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Path integral for Quantum Gravity

Quantum Gravity (without matter) - states of the system are
defined as spatial geometries of the universe.
Example of the evolution of a one-dimensional closed universe:

Joining spatial geometries
produces a space-time geometry .
In this example the sum over
trajectories becomes a (weighted)
sum over all two-dimensional
surfaces joining the in-state with
the out-state.
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Path integral for Quantum Gravity cont’d.

Our aim is to calculate the amplitude of a transition between
two geometric states

G(g i ,gf, t) :=
∑∫

geometries: g i→gf

eiS[gµν(t ′)]

To define this path integral we have to specify the “measure”
and the “domain of integration” - a class of admissible
space-time geometries joining the in- and out- geometries.
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Causal Dynamical Triangulations

Using methods of QFT.

Regularization of geometry follows the method of
Dynamical Triangulations.

New element: causality - Causal Dynamical Triangulations
- additional restriction on the topology of space-time.

Very promising results of CDT

Correct continuum limit.

Information about quantum effects on the Planck scale.
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Basic concepts

Path integral – amplitude of a quantum transition between
in- and out- states can be written as a weighted sum
(integral) over all possible trajectories.

Possibility to perform analytic continuation in time – Wick
rotation to imaginary time. In effect weights become real
and positive and can be interpreted as probabilities.

Lattice regularization – discretization of space-time
provides a cut-off a.

In our approach (also in Dynamical Triangulations) we start with
“Euclidean” formulation of space-time and then we eventually
rotate back (or define) the time variable.
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Wick rotation

Rotation to imaginary time t → it4 - the weight is formally real:

eiS[g(t)] → e−SE [g(t4)]

After Wick rotation quantum amplitude becomes a weighted
sum over geometric manifolds bounded by the in- and out-
states.

The simplest form of the action – Hilbert–Einstein action

S[g] = −1/G Curvature(g) + λVolume(g)

where G - gravitational constant, λ - cosmological constant
(essential to suppress the entropy of quantum fluctuations).

This action used both by DT and CDT.
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Measure and domain of integration in a path integral
for QG

A. Sum (integral) over
diffeomorphism invariant
equivalence classes of
space-time metrics.

B. Fixed topology of
space-time.

C. Suppressed
formation of baby
universes (fixed spatial
topology).

To suppress the divergent
volume of the diffeomorphism
group. Realized in the DT
regularization.

To suppress the divergence of
the path integral coming from
entropy. Realized in DT.

Causality: it means the
existence of a time foliation.
For each time the topology of
the universe is the same.
Realized in CDT.
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Difference between DT and CDT

Difference lies in the domain of integration over allowed
space-time geometries. In DT one cannot avoid introducing
causal singularities.

t

Example of a causal
singularity, which leads to
creation of baby universes.
Creation of baby universes
dominates the possible
evolution.
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Method of triangulations

Counting equivalence classes of manifolds . Example in 2d.

Discretization: One of the the
standard regularizations in
QFT. Here: we replace a
continuous space-time
surface by a triangulated
surface built from regular
triangles with the edge a,
serving as a cut-off. In the
continuum limit a → 0.
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Consequence of introducing a triangulation

Example in 2d (Euclidean time):

x

y

δ

δ

y

x

(a) (b)

In a triangulation a
variable number of
triangles can meet at
each vertex. Deficit
angle δ - (a) positive,
(b) - negative.
Curvature is localized
in vertices. In other
points geometry is
flat! .
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Three steps in regularization of a path integral

Regularization of a geometric state

One-dimensional state with a topology S1 is built from links with
length a.

Regularization of a space-time geometry (trajectory)

2d space-time surface built from equilateral triangles. Curvature
localized in vertices.

Regularization of a path integral

Integral over equivalence classes of metrics is replaced by a
summation over all possible triangulations, belonging to some
topological class.
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Generalization to higher d

Method of Euclidean Dynamical Triangulations

2d 3d 4d

Replace 2d triangles
by higher-dimensional
simplices.
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CDT: 3d geometric “states”

Spatial states are 3d geometries with a topology S3.
Discretized states are constructed from 3d simplices -
tetrahedra glued along triangular faces.

Regular tetrahedron (3-simplex) - a basic
block to build 3d manifolds.

Space of states

There are many inequivalent ways of gluing tetrahedra. For N
tetrahedra and a fixed topology this number grows
exponentially ∼ exp(λN).

Jerzy Jurkiewicz Numerical simulations of CDT



Introduction
Numerical setup

Path integral for Quantum Gravity
Basic assumptions
Regularization of a theory
Construction elements in 4d
Geometry of 3d states and a 4d configurations

Connecting 3d states

t+1

t

t−1

{4,1}

{1,4}

In 4d each tetrahedron becomes a base
of a pair of {4,1} and {1,4} simplices,
pointing up or down in t . The lengths of
edges in time direction are at (may be
different than as).
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Connecting 3d states cont’d’

We need two more types of simplices: {3,2} and {2,3}.

t

t+1

(4,1)                                        (3,2)

Simplices {3,2} and {2,3}
form a “layer” gluing together
states at t and t + 1.

It takes at least 4 steps to connect two {4,1} simplices at times
t and t + 1.

{4,1} → {3,2} → {2,3} → {1,4} → {4,1}
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Space-time manifolds in 4d (trajectories)

We build a 4d manifold with a topology S3 × S1. Each manfold
is characterized by a set of “global” numbers

N{4,1}
4 - number of {4,1} and {1,4} simplices.

N{3,2}
4 - number of {3,2} and {2,3} simplices.

N0 - number of vertices (0-simplices).

T - time period.

Other “global” numbers depend on those above.
Each manifold is a specific way of gluing together geometric
states at integer times t .
For a discretized manifold the Hilbert-Einstein action depends
only on these global numbers.
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Each 4d manifold is represented by a “local” information,
describing how simplices are glued together. To do this we
assign labels to vertices.

Definition

Manifolds are assumed to be simplicial manifolds:
Each (sub)simplex with a particular set of labels appears at
most once.

Labels are analogues of coordinates. Relabelling is the
analogue of a diffeomorphism transformation.

There is an exponentially large number of possible “local”
realizations of geometry, corresponding to the same topology
and the same set of “global” numbers.
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Manifolds in 4d CDT: Summary

Each “trajectory” is a sequence of T 3d geometric states
with a topology S3. These states are discretized: geometry
is obtained by gluing together regular tetrahedra to form a
closed S3 simplicial manifold. Each state is characterized
by an integer “time”. 3-volume of a manifold is ∝ N3(t) –
number of tetrahedra.
In 4d tetrahedra become bases of {4,1} and {1,4}
simplices pointing up and down in “time” We have∑

t

N3(t) = N{4,1}
4 /2.

To connect two states at t and t + 1 we need a layer
formed by {3,2} and {2,3} tetrahedra. This layer has no
analogue in d = 2 and d = 3.
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Hilbert-Einstein action

For each space-time manifold we assign the action SHE and a
“probability” exp(−SHE ).

SHE = −(κ0 +6∆)N0 +κ4(N
{4,1}
4 +N{3,2}

4 )+∆(2N{4,1}
4 +N{3,2}

4 )

κ0, κ4, ∆ - bare dimensionless coupling constants.

Discretization of a theory always leads to a dimensionless
formulation. We will reintroduce physical dimensions later.

Analogy to Statistical Physics. Path integral → Ensemble of
space-time discretized manifolds with a “partition function”

Z(κ0, κ4,∆) =
∑
T

e−SHE (T )
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Parameters of the H-E action

Physical properties of the system are determined by values of
bare coupling constants

κ4 − κcrit
4 (κ0,∆) - related to the average ”volume” 〈N4〉.

κ0 - related to the inverse of the bare gravitational constant.

∆ - related to asymmetry between as and at .

Z(κ0, κ4,∆) =
∑
N4

e−κ4N4ZN4
(κ0,∆)

where N4 = N{4,1}
4 + N{3,2}

4 - total number of simplices.
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Objectives

Ideally we would like to be able not only to obtain the analytic
formula for the partition function Z(κ0, κ4,∆), but also, using
this function, to calculate arbitrary physical observables.
Calculating (some of) these observables will be our objective.

Z(κ0, κ4,∆) =
∑
T

e−SHE (T )

〈A〉 = 1
Z

∑
T

A(T )e−SHE (T )

There is in general much more information in 〈A〉 than in Z.
T - triangulations ≡ space-time configurations ≡ trajectories.
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Grand-canonical and canonical ensembles

Partition function Z(κ0, κ4,∆) from a statistical point of view
defines a grand-canonical ensemble

Z(κ0, κ4,∆) =
∑
N4

e−κ4N4ZN4(κ0,∆)

ZN4(κ0,∆) defines a “canonical” ensemble with fixed
four-volume N4.
If a regularized theory should be finite – the sum in Z should be
convergent. It follows that ZN4

can grow at most exponentially
with N4 (restriction on a global topology).

ZN4
(κ0,∆) ≈ exp(κcrit

4 (κ0,∆)N4)
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Observables

Observables 〈A〉 can be decomposed as

〈A〉 =
∑
N4

P(N4)〈A〉N4

In particular
〈N4〉 ∼ 1/(κ4 − κcrit

4 )

“Canonical” averages are much easier to calculate (at least
numerically).

〈A〉N4
=

∑
TN4

P(T )A(T )
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Canonical averages, infinite volume limit and
continuum limit

For a finite N4 summation is over a finite (but exponentially
large) set of configurations. Different configurations give
contributions, depending on P(T ). Exact summation is
practically impossible - we have to restrict ourselves to
numerical estimates.

Numerical estimate based on a smaller sample of
“important” configurations.

“Typical” (important) configurations - those with large
probabilities (or large entropy, i.e. many different
configurations with the same probability and similar
physical properties)
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Layout of a numerical experiment

For a set {κ0,∆} of bare coupling constants we perform
numerical experiments at a sequence of volumes N4. Each
experiment means generating a large but finite sample of
“important” configurations.

These configurations are generated using the Monte Carlo
technique.

We calculate numerical estimates of the observable 〈A〉N4

We perform a finite size scaling analysis, i.e. we determine
the scaling of the observable as a function of N4 in the
infinite volume limit N4 → ∞.

We try to interpret this limit as a continuum limit by
reintroducing physical dimensions.
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Monte Carlo

In the space of configurations {M} we define a Markov
process (a random walk in the configuration space) by choosing
a probability W(Ma → Mb) of a move from Ma to Mb.
Fictitious (discrete) time τ numbers the steps of a random walk.
At each step we have a (normalized) distribution of probabilities
Pτ (Mi) with a recurrence relation

Pτ+1(Mj) =
∑
Mi

Pτ (Mi)W(Mi → Mj)
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Monte Carlo cont’d’

Choosing transition probabilities

It is possible to choose W(Ma → Mb) in such a way that the
Markov process has a unique limiting distribution

P∞(Mi) ∝ exp(−S(Mi))

Detailed balance condition

exp(−S(Ma))W(Ma → Mb) = exp(−S(Mb))W(Mb → Ma)

There are infinitely many solutions of this condition.
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Monte Carlo cont’d’

DB solution

We may have

W(Ma → Mb) = W(Mb → Ma) = 0

or
W(Ma → Mb)

W(Mb → Ma)
= exp (−(S(Mb)− S(Ma)))

Non-zero transitions must satisfy ergodicity – all
configurations can be reached by a random walk.

They should connect configurations which are close - with
small action difference (to be effective).
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MC in numerical simulations

The numerical procedure is based on definitions presented
above. On a computer we start the iterative process:

Generate the initial configuration M0.

Pick a (single) new configuration Mi with a probability
given by W(M0 → Mi)

Pick a (single) new configuration Mj with a probability
given by W(Mi → Mj)

· · ·
If we perform sufficiently many steps and reach a particular
configuration Ma we know that it will appear with a probability
∝ exp(−S(Ma)).
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MC in numerical simulations cont’d’

Configurations separated by many iteration steps are called
statistically independent.
A set {M1,M2, . . .MN } of independent configurations can be
used to get the estimate

〈A〉 ≈ 1
N

N∑
i

A(Mi)

Statistical error of the estimate depends on N and typically
behaves as 1/

√
N .
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Monte Carlo in CDT

We use this technique to obtain estimates in CDT.

Monte Carlo

Finite set of local geometric moves, preserving topology.

Detailed balance condition determining a probability to
perform a particular change of geometry.

Local moves: “Alexander moves” – satisfy a condition of
ergodicity.
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Numerical setup in CDT

Alexander moves in general change the volume N4. In our
approach we either fix N{4,1}

4 = 2
∑

t N3(t) or we let it fluctuate

with a Gaussian probability around 〈N{4,1}
4 〉.

Physical properties of the system depend on κ0 and ∆.

We fine-tune κ4 ≈ κcrit
4 to keep 〈N{4,1}

4 〉 stable.

In the Monte Carlo process we generate typically 107 – 108

configurations. This is a finite sample representing typical
configurations for a given set of {κ0,∆}.
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Approximate phase diagram of CDT
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AB

C

κ

κ

∆

4

0

crit

4
κ (κ 0 ,∆)

Z is defined for
κ4 > κcrit

4 (κ0,∆).
Approaching a critical
surface means taking
an infinite volume limit.
〈N4〉 ∼ 1/(κ4 − κcrit

4 ).

Red lines - first order phase transitions. Perhaps a triple point.
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Volume distribution in (imaginary) time

Different value of the critical exponent β: 〈N{3,2}
4 〉N4

∼ Nβ
4 .

Phase A . Not physical.
Non-interacting 3d
states. β = 0.

Phase B . Not physical.
Compactification into a
3d Euclidean DT.
0 < β < 1, dH = ∞.

Phase C . Extended de
Sitter phase. β = 1,
dH = 4
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Topological effects

We formulated our model with a topology S3 × S1, but the initial
topology is dynamically modified.

Among the observed phases only phase A has the
unbroken symmetry of the translation in time. This phase
is unphysical (no causal relation between different times).

In phase B we observe a spontanous compactification of
topology to that of Euclidean 3-sphere. The stalk is a
lattice artefact and has a cut-off size.

In phase C we also observe a spontanous compactification
of topology to S4 (to be discussed).

Jerzy Jurkiewicz Numerical simulations of CDT
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