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Approximate phase diagram of CDT

��
��
��
��

��
��
��
��

AB

C

κ

κ

∆

4

0

crit

4
κ (κ 0 ,∆)

Z is defined for
κ4 > κcrit

4 (κ0,∆).
Approaching a critical
surface means taking
an infinite volume limit.
〈N4〉 ∼ 1/(κ4 − κcrit

4 ).

Red lines - first order phase transitions. Perhaps a triple point.
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Snapshot of a typical configuration in de Sitter phase

A typical configuration.
Distribution of a spatial
volume N3(t) as a
function of discrete
(imaginary) time t .
Quantum fluctuation
over a semiclassical
background.

Configuration consists of a “stalk” of the cut-off size and a
“blob”. Center of the blob can shift. We fix the “center of mass”
to be at zero time.
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Approach to the semiclassical limit

To obtain the semiclassical limit we average over
configurations. On the plot we see the individual contribution
(centered) and the limiting distribution (blue) obtained by
averaging over many configurations with the same volume.
Measurements at κ0 = 2.2 and ∆ = 0.6
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Approach to the semiclassical limit, contd.

Looking at the volume distribution at a fixed integer time we can
estimate to what extent the distribution we see corresponds to
a minimum of some effective action.
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Approach to the semiclassical limit, contd.
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The stalk is completely
dominated by lattice
artefacts.

Conclusion: Gaussian behaviour inside the blob. Artefacts in
the transition region and in the stalk.
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Semiclassical volume distribution in de Sitter phase

The object of our analysis is the limiting semiclassical
distribution of the observable N3(i) - volume of the spatial
universe at (integer) time i . By construction

2
∑

i

N3(i) = N{4,1}
4

If the space-time dimension is d we expect the semiclassical
distribution of the spatial volume N3(i) = N(d−1)/d

4 PN4
(σ) to be

a universal function of the rescaled time σ

σ = i/N1/d
4 , PN4(σ) = P(σ)
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Scaling and its consequences: infinite volume limit

If indeed the semiclassical distribution would scale and if d = 4
it would mean that for a system size N4

The time extent of the blob is ∼ N1/d
4 = N1/4

4 .

The spatial size of the blob scales as
N3 ∼ N(d−1)/d

4 = N3/4
4 .

This property will be fundamental to relate numerical results
and physical properties of CDT in the continuum limit.
Notice that this scaling means that both the time and the space
scale in a “canonical” way.
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Universality of the volume distribution
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Results of measurements of
PN4(σ) for N4 = 22.2k,
45.5k, 91.1k, 181k and
d = 4.
Measurements at κ0 = 2.2
and ∆ = 0.6

The continuous line corresponds to f (σ) = 1.0575 cos3(1.41σ)
(4d sphere).

Jerzy Jurkiewicz Numerical simulations of CDT



Numerical results
Universal behavior in de Sitter phase

Extending the effective action: more observables
Work in progress

Bibliography

Semiclassical volume distribution
Minisuperspace model
Fluctuations around the semiclassical action
Geometry of 3d spatial slices

Outline

1 Numerical results in de Sitter phase
Semiclassical volume distribution
Minisuperspace model
Fluctuations around the semiclassical action
Geometry of 3d spatial slices

2 Universal behavior in de Sitter phase

3 Extending the effective action: more observables

4 Work in progress

Jerzy Jurkiewicz Numerical simulations of CDT



Numerical results
Universal behavior in de Sitter phase

Extending the effective action: more observables
Work in progress

Bibliography

Semiclassical volume distribution
Minisuperspace model
Fluctuations around the semiclassical action
Geometry of 3d spatial slices

Minisuperspace model

The limiting semiclassical distribution has a shape of a bounce.
This is the effect of imaginary time. This shape can be obtained
from the minisuperspace effective action of Hartle and Hawking
(up to finite constants). Notice the opposite sign.

Seff =
1
Γ

∫ T

0
dτ

(

1
9N3(τ)

(

dN3(τ)

dτ

)2

+ N1/3
3 (τ) − λ2N3(τ)

)

Here λ2 is a Lagrange multiplier to enforce
∫ τ

0
dτN(τ) = N4

and Γ is the (dimensionless) effective Newton’s constant.
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Classical solution

In this example

Ncl
3 (τ) =

(

cos(λτ)

λ

)3

and

λ4 =
4

3N4
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Restoring physical dimensions

Discretization of a theory always leads to a description of the
theory in terms of dimensionless coupling constants and
dimensionless objects.
We can replace the dimensionless objects by dimensionfull
ones reintroducing the dimensionfull lengths at and as

V4 = ata3
sN4, V3 = a3

sN3, t = atτ, G = asatΓ

and rewrite the effective action as

Seff =
1
G

∫ tf

0
dt

(

ξ2 1
9V3(t)

(

dV3(t)
dt

)2

+ V 1/3
3 (t) − Λ2V3(t)

)

with Λ = λ/as, ξ = at/as.
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Size of the space-time

Parameter ξ is a finite number, representing the ratio between
units of time and spatial length.
We can express a physical size of the studied system, using the
Newton’s constant as

V4 =
G2

Γ2ξ
N4

Notice that parameters like Γ and ξ cannot be determined from
the form of the semiclassical solution.
We also should really prove that the effective action has a form
of the minisuperspace action.
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Second order test of the effective action

If we expand the effective action Seff around the classical
solution Ncl

3 (τ):
N3(τ) = Ncl

3 (τ) + δ(τ)

to second order in δ(τ) we obtain:

Seff = Seff
cl +

1
9Γ

∫ T

0
dτδ(τ)D(τ)δ(τ) + · · ·

where D(τ) is the Sturm-Liouville operator

D(τ) = −
d
dτ

ξ2

Ncl
3 (τ)

d
dτ

−
4

Ncl
3 (τ)5/3

Gravitational constant Γ can be determined from the size of
quantum fluctuations around the classical solution.
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Correlation matrix of quantum fluctuations

For a sequence of volumes N4 we perform measurement of the
correlation function

C(i , j) = 〈δ(i)δ(j)〉N4

Using Gaussian approximation we have C(i , j) ∼ 9ΓD−1(i , j).
Inverting C(i , j) gives (in principle) full information about D(i , j)
and Γ.
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”Propagator” and ”Inverse propagator”

Matrix C(i , j) Matrix D(i , j)
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Discretized effective action

The analysis of the semiclassical solution and fluctuations of
three-volume shows that our observations can be interpreted
as the effect of the existence of the effective action Seff

Seff =
1
Γ

∑

t

(

F
(

N3(t), N3(t + 1)
)

+ V (N3(t))
)

where

F (x , y) =
(x − y)2

x + y
, V (N3(t)) = −λeff N3(t) + µN3(t)

1/3 + . . .

Seff is a discretization of the minisuperspace model.
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Averaged geometry of spatial slices
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Minisuperspace model
suggests that the geometry
of 3d slices fluctuates around
S3. Is this true?
On this plot we see that for
the averaged distribution the
agreement with S3 is fair.
Difference is in the tail, which
can be understood
(fluctuations of the radius).
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What happens for individual realizations?

We start from one (sub)simplex and move out (diffusion
process) following nearest neighbors either using 3d geometry
(tetrahedra at a fixed time t) or 4d geometry (4-simplices). The
points on the plots correspond to the connected components.
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Fractal in 3d: definition of a radial distribution

For a particular realization of geometry the structure of the
spatial slice is fractal. As a consequence we can only have
spatial loops with a cut-off size.

r
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Comparison in 4d: definition of a radial distribution

For the same realization 4d geometry is very regular. Only
short-range fluctuations.
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Interpretation

Geometry can be characterized by a Hassdorf dimension dH

and a spectral dimension dS.

In the 3d case we see that a tree with long ”branches” is
formed: a fractal. Although dH = 3 we get dS ≈ 1.5.

in 4d ”branches” are very short. In this case dH = 4 and at
large scales dS = 4. (On short scales we see dS ≈ 2).
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Phase diagram again
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Triple point

We may ask what happens
when we move inside the de
Sitter phase towards the
phase transition. Black dots
represent the positions
where measurements were
made. Red and blue dots
represent approximate phase
transition points.
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Universality in the de Sitter phase

Changing values of κ0 and ∆ leads to a finite renormalization of
the “effective” parameters Γ and ξ.
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In the C phase volume distribution always represented by the
same (cos3) curve, but the scale in time and the size of
fluctuations are changing.
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Effective gravitational constant Γ

∆ = 0.6
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Conclusions

Approach to a critical line is accompanied by the increase of
the effective gravitational constant. In physical units this can
have an interpretation of ”stronger gravity” or ”larger cut-off” a.
Recall that

V4 =
G2

Γ2ξ
N4

and
G = asatΓ
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New degrees of freedom

It was mentionned that the ”construction” of the space-time
resembles the onion: There are consecutive layers of

{1, 4} and {4, 1} simplices at integer discretized time.

{3, 2} and {2, 3} layer which can be interpreted as
half-integer time layer. This additional layer ”glues”
together the spatial slices at integer t . It forms a closed 3d
connected manifold.

Moving in the C-phase we observe that the ratio of the numbers
of {3, 2} and {4, 1} simplices is a function of the bare
parameters of the theory.
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Global volume distribution

We may ask what is the role played by {3, 2} layers between
the spatial slices. What is the volume of a {3, 2} simplex?
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Behavior of ρ (volume of a {3, 2} simplex) in de Sitter
phase
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Surprising behavior: naively we expect dependence of ρ on the
asymmetry parameter ∆. It shows that the relation between the
bare and renormalized parameters is non-trivial.
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New projects and beyond

There remain many questions for the simplest formulation
(without matter):

How to define semiclassically a system of coordinates
which would make sense (fractal structures).
If we accept that fractal structures are important, what is
their dynamics?
What other sensible observables can be measured (local
effective action)?
What are the cosmological consequences?

Other possible directions:
Introducing matter is essential for a theory of gravity.
How can we measure the semiclassical gravitational force?
. . .
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Fractal dimensions
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Fractal dimensions

Problems of “Euclidean” DT

Dimension of space-time on large scales is not 4.

Naively if a building
block has dimension d

one expects that a final
construction has the
same dimension.

→
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Fractal dimensions

Problems of “Euclidean” DT cont’d.

In fact a “typical” structure of space time is different:

“Tree” dH = 2, dS = 4/3 “Bush” dH = ∞, dS =?
Fractal dimensions dH - Hausdorff, dS - spectral dimension.
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Fractal dimensions

Problems of “Euclidean” DT cont’d.

t

Independently of how we define the
“time” in DT, the quantum amplitude is
always dominated by trajectories, for
which the “spatial” universe splits into
(infinity of) universes (baby-universes).

CDT requires that we restrict topologies to those, which do not
admit such singularities:
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Fractal dimensions

Fractal dimensions

On random geometric structures we must define what we mean
by the (averaged) dimension of a manifold. We use two
definitions:

Hausdorff dimension dH . For a ball with a radius r >> 1
we measure the number of points inside the ball:

〈N(r)〉 ∼ rdH

For a ball with a finite volume V we should have

〈r〉V ∝ V 1/dH

Spectral dimension dS. We define a diffusion process on a
manifold in a pseudo-time σ. Return probability

〈P(σ)〉 ∝ 1/σdS/2
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