameter ξ̃ describes the possibility to add a constant potential
term ∼ T to the action (3.5).

Note that the iteration equation for the measure factor η is not linear in η – rather we have
η quadratically appearing on the RHS of (3.11). Hence if we scale the initial value η(0) with a

5It will turn out that this regular subdivision is sufficient to regain the full symmetry under vertex translations
and arbitrary subdivisions, i.e. discretization independence.

6The fixed point property is easy to check using sinh(2y) = 2 sinh(y) cosh(y) and cosh(2y) = cosh2(y)+sinh2(y).
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Example: harmonic oscillator

K(x0, x1, T ) = η(T ) exp
[
−1

!
(
α1(T )(x2

0 + x2
1) + α2(T )x0x1

)]
(0.66)

K(n+1)(x0, x2, 2T ) =
∫
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K(0) =

(√
1

2π!T−1/2 + . . .

)
exp

[
−1

!

(
1
2
T−1(q1 − q0)2 + ET 0 +

ω2

4
T 1(q0 + q1)2 + . . .

)]

K(∞) =
(√

ω

2π! sinh(ωT )

)
exp

[
−1

!

(
cosh(ωT )(x2

0 + x2
1)− 2x0x1

2ω−1 sinh(ωT )
+ E

)]
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K(∞) =
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ω

2π! sinh(ωT )

)
exp
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!

(
cosh(ωT )(x2

0 + x2
1)− 2x0x1

2ω−1 sinh(ωT )
+ E

)]

8

unique propagator with reparametrization invariance = continuum propagator

•initial discretization not unique, but only lowest order terms in T are relevant

•behaviour of amplitude for large T is irrelevant

•can show uniqueness of fixed point solutions

•only fixed point propagator satisfies (quantum) constraints (Schroedinger equation)



Can we guess perfect discretizations?





Can we guess: anharmonic oscillator?

Naive
discretization

[Bahr, BD, Steinhaus 2011]
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Can we guess: anharmonic oscillator?

Naive
discretization

Discretization with vertex 
translation symmetry

[Bahr, BD, Steinhaus 2011]

path integral measure. We also want to point out the work [32], where the authors also
discussed a perfect path integral for the anharmonic oscillator. The difference to the work
presented here is that [32] uses a different coarse graining procedure, namely averaging
instead of decimation as applied here. We employed decimation as this seems to be the
only method to obtain reparametrization invariance.

Acknowledgements

The authors would like to thank Wolfgang Bietenholz and Carlo Rovelli for discussions about
perfect actions. BB would like to thank Professor Horgan for discussions about fixed point
actions.

A Hamilton’s principal function for the anharmonic oscillator

Here we give Hamilton’s principle function for the anharmonic oscillator to first order in λ, as
this will provide a fixed point for the recursion relations for αi (4.12).

In [3] it was shown that for a 1D system the perfect action coincides with Hamilton’s principal
function for the given boundary values, i.e.

Sperf(q0, t0, q1, t1) =

∫

ds

(

1

2

(q′)2

t′
+

ω2

2
q2t′ +

λ

4!
q4t′

)

(A.1)

where q(s) and t(s) are solutions to the continuum equations of motion with boundary values
q0, t0, q1, and t1. To find Hamilton’s principal function to first order in λ we would need to find
the solutions at most to first order in λ, and then perform the integral in (A.1), i.e. we expand

q(s) = q̄(s) + λx(s) + O(λ2) (A.2)

t(s) = t̄(s) + λτ(s) + O(λ2) (A.3)

where q̄, t̄ are solutions to the harmonic oscillator. However to first order in λ we do not need
the explicit form of the solutions x(s), τ(s): These would only appear in the harmonic oscillator
part of the action (A.1). This contribution vanishes however due to the (harmonic oscillator)
equations of motion for the background solution q̄(s), t̄(s). Hence we just need to evaluate the
integral (A.1) on the harmonic oscillator solution. One finds

Sperf(q0, t0, q1, t1) =
ω

2

cosh(Tω)(q2
0 + q2

1) − 2q0q1

sinh(Tω)
+

λ

768ω sinh4(Tω)

[(

12Tω − 8 sinh(2Tω) + sinh(4Tω)

)

(q4
0 + q4

1) +

(

− 48Tω cosh(Tω) + 36 sinh(Tω) + 4 sinh(3Tω)

)

(q0q
3
1 + q3

0q1) +

(

24Tω(2 + cosh(2Tω)) − 36 sinh(2Tω)

)

q2
0q

2
1

]

. (A.4)

Similarly one can obtain Hamilton’s principal function to first order in λ for the harmonic
oscillator with perturbation terms λq̇4 and q̇2q2. As explained in the next section, these terms
arise in the most general fixed point solution to the recursion relations (4.12).
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oscillator with perturbation terms λq̇4 and q̇2q2. As explained in the next section, these terms
arise in the most general fixed point solution to the recursion relations (4.12).
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Example: anharmonic oscillator

•initial discretization not unique, but only lowest order terms in T are relevant

•behaviour of amplitude for large T is irrelevant (universality)

•get also fixed points describing            and         terms in continuum Lagrangian

•only fixed point propagator satisfies (quantum) constraints (Schroedinger equation)

•iterative method / coare graining might be better suited for solving path integrals 
  (for instance in quantum cosmology)
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Constructing perfect discretizations for interacting theories is non-trivial.

But can be obtained perturbatively. 

Method allows to classify the relevance of discretization choices: is gravity renormalizable?



3d Regge with cosmological constant 

κ = Λ

Sκ
T =

∑

E

LEεκ
E + 2κ

∑

σ

V κ
Σ

 3d Regge with curved simplices 
[Bahr, BD 09]

integrate out small edge lengths

action for flat simplices action for simplices with curvature

broken symmetries,
triangulation dependent

exact symmetries,
triangulation independent

ST =
∑

e

leεe − Λ
∑

σ

Vσ

Higher dimensions: 3d gravity with cosmological constant



3d Regge with cosmological constant 

κ = Λ

Sκ
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∑

E
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σ

V κ
Σ

 3d Regge with curved simplices 
[Bahr, BD 09]

integrate out small edge lengths

action for flat simplices action for simplices with curvature

broken symmetries,
triangulation dependent

exact symmetries,
triangulation independent

ST =
∑

e

leεe − Λ
∑

σ

Vσ

Higher dimensions: 3d gravity with cosmological constant

not known explicitly



Higher dimensions: 3d gravity with cosmological constant

3d quantum gravity with cosmological 
constant and flat simplices

??
integrate out small 

edge lengths

???
 Tuarev-Viro model 

Here it is ‘easier’ to guess the correct model (from invariance property).



Higher dimensions: free theories [Bietenholz 2000, Bahr, BD, He 2010]
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free scalar field 
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free electromagnetic field 
on regular lattice 

free gravitons 
on regular lattice 

integrate out
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free electromagnetic field 
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gauge symmetries for 
linearized theory
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integrate out

•have to choose a coarse graining map

•this is an art (there are many choices which do not work)!

•but in order to regain diffeomorphism symmetry: might be very restricted

•determined by geometric nature of field (scalar field, connection, ...)

•should respect gauge symmetries

•more details in [ Bahr, BD, He 2010]

•obtained coarse graining description for metric (averaging problem) X a1(x)

a2(x)

A1(X)

A2(X)

Figure 2: The variables in electromagnetism are coarse grained along the lines of the lattice,
since they are naturally one-forms. (here with D = 2 and L = 3)

the coarse grained action. The coarse grained variables keep their geometric interpretation: for
instance the coarse grained plaquette variables Fbc = KcAb − KbAc will be invariant under the
gauge transformations of the coarse grained action.

As the longitudinal modes are preserved by the coarse graining we will have

∑

d,e

∑

p

Bcd(P, p) Πl
de(−p) Bfe(−Q,−p) = b2N ′2d δ(P − Q)KcK̄f

∑

r

1

∆′(p) |p=P+N ′r

∼ Πl
cf (−P ) (5.10)

where in the sum r takes values r = (0, . . . , 0), . . . , (L − 1, . . . , L − 1). This will allow us to add
an arbitrary multiple of the longitudinal projector to the generalized inverse m−g in formula
(4.15) for the coarse graining, as this added part will be projected out again by the transversal
projectors. Hence, we use for the generalized inverse

(m−g)cd = ∆′−1P t
cd # ∆′−1δcd . (5.11)

where the last equality holds modulo terms proportional to the longitudinal projector. This
gives for the matrix M−g appearing in the coarse grained action

(M−g)ch(P,Q) =
∑

d,e,f,g

Πt
cd(−P )

(

∑

p

Bde(P, p) (m−g)ef (−p) Bgf (−Q,−p)

)

Πt
gh(−Q)

= b2N ′2d δ(N ′)(P − Q) Πt
cd(−P ) sd KdK̄d δdg Πt

gh(−Q) (5.12)

where

sd =
∑

r

(

1

∆′(p)

1

kdk̄d

)

∣

∣p=P+N ′r

. (5.13)

The generalized inverse can be found by adding a longitudinal part of the form

λ b2N ′2d δ(N ′)(P − Q) Πl
cd(−P )sdKdK̄d δdg Πl

gh(−Q) (5.14)

and to invert the sum of the terms. Projecting from both sides with Πt(−P ) gives a generalized
inverse which is independent of λ, satisfying

∑

h

∑

Q

M−g
ch (P,Q)Mhf (Q,R) = δ(N ′)(P − R)Πt

cf (−P ) . (5.15)
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Coarse graining
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exp
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(
cosh(ωT )(x2

0 + x2
1)− 2x0x1

2ω−1 sinh(ωT )
+ E
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ẋ4 ẋ2x2

S′ [Φ(X)] = extr
φ, Bφ=Φ

S [φ(x)] (0.68)

8

coarse graining map. In appendix B we evaluate some sums, which are needed for the coarse
graining of 2D electromagnetism and 3D gravity.

2 Coarse graining of free fields

Here we will consider the coarse graining of free field theories without gauge symmetries on the
lattice. We derive a general formula for the coarse grained action that we will apply to a free
scalar field, reproducing the results of [18].

We will consider fields φA, with A a yet to be specified index, on a d-dimensional periodic
lattice with Nd sites x = (0, . . . , 0), . . . (N − 1, . . . ,N − 1). For free fields the action will be a
quadratic functional of the fields of the form

S = 1
2

∑

A,B

∑

x,y

φA(x)mAB(x − y)φB(y) . (2.1)

Here we assume that mAB does only depend on the difference (x− y), that is that the action is
invariant under (lattice) translations. For most of the discussion we will work with the Fourier
transformed fields. All the general formulas can easily adapted back for fields φA(x) in real
space. We will use Fourier transformed fields here in order to apply the formulas at once to
concrete examples.

Introducing the momentum labels p = (0, . . . , 0), . . . (N − 1, . . . N − 1) we define

φA(p) =
∑

x

e−2πi p·x
N φA(x) , φA(x) =

1

Nd

∑

p

e2πi p·x
N φA(p) . (2.2)

For the inverse we used that the delta–function on the (N -periodic) lattice is given by

δ(N)(p) =
1

Nd

∑

x

e2πi p·x
N . (2.3)

The action in the Fourier transformed fields is then

S =
1

2Nd

∑

A,B,p

φA(p)mAB(p)φB(−p) with mAB(p) =
∑

x

e2πi p·x
N mAB(x) . (2.4)

The action (2.1) will be varied under the conditions that the field values φ(x) sum up to
the coarse grained fields Φ(X) on a coarse grained lattice with sites X = (0, . . . , 0), . . . (N ′ −
1, . . . ,N ′ − 1) where N = LN ′. The extrema (or solutions) of the action (2.1) obtained with
these conditions will be functions of the coarse grained fields Φ. Reinserting these solutions into
the action (2.1) we obtain a coarse grained action S′ as a function of the coarse grained fields
Φ:

S′ [Φ] = extr
φ, Bφ=Φ

S (2.5)

where B is the coarse graining map. Varying this new action S′ with respect to the fields Φ we
will find new solutions Φs describing the dynamics of the theory on the coarse grained lattice.
The solutions Φs encode however the dynamics of the original lattice, as these solutions can be
obtained by coarse graining the solutions of the action S (without adding any conditions on the
fields φ). Namely, what has been done, is to split the variational problem for the action S into
two parts: first one looks for extrema under the condition that the φ coarse grain to Φ. Then
one varies the conditions Φ, so that one re–obtains the extrema of the action S

extr
Φ

extr
φ, Bφ=Φ

S = extr
φ

S . (2.6)

4



Coarse graining

classically
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coarse 
grained 
fields

microscopic 
variables

coarse 
graining 

map

-coarse graining conditions can be implemented via Lagrange multipliers
-solve action with added Lagrange multiplier terms

coarse graining map. In appendix B we evaluate some sums, which are needed for the coarse
graining of 2D electromagnetism and 3D gravity.

2 Coarse graining of free fields

Here we will consider the coarse graining of free field theories without gauge symmetries on the
lattice. We derive a general formula for the coarse grained action that we will apply to a free
scalar field, reproducing the results of [18].

We will consider fields φA, with A a yet to be specified index, on a d-dimensional periodic
lattice with Nd sites x = (0, . . . , 0), . . . (N − 1, . . . ,N − 1). For free fields the action will be a
quadratic functional of the fields of the form

S = 1
2

∑

A,B

∑

x,y

φA(x)mAB(x − y)φB(y) . (2.1)

Here we assume that mAB does only depend on the difference (x− y), that is that the action is
invariant under (lattice) translations. For most of the discussion we will work with the Fourier
transformed fields. All the general formulas can easily adapted back for fields φA(x) in real
space. We will use Fourier transformed fields here in order to apply the formulas at once to
concrete examples.

Introducing the momentum labels p = (0, . . . , 0), . . . (N − 1, . . . N − 1) we define

φA(p) =
∑

x

e−2πi p·x
N φA(x) , φA(x) =

1

Nd

∑
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e2πi p·x
N φA(p) . (2.2)

For the inverse we used that the delta–function on the (N -periodic) lattice is given by

δ(N)(p) =
1

Nd
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e2πi p·x
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The action in the Fourier transformed fields is then

S =
1
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∑
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φA(p)mAB(p)φB(−p) with mAB(p) =
∑
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e2πi p·x
N mAB(x) . (2.4)

The action (2.1) will be varied under the conditions that the field values φ(x) sum up to
the coarse grained fields Φ(X) on a coarse grained lattice with sites X = (0, . . . , 0), . . . (N ′ −
1, . . . ,N ′ − 1) where N = LN ′. The extrema (or solutions) of the action (2.1) obtained with
these conditions will be functions of the coarse grained fields Φ. Reinserting these solutions into
the action (2.1) we obtain a coarse grained action S′ as a function of the coarse grained fields
Φ:

S′ [Φ] = extr
φ, Bφ=Φ

S (2.5)

where B is the coarse graining map. Varying this new action S′ with respect to the fields Φ we
will find new solutions Φs describing the dynamics of the theory on the coarse grained lattice.
The solutions Φs encode however the dynamics of the original lattice, as these solutions can be
obtained by coarse graining the solutions of the action S (without adding any conditions on the
fields φ). Namely, what has been done, is to split the variational problem for the action S into
two parts: first one looks for extrema under the condition that the φ coarse grain to Φ. Then
one varies the conditions Φ, so that one re–obtains the extrema of the action S

extr
Φ

extr
φ, Bφ=Φ

S = extr
φ

S . (2.6)

4-solving in stages (allows for approximations at every stage)
-coarse grained solutions are solutions of coarse grained action



Coarse graining
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Coarse graining

quantum mechanically
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ẋ4 ẋ2x2

S′ [Φ(X)] = extr
φ, Bφ=Φ

S [φ(x)] (0.68)

Z =
∑

φ

A[φ] =
∑

Φ

∑

φ, Bφ=Φ

A[φ] =
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•summing in stages
•but not only re-organization of summation:
•allows for approximations
•discussion of relevant and irrelevant couplings 
(without necessarily having to solve the theory)

•consider space of theories (space of effective 
actions) and flow in this space instead of one 
specific model
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2 · 4!
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)

32ω2 sinh2(Tω)
(q2

0 + q2
1) +

λ

(
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(0.62)

S =
ad

2

∑

x,y

φ(x)
(
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P
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r
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)−1

, kb = 1− exp(2πipb/N) (0.65)
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free scalar field 
on regular lattice 
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free scalar field 
on regular lattice 

•coarse grained action can be explicitly obtained in the `topological cases’: 2d EM, 3d gravity 
 (non-trivial calculation: action is invariant)
•and in 2d
•2d without mass: action is invariant (on regular square lattice)
•with mass: results in non-local effective action
•also in all other non-topological cases



Coarse graining field theories



•classify coarse graining maps 
•even for free theories: diffeomorphism symmetry related to energy-momentum 
conservation

•numerically: (energy preserving) integration methods
•physically: is there microscopic energy-momentum conservation (Lorentz symmetry)?
•have to consider non-local actions: enlarged phase space?

Coarse graining field theories





Construct discrete 
actions / path integral 

with exact 
diffeomorphism 

symmetry.

Construct canonical 
dynamics with 
anomaly free 
constraints.

[Gambini-Pullin 00s, Bahr, BD 09; BD, Hoehn 09, (classical)
Barrett, Crane 97, Bonzom, Freidel  11 (3d quantum);

Bonzom 11 (4d topological, quantum)]



continuous action discrete action

discretization

discretization

Legendre Legendre

continuous canonical form.
discrete
 canonical form.

discrete
  canonical form.

continuous time,
discrete space,

(anomalous) constraints

discrete time,
discrete space,

(pseudo) constraints

Canonical Frameworks



Canonical Framework
[Bahr, BD ’09; BD, Höhn 09]

•evolve spatial hypersurfaces in discrete time steps   

•use action as generating function for time evolution map 
  [consistent discretizations, Gambini & Pullin et al  03-05]

•reproduces (broken) symmetries exactly [Bahr, BD 09] :

 symmetries exact ⇒ eom not independent       ⇒constraints (first class)

                 broken⇒ eom almost not independ. ⇒pseudo-constraints                     

Obtaining anomaly free constraints is equivalent to constructing an 
action with exact symmetries.



Boundary data for non-local actions [Banisch, BD: to appear]



Boundary data for non-local actions [Banisch, BD: to appear]

•non-local action lead to enlarged phase space
•interpretation?
•data specifying solution (on finer lattice) are 
distributed over ‘thicker’ boundaries

•phase space = space of solutions
•on finer lattice there are more solutions (modes)
 (exception: topological theories, 2d massless on 
regular square lattice)

•anomaly-free Hamiltonian constraints will be 
 non-local

•rethink concept of boundary (carrying boundary 
data) 



Construct discrete 
actions / path integral 

with exact 
diffeomorphism 

symmetry.

Construct canonical 
dynamics with 
anomaly free 
constraints.

Regularization/
triangulation 

independence.

Coarse graining/
renormalization/
continuum limit

Main Message



•requiring diffeomorphism symmetry is a very strong principle

•diffeomorphism symmetry⇒triangulation independence ⇒ unique model?

•can be constructed via renormalization/coarse graining, which also gives 
information about large scale physics

•thus bring some of the main problems of the field together (discretization 
independence, Hamiltonian constraints, large scale limit)

•renormalization group approach allows for approximations and classification of 
relevant, irrelevant couplings

•have to understand better interplay between (broken/restored) diffeomorphism 
 invariance, renormalization group flow, fixed point conditions



•requiring diffeomorphism symmetry is a very strong principle

•diffeomorphism symmetry⇒triangulation independence ⇒ unique model?

•can be constructed via renormalization/coarse graining, which also gives 
information about large scale physics

•thus bring some of the main problems of the field together (discretization 
independence, Hamiltonian constraints, large scale limit)

•renormalization group approach allows for approximations and classification of 
relevant, irrelevant couplings

•have to understand better interplay between (broken/restored) diffeomorphism 
 invariance, renormalization group flow, fixed point conditions

Summary



•define coarse graining maps for classical and quantum mechanical models,  develop 
approximations/ truncations 

•perturbative improvement of actions and models: relation to numerical relativity

•relation to Ward identities (in gft) [Aristide]

•fixing ambiguities: path integral measure [BD, Steinhaus wip]

•canonical formalism with non-local actions and parametrized field theories: 
anomaly free Dirac (hypersurface deformation) algebra [Banisch, BD wip]

•coarse graining in spin foams [Bahr, BD, Eckert, Ryan wip]



Outlook

•define coarse graining maps for classical and quantum mechanical models,  develop 
approximations/ truncations 

•perturbative improvement of actions and models: relation to numerical relativity

•relation to Ward identities (in gft) [Aristide]

•fixing ambiguities: path integral measure [BD, Steinhaus wip]

•canonical formalism with non-local actions and parametrized field theories: 
anomaly free Dirac (hypersurface deformation) algebra [Banisch, BD wip]

•coarse graining in spin foams [Bahr, BD, Eckert, Ryan wip]



dziekuje!


